
Secure Information and Resource Sharing in
Cloud Infrastructure as a Service

Yun Zhang
Institute for Cyber Security

Univ of Texas at San Antonio
San Antonio, TX 78249

Amy.u.Zhang@gmail.com

Ram Krishnan
Dept. of Electrical and
Computer Engineering

Univ of Texas at San Antonio
San Antonio, TX 78249

Ram.Krishnan@utsa.edu

Ravi Sandhu
Institute for Cyber Security

Univ of Texas at San Antonio
San Antonio, TX 78249

Ravi.Sandhu@utsa.edu

ABSTRACT
Cloud infrastructure as a service (IaaS) refers to virtualized
IT resources such as compute, storage and networking, of-
fered as a service by a cloud service provider on demand to
its customers (equivalently tenants). IaaS is a fast-maturing
cloud service model today where tenants are strictly isolated
from each other. With the prominence of IaaS as the next
generation model for outsourcing IT infrastructure, we be-
lieve there is a need to facilitate secure sharing between ten-
ants for various reasons such joint cyber incident response,
catalyzing productivity, etc. In this paper, we investigate
various models for information and resource sharing between
tenants in an IaaS cloud. The models facilitate a tenant to
share its IT resources with other tenants in a controlled man-
ner. One motivation for sharing resources is for cyber inci-
dent response. We formally specify operational and admin-
istrative models for sharing and discuss enforcement and im-
plementation issues in the widely-deployed OpenStack plat-
form, the de facto open-source cloud IaaS software.

Categories and Subject Descriptors
H.1.1 [Information Systems]: MODELS AND PRINCI-
PLESSystems and Information Theory[Information theory;
General systems theory]

General Terms
Theory

Keywords
Formal models; IaaS; OpenStack

1. INTRODUCTION AND MOTIVATION
Cloud computing is revolutionizing the way businesses ob-
tain IT resources. Infrastructure as a service (IaaS) is a
cloud service model [7] where a cloud service provider (CSP)
offers compute, storage and networking resources as a ser-
vice to its tenants, on demand. By tenant, we refer to an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WISCS’14, November 3, 2014, Scottsdale, Arizona, USA.
Copyright 2014 ACM 978-1-4503-3151-7/14/11 ...$15.00.
http://dx.doi.org/10.1145/2663876.2663884.

organization that is a customer of a CSP. The need to share
information between organizations (commercial and govern-
mental) continues to be an important requirement for var-
ious reasons including incident response, improved produc-
tivity, collaboration, etc.
Our premise is that as organizations move to cloud, the tra-
ditional information sharing activities would also need to
move to cloud. Consider a community cyber incident re-
sponse scenario where organizations that provide critical in-
frastructure to a community (such as a city, county or a
state) share information related to a cyber incident in a
controlled manner [4]. Sharing information amongst such
organizations can greatly improve the resilience of increas-
ingly cyber-dependent communities in case of co-ordinated
cyber attacks [5]. One domain of a community that can
benefit from cyber incident sharing is that of the electric
power grid (see Wang et al [12] for a theoretical example of
cascading a small scale attack to the entire U.S. power grid).
A key requirement of effective cyber incident sharing and
response is that the community needs a capability to share
beyond simple data such as log files and documents. In
particular, organizations need to replicate a smaller-scale
version of their affected IT infrastructure including infected
servers with network architectures, routers and firewall con-
figurations, etc., for effective analysis, response and sharing
with other organizations.
We consider two aspects in the context of information and
resource sharing as one, to a certain degree, will depend on
the other: models and technology. For technology, we focus
on IaaS cloud for two reasons: (1) IaaS is one of the most
adopted cloud service models today (as compared to plat-
form and software as a service cloud models, referred to as
PaaS and SaaS, respectively), and (2) IaaS is also the foun-
dation of cloud with characteristics such as elasticity, self-
service, etc. By gaining insights on issues related to sharing
at this lower level of abstraction, the research community
can develop better models for higher levels of abstractions
of cloud such as PaaS and SaaS. Note that in the context
of IaaS, the unit of sharing comprises virtual resources such
as objects in a storage volume, virtual machines (VM), etc.
This aligns well with the requirements of cyber incident shar-
ing discussed earlier since organizations can share virtualized
snapshots of their IT resources in a community cloud dedi-
cated for, say, electric grid. For models, we focus on admin-
istrative and operational aspects. Administrative models are
concerned about managing what resources are to be shared
with which users, setting-up and tearing-down platforms for

81

sharing, etc. Examples include a tenant administrator cre-
ating a shared secure isolated domain, adding/removing its
users and resources to that domain, inviting other tenants
to join the domain, etc. Operational models are concerned
about controlling what activities users can perform on the
shared platform. Examples include, creating new resources
in the domain, modifying objects in storage volumes, im-
porting new resources, etc.
To be concrete, we develop these models based on the facili-
ties exposed by OpenStack [2], a widely-adopted open-source
cloud IaaS project. OpenStack is a robust IaaS platform for
building public, private or hybrid clouds that is developed
and maintained by a vibrant community with participation
from more than 200 world-leading organizations with a re-
lease cycle of 6 months. OpenStack software allows creating
an IaaS cloud out of conventional hardware. Amazon Web
Services (AWS) [1] is an example of a prominent commercial
IaaS provider. We base our models on OpenStack since it is
open-source and hence feasible to modify and experiment.
Furthermore, real-world platforms such as OpenStack can
inform us of the practicality of the models that we develop.
Traditionally, IaaS providers maintain strict separation be-
tween tenants for obvious reasons. Thus their virtual re-
sources are strongly isolated. For instance, in OpenStack, a
tenant user does not have the capability to access resources
outside her domain. By domain, we refer to the admin-
istrative boundary of that tenant. In the latest release of
OpenStack, each tenant is represented internally as a do-
main. Tenant users are assigned to a domain. Each domain
can contain multiple projects and users are assigned to spe-
cific roles in the project. The roles provide the permissions
to perform tasks such as creating a VM in a given project.
A critical concern for participating organizations is the level
of control that they can maintain over the resources that
are shared. In particular, participating organizations will
need to ensure that the resources are shared only with users
from select other organizations, and can retain the ability to
enable and disable the sharing. Thus in order to share re-
sources between tenants, we need to develop administrative
and operational models that offer precise control to each ten-
ant on what they are willing to share. As we will see, there
are multiple alternatives for developing these models that
can support different scenarios. The contribution of this pa-
per is to explore the various models for sharing in IaaS, and
present implementation approach in OpenStack.
We proceed as follows. We present some background on
OpenStack in section 2. Section 3 gives three perspectives
to consider when designing access control models for infor-
mation and resource sharing (IARS) in IaaS. Then we give
detailed description of two typical models. One is to set up a
shared space inside one organization that is willing to share
information. The other is to set up a shared space which is
isolated from any of the organizations that are collaborating
together. Section 4 gives a formal definition of the second
model described in section 3, which defined an isolated space
for IARS in the OpenStack platform. We present enforce-
ment considerations of our model in section 5 and related
work in section 6. Finally, we conclude in section 7.

2. BACKGROUND
In this section, we introduce how OpenStack is currently
structured. OpenStack provides several services, including
compute (Nova), identity (Keystone), block storage (Cin-

Network
(Nuetron)

Dashboard
(Horizon)

Compute
(Nova)

ObjectStorage
(Swift)

Image
(Glance)

BlockStorage
(Swift)

Identity
(Keystone)

store object

UI

UI UI

network
connectivity

Volume

UI UI

UI

Auth

Auth
Auth Auth

Auth

Auth

store object

store image

Figure 1: Architecture of OpenStack

der), object storage (Swift), image (Glance), networking
(Neutron) and Dashboard (Horizon), as shown in figure 1.
Nova allows users to create their own virtual machines. Glance
provides users with images (OS, software, configurations,
etc.), which are used to create virtual machines. Swift al-
lows users to store their data as swift objects. Cinder pro-
vides block storage which is attached to a virtual machine as
a storage volume. Neutron provides users with networking
services, where different VMs can be networked using vir-
tual routers. Keystone provides users with security services,
such as authentication and authorization. Horizon is the
web-based dashboard where users can access all the services
through a graphic user interface. In addition, OpenStack
provides command line based clients to interface with each
of the services.
In [10], the authors present a core OpenStack Access Con-
trol (OSAC) model based on the OpenStack Identity API
v3, as shown in figure 2. The OSAC model consists of
eight entities: users, groups, projects, domains, roles, ser-
vices, operations, and tokens. Users represent people who
are authenticated to access OpenStack cloud resources while
a group is a set of users. Projects define a boundary of cloud
resources—a resource container in which users can get access
to the services the cloud provides, such as virtual machines,
storages, networks, and so on. Domain is a higher level
concept that equates to a tenant of the CSP. The projects
in a domain represents the administrative boundary of its
users and groups. Projects allow tenants to segment their
resources and to manage their users’ scope of access to those
resources. Roles are global, which are used to specify access
levels of users to services in specific projects in a given do-
main. Note that users are assigned to projects with a specific
set of roles. An object type and operation pair defines ac-
tions which can be performed by end users on cloud services
and resources. Users authenticate themselves to Keystone
and obtain a token which they then use to access different
services. The token contains various information including
the domain the user belongs to, and the roles of the user in
specific projects in that domain. We elaborate the model
and these concepts further below.
Domains and Projects. In OpenStack, a project can only
belong to one domain. A user has one home domain but can
be assigned to multiple projects, which can be distributed
in different domains. That is, the ownership of users and

82

Users

(U)

Domains

(D)

Roles

(R)

User

Assignment

(UA)

Permission

Assignment

(PA)

Project

Ownership

(PO)

Project-Role Pair

(PRP)

Projects

(P)

Tokens

(T)

User

Ownership

(UO)

Services

(S)

user_token

token_project

Groups

(G)

Group

Ownership

(GO)

User

Group

(UG)

Group

Assignment

(GA)

token_roles

PRMS

Operations

(OP)

Object

Types

(OT)

Figure 2: OpenStack Access Control (OSAC) model [10]

projects can be defined by assigning them to a domain. Note
that users in a domain are powerless unless they are assigned
to a project with a particular role. Typically, domains are
created by a CSP for its tenants.
Roles. Role defines the accesses of cloud services and re-
sources the user can have. By assigning a role to a user, one
can specify different access rights for the user. For instance,
by assigning the member role to a user, the user receives all
operational permissions over the resources in a project. By
assigning the admin role to a user, the user receives admin
permissions over a project. The accesses defined by roles are
enforced by a policy engine in the cloud based on policy files
where the roles are defined.
Tokens. There are two types of tokens in OpenStack. One
is an unscoped token, which is used for initial authentica-
tion to a specific domain. Using the unscoped token, the
user can obtain scoped tokens that are project-specific from
Keystone. If a user has membership in two domains, the user
can obtain two different unscoped tokens and thereby fur-
ther obtain multiple scoped tokens for projects that belong
to those domains. OpenStack clients facilitate this process.
Object Types and Operations. The concept of object
types allow specifying different operations for different ser-
vices. For instance, consider the Nova service. The object
type for Nova is VM and operations on VM include start,
stop, etc. In contrast, for Swift, the object type is Container
and the operations include create, upload object, download
object, etc.
Scope and Assumptions: In the model we develop in this
paper, we confine our attention to compute (Nova) and ob-
ject storage (Swift) services in OpenStack. Focussing on the
Swift service allows us to investigate information sharing re-
quirements between tenants, while focussing on Nova allows
us to investigate resource (VM) sharing requirements be-
tween tenants. However, our models equally apply to other
services in OpenStack such as Neutron, Cinder, etc. Fur-
thermore, we confine our attention to information and re-
source sharing between tenants within a single cloud. These
issues in the context of multiple CSPs is an interesting re-
search problem in its own right and we plan to pursue this
in future work.

admin: {u1}.
members:
{u2, u3, …

uN}.

admin: {uX,…, uY}.
members: {u1, u2,

u3, … uN} - {uX, …,

uY}.

admin: {u1, u2,

…, uN}
members: {}.

Assume u1, u2, …, uN represent participants from 1 to N in a
information and resource sharing group.

…………

More participants have full power over the sharing group.

Figure 3: From administrative perspective of modeling

project
A2

project
B2

project
A1

project
B1

domain A domain B

Figure 4: From operational perspective of modeling

3. MODELS FOR SECURE IARS IN IAAS
Informed by the OSAC model, in this section, we discuss
various alternatives in designing IARS models in IaaS. Re-
call that a domain represents a tenant of the CSP and do-
mains can contain multiple projects, where each project is a
resource boundary as specified by the roles assigned to the
user in that project. Also recall that domain admin is a
super user who takes charge of operations inside a domain,
including creating new projects, creating and adding users
to a project, and so on. With the assumption that each do-
main represents an organization in a cloud platform, each
project inside the domain can represent either an depart-
ment or a temporary program in that organization. Domain
admin roles are assigned to people who have the super power
over the organization, such as the capability to manage the
departments and initiate a new event in the organization. In
the following, we conceptually refer to the sharing platform
as a“group”. We use the term group informally. Specifically,
by group we do not mean the OSAC group unless explicitly
stated otherwise. Later, we discuss how exactly we model
this group in OpenStack.
We can model IARS from three perspectives: administra-
tive, operational and control. From administrative perspec-
tive of modeling, assume we have n participants in the IARS
group. We can have n levels of administrative controls, from
one participant being in charge of the group to all the par-
ticipants being in charge of the group, as shown in figure
3. In the model where one participant has absolute control
over the collaborating group, this participant has full access
to all the information and resources in the shared group, as
well as having full power in determining shared group mem-
bers, and which user can have what level of access over what
information and resources inside the shared group. In the
other extreme case of IARS administrative control, all the
participants have full power over the group, including ac-
cess to shared information and resources, and management
of users in the group. Clearly, there are different degrees of
control alternatives over this range as illustrated in figure 3.
From the operational perspective of modeling in OpenStack,
we have different levels of collaboration among projects and
domains: project-to-project collaboration within the same

83

info

sharing

participant A

sharing info inside sharing info outside

participant B participant C

participant A

participant B participant C

info
sharing

p2
p3

p2

p1

p4

p3 p4

p1

Figure 5: From control perspective of modeling

domain, project-to-project collaboration across different do-
mains, project-to-domain collaboration and domain-to-domain
collaboration, as show in figure 4. Project-to-project collab-
oration involves sharing between several projects either in
the same domain or across different domains. Only users
who are assigned to these projects can join the collabora-
tion group. Project-to-domain collaboration occurs when a
department needs to collaborate with an external organiza-
tion. This is useful since not all collaboration scenarios need
the whole organization to be involved. Project-to-domain
perspective minimizes a tenant’s exposure to other tenants.
In scenarios, where two organizations need large-scale col-
laboration or merge their resources, domain-to-domain col-
laboration perspective is a useful construct.
From a source control perspective of modeling, there are two
ways to share information and resources among participants.
One approach is to host the group inside one of the existing
participants’ administrative scope. The other approach is
to host the sharing group within a third party’s administra-
tive scope, where no single participant maintains a superior
control on the group. For the first approach, any partici-
pant can set up an IARS project in its domain and invite
others to the sharing group. For the second approach, par-
ticipants who are willing to share sensitive information can
get together to set up a working domain outside of any of
the member participant domains. The relationship of shared
space with the member participants is showed in figure 5.
Based on these perspectives and the levels of administra-
tive controls discussed above, we now provide an overview of
three model alternatives using OpenStack constructs. Specif-
ically, we use the terms project and domain as specified ear-
lier by the OSAC model. In our discussion below, we refer to
data sharing. However, it equally applies to resource (VMs,
networks, etc.) sharing as well.
Model 1
In model 1, one of the collaborating participants holds a
shared project where all the other collaborating participants
are invited to this shared project. We call the participant
who initiates the collaboration as the shared project holder,
and the rest of participants the shared project members.
The shared project is hosted inside the holder’s domain and
is isolated from the rest of the projects in the domain in order
to secure the sensitive information shared by collaboration
members. In this model, the shared project holder has the
full power over the shared information and resource, as well
as the member participants users. The sharing occurs either
at a domain-to-domain level or a project-to-domain level.
Figure 6 illustrates this approach.
When collaboration begins, the holder creates an empty
shared project for IARS in its own domain. The holder in-
vites other organizations to join the shared project as mem-

Figure 6: Architecture of Model 1

bers by adding their users to the shared project. The holder
decides which users can be added to the shared project and
what permissions can be assigned to those users. A user who
is added to the shared project is assigned with a role, which
gives the user proper permission inside the shared project.
Data can be brought into the shared project by member
users from their original projects in their home domains.
Due to the ownership of the shared project, the holder can
decide what data is allowed to bring in and how the infor-
mation and resources are shared.
During IARS, member users inside the shared project ex-
change their data, work on the shared data and finally gen-
erate new data, which may be copied back to members’ orig-
inal domains. Members can create, update and delete data
based on their roles in the shared project. After the collab-
oration, the holder is responsible for disbanding the shared
project. All the data which is attached to the shared project
are deleted, and all the processes and sessions which are ex-
ecuting in the shared project are killed.
Model 2
In model 2, all the collaborating participants together hold a
shared project located in an external domain. This domain
does not belong to any of the members of the collaborat-
ing participants. In order to facilitate IARS among orga-
nizations, we introduce the concepts of Secure Isolated Do-
main (SID) and Secure Isolated Project (SIP) to OpenStack
platform. SID is a special domain specifically designed for
IARS. SIP is a secure project set up for each IARS team.
In this model, each participant of the collaboration have
equal power over the shared information and resource. The
sharing happens in domain-to-domain level. Thus the par-
ticipants are domains of the tenants. Figure 7 illustrates
this approach.
In the model, we design a SID for every possible combination
of organizations (tenants/domains) in the cloud. Within
each SID, there can be multiple SIPs. For instance, different
collaborations may occur between different users in a group
of organization, which leads to different SIPs in the same
SID. Note that a SID between a set of organizations will
only need to be created if a collaboration activity is ever
necessary between those organization.
When the collaboration starts, a group of organizations to-
gether create a SIP in a SID. The creation process is com-
plete only after all the members of the group agree to join
to the SIP. Each organization has the same access control
right and priority inside the SIP. Inside the SIP, each partic-
ipating organization has a administrative user who decides
which other users from his home domain can be added to
the SIP and with what permissions. A user who is added

84

Figure 7: Architecture of Model 2

to the SIP is assigned with a role at joining time. Users
inside the SIP can bring data into the SIP from their origi-
nal projects in their home domains. Users decide what data
will be brought in and how the information is shared. Like
earlier, users inside the SIP exchange their data, work on
the shared data and finally generate new data, which are al-
lowed to be copied back to their respective original domains.
Users can create, update and delete data as per their roles.
After the collaboration, the set of administrative users are
responsible for disbanding the SIP. All the data which are
attached to the SIP are deleted, and all the processes and
sessions which are running in the SIP are killed.
Model 3 Model 3 is a slight variation of model 2. Similar
to model 2, we still utilize SID and SIP concepts to design
the model. A set of organization administrative users are
responsible for creating, updating and deleting the SIP, and
this set of users become the administrative users of the SIP.
After the SIP is created, SIP administrative users determine
which users inside of their home domain can be added to a
SIP or removed from the SIP. The difference is that, instead
of multiple SIDs, we design a single SID with multiple SIPs
for each collaboration activity between organizations. The
idea is that we want to hide the domain level administra-
tion of the SIPs which simplifies the implementation of this
model.
In this model, we give a default SID to hold all possible SIPs
that users can create. The default SID function is transpar-
ent to users. Every time a user issues a collaboration activ-
ity create request, a SIP is created in the default SID. The
system holds the default SID permanently.
Summary: Model 1 is convenient for information and re-
source sharing in cases of low-assurance requirements on
confidentiality of the shared data. It is easy to deploy model
1 in current OpenStack cloud platform. However, since it
gives one of the collaborating organizations overwhelming
power on the shared project, it can create trust issues be-
tween the holder domain and member domains. Moreover,
by bring in users outside of its home domain, the holder
might be under the risk of exposing itself to other tenants.
Model 2 and model 3 provide all organizations that are in-
volved in IARS an external secure space to cooperate and
work together on the shared data. They avoid the disad-
vantages of model 1, and provide the organizations equal
access control over the shared space. Such a capability is
valuable in scenarios such as cyber incident response where
the data is very sensitive and each participating organiza-
tion would wish to have equal control on the shared space.
Besides, hosting the shared project outside the organization
alleviates mutual suspicions that arise in model 1. In the fol-
lowing section, we give detailed design of model 2 for IARS

in IaaS. We call it the OpenStack Access Control model with
SID extension (OSAC-SID).

4. OSAC-SID MODEL
In the OSAC-SID model, we assume that a user can belong
to only one organization, which is consistent with the user
and home-domain concept in OpenStack. We also assume
that users can be assigned to projects across domains and
access those projects separately using appropriate tokens.
We extend the OSAC model to include SID and SIP compo-
nents, as shown in figure 8. For every possible combination
of organizations in the cloud, we create a SID to include all
SIPs that will be set up among these organizations. For each
IARS event, we create a SIP.
Similar to the concept of domains which is designed to add
one more layer for administration of projects, SID is a ad-
ministrative concept to manage SIPs. The SID function is
transparent to users. SID and SIP components are isolated
from the regular domain and projects components. Unlike
the concept of domains, there are no users that belong to a
SID. A SID exists only for setting up SIPs. However, since
a SID is formed and associated with a group of domains,
there are users who will be associated with the SID—but
only under the constrains that they are from the group of
domains which are associated with the SID.
A SIP provides a secure isolated space for IARS in the cloud.
In other words, SIP is another type of resources container
in OpenStack, which is restricted only for IARS among do-
mains and projects. It means that users who are assigned
to a SIP have similar access capability to request all ser-
vices cloud provides like users who are assigned to a project.
Although for every user, only one home domain can be as-
signed, users can belong to multiple projects and SIPs. Users
can be assigned with multiple roles in same projects/SIPs.
We define the attributes of OSAC-SID model in the follow-
ing part. We inherit some of the attributes of OSAC model
discussed earlier. For simplicity, we choose to ignore two
entities in OSAC model: group and token, for reasons that
group entity is just a set of users, and token is used in the
same way as for a domain/project and for a SID/SIP.
Note that a SID is a regular domain in OpenStack with the
added restriction that a user who belongs to the SID will
have to be a member in one of the regular domains. Simi-
larly, a SIP is a regular project in OpenStack with the added
restriction that, for a user to get access to a SIP, she has to
be authorized by at least one administrator from any of the
participating domains in the SID. Furthermore, the autho-
rization can be revoked by any of those SID administrators.

4.1 Attributes in OSAC-SID
Definition 1. OSAC-SID model has the following attributes.

- SID is a finite sets of special secure isolated domain which
holds secure isolated projects(SIPs).

- U, P, SIP, D, C, SO, VM, R, S, OT and OP are finite sets of
all existing user ids, project ids(except SIPs), secure isolated
project(SIP) ids, domain ids(except SID), swift container
ids, swift object ids, nova virtual machine ids, roles, services,
object types and operations respectively in OpenStack cloud
system.

- UNIV P, UNIV D, UNIV SIP, UNIV SID, UNIV C, UNIV SO
and UNIV VM represent the universe of ids of projects, do-

85

Domains

(D)

Users
(U)

SIP-Role
Pair
(SIPRP)

Secure
Isolated
Projects

(SIP)

Roles
(R)

Project-Role
Pair
(PRP)

Projects
(P)

Roles
(R)

PRMS

Object
Type
(OT)

Operations
(OP)

Services
(S)

Secure
Isolated
Domain

(SID)

Figure 8: OpenStack Access Control (OSAC) model

with SID extension(ignore group and token components)

mains, SIPs, SIDs, swift containers, swift objects, and vir-
tual machines.

- user owner(UO) : U → D, a function mapping a user to
its owning domain. Equivalently viewed as a manytoone
relation UO ⊆ U × D.

- domain admin(DA) : U → {True, False}, a function map-
ping a user to the resolution whether the user is the admin
of its owning domain.

- project owner(PO) : P→ D, a function mapping a project
to its owning domain. Equivalently viewed as a many-to-one
relation PO ⊆ P × D.

- object type owner(OTO) : OT → S, a function mapping a
object type to its owning service. Equivalently viewed as a
many-to-one relation OTO ⊆ OT × S.

- vm owner(VMO): VM → P ∪ SIP, a function mapping a
virtual machine to its owning project. Equivalently viewed
as a many-to-one relation VMO ⊆ VM × (P ∪ SIP).

- container owner(CO): C → P ∪ SIP, a function mapping
a container to its owning project. Equivalently viewed as a
many-to-one relation CO ⊆ C × (P ∪ SIP).

- swift object owner(SOO): SO → C, a function mapping a
swift object to its owning container. Equivalently viewed as
a many-to-one relation SOO ⊆ SO × C.

- vm owner(VMO): VM → P ∪ SIP, a function mapping a
virtual machine to its owning project. Equivalently viewed
as a many-to-one relation VMO ⊆ VM × (P ∪ SIP).

- sid owners(SIDO) : SID → 2D, a function mapping a SID
to the owning domains.

- sip owners(SIPO) : SIP → SID, a function mapping a SIP
to the owning SID.

- sip admins(SIPA) : U → 2SIP , a function mapping a user
to a set of SIPs where the user is assigned to be admin of
the SIP.

- PRP = P × R, the set of project-role pairs.

- SIPRP = SIP × R, the set of SIP-role pairs.

- PERMS = OT × OP, the set of permissions.

- PA ⊆ PERMS × R, a many-to-many permission to role
assignment relation.

- UA ⊆ U × PRP, a many-to-many user to project-role
assignment relation.

- SIPUA ⊆ U × SIPRP, a many-to-many user to SIP-role
assignment relation.

4.2 OSAC-SID Administrative Model
In the OSAC model, there are three levels of administrative
roles: cloud admin, domain admin, and project admin. In
OpenStack, a project admin is a user who has full access
on that project. A domain admin is a super user who is
in charge of the domain where the domain admin can add
and remove users, create, delete and update projects. A
cloud admin is the super user of the entire cloud. In our ad-
ministrative OSAC-SID model, we avoid a cloud admin to
be directly involved with SID/SIP related activities. Also,
since the permission of a project admin is limited to his own
projects, it is not convenient for a project admin to initiate
a SIP establishment, unless the information and resources
need to be shared happens to be only in that project. Thus
we choose domain admin to initiate an IARS activity since
domain admins have the access over all projects inside a
domain. In our model, we design domain admins to estab-
lish a SID/SIP when a collaboration activity occurs. In the
administrative model, for simplicity, we explicitly constrain
attribute OP to include only create and delete operations.
In table 1, we give the details of OSAC-SID administrative
model.
Administrative model:
SIPCreate: A set of domain administrative users (uSet)
form a collaborating group to create a SIP. Each of those
domain administrative users is also the administrative user
of the SIP. For every domain which is associated with the
SIP, there is only one administrative user who can be as-
signed to the SIP as an administrative user of the SIP. Each
SIP has a unique SIP id in the OpenStack platform.
SIPDelete: After IARS is complete in the SIP, the SIP
with all data attached to it will be deleted securely. All the
processes and objects will be killed in the deleting process.
Before the SIP is deleted, it is suggested that all the asso-
ciated domains should have copied all the resulting objects
back to their respective home domains.
SIDCreate: A SID is created automatically when the first
SIP is created for a group of collaborating domains. Each
SID is associated with a certain number of domains. After
the SID is created, it will continue to exist until some SIP
exists in that SID. Thus the total number of SIDs in the
cloud is 2|D|.
SIDDelete: After all SIPs inside a SID are deleted, a SID
will be deteled.
UserAdd: SIP administrative users can add users from
their home domain to the SIP. We refer to these that were
users added after the SIP creation as normal users in the
SIP. The difference between SIP administrative and normal
users in our model is that the SIP administrative users have
the right to add and remove normal users while normal users
only have operational accesses over the objects in a SIP.
UserRemove: SIP administrative users can remove normal
users who belong to the same home domain from the SIP. A
SIP administrative user cannot remove a normal user who
comes from a different home domain.
CopyObject: A user can copy a Swift object between his
home project and a SIP that he belongs to.

86

Table 1: OSAC-SID Administrative model
Operation Authorization Requirement Update

SipCreate(uSet, sip)
/* a set of domain admin users
together create a sip */

∀ u1, u2 ∈ uSet.((DA(u1)=True ∧ DA(u2)=True
∧ u1 6= u2 ∧ UO(u1) 6= UO(u2)))
sip ∈ (UNIV SIP - SIP)

SIPO(sip) =
⋃

∀u∈uSet UO(u)
SIPU(sip) = uSet
∀ u ∈ uSet.SIPA(u) = SIPA(u)
∪ {sip}
SIP’ = SIP ∪ {sip}

SipDelete(uSet, sip)
/* delete the sip*/

∀ u ∈ uSet.((DA(u)=True ∧ sip ∈ SIPA(u))) ∧
SIPO(sip) =

⋃
∀u∈uSet UO(u)

sip ∈ SIP

SIPO(sip) = NULL
SIPU(sip) = NULL
∀ u ∈ uSet.SIPA(u) = SIPA(u)
- {sip}
SIP’ = SIP - {sip}

SidCreate(uSet, sid)
/* a set of domain admin users
together create a sid */

∀ u1, u2 ∈ uSet.((DA(u1)=True ∧ DA(u2)=True
∧ u1 6= u2 ∧ UO(u1) 6= UO(u2)))
sid ∈ (UNIV SID - SID)

SIDO(sid) =
⋃

∀u∈uSet UO(u)
SID’ = SID ∪ {sid}

SidDelete(uSet, sid)
/* delete the sid*/

∀ u ∈ uSet.((DA(u)=True ∧ sid ∈ SIDA(u))) ∧
SIDO(sid) =

⋃
∀u∈uSet UO(u)

sid ∈ SID

SIDO(sid) = NULL
SID’ = SID - {sid}

UserAdd(admin, r, u, sip)
/* sip admin add a normal user
to a sip*/

sip ∈ SIPA(admin) ∧ DA(admin)=True ∧
UO(admin) ∈ SIDO(sid) ∧ sip ∈ sid ∧ UO(u) =
UO(admin) ∧ r ∈ R ∧ sip ∈ SIP ∧ u ∈ U

(u, (sip, r)) ∈ SIPUA ∧
SIPU’(sip) = SIPU(u) ∪ {u}

UserRemove(admin, r, u, sip)
/* sip admin remove a normal
user from a sip*/

sip ∈ SIPA(admin) ∧ DA(admin)=True ∧
UO(admin) ∈ SIDO(sid) ∧ sip ∈ sid ∧ UO(u) =
UO(admin) ∧ r ∈ R ∧ sip ∈ SIP ∧ u ∈ U ∧ (u,
(sip, r)) ∈ SIPUA

(u, (sip, r)) = NULL ∧
SIPU’(sip) = SIPU(u) - {u}

CopyObject(u, so1, c1, p, d,
so2, c2, sip, sid)

so1 ∈ SO ∧ c1 ∈ C ∧ p ∈ P ∪ SIP ∧ d ∈ D ∪ SID
∧ so2 ∈ (UNIV SO - SO) ∧ c2 ∈ C ∧ sip ∈ P ∪
SIP ∧ sid ∈ D ∪ SID ∧ (so1, c1) ∈ SOO ∧ (c1, p)
∈ CO ∧ (p, d) ∈ PO ∪ SIPO ∧ (c2, sip) ∈ CO ∧
(sip, sid) ∈ PO ∪ SIPO ∧ u ∈ U ∧ (u, (p, r)) ∈
UA ∧ (u, (sip, r)) ∈ SIPUA)

SO’ = SO ∪ {so2}
SOO’ = SOO ∪ {(so2, c2)}

† uSet: a set of domain admin users.

4.3 OSAC-SID Operational Model
In the operational model, we mainly want to show how and
what operations a user can issue in our model. We use nova
for computing resources and Swift for data storage. For ease
of presentation, we only show the core operations related to
virtual machines and containers, such as create and delete.
Create method allows users to create a new instance of vir-
tual machine or a container in a project or a SIP. Delete
method allows users to delete an existing instance of a vir-
tual machine or container in a project or a SIP. For Swift
object, we kept main operations from Swift, such as upload
object and download object. In table 2, we give the details
of operational model.
Operational model:
After a user is assigned to a SIP, the user can issue following
operations:
CreateVM/DeleteVM: A user can create/delete a virtual
machines in a SIP to which the user is assigned to.
CreateContainer/DeleteContainer: A user can create/delete
a container in a SIP to which the user is assigned to. A Swift
container holds Swift objects.
CreateObject/DeleteObject: A user can create/delete
a Swift object in a container in a SIP to which the user is
assigned to.
UploadObject: A user can upload a local file to a Swift
object in a container in a SIP to which the user is assigned
to.
DownloadObject: A user can download a Swift object to
the local drive from a container in a SIP to which the user
is assigned to.

5. ENFORCEMENT
In this section, we discuss enforcement and implementation
considerations in OpenStack. In order to deploy the model
in OpenStack platform, we need to modify Keystone server
to include SID and SIP functionality, which has specific fea-
tures that facilitate IARS. Recall that Keystone facilitates
authentication and authorization in OpenStack.
SID functionality include SID creation, updating and dele-
tion, and so on. SID actions are invoked through user’s in-
vocation of SIP actions. Each time a SIP creation request is
sent to Keystone server, the server will check whether a SID
for the set of domains already exists; if not, a new SID with
a SIP will be created and associated with these domains. If
true, a SIP will be created inside the SID and associated
with these domains by inheriting the attributes of the SID.
All SIPs that are created between the same set of domains
will be set up inside the same SID.
SIP functionality allows users bring in their data and utilize
the cloud resources to process the data. It provides users full
access to the resource inside a SIP, where a user can create,
update and delete an object. With the extension of copy
function in Swift, users can copy the objects between their
home project and the SIP under restrains. To create a SIP,
a set of domain admin users are required to send the request
to the Keystone server. To delete a SIP, the same set of ad-
min users are required to agree on the action of delete. Un-
like project-user assignment, SIP-user assignment is strictly
constrained. A user need to be verified before joining a SIP.
Since services are requested using token, after we add SID
and SIP functions, we also need to modify the authentica-
tion part to include SID and SIP attributes. Following is
the outline of OSAC-SID model enforcement in OpenStack.

87

Table 2: OSAC-SID Operational Model
Operation Authorization Requirement Update

Nova:
CreateVM(vm, sip, u) vm ∈ (UNIV VM - VM) ∧ sip ∈ SIP ∧

u ∈ U ∧ ∃ (perms, r) ∈ PA.(perms = (vm, create) ∧
(u, (sip, r)) ∈ SIPUA)

VM’ = VM ∪ {vm}
VMO’ = VMO ∪ {(vm, p)}

DeleteVM(vm, sip, u) vm ∈ VM ∧ sip ∈ SIP ∧
u ∈ U ∧ ∃ (perms, r) ∈ PA.(perms = (vm, delete) ∧
(u, (sip, r)) ∈ SIPUA)

VM’ = VM - {vm}
VMO’ = VMO - {(vm, p)}
vm = NULL

Swift:
CreateContainer(c, sip, u) c ∈ (UNIV C - C) ∧ sip ∈ SIP ∧

u ∈ U ∧ (u, (sip, r)) ∈ SIPUA)
C’ = C ∪ {c}
CO’ = CO ∪ {(c, p)}

DeleteContainer(c, sip, u) c ∈ C ∧ sip ∈ SIP ∧
u ∈ U ∧ (u, (sip, r)) ∈ SIPUA)

C’ = C - {c}
CO’ = CO - {(c, p)}
c = NULL

UploadObject(so, c, sip, u) so ∈ UNIV SO ∧ c ∈ C ∧ sip ∈ SIP ∧
u ∈ U ∧ (u, (sip, r)) ∈ SIPUA)
if ∃ so’ ∈ SO. (so = so’), then so’ = so

SO’ = SO ∪ {so}
SOO’ = SOO ∪ {(so, c)}

DownloadObject(so, c, u, p) so ∈ SO ∧ c ∈ C ∧ sip ∈ SIP ∧
u ∈ U ∧ (u, (sip, r)) ∈ SIPUA)

DeleteObject(so, c, sip, u) so ∈ SO ∧ c ∈ C ∧ sip ∈ SIP ∧
u ∈ U ∧ (u, (sip, r)) ∈ SIPUA)

SO’ = SO - {so}
SOO’ = SOO - {(so, c)}
so = NULL

5.1 Add SID and SIP Functionality
Assignment: In OpenStack, the user assignment module is
part of the Keystone server. To add SID and SIP functional-
ity to Keystone, we need to modify the assignment module.
The functionality of SID/SIP include at least create, delete
and update user assignment on a SID/SIP. In assignment
module of Keystone server, there are three components in
charge of handling client requests: router, controller and
core methods. To assign a user to a SID or SIP, we need
to create these three components to have the attributes of
SID and SIP. When a client sends a SID or SIP request
to Keystone server, first, the router decides which controller
method should match with the client request. After the con-
troller gets the request mapping from router, it then looks
for the corresponding core methods. Core methods will com-
municate with Keystone database and ask for add, delete or
update information stored in corresponding tables.
Authentication and authorization with tokens: Sim-
ilar to user-project-role assignment, a user is assigned to a
SIP with a SIP-role pair. After a user is assigned to a SIP,
the user has access to the resources in the SIP. That is, the
user can get a token from Keystone and use the token to ac-
cess the SIP. After SID/SIP attributes are added to token,
Keystone can issue a token which can scoped to a SIP in a
SID. Users can use this scoped token to access a SIP. Cloud
services authorize users according to the user credential in-
formation stored in a scoped token.
Swift: Swift authorizes users by using a middleware to Key-
stone identity authorization system. By default, this mid-
dleware supports tokens with domain and project attributes,
rather than SID and SIP attributes. To enable users to use
Swift services, SID and SIP attributes need to be added to
Swift authorization middleware.
Policy: New methods in SID and SIP modules have to be
added to policy files in OpenStack Servers. In policy file,
each method has corresponding rules defined. We need to
add all new methods we define in SID and SIP modules
to policy files in order to make those methods work under
proper access control rules. By default, policy version v2 is

used. In order to use domain admin role, we use policy v3
instead of v2. More fine-grained access control is defined in
policy v3.

5.2 User Verification Process For SIP
Before a user is added to a SIP, it needs to be verified by
a user-SIP verification process. As shown in the model, the
SIP creation is initiated by a set of domain administrative
users. A SIP is not allowed to be created unless all the
requesting users send the same request to Keystone server.
Thus, a verification process needs to ensure that all request-
ing users have sent the same request before a real SIP cre-
ation is issued. During IARS activity, if a new user requests
to join the SIP, the user need to be verified if he comes from
domains which are associated with the SID where the SIP
is located.
Users that do not belong to the set of associated domains will
be rejected by the server. After the sharing is done, the same
set of domain administrative users who created the SIP issue
a delete command to disband the SIP. At this point, a similar
user-SIP verification process will occur, just like when the
creation of the SIP was issued. Figure 9 gives the algorithm
used in user-SIP verification process to initiate a request of
SIP creation. (We assume user issues a SIP request with
SIP name sip1 and a set of users: uset={u1, u2, ..., uN}) In
the algorithm, function CreateSip(sip name) is a openstack
command to create a SIP with SIP name sip name, and
CreateSid(default sid name) is a openstack command to
create a SID with SID name default sid name. Users give
sip name while default sid name is given by SID functions.
From the user perspective, we have a sequence of actions
from issuing a sip creation request to accessing a sip. First,
user issues a SIP request command, which communicates to
Keystone that a set of users wish to create a sip. Keystone
assigns a SIP id and returns the id to users. Meantime,
Keystone caches the request until all the member users send
the same SIP request. Then Keystone creates the actual
SIP in the cloud and assigns all the users who requested the
sip. Users need to send a second command to request the
sip information, which tell the user whether the SIP is ready

88

Figure 9: Algorithm for user-SIP verification process

to access. After the process of creating a SIP is complete,
users can ask for Keystone to get a scoped token to access the
sip. With the scoped token, users can share information and
resource inside the sip. In Figure 10, we give the sequence
of commands that a user issues to create and access a sip.

5.3 Database
OpenStack uses MySQL database as the storage of all meta
data. Keystone has one database to store all meta data that
the server needs. To store meta data for SID/SIP functions,
we need to add one table “sipinfo” to hold meta data for
all SIP initiation requests sent by users. Every time a SIP
creation request is issued, the sipinfo table stores the request
as a record in the table. The record will be removed when
the SIP/SID is deleted. The record should at least include
SIP name, all requesting users, and information for each
requesting user.

6. DISCUSSION
There are several reasons why we need to use SIDs and SIPs
instead of normal domains and projects for a collaboration
group. First, users are not allowed to execute normal do-
main level operations like create, delete and update. These
are done only by the cloud admin. Assume in a commu-
nity cloud, where each domain represent an organization, a
domain admin’s permission is constrained inside its domain
rather than over the domain level. A SID is a special shared
domain outside organizations’ domains. By separating SIDs

u1 keystone swift nova

request to create a sip

return sip id

return sip info

return a sip token

return result

leave a sip

request sip info

request a sip token

access swift service with a sip token

access nova service with a sip token

return result

Figure 10: SIP requests sequence

from normal domains, we are able to change permissions to
allow a domain admin to have complete control over SIDs.
Second, the policy are built upon entities. We cannot build
different access control policies over the same entity. If we
use the normal domains and projects instead of SIDs and
SIPs, we have to follow the policy defined for normal do-
mains and projects. Third, the model we proposed is just
a very basic model to start. In future work we are plan-
ning to have more fine-grained access control over SIDs and
SIPs, which would be quite different than normal domains
and projects, so we need to differentiate these two concepts
and entities.
As a secure IARS protocol, our initial purpose is to set up
an isolated secure space (SID/SIP) for collaborations among
organizations. Currently, we haven’t had an complete threat
model for our protocol. It would be one of our future works.
However, because of the approach we set up our protocol,
some security issues are guaranteed naturally. For instance,
random users won’t be able to join the SID/SIP, even the
SID admin can only join users from his own domain. If a
user inside a SID happens to be compromised, he may have
bad influence over some data copy inside the SID, but not
the original data from other members’ domains. With orig-
inal data’s safety guaranteed, a SID/SIP can be rebuilt any
time. Basically, any SID admin cannot create a SIP with-
out being noticed by other SID admins, since all the SID
administrative users have equal permission inside a SID. As
a SID admin, he can check any SIP inside the SID, regard-
less of whether he created it or not. To delete important
data in a SID, for instance a SIP, the members have to have
the agreement either online or offline. If one member failed
to send the delete request, it is allowed to send it again.
We don’t consider the case in which one member refuse to
execute the delete operation. In case of incident response,
all the members have to have the agreement of doing any
operations inside a SID.

7. RELATED WORK
The concept of information sharing is not new to security
research community. In traditional systems, various access
control and authorization solutions for sharing information

89

have been proposed. In paper [9] and [8], the author sug-
gested approaches to support collaboration in distributed
systems. In other paper like [3], the author proposed coali-
tion models from policy and administrative perspectives. In
paper [6], the author proposed a framework for g-SIS, which
gives fine-grained access control over the collaboration group
from administrative and operational perspectives. The dif-
ference between our model with those models are: first, we
proposed our model in a IaaS cloud environment rather than
distributed systems, where cloud system facilitate the col-
laboration in terms of unified user and role set and infras-
tructure for all the tenants; second, we don’t give the col-
laboration group the direct access over the original data and
resources in the organization which they did in paper [9] and
[8], instead, we transfer copies to the collaboration group;
third, we don’t use a separate Community Authorization
Service(CAS)[8] to manage the access control policies for
the collaboration group, instead, we utilize the setting of
roles, users and policies of the cloud to facilitate the access
control over the collaboration group. Out approach is more
like the model proposed in [6], we heritage the group-centric
concept and mutated it in a IaaS cloud environment.
In the context of cloud, in [10], the author proposed trust re-
lationships established between tenants to facilitate sharing.
It makes outsourcing easy to implement by simply adding
trust relationships among tenants in cloud. It is more like
the way traditional system deal with collaboration, it give
the expedient users direct access over the resources, which
in our case we try to avoid. In paper [11], the author intro-
duced a design and implementation of cloud-based assured
information sharing system in SaaS. Recently, Microsoft un-
veiled a new intelligence-sharing platform: Interflow, which
is a PaaS clould-based system for sharing attack informa-
tion among organizations. It is lacking of IaaS cloud-based
information and resource sharing both in the literature and
industry. Our approach is built in IaaS cloud, and aim to
provide a formal model and enforcement guide for imple-
mentation in real environment.

8. CONCLUSION AND FUTURE WORK
In this paper, we have developed various models for infor-
mation and resource sharing in IaaS cloud using OpenStack
as a reference platform. For the future work, first, we plan
to implement the complete operation sets specified in our
administrative and operational models in OpenStack. Sec-
ond, we plan to harden the implementation to prevent overt
information flow. For instance, the VMs in a SIP will need
to be restricted in terms of network access so that mali-
cious software are unable to move information out of the
SIP in an uncontrolled manner. Finally, we plan to investi-
gate fine-grained access control within a SIP, and collabora-
tion issues that arise when tenants belong to different cloud
service providers.

9. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the
LMI Research Institute’s Academic Partnership Program.
The authors would also like to thank LMI’s Systems De-
velopment group for their guidance and expertise regarding
secure information sharing in the government sector, which
helped supplement and guide this project.

10. REFERENCES[1] http://aws.amazon.com/.

[2] http://openstack.org.

[3] E. Cohen, R. K. Thomas, W. Winsborough, and
D. Shands. Models for coalition-based access control
(cbac). In Proceedings of the seventh ACM symposium
on Access control models and technologies, pages
97–106. ACM, 2002.

[4] K. Harrison and G. White. Information sharing
requirements and framework needed for community
cyber incident detection and response. In Homeland
Security (HST), 2012 IEEE Conference on
Technologies for, pages 463–469, Nov 2012.

[5] K. Harrison and G. B. White. Anonymous and
distributed community cyberincident detection. IEEE
Security and Privacy, 11(5):20–27, 2013.

[6] R. Krishnan, R. Sandhu, J. Niu, and
W. Winsborough. Towards a framework for
group-centric secure collaboration. In Collaborative
Computing: Networking, Applications and
Worksharing, 2009. CollaborateCom 2009. 5th
International Conference on, pages 1–10. IEEE, 2009.

[7] P. Mell and T. Grance. The nist definition of cloud
computing. NIST Special Publication, pages 800–145,
September 2011.

[8] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and
S. Tuecke. A community authorization service for
group collaboration. In Policies for Distributed
Systems and Networks, 2002. Proceedings. Third
International Workshop on, pages 50–59. IEEE, 2002.

[9] D. Shands, R. Yee, J. Jacobs, and E. J. Sebes. Secure
virtual enclaves: Supporting coalition use of
distributed application technologies. In DARPA
Information Survivability Conference and Exposition,
2000. DISCEX’00. Proceedings, volume 1, pages
335–350. IEEE, 2000.

[10] B. Tang and R. Sandhu. Exteding openstack access
control with domain trust. In In Proceedings 8th
International Conference on Network and System
Security (NSS 2014), October 15-17 2014.

[11] B. Thuraisingham, V. Khadilkar, J. Rachapalli,
T. Cadenhead, M. Kantarcioglu, K. Hamlen, L. Khan,
and F. Husain. Cloud-centric assured information
sharing. In Intelligence and Security Informatics,
pages 1–26. Springer, 2012.

[12] J.-W. Wang and L.-L. Rong. Cascade-based attack
vulnerability on the us power grid. Safety Science,
47(10):1332–1336, 2009.

90

