
Proc. of the Invitational Workshop on Data Integrity, National Institute of Standards

and Technology, Special Publication 500-168, September 1989, section A.4, pages 1-

14.

TERMINOLOGY, CRITERIA AND SYSTEM

ARCHITECTURES FOR DATA INTEGRITY

Ravi Sandhu
Department of Computer and Information Science
The Ohio State University, Columbus, Ohio 43210

Abstract. In response to the strawman document [9] we propose that trust be
treated as synonymous with integrity rather than synonymous with con�dence. We
also propose that mandatory controls be taken to mean controls based on properties
of the object and/or the subject. Label-based mandatory controls are then a special
case of this more general notion. The TCSEC [11] presents criteria for establishing
prescribed levels of con�dence in trusted systems with particular objectives. We con-
sider how these criteria might be generalized to a broader context. Finally regarding
architectures for trusted systems we suggest enhancements to the current security
kernel approach.

1 INTRODUCTION

This paper discusses three interrelated topics pertaining to data integrity. In the
spirit of this workshop the concepts are not presented as �nal, de�nitive or absolute.
They do raise many interesting questions which must be confronted, in one form or
another; even if the terminology suggested here needs modi�cation and re�nement,
as it almost surely will.

Our �rst topic concerns basic terminology for which we have speci�c proposals
regarding \trust" and \mandatory controls." For the most part we agree with the
positions argued in the strawman document [9] for this workshop. The document is
a signi�cant contribution to our understanding of integrity and lays the foundation
for productive debate in future. However we suggest that trust be treated as synony-
mous with integrity rather than synonymous with con�dence. We believe the same
arguments used to support a binary view of integrity also apply to the notion of trust.
That is trust is a binary property, relative to some context, in whose evaluation we
have varying degrees of con�dence. The main advantage of our proposal is its explicit
recognition that there are two independent issues involved in evaluating trust:

1. What functions is the system trusted to perform or not perform?

1



2. What is the degree of con�dence in our trust?

Regarding mandatory controls we propose the notion be generalized so it is not
tied to labels. In our view label-based mandatory controls are a special case of
controls based on properties of the object and/or the subject. In the military non-
disclosure context these properties turn out to be best expressed as partially ordered
labels, obtained by combining levels and compartments. In other contexts these
properties are more naturally obtained in other ways. For instance the type of an
object determines what operations can be executed on it. The security community
has no handy term for \controls based on properties of the object and/or the subject"
although their fundamental importance has often been recognized [3, 5, 18, 24, 26,
for instance]. We propose the term mandatory controls be used in this broad sense
and that it be quali�ed when a speci�c property is intended, such as in label-based
mandatory controls.

Our second topic concerns criteria for evaluating trusted systems. The TCSEC [11]
recognizes the separation between functionality and con�dence noted above when it
states, \Included are two distinct sets of requirements: 1) speci�c security feature
requirements; and 2) assurance requirements." However in its criteria this separa-
tion is not clearly maintained. In the transition from one class to the next in the
C1 through B3 range both functionality and degree of con�dence are simultaneously
increased. Whereas in the B3 to A1 transition the functionality is unchanged but
the assurance requirements are substantially higher. In the classi�ed sector, with its
speci�c objectives for control of documents, there may be a logical joint progression
of functionality and degree of con�dence. But in a broader context these two issues
are best kept separate. Especially in the commercial arena, there is a need for sys-
tems with relatively primitive functionality but with high levels of con�dence in their
evaluation as trusted. For instance the function might be limited to requiring a audit
trail which can be trusted with a high degree of con�dence. We need �ner criteria
to enable users to select the combination of functionality and level of con�dence in a
trusted system that suit their needs within their budgetary constraints.

Our third topic concerns architecture for trusted systems. The conventional ap-
proach to security kernels [13] places all trusted code in the kernel and does not trust
any code outside the kernel. This approach has been reasonably successful in the
non-disclosure context.1 For a broader context we suggest a multi-layered approach
with a table-driven kernel. The kernel is trusted, with a high level of con�dence, to
enforce the policy speci�ed in its policy tables. These tables are static so they can
be placed in read-only memory when the system is \built." Our objective is to sep-
arate policy from mechanism to exploit commonality of mechanism across a variety
of policies. This kernel can support the \access-control triple" called for by Clark

1Even in this context there are signi�cant deviations from this ideal. The notion of a trusted
subject, which is outside the kernel but must nevertheless be trusted, has slowly crept in. So the
architecture is anyway moving in the direction we are suggesting.

2



and Wilson [5, 7] as well as separation of duties, perhaps by using transaction con-
trol expressions [29]. Above the kernel are trusted layers of application-independent
and application-speci�c code. Code for well-formed transactions, application speci�c
auditing, and policies not directly supported by the kernel tables resides here.

2 TERMINOLOGY

We have speci�c proposals regarding the terms \trust" and \mandatory controls."
Our main objective concerning trust is to emphasize two distinct issues in its eval-
uation, viz., functionality and degree of con�dence. This distinction is important in
establishing criteria for evaluating trusted systems. Regarding mandatory controls
we attempt to generalize the notion so that label-based controls turn out to be a spe-
cial case. We speci�cally propose that mandatory controls be used to mean controls
based on properties of the object and/or the subject.

2.1 TRUST

The de�nition of integrity presented in the strawman paper [9] has two salient features.

I. Integrity is a binary property. An object either has integrity or it does not.

II. Integrity is relative to an a priori expectation of quality in some context. So the
same object can have integrity in one context and be devoid of it in another.

The de�nition appears intuitively sound and useful and provides much needed clar-
i�cation of terminology. It does leave open the question of what is quality, which is
noted as the next task for the Integrity Working Group.

The strawman paper goes on to assert, \Integrity reects trust in quality. There
can, however, be degrees of trust." In appendix I we �nd the statement of Willis Ware
that, \the con�dence level in the decision about determination of presence/absence of
integrity is indeed continuous in nature and might well be called the \level of trust"
in the decision that has been made." The term \degree of trust" is also used in the
TCSEC. For instance one of its objectives is stated to be, \to provide users with a
yardstick with which to assess the degree of trust that can be placed in computer
systems for the secure processing of classi�ed or other sensitive information."

We agree with the spirit of these statements but propose some modi�cations. The
�rst, and relativelyminor, observation is that con�dence levels need not be continuous
in a mathematical sense.2 We propose the following statement to allow for di�erent
ways of measuring con�dence.

2This implication may not be intended but it nevertheless needs clari�cation.

3



III. Con�dence in our decision as to whether or not an object has integrity, in some
given context, is a concept to which degrees or levels (qualitative or quantitative,
continuous or discrete, totally ordered or partially ordered) can be assigned. So
it is proper to talk about degrees or levels of con�dence.

The second, and more important, proposal is that trust and con�dence should
not be treated as synonymous. Instead trust should be treated as a synonym for
integrity. Trust is a concept applied for the most part to active agents. It implies an
a priori expectation about some aspect of the agent's behavior in a particular context.
To be trusted the agent's behavior need only be no worse than we thought it would
be. Compare this with the statement [9], \To have integrity it (the quality of an
object) need only be no worse than we thought it was." If integrity is treated as a
binary attribute, for consistency trust should also be binary. Contrast the following
statements.

1. This data has integrity with a high degree of con�dence.

2. This data has integrity with a high degree of trust.

The appropriateness of the �rst statement has been well argued in the strawman
paper. We propose the second statement be treated as inadmissible and meaningless,
at least in a technical sense. Trust comes in play when we have no choice but to
use data in whose integrity we have little con�dence. What is being trusted in such
cases? We are trusting that all active agents who could have degraded the quality of
this data did not do so.

Is this merely hair-splitting? Perhaps, but the proposal is worth investigating
if only to spell out its consequences. The proposed viewpoint clearly separates two
issues involved in evaluating a system's trust.

1. What functions is the system trusted to perform or not perform?

2. What is the degree of con�dence in our trust?

Of course these questions are raised even if trust is viewed as a non-binary attribute.
They do become more explicit if trust is de�ned as a binary property. Moreover there
is a recognition that these are really two independent issues.

Our proposal is in direct conict with the concept of trust in the strawman paper.
Consider the following quote from appendix I.

\: : : trust is not a binary attribute as the word is commonly used. It
is understood that someone (or some thing) is trusted for some purpose
(but not others); we are all accustomed to estimating degree of trust in
our daily lives. We often say: \Can I trust someone (or some thing) for
: : :"; thus, we make a value judgment in terms of some end goal, and

4



implicitly the goal has a threat attached to it. This is precisely what
trusted systems are all about : : :"

It appears inconsistent to us that integrity is a binary property but trust is not. The
strawman paper argues that integrity is a binary attribute, which is relative to some
context, and in which we legitimately can have varying degrees of con�dence. The
examples quoted above show trust is relative, however, they do not show trust is
non-binary.

If we accept trust as a synonym for integrity, applicable mostly to active entities,
we can specialize the assertions of the strawman paper as follows.

IV. Trust is a binary property usually applied to active agents or subsystems which
contain one or more active agents. An active entity is either trusted or not.

V. Trust is relative to an a priori expectation of quality, particularly quality of
behavior, in some context. So the same agent can be trusted in one context and
untrusted in another.

VI. It is proper to talk about degrees or levels of con�dence regarding the decision
as to whether or not an agent is trusted, in some given context.

To be concrete consider the following statements where the term process is used
in the technical operating systems sense of an executing program.

1. This process has integrity with a high degree of con�dence.

2. This process can be trusted with a high degree of con�dence.

3. This process has integrity with a high degree of trust.

We propose the �rst two statements be treated as synonymous. The only di�erence
being that the second statement draws attention to the active nature of a process
and quality of its behavior. The third statement we submit should be inadmissible
and meaningless, at least in a technical sense. On the other hand, if we equate trust
with con�dence, statements 1 and 3 above are equivalent while statement 2 can be
rephrased as follows.

4. This process can be trusted with a high degree of trust.

Now this is obviously circular and of questionable value in a technical vocabulary.
It can only serve to confuse the issue. Our proposal is to treat statements 3 and 4
as inadmissible. The strawman paper in e�ect takes the position that 2 and 4 are
inadmissible. Given a choice between keeping statement 2 or 3 we believe the choice
is clearly in favor of 2.

5



2.2 MANDATORY CONTROLS

The TCSEC draws a sharp distinction between discretionary controls based on iden-
tity and mandatory controls based on labels. There appears to be a consensus that
a more general notion is needed which is not tied to labels. Consider the following
quote from the �rst WIPCIS report [22].

\: : : two types of mandatory controls are considered here | label-based
mandatory controls (enforcing separation based on hierarchical or lattice
oriented labels, as in the Orange Book) and general mandatory (which
lies between label-based mandatory and discretionary controls)."

We are troubled by this characterization of general mandatory as lying between label-
based mandatory and discretionary controls. On the contrary we propose that general
mandatory be de�ned so label-based mandatory controls are a special case of whatever
we call general mandatory.3

A reasonable working de�nition is given by Clark and Wilson [6] as follows.

\: : : the word \mandatory." In the paper, we want to use it in the more
general way, to describe any mechanism which is not put into place at
the control of the owner of the data, but which is a necessary part of the
operation of the system."

However there are situations where mandatory controls are de�ned by the owner. For
example the owner of checks is responsible for de�ning the well-formed transactions
which can operate on checks as well as for de�ning the separation of duty requirements
for processing checks. Once these decisions have been made, at the owner's discretion,
the resulting controls are mandatory for all other users. Clark and Wilson also have
another working de�nition [7] as follows.

\In this case we de�ne mandatory as those controls which are unavoidably
imposed by the operating system between user and data."

This is very broad and can be interpreted to include discretionary controls.

We propose to de�ne mandatory controls as controls based on properties of the
object and/or the subject. This is as broad and open ended as the above. However it
does suggest that one can categorize mandatory controls in terms of the properties on
which the controls are based. In the military non-disclosure context these properties
turn out to be best expressed as partially ordered labels. In other contexts these

3It is not surprising the meaning of these terms is still controversial. Many common terms, such
as virtual memory, process, fairness, etc., remain controversial even after years of productive use.
The goal is not so much to discover the Platonic ideal meaning, but rather to assign meanings which
are practically useful, technically consistent and widely accepted (eventually).

6



properties are more naturally obtained in other ways. For instance the type of an
object determines what operations can be executed on that object. Subjects are
divided into two classes for this purpose: the type manager who can execute arbitrary
operations and all others who can only execute operations exported by the type
manager.

Traditional lattice-based controls [2, 10, 17] are obviously a special case of our
de�nition. Discretionary controls are also a special case. Consider the TCSEC de�-
nition of discretionary controls as \a means of restricting access to objects based on
the identity of subjects and/or the groups to which they belong." So in this case the
property being used is identity and group membership.

We can exclude discretionary controls by re�ning the de�nition of mandatory
controls to be \controls based on properties of the object and/or the subject (exclud-
ing identity of the subject and/or the groups to which it belongs)." In our opinion
it is not unreasonable to actually consider discretionary controls as a special case
of mandatory controls. We believe the traditional black and white distinction be-
tween discretionary and mandatory controls is inappropriate in many contexts. All
authority in a system is ultimately obtained by means of somebody's discretionary
decisions [20, 21]. The real di�erence is to what extent discretionary ability can be
granted and acquired during the normal operation of a system, and to what extent it
gets �xed at system initialization.

Our proposal allows us to categorize mandatory controls along di�erent dimen-
sions. For instance, consider the following progression.

1. Controls based on identity. As discussed above this includes discretionary con-
trols.

2. Controls based on static properties of the object and subject. These properties
are determined at creation and do not change thereafter. Label-based controls
of the Bell and LaPadula model [2] with strong tranquillity (i.e., labels are
static) are a well-known example. The type based controls of the schematic
protection model [26, 28] are a more general example.

3. Controls based on dynamic properties of the object and subject. That is the
properties on which the controls are based are themselves changeable, presum-
ably in some controlled manner requiring proper authorization. Controls based
on the history of an object and the role of a subject, such as enforced by transac-
tion control expressions [29], are one example. Another example is label-based
controls without tranquillity [19] (i.e., labels can be modi�ed).

If we assume identity is immutable, 1 is a special case of 2. Similarly, 2 is a special
case of 3 if dynamic is interpreted to include static. So there is a logical progression.

Group membership does not �gure in the above categorization. This is deliberate.
If group membership is a static attribute we could include it in under 2. However

7



the moment group membership is dynamic a new set of questions is raised [25]. For
example consider the following policy.

1. A project group must have a majority of members from within the department.

2. Any department member can unilaterally join any project group.

3. An outsider can be enrolled in a group only by a project supervisor.

This is by no means a complicated policy. Yet there are no systems today which can
conveniently support it. A C2 system is not good enough since it cannot enforce the
speci�ed mandatory controls. Neither do the labels of B or A systems help.

Another categorization might consider the nature of these properties along a dif-
ferent dimension, for instance as follows.

1. Controls based on properties of an object which depend on the value of the data
it contains.

2. Controls based on properties of an object which are independent of the value of
the data it contains.

Such distinctions are important for two reasons. First we can conclude that certain
kinds of controls are needed to achieve particular objectives. For instance dynamic
separation of duties appears to require controls based on the history of an object
whereas static separation can be achieved by controls based on static properties.
This gives us guidelines regarding what features are required to achieve our objectives.
Secondly we can design operating system mechanisms with the fundamental nature
of the controls in mind rather than considering speci�c applications.

3 CRITERIA

We now turn to consideration of criteria for evaluating trusted systems. There are
two major points we wish to make in light of the preceding discussion. Firstly the
criteria must clearly separate the issues of functionality and degree of con�dence.
Secondly we need a �ner grain of functionality than provided in the TCSEC.

Separation between functionality and con�dence is noted in the TCSEC in its
statement, \Included are two distinct sets of requirements: 1) speci�c security feature
requirements; and 2) assurance requirements." However in the TCSEC classes this
separation is not clearly maintained. In moving up to higher classes (e.g., from C1
to C2) there is an increase in functionality as well as an increase in the level of
con�dence required. The sole exception is the B3 to A1 transition which does not
introduce additional functionality but considerably increases the required degree of
con�dence. Clark and Wilson [7] have tentatively proposed a similar progression

8



for integrity evaluation criteria. Since their objective was to arrive at an integrated
set of criteria for evaluation for integrity and non-disclosure it is natural that their
proposal mirrors the TCSEC. Speci�cally they propose three divisions with the C to
B transition requiring a simultaneous increase in functionality and assurance while
the B to A transition is mostly concerned with assurance.

While some joint progression is inevitable we feel it is inappropriate to couple
these two issues too tightly. Especially in the commercial arena, there is a need for
systems with relatively primitive functionality but with high levels of con�dence in
their evaluation as trusted. For instance the function might be limited to requiring a
audit trail which can be trusted with a high degree of con�dence. This makes breach
of trusted behavior by individual users detectable so threat of punitive action may
be enough to prevent it.

Moreover the progression of functionality de�ned in the criteria should be �ner
grained. This is especially so if an integrated set of criteria are proposed. For instance
consider a user who requires high con�dence in authentication but is willing to accept
low con�dence for non-disclosure. In the TCSEC the trusted path required for the
former is coupled with the requirement of covert channel analysis. We view function-
ality as inherently multi-dimensional. For instance consider the following progression
of functionality of mandatory controls.

Class Mandatory controls based on
a Dynamic properties including value
b Limited dynamic properties (e.g., transaction control expressions)
c Almost static properties (e.g., weak typing, labels without tranquillity)
d Static properties (e.g., strong typing, labels with tranquillity)
e Identity based (i.e., only discretionary controls)

We do not think it proper to require that a system which includes features of class a
must also include all features of the classes below a. The progression is multidimen-
sional. For instance we may require sophisticated support for hierarchical groups [27]
and some little amount of controls from the other classes. As a user one would like
a rating which measures the features provided in each one of these classes so one
can shop for the best match. Levels of con�dence might be assigned in a strictly
increasing sequence, for instance as follows.

Class Level of con�dence
a Formally veri�ed
b Informally veri�ed
c Extensive testing
d Minimal con�dence
e No con�dence

However if we have multi-dimension functionality we expect a di�erent level of con-
�dence to be attached to each dimension to give a multi-dimensional rating.

9



As a general principle of system design a user should be able pay for the func-
tionality and level of con�dence in a trusted system that suits his needs. He should
be able to trade one for the other to meet budgetary constraints. The marketplace
and technology will determine what combinations of functionality and con�dence get
supported and at what price. With proper modular designs, system vendors should
be able to support large numbers of combinations. It should eventually be possi-
ble to upgrade from one package of functionality and con�dence to a superior one.
We need �ner criteria to enable users to select the combination of functionality and
level of con�dence in a trusted system that suit their needs within their budgetary
constraints.

4 SYSTEM ARCHITECTURES

Our third topic concerns architecture for trusted systems. The conventional approach
to security kernels [1, 13, 16] places all the trusted code in the kernel and does not
trust any code outside the kernel. The ideal picture is given somewhat as follows.

Users
Applications

Operating System
Security Kernel

In practise the ideal is often violated by placing some trusted code outside the security
kernel. This gives us the following view.

Everything Else
Trusted Functions
Security Kernel

There are two major reasons why we need trusted functions, or trusted processes,
outside the security kernel.

1. Trusted processes need to bypass mandatory controls of the security kernel in
order to achieve their objective. For example a downgrader must selectively
violate con�nement.

2. Trusted processes perform functions which are security related, so we need a
high level of con�dence in their correctness, but these do not need to violate
con�nement. For example a labeler or a backup utility.

Trusted functions are clearly part of the overall security component of a system.
Trusted functions which are privileged to bypass kernel controls are particularly dis-
turbing. By their very nature, it is di�cult to come up with a rigorous de�nition of

10



what these processes are supposed to do. Without a precise speci�cation it becomes
somewhat pointless to try and verify them.

It is possible for enforcement mechanisms in the security kernel to help us increase
the level of con�dence in these trusted functions. For instance SCOMP [12] uses \in-
tegrity labels" for this purpose while SAT [4] provides a type enforcement mechanism.
Of course, neither of these can guarantee the correctness of trusted functions. The
controls increase our con�dence by making it more di�cult to plant Trojan Horses in
trusted code as well by limiting the damage that might be done. The SAT approach
is particularly exible and attractive.

In view of this experience we propose the following idealized architecture for
trusted systems.

Everything Else
Application Dependent
Trusted Functions

Application Independent
Trusted Functions
Enforcement Kernel

For the moment let us ignore the non-disclosure problem. What then might one
expect in these layers? We propose the enforcement kernel implement mandatory
controls which are for the most part based on static properties of subjects and objects.
To separate policy from mechanism the kernel should be table-driven. This is by
no means a new idea [4, 8, 23] and has obvious appeal. The separation of trusted
functions outside the kernel, into application independent and application dependent,
is intended to encourage reuse of trusted functions across applications.

We propose the mandatory policy of the kernel be de�ned in terms of types of
subjects and objects, and that the kernel enforce strong typing (i.e., the type of a
subject or object is determined when it is created and thereafter does not change).
Type-based controls are surprisingly powerful. They gives us the basis for enforcing
the \access control triple" of Clark and Wilson [5, 7]. They also provide enforcement
of, even dynamic, separation of duties by means of transaction-control expressions [29]
or some similar mechanism. There is also evidence that policies based on types are
easier to analyze for safety [26] as compared with policies speci�ed without a built-in
notion of types [14, 15].

How does non-disclosure �t into this picture? There are several approaches one
might take. If labels are regarded as a special case of types the enforcement kernel
can handle label-based controls. This has been formally demonstrated in [28]. Of
course the covert channel problem remains. So, to achieve B2 or higher ratings,
the enforcement kernel and policy tables must be scrutinized for covert channels.
Another approach could be to run the enforcement kernel above a traditional security
kernel. Such a security kernel could be stripped of all features not related to label-

11



based con�nement and conceivably could be small enough to meet A1 criteria. The
enforcement kernel could then be viewed as an integrity kernel sitting above the
security kernel. Since projects such as SAT are proposing similar features it may be
better to split them vertically into two layers.

12



5 CONCLUSION

To summarize we have considered several topics relating to data integrity.

1. In response to the strawman document [9] we propose that trust should be
viewed as a synonym for integrity used mostly to describe active agents or
systems containing such agents. This serves to emphasize two distinct issues in
evaluating trust, viz., functionality and degree of con�dence.

2. We propose that mandatory controls be used to mean controls based on prop-
erties of the object and/or the subject. Label-based controls are then a special
case of this more general notion. If we choose we can exclude discretionary
controls by excluding properties based on identity of the subject and/or the
groups to which it belongs. Otherwise we can view discretionary controls as a
very special case of mandatory controls.

3. With the above perspective we have argued that criteria for evaluating trusted
systems must clearly separate the issues of functionality and degree of con�-
dence. While some joint progression may be inevitable we feel it is inappropri-
ate to couple these two issues too tightly. We have also argued that the criteria
need to be �ner than those presented in the TCSEC [11].

4. Finally we have considered the security kernel approach to trusted systems ar-
chitecture. Experience indicates trusted code is needed outside the kernel [13].
This is even more so for application speci�c integrity policies. The architecture
should support a distinct layer above the kernel in which this code resides. Pol-
icy and mechanism should be separated in the kernel. Policy should be speci�ed
by static policy tables which can only be changed, under careful control, when
the system is built. A built-in notion of types should be provided for specifying
these policies.

In the spirit of this workshop these proposals are somewhat speculative and need
further work. Many of the questions we have raised must eventually be confronted,
in one form or another, even if the terminology in which they are phrased is modi�ed.

It appears to us that mandatory controls for integrity will be an order of mag-
nitude more complex than label-based mandatory controls for non-disclosure, in all
respects except for the formidable covert channel problem. This is the distinguishing
characteristic which makes non-disclosure such a di�cult problem. As a �nal note we
express our support for the following viewpoint [20].

\Many people have assumed that security policies for commercial systems
are either less friendly versions of academic policies or military policies
with fewer teeth. Neither is true. Considerations for commercial security
policy di�er in quality, because the principles of internal control take a
much more sophisticated view of authority."

13



References

[1] Ames, S.R., Gasser, M. and Schell, R.R. \Security Kernel Design and Implemen-
tation: An Introduction." Computer 16(7):14-22 (1983).

[2] Bell, D.E. and LaPadula, L.J. \Secure Computer Systems: Uni�ed Exposition
and Multics Interpretation." MTR-2997, Mitre, Bedford, Mass. (1975).

[3] Boebert, W.E. and Kain, R.Y. \A Practical Alternative to Hierarchical Integrity
Policies." 8th National Computer Security Conference, 18-27 (1985).

[4] Boebert, W.E., Kain, R.Y., Young, W.D. and Hansohn, S.A. \Secure Ada Tar-
get: Issues, System Design, and Veri�cation." 8th National Computer Security

Conference, 18-27 (1985).

[5] Clark, D.D. and Wilson, D.R. \A Comparison of Commercial and Military Com-
puter Security Policies." IEEE Symposium on Security and Privacy, 184-194
(1987).

[6] Clark, D.D. and Wilson, D.R. \Comments on the Integrity Model." In [30].

[7] Clark, D.D. and Wilson, D.R. \Evolution of a Model for Computer Integrity."
These proceedings.

[8] Cohen, E. and Je�erson, D. \Protection in the Hydra Operating System." 5th

ACM Symposium on Operating Systems Principles, 141-160 (1975).

[9] Courtney, R.H. \Some Informal Comments About Integrity and the Integrity
Workshop." These proceedings.

[10] Denning, D.E. \A Lattice Model of Secure Information Flow." Communications

of ACM 19(5):236-243 (1976).

[11] Department of Defense National Computer Security Center. Department of De-

fense Trusted Computer Systems Evaluation Criteria. DoD 5200.28-STD, (1985).

[12] Fraim, L.J. \Scomp: A Solution to the Multilevel Security Problem." Computer

16(7):26-34 (1983).

[13] Gasser, M. Building a Secure Computer System. Van Nostrand Reinhold (1988).

[14] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. \Protection in Operating Sys-
tems." Communications of ACM 19(8):461-471 (1976).

[15] Harrison, M.H. and Ruzzo, W.L. \Monotonic Protection Systems." In DeMillo,
R.A., Dobkin, D.P., Jones, A.K. and Lipton, R.J. (Editors). Foundations of

Secure Computations. Academic Press (1978).

14



[16] Landwehr, C.E. \The Best Available Technologies for Computer Security." Com-

puter 16(7):86-100 (1983).

[17] Lee, T.M.P. \Using Mandatory Integrity to Enforce \Commercial" Security."
IEEE Symposium on Security and Privacy, 140-146 (1988).

[18] Linden, T.A. \Operating System Structures to Support Security and Reliable
Software." ACM Computing Surveys 8(4):409-445 (1976).

[19] McLean, J. \The Algebra of Security." IEEE Symposium on Security and Pri-

vacy, 2-7 (1988).

[20] Mo�ett, J.D. and Sloman, M.S. \The Source of Authority for Commercial Access
Control." IEEE Computer 21(2):59-69 (1988).

[21] Murray, W. H. \On the Use of Mandatory." Position paper in [30].

[22] Parker, D.B. and Neumann, P.G. \A Summary and Interpretation of the Invita-
tional Workshop on Integrity Policy in Computer Information Systems." In [30].

[23] Popek, G.J. and Farber, D.A. \A Model for Veri�cation of Data Security in
Operating Systems." Communications of ACM 21(9):737-749 (1978).

[24] Saltzer, J.H. and Schroeder, M.D. \The Protection of Information in Computer
Systems." Proceedings of IEEE 63(9):1278-1308 (1975).

[25] Sandhu, R.S. and Share, M.E. \Some Owner Based Schemes with Dynamic
Groups in the Schematic Protection Model." IEEE Symposium on Security and

Privacy, 61-70 (1986).

[26] Sandhu, R.S. \The Schematic Protection Model: Its De�nition and Analysis for
Acyclic Attenuating Schemes." Journal of ACM 35(2):404-432 (1988).

[27] Sandhu, R.S. \The NTree: A Two Dimension Partial Order for Protection
Groups." ACM Transactions on Computer Systems 6(2):197-222 (1988).

[28] Sandhu, R.S. \Expressive Power of the Schematic Protection Model." Computer

Security Foundations Workshop, 188-193 (1988).

[29] Sandhu, R.S. \Transaction Control Expressions for Separation of Duties." 4th

Aerospace Computer Security Applications Conference, 282-286 (1988).

[30] Report of the InvitationalWorkshop on Integrity Policy in Computer Information
Systems (WIPCIS), Bentley College, MA, October 1987, NIST.

15


