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Abstract. Our goal in this paper is to answer the following question: what mechanisms are required
in a general-purpose multiuser database management system (DBMS) to facilitate the integrity
objectives of information systems? We are particularly interested in relational DBMS's. Although
existing commercial products fall far short of providing the requisite mechanisms, in principle they
can be easily extended to incorporate these mechanisms. In a nutshell our conclusion is that realistic
mechanisms do exist. Our principal contribution is to identify these mechanisms, �ll in the gaps
where none existed and point out where gaps still remain. We have also bridged the terminology
and concepts of database and security specialists in a coherent manner.

1 INTRODUCTION

Information integrity means di�erent things to di�erent people, and will probably continue to do so
for some time. The recent NIST workshop, which set out to establish a consensus de�nition, instead
arrived at the following conclusion [18, page 2.6].

The most important conclusion to be drawn from this compilation of papers and working group

reports: don't draw too many conclusions about the appropriate de�nition for data integrity

just yet. : : : In the mean time, papers addressing integrity issues should present or reference a

de�nition of integrity applicable to that paper.

So the �rst order of business is to de�ne integrity. Our approach to this question is pragmatic and
utilitarian. The objective is to settle on a de�nition within which we can achieve practically useful
results, rather than searching for some absolute and airtight formulation.

We de�ne integrity1 as being concerned with the improper modi�cation of information (much as
con�dentiality is concerned with improper disclosure). We understand modi�cation to include inser-
tion of new information, deletion of existing information as well as changes to existing information.

The reader has probably seen similar de�nitions using \unauthorized" instead of \improper."
Our use of the latter term is quite deliberate and signi�cant. Firstly, it acknowledges that security
breaches can and do occur without authorization violations, i.e., authorization is only one piece of
the solution. Secondly, it adheres to the well-established and useful notion that information security
has three components: integrity, con�dentiality and availability. We see no need to discard this

1We should point out that our de�nition of integrity is considerably broader than the traditional use of this term
in the database literature. For instance Date [6] says: \Security refers to the protection of data against unauthorized
disclosure, alteration, or destruction; integrity refers to the accuracy or validity of data." The consensus view among
security researchers is that integrity is one componentof security and accuracy/validity is one componentof integrity [9,
18, for instance].
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standard viewpoint in the absence of some compelling demonstration of a superior one. Finally,
our de�nition brings to the front the very important question: what do we mean by improper? It
is obvious that this question intrinsically cannot have an universal answer. So it is futile to try to
answer it outside of a given context.

We are speci�cally interested in information systems used to control and account for an organi-
zation's assets. In such systems the primary goal is prevention of fraud and errors. The meaning of
improper modi�cation in this context has been given by Clark and Wilson [2] as follows.

No user of the system, even if authorized, may be permitted to modify data items in such a way

that assets or accounting records of the company are lost or corrupted.

Note their express quali�cation: \even if authorized." The word company in this quote reveals the
authors' commercial bias but, as they have clari�ed [3], these concepts apply equally well to any
information system which controls assets|be it in the military, government or commercial sectors.

Our goal in this paper is to answer the following question: what mechanisms are required in a
general-purpose multiuser DBMS to help achieve the integrity objectives of information systems?
There are many compelling reasons to focus on DBMS's for this purpose. The most important one
has been succintly stated by Burns [1] as follows.

A database management system (DBMS) provides the appropriate level of abstraction for the

implementation of integrity controls as presented in the Clark and Wilson paper [2]. : : : It is

clear that the domain of applicability of the Clark and Wilson model is not an operating system

or a network or even an application system, it is fundamentally a DBMS.

This is particularly true when we focus on mechanisms. Moreover DBMS's have the wonderful
ability to express and manipulate complex relationships. This comes in very handy when dealing
with sophisticated integrity policies.

The Operating System (OS) must clearly provide some core integrity and security mechanisms.
In terms of the Orange Book [8] one would need at least a B1 system to enforce encapsulation of the
DBMS, i.e., to ensure that all manipulation of the database can only be through the DBMS. The
question of what minimal features are required in the OS is an important one but outside the scope
of the present paper. For now let us assume that OS's with the requisite features are available.

The bulk of integrity mechanisms belong in the DBMS. Integrity policies are intrinsically appli-
cation speci�c and the OS simply cannot provide the means to state application speci�c concerns.
One might then argue: why not put all the mechanism in the application code? There are several
persuasive reasons not to do this. Firstly, it is not very conducive to reuse of common mechanisms.
Secondly, any assurance that mechanisms interspersed within application code will be correct or
even comprehensible is rather dubious. Thirdly, the whole point of a database is to support mul-
tiple applications. A particular application may well be in a position to handle all its integrity
requirements. Yet it is only the DBMS which can prevent other applications from courrupting the
database.

The rest of the paper is organized as follows. In section 2 we discuss principles for achieving
integrity in information systems. In section 3 we describe the mechanisms required in a DBMS
to support these high level principles. In some of the more detailed consideration we will limit
ourselves speci�cally to relational DBMS's. As we will see traditional DBMS mechanisms provide
the foundations for this purpose, but by themselves do not go far enough. Section 4 concludes the
paper.



2 INTEGRITY PRINCIPLES

We begin by describing basic principles for achieving information integrity. These principles can be
viewed as high level objectives which are made more concrete when speci�c mechanisms are proposed
to support them. In other words these principles lay down broad goals without specifying how to
achieve them. We will subsequently map these principles to DBMS mechanisms. We emphasize that
the principles themselves are independent of the DBMS context. They apply equally well to any
information system be it a manual paper-based system, a centralized batch system, an interactive
and highly distributed system, etc.

The nine integrity principles enumerated below are abstracted from the Clark and Wilson pa-
pers [2, 3, 4], the NIST workshops [17, 18] and the broader security and database literature.2 The
reader has probably seen similar lists in the past. We believe the numerous discussions spurred by
the Clark-Wilson papers call for a revised formulation of major principles. We emphasize that these
principles express what needs to be done rather than how it is going to be accomplished. The latter
question is addressed in the next section.

1. Well-formed Transactions. Clark and Wilson [2] have de�ned this principle as follows: \The
concept of the well-formed transaction is that a user should not manipulate data arbitrarily,
but only in constrained ways that preserve or ensure the integrity of the data." This principle
has also been called constrained change [4], i.e., data can only be modi�ed by well-formed trans-
actions rather than by arbitrary procedures. Moreover the well-formed transactions are known
(\certi�ed") to be individually correct with some (mostly qualitative) degree of assurance.

2. Authenticated Users. This principle stipulates that modi�cations should only be carried out
by users whose identity has been authenticated to be appropriate for the task.

3. Least Privilege. The notion of least privilege was one of the earliest principles to emerge in
security research. It has classically been stated in terms of processes (executing programs) [19],
i.e., a process should have exactly those privileges needed to accomplish its assigned task, and
none extra. The principle applies equally well to users, except that it is more di�cult to
precisely delimit the scope of a user's \task." A process is typically created to accomplish
some very speci�c task and terminates on completion. A user on the other hand is a relatively
long-lived entity and will be involved in varied activities during his lifespan. His authorized
privileges will therefore exceed those strictly required at any given instant. In the realm
of con�dentiality least privilege is often called need-to-know. In the integrity context it is
appropriately called need-to-do. Another appropriate term for this principle is least temptation,
i.e., do not tempt people to commit fraud by giving them greater power than they need.

4. Separation of Duties. Separation of duties is a time honored principle for prevention of fraud
and errors, going back to the very beginning of commerce. Simply stated, no single individual
should be in a position to misappropriate assets on his own. Operationally this means that
a chain of events which a�ects the balance of assets must require di�erent individuals to be
involved at key points, so that without their collusion the overall chain cannot take e�ect.

5. Reconstruction of Events. This principle seeks to deter improper behavior by threatening its
discovery. It is a necessary adjunct to least privilege for two reasons. Firstly least privilege,
even taken to its theoretical limit, will leave some scope for fraud. Secondly a zealous appli-
cation of least privilege is not a terribly e�cient way to run an organization. It conveys an

2The literature is too numerous to cite individually. For those unfamiliar with the \older" literature some useful
staring points are [7, 9, 10, 13, 19].



impression of an enterprise enmeshed in red tape.3 So practically users must be granted more
privileges than are strictly required. We therefore should be able to accurately reconstruct
essential elements of a system's history, so as to detect misuse of privileges.

6. Delegation of Authority. This principle �lls in a piece missing from the Clark and Wilson
papers and much of the discussion they have generated.4 It concerns the critical question of
how privileges are acquired and distributed in an organization? Clearly the procedures to do
so must reect the structure of the organization and allow for e�ective devolution of authority.
Individual managers should have maximum exibility regarding information resources within
their domain, tempered by constraints imposed by their superiors. Without this exibility
at the end-user level, the authorization will most likely be inappropriate to the actual needs.
This can only result in security being perceived as a drag on productivity and something to
be bypassed whenever possible.

7. Reality Checks. This principle has been well motivated by Clark and Wilson [4] as follows:
\A cross-check with the external reality is a central part of integrity control. : : : integrity
is meaningful only in terms of the relation of the data to the external world." Or in more
concrete terms: \If an internal inventory record does not correctly reect the number of items
in stock, it makes little di�erence if the value of the recorded inventory has been reected
correctly in the company balance sheet."

8. Continuity of Operation. This principle states that system operations should be maintained
to some appropriate degree in the face of potentially devastating events which are beyond
the organization's control. This catch-all description is intended to include natural disasters,
power outages, disk crashes and the like.5

9. Ease of Safe Use.6 In a nutshell this principle requires that the easiest way to operate a
system should also be the safest. There is ample evidence that security measures are all too
often incorrectly applied or simply bypassed by the system managers. This happens due to
a combination of (i) poorly designed defaults (such as inde�nite retention of vendor-supplied
passwords for privileged accounts), (ii) awkward and cumbersome interfaces (such as requiring
many keystrokes to e�ect simple changes in authorization), (iii) lack of tools for authorization
review, or (iv) mismatched policy and mechanism (\: : : the extent that the user's mental image
of his protection goals matches the mechanism he must use, mistakes will be minimized." [19]).

It is inevitable that these principles are fuzzy, abstract and high level. In developing an or-
ganization's security policy one would elaborate on each of these principles and make precise the
meaning of terms such as \appropriate" and \proper." How to do so systematically is perhaps the
most important question in successful application of these principles. In other words how does one
articulate a comprehensive policy based on these high level objectives? This question is beyond the
scope of this document. Our present focus is on the question: how do these principles translate into
concrete mechanisms in a DBMS?

The goals encompassed by these principles may appear overwhelming. After all in the extreme
these principles amount to solving the total system correctness problem, which we know is well
beyond the state of the art. Fortunately, in our context, the degree to which one would seek to

3This comment is made in the context of users rather than processes (transactions). Least privilege with respect
to processes is more of an internal issue within the computer system, and its zealous application is most desirable
(modulo the performance and cost penalties it imposes).

4The closest concept that Clark and Wilson have to this principle is their Rule E4 which they summarize as
follows [2, �gure 1]: \Authorization lists changed only by the security o�cer." This notion of a central security
o�cer as an authorization czar is inappropriate and unworkable. Rational security policies can be put in place only
if appropriate authority is vested in end-users.

5One might argue that we are stepping into the scope of availability here. If so, so be it.
6Thanks to Stanley Kurzban and William Murray for coining this particular term.



enforce these objectives and the assurance of this enforcement are matters of risk management and
cost-bene�t analysis. Laying out these principles explicitly does give us the following major bene�ts.

� The overall problem is partitioned into smaller components for which solutions can be devel-
oped independently of each other (i.e., divide and conquer).

� The principles suggest common mechanisms which belong in the DBMS and can be reused
across multiple applications.

� The principles provide a set against which the mechanisms of speci�c DBMS's can be evaluated
(in an informal sense).

� The principles similarly provide a set on the basis of which the requirements of speci�c infor-
mation systems can be articulated.

� Last, but not the least, the principles invite criticism from the security community particularly
regarding what may have been left out.

3 INTEGRITY MECHANISMS

In this section we consider DBMS mechanisms to facilitate application of the principles de�ned in
the previous section. The principles have been applied in practise [15, 26, for instance] but with
most of the mechanism built into application code. Providing these mechanisms in the DBMS is an
essential prerequisite for their widespread use.

Our mapping of principles to mechanisms is summarized in table 1. Some of these mechanisms
are available in commercial products. Others are well established in the database literature. There
are also some newer mechanisms which have been proposed more recently, e.g., transaction controls
for separation of duties [21], the temporal model for audit data [12] and propagation constraints for
dynamic authorization [20, 22]. Finally there are places where existing mechanisms and proposals
need to be extended in novel ways. Overall the required mechanisms are quite practical and well
within the reach of today's technology.

3.1 Well-formed Transactions

The concept of a well-formed transaction corresponds very well to the standard DBMS concept of a
transaction [10, 11]. A transaction is de�ned as a sequence of primitive actions which satis�es the
following properties.

1. Failure atomicity: either all or none of the updates of a transaction take e�ect. We understand
update to mean modi�cation, i.e., it includes insertion of new data, deletion of existing data
and changes to existing data.

2. Serializability: the net e�ect of executing a set of transactions is equivalent to executing them
in some sequential order, even though they may actually be executed concurrently (i.e., their
actions are interleaved or simultaneous).

3. Progress: every transaction will eventually complete, i.e., there is no inde�nite blocking due
to deadlock and no inde�nite restarts due to livelocks.

4. Correct state transform: each transaction if run by itself in isolation and given a consistent
state to begin with will leave the database in a consistent state.



INTEGRITY PRINCIPLE DBMS MECHANISMS

Well-formed transactions Encapsulated updates
Atomic transactions
Consistency constraints

Authenticated users Authentication

Least privilege Fine grain access control

Separation of duties Transaction controls
Layered updates

Reconstruction of events Audit trail

Delegation of authority Dynamic authorization
Propagation constraints

Reality checks Consistent snapshots

Continuity of operation Redundancy
Recovery

Ease of safe use Fail-safe defaults
Human factors

Table 1: Summary
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Figure 1: Encapsulated Updates

We will elaborate on these properties in a moment.

First let us note the basic requirement that the DBMS must ensure that updates are restricted to
transactions. Clearly, if users are allowed to bypass transactions and directly manipulate relations
in a database, we have no foundation to build upon. We represent this requirement by the diagram
in �gure 1. In other words updates are encapsulated within transactions. At this point it is worth
recalling that the database itself must be encapsulated within the DBMS by the Operating System.

It is clear that the set of database transactions is itself going to change during the system life
cycle. Now the same nine principles of the previous section apply with respect to maintaining the
integrity of the transactions. In particular transactions should be installed, modi�ed and supplanted
only by the use of well-formed \transaction-maintenance transactions." One can apply this argument
once again to say that the transaction-maintenance transactions themselves need to be maintained
by another set of transactions, and so on inde�nitely. We believe there is little to be gained by
having more than two steps in this potentially unbounded sequence of transaction-maintenance
transactions. The rate of change in the transaction set will be signi�cantly slower than the rate
of change in the data base proper. Going one step further, the rate of change in the transaction-
maintenance transactions will be yet slower to the point where, for all practical purposes, these
can be viewed as static over the lifespan of typical systems. With this perspective the data base
administrator is responsible for installing and maintaining transaction-maintenance transactions,
which in turn control the maintenance of actual database transactions.

We now return to considering the four properties of DBMS transactions enumerated earlier. The
�rst three properties|failure atomicity, serializability and progress|can be achieved in a purely
\syntactic" manner, i.e., completely independent of the application. These three requirements for
a transaction are recognized in the database literature as appropriate for the DBMS to implement.
Mechanisms to achieve these objectives have been extensively researched in the last �fteen years or
so, and our understanding of this area can certainly be described as mature. The basic mechanisms|
two-phase locking, timestamps, multi-version databases, two-phase commit, undo-redo logs, shadow
pages, deadlock detection and prevention|have been known for a long time and have made their
way into numerous products. In developing integrity guidelines and/or evaluation criteria one might
consider some progressive measure of the extent to which a particular DBMS meets these objectives.
For instance, with failure atomicity, is there a guarantee that we will know which of the two pos-
sibilities occurred? Similarly, with serializability, does the DBMS enforce the concurrency control
protocol or does it rely on transactions to execute explicit commands for this purpose? And, with
the issue of progress, do we have a probabilistic or absolute guarantee? Such questions must be
systematically addressed.

The fourth property of correct state transforms is the ultimate bottleneck in realizing well-formed
transactions. It is also an objective which cannot be achieved without considering the semantics of



the application. The correctness issue is of course undecidable in general. In practice we can only
assure correctness to some limited degree of con�dence by a mix of software engineering techniques
such as formal veri�cation, testing, quality assurance, etc. Responsibility for implementing trans-
actions as correct state transforms has traditionally been assigned to the application programmer.
Even in theory DBMS mechanisms can never fully take over this responsibility.

DBMS mechanisms can help in assuring the correctness of a state by enforcing consistency
constraints on the data. Consistency constraints are also often called integrity constraints or integrity
rules in the database literature. Since we are using integrity in a wider sense we prefer the former
term.

The relational data model in particular imposes two consistency constraints [5, 6].

� Entity integrity stipulates that attributes in the primary key of a base relation cannot have
null values. This amounts to requiring that each entity represented in the database must be
uniquely identi�able.

� Referential integrity is concerned with references from one entity to another. A foreign key is
a set of attributes in one relation whose values are required to match those of the primary key
of some speci�c relation. Referential integrity requires that a foreign key either be all null7 or
a matching tuple exist in the latter relation. This amounts to ruling out dangling references
to non-existent entities.

Entity integrity is easily enforced. Referential integrity on the other hand requires more e�ort and
has seen limited support in commercial products. The precise manner in which to achieve it is also
very dependent on the semantics of the application. This is particularly so when the referenced
tuple is deleted. There are several choices as follows: (i) prohibit this delete operation, (ii) delete
the referencing tuple (with a possibility of further cascading deletes), or (iii) set the foreign key
attributes in the referencing tuple to null. There are proposals for extending SQL so that these
choices can be speci�ed for each foreign key.

The relational model in addition encourages the use of domain constraints whereby the values in
a particular attribute (column) are constrained to come from some given set. These constraints are
particularly easy to state and enforce, at least so long as the domains are de�ned in terms of primitive
types such as integers, decimal numbers and character strings. A variety of dependency constraints
which constrain the tuples in a given relation have been extensively studied in the database literature.

In the limit a consistency constraint can be viewed as an arbitrary predicate that all correct
states of the database must satisfy. The predicate may involve any number of relations. Although
this concept is theoretically appealing and exible in its expressive power, in practice the over-
head in checking the predicates for every transaction has been prohibitive. As a result relational
DBMS's typically con�ne their enforcement of consistency constraints to domain constraints and
entity integrity.

3.2 Continuity of Operation

The problem of maintaining continuity of operation in the face of natural disasters, hardware failures
and other disruptive events has received considerable attention in both theory and practice [10]. The
basic technique to deal with such situations is redundancy in various forms. Recovery mechanisms
in DBMS's must also ensure that we arrive at a consistent state. In many respects these mechanisms
are \syntactic" in the sense of being application independent, much as mechanisms for the �rst three
properties of section 3.1 were.

7Often the notion of a null foreign key is semantically incorrect. In such cases an additional consistency constraint
can disallow null values.



3.3 Authenticated Users

Authentication is primarily the responsibility of the Operating System. If the Operating System
is lacking in its authentication mechanism it would be very di�cult to ensure the integrity of the
DBMS itself. The integrity of the database would thereby be that much more suspect. It therefore
makes sense to not duplicate authentication mechanisms in the DBMS.

Authentication underlies some of the other principles, particularly, least privilege, separation of
duties, reconstruction of events and delegation of authority. In all of these the end objective can be
achieved to the fullest extent only if authentication is possible at the level of individual users.

3.4 Least Privilege

The principle of least privilege translates into a requirement for �ne grained access control. We have
earlier noted that least privilege must be tempered with practicality in avoiding excessive red tape.
Nevertheless a high-end DBMS should provide for access control at very �ne granularity, leaving it
to the database designers to apply these controls as they see �t.

It is clear from the Clark-Wilson papers, if not evident from earlier work, that modi�cation of
data must be controlled in terms of transactions rather than blanket permission to write. We have
already put forth the concept of encapsulated updates for this purpose. In terms of the relational
model it is not immediately obvious at what granularity of data this should be enforced.

For purpose of controlling read access DBMSs have employed mechanisms based on views (as in
System R) or query modi�cation (as in INGRES). These mechanisms are extremely exible and can
be as �ne grained as desired. However neither one of these mechanisms provides the same exibility
for exible control of updates. The fundamental reason for this is our theoretical inability to translate
updates on views unambiguously into updates of base relations. As a result authorization to control
updates is often less sophisticated than authorization for read access.

In relational systems it is natural for obvious reasons to represent the access matrix by one or
more relations [24]. At a coarse level we might control access by tuples of the following form

user, transaction, relation

meaning that the speci�ed user can execute the speci�ed transaction on the speci�ed relation. Tuples
of the form shown below would give greater selectivity

user, transaction, relation, attribute

This would allow us to control the execution of transactions such as, \give everyone a 5% raise,"
without giving the same transaction permission to change employee addresses. The following au-
thorization tuple accomplishes this.

Joe, Give-5%-raise, Employees, Salary

A transaction which gives a raise to a speci�c employee needs a further dimension of authorization
to specify which employee it pertains to. Thus, if Joe is authorized to give a 5% raise to John the
authorization tuple would look as follows.

Joe, Give-5%-raise, John, Employees, Salary

We are assuming here that John uniquely identi�es the employee receiving the raise. The update is
restricted to the Salary attribute of a speci�c tuple with key equal to `John' in the Employees relation.
So it takes a key, relation and attribute to specify the actual parameter of such a transaction.



Now consider a transaction which moves money from account A to account B, i.e., there are two
actual parameters of the transaction. In terms of least privilege we need the ability to bind this
transaction to updating the two speci�c accounts A and B. More generally we will have transactions
with N parameters identi�ed in a actual parameter list. So we need authorization tuples of the
following form,

user, transaction, actual parameter list

where each parameter in the actual parameter list speci�es the item authorized for update by
specifying one of the following identi�ers

� relation,

� relation, attribute,

� key, relation, attribute.

These three cases respectively give us relation level, \column" level and element level granularity of
update control.

It is also important to realize that element-level update authorizations should properly be treated
as consumable items. For example, once money has been moved from account A to account B the
user should not be able to move it again, without fresh authorization to do so.

3.5 Separation of Duties

Separation of duties �nds little support in existing products. Although it is possible to use existing
mechanisms for this purpose, these mechanisms have not been designed with this end in mind. As a
result their use is awkward at best. This fact was noted by the DBMS group at the 1989 NIST data
integrity workshop who concluded their report with the following recommendation [18, section 4.3].

While the group was able to use existing DBMS features to implement separation of roles

controls, we were, however, unable to use existing features in a way that would support easy

maintenance and certi�cation. We recommend that data de�nition and/or consistency check

features be enhanced to provide operators that lend themselves to the expression of integrity

controls and to allow separation of integrity controls and traditional data.

Separation of duties is inherently concerned with sequences of transactions, rather than individual
transactions in isolation. For example consider a situation in which payment in the form of a check
is prepared and issued by the following sequence of events.

1. A clerk prepares a voucher and assigns an account.

2. The voucher and account are approved by a supervisor.

3. The check is issued by a clerk who must be di�erent from the clerk in step 1. Issuing the
check also debits the assigned account. (Strictly speaking we should debit one account and
credit another in equal amounts. The important point for our purpose is that issuing a check
modi�es account balances.)

This sequence embodies separation of duties since the three steps must be executed by di�erent
people. The policy moreover has a dynamic avor in that a particular clerk can prepare vouchers as
well as, on di�erent occasions, issue checks. However he cannot issue a ckech for a voucher prepared
by himself.

Implementation of this policy in a paper-based system follows quite directly from its statement.



� The voucher is realized as a form with blank entries for the amount and account, as well as for
signatures of the people involved. As the above sequence gets executed these blanks are �lled
in. On its completion copies of the voucher are �led in various archives for audit purposes.

� The account is represented by say a ledger card, where debit and credit entries are posted
along with references to the forms which authorized these entries.

By their very nature paper-based controls rely on employee vigilance and internal/external audits
for their e�ectiveness. Computerization brings with it the scope for enforcing the required controls
by means of an infallible, ever vigilant and omniscient automaton, viz., the computer itself.

The crucial question is how do we specify and implement similar controls for separation of duties
in a computerized environment? A mechanism for this purpose is described in [21]. This mechanism
of transaction-control expressions is based on the following di�erence between vouchers and accounts.

� The voucher is transient in that it comes into existence, has a relatively small sequence of
steps applied to it and then disappears from the system (possibly leaving a record in some
archive). The history of a voucher can be prescribed as a �nite sequence of steps with an a
priori maximum length.

� The account on the other hand is persistent in the sense it has a long-lived, and essentially
unbounded, existence in the system. During its life there may be a very large number of credit
and debit entries for it. Of course, at some point the account may be closed and archived. The
key point is that we can only prescribe its history as a variable-length sequence of steps with
no a priori maximum length.

Both kinds of objects are essential to the logic and correct operation of an information system. Tran-
sient objects embody a logically complete history of transactions corresponding to a unit of service
provided to the external world by the organization. Persistent objects embody the internal records
required to keep the organization functioning with an accurate correspondence to its interactions
with the external world.

Separation of duties is achieved by enforcing controls on transient objects, for the most part. The
crucial idea, which makes this possible, is that transactions can be executed on persistent objects
only as a side e�ect of executing transactions on transient objects. This thesis is actually simply
borrowed from the paper-based world where it has been routinely applied ever since bookkeeping
became an integral part of business operations.

With this perspective we arrive at the diagram shown in �gure 2. The idea is that a sequence of
transactions is viewed as transient data in the database. In this picture there is a double encapsula-
tion of the database, �rst by transactions on persistent data and then by transactions on transient
data. Users can directly only execute the latter. The former are triggered indirectly as a result when
the transient is in the proper state for doing so. In other words transient data is singly encapsulated
and has direct application of separation of duties. Persistent data is doubly encapsulated and has
indirect application of separation of duties by means of transient data.

3.6 Reconstruction of Events

The ability to reconstruct events in a system serves as a deterrent to improper behavior. In the
DBMS context the mechanism to record the history of system is traditionally called an audit trail.
As with the principle of least privilege, a high-end DBMS should be capable of reconstructing events
to the �nest detail. It should also structure the audit trail logically so that it is easy to query. For
instance, logging every keystroke does give us the ability to reconstruct the system history accurately.
However with this primitive logical structure one needs substantial e�ort to reconstruct a particular
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Figure 2: Layered Updates

transaction. In addition to the actual recording of all events that take place in the database, an
audit trail must also provide support for auditing, i.e., an audit trail must have the capability \for
an authorized and competent agent to access and evaluate accountability information by a secure
means, within a reasonable amount of time and without undue di�culty" [8]. In this respect DBMSs
have a signi�cant advantage, since their powerful querying abilities can be used.

The ability to reconstruct events has di�erent meaning to di�erent people. At one end of the
spectrum, we have the requirements of Clark and Wilson [4]. They require only two things:

1. A complete history of each and every modi�cation made to the value of an item.

2. With each change in value of an item, store the identity of the person making the change.

Of course, the system must be reliable in that it makes exactly those changes that are requested by
users and the binding of a value with its author is also exact. Clark and Wilson call this \attribution
of change."

This can be easily accomplished if we are willing to extend slightly the standard logging techniques
for recovery purposes. For each transaction, a recovery log contains the transaction identi�er, some
before-images, and the corresponding after-images. If we augment this by recording in addition the
user for each transaction, we have the desired binding of each value to its author. There is one other
change that needs to be made. In order to support recovery, there is a need to keep a log only up
to a point from which a complete database backup is available. Of course, now there is a need to
archive the logs so they remain available.

Others have argued that this simple \attribution of change" is not su�cient. We need an audit
trail, a mechanism for a complete reconstruction of every action taken against the database: who
has been accessing what data, when, and in what order. Thus, it has three basic objects of interest:

1. The user - who initiated a transaction, from what terminal, when, etc.

2. The transaction - what was the exact transaction that was initiated.

3. The data - what was the result of the transaction, what were the database states before and
after the transaction initiation.

For this purpose a database activity model has been recently proposed [12] that imposes a uniform
logical structure upon the past, present, and future data. There is never any loss of historical or



current information in this model, thus the model provides a mechanism for complete reconstruction
of every action taken on the database. It also logically structures the audit data to facilitate its
querying.

3.7 Delegation of Authority

The need to delegate authority and responsibility within an organization is essential to its smooth
functioning. It appears in its most developed form with respect to monetary budgets. However the
concept applies equally well to the control of other assets and resources of the organization.

In most organizations the ability to grant authorization is never completely unconstrained. For
example, a department manger may be able to delegate substantial authority over departmental
resources to project managers within his department and yet be prohibited to delegate this authority
to project managers outside the department. These situations cloud the classic distinction between
discretionary and mandatory policies [16, 23]. The traditional concept of ownership as the basis for
delegating authority also becomes less applicable in this context [14]. Finally we need the ability to
delegate privileges without having the ability to exercise these privileges. Some mechanisms for this
purpose have been recently proposed [14, 22].

The complexity introduced by dynamic authorization has been recognized ever since researchers
considered this problem, e.g., as stated in the following quote [19].

\: : : it is relatively easy to envison (and design) systems that statically express a particular

protection intent. But the need to change access authorizations dynamically : : : introduces

much complexity into protection systems."

This fact continues to be true in spite of substantial theoretical advances in the interim [20]. Existing
products provide few facilities in this respect and their mechanisms tend to have an ad hoc avor.

3.8 Reality Checks

This principle inherently requires activity outside of the DBMS. The DBMS does have obligation
to provide an internally consistent view of that portion of the database which is being externally
veri�ed. This is particularly so if the external inspection is conducted on an ad hoc on-demand
basis.

3.9 Ease of Safe Use

Ease of safe use is more an evaluation of the DBMS mechanisms than something to be enforced
by the mechanisms themselves. The mechanisms should of course have fail-safe defaults [19], e.g.,
access is not available unless explicitly granted or this default rule is explicitly changed to grant
it automatically. DBMS's do o�er a signi�cant advantage in providing user friendly interfaces
intrinsically for their main objective of data manipulation. These interface mechanisms can be
leveraged to make the authorization mechanisms easy to use. For instance, having the power of SQL
queries to review the current authorizations is a tangible bene�t in this regard.

4 CONCLUSION

In a nutshell our conclusion is that realistic DBMS mechanisms do exist to support the integrity
objective of information systems. Some are well established in the literature while others have been



proposed more recently and are not so well known. Our principal contribution is to identify these
mechanisms and to identify the gaps where none existed or had been fully articulated.

In terms of what DBMS mechanisms can do for us, we can group the nine principles enumerated
in this paper as follows.

Group I Group II Group III

Well-formed transactions Least privilege Authenticated users
Continuity of operation Separation of duties Reality checks

Reconstruction of events Ease of safe use
Delegation of authority

Group I principles are adequately treated by current DBMS mechanisms and have been exten-
sively studied by database researchers. With the single exception of assuring correctness of state
transformations these principles can be achieved by DBMS mechanisms. Techniques for imple-
menting well-formed transactions and maintaining continuity of operation across failures have been
studied extensively. Their practical feasibility has been amply demonstrated in actual systems. As-
suring that well-formed transactions are correct state transformations remains a formidable problem,
but there is little that the DBMS can do to alleviate it. As such it is a problem outside the scope
of DBMS mechanisms. The DBMS can (i) enforce encapsulation of updates by restricting their
occurrence to be within transactions, and (ii) provide controls for installing and maintaining these
transactions.

Group II principles need newer mechanisms and conceptual foundations. Several promising
approaches have emerged in the literature. Practical demonstration of their feasibility remains to be
done, but in concept they do not present prohibitive implementation problems. They do require that
current DBMS's be extended in signi�cant ways. Group II principles are the ones where additional
DBMS mechanisms hold the promise of greatest bene�t.

Group III principles are important but there is little that DBMS mechanism can do to achieve
them. Authentication is principally an operating system problem. Reality checks necessarily involve
external procedures. Ease of safe use is more an evaluation of the DBMS mechanisms than something
to be enforced by the mechanisms themselves. It is facilitated in the DBMS context due to the
intrinsic DBMS requirement of user friendly query languages.

In conclusion for group I principles we need little more than has currently been demonstrated in
actual products. For group II principles, current systems do something for each one but do not go
far enough. There are several promising proposals but no \worked examples." Group III principles
are important but are not fully achievable by DBMS mechanisms alone.
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