
Proc. of the 15th NIST-NCSC National Computer Security Conference, Baltimore, MD,

October 1992, pages 221-235

Implementation Considerations for the

Typed Access Matrix Model in a

Distributed Environment

Ravi S. Sandhu and Gurpreet S. Suri1

Center for Secure Information Systems
&

Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030-4444

ABSTRACT The typed access matrix (TAM) model was recently de�ned by Sandhu. TAM
combines the strong safety properties for propagation of access rights obtained in Sandhu's Schematic
Protection Model, with the natural expressive power of Harrison, Ruzzo, and Ullman's model. In
this paper we consider the implementation of TAM in a distributed environment. To this end
we propose a simpli�ed version of TAM called Single-Object TAM (SO-TAM). We illustrate the
practical expressive power of SO-TAM by showing how the ORCON policy for originator control
of documents can be speci�ed in SO-TAM. We provide arguments to support our conjecture that
SO-TAM is theoretically as expressive as TAM. We show that SO-TAM has a simple implementation
in a typical client-server architecture. Our design is based on access control lists as the principal
means for enforcing access to subjects and objects. In addition, certi�cate servers are introduced
for generating certi�cates for checking access rights in those cases where access control lists are
insu�cient. A major advantage of our design is that atomicity of operations does not require a
distributed commit.

Keywords: Access Matrix, Distributed Systems, Secure Architectures, Access Control Lists, Certi�-
cates

1 INTRODUCTION

Distributed systems have become the prevalent mode of computing. Modern systems o�er a great
deal of
exibility in tailoring a user's environment. The physical distribution of data and other
resources can be made as transparent as a user wishes. It is important that security researchers and
practitioners provide similar
exibility with respect to access control mechanisms.

To provide
exibility in access control we �rst need a
exible model which can express a rich
variety of security policies. In our opinion
exibility is achieved by allowing users to propagate access
rights to other users, with a combination of discretionary and mandatory controls. We would like
to give individual users as much discretionary choice as possible, within the constraints required to
meet the overall objectives and policies of an organization. For example, members of a project team
might be allowed to freely share project documents with each other, but only the project leader is
authorized to allow non-members to read project documents.

1The work of both authors is partially supported by National Science Foundation grant CCR-9202270 and National
Security Agency contract MDA904-92-C-5141.

c
 1992 Ravi S. Sandhu and Gurpreet S. Suri

Security models based on propagation of access rights must confront the safety problem. In its
most basic form, the safety question for access control asks: is there a reachable state in which a
particular subject possesses a particular right for a speci�c object? There is an essential con
ict
between the expressive power of an access control model and tractability of safety analysis. The
access matrix model as formalized by Harrison, Ruzzo, and Ullman (HRU) [5] has very broad
expressive power. Unfortunately, HRU also has extremely weak safety properties.

Recently Sandhu [9] has shown how to overcome the negative safety results of HRU by introducing
strong typing into the access matrix model. The resulting model is called the Typed Access Matrix
(TAM). TAM combines the positive safety results for the Schematic Protection Model [6] with the
natural expressive power of HRU.

The safety problem is closely related to the so-called fundamental
aw of discretionary access
control (DAC). DAC is vulnerable to Trojan Horses, in part because Trojan Horse laden programs
can surreptitiously modify the protection state without explicit instruction from the users. However,
even Trojan Horses are constrained by the authorization for propagating access rights. The Trojan
Horse vulnerability of DAC does require that we assume the worst case regarding propagation of
access rights in a system. What we need therefore is a model, such as TAM, with strong safety
properties and broad expressive power.

In addition to balancing expressive power versus safety analysis, a useful model must also be
implementable. Our focus in this paper is on implementation considerations for TAM. It is possible
to implement TAM as de�ned in its full generality. However, such a full-blown implementation would
be cumbersome and awkward at best. In this paper we identify a simpli�ed version of TAM called
Single-Object TAM (SO-TAM). SO-TAM is particularly suited for implementation in a distributed
environment. Moreover it retains most, if not all, of the expressive power of TAM. We provide
theoretical arguments to support this claim. We also demonstrate how SO-TAM can enforce the
ORCON policy for originator control of documents.

The rest of this paper is organized as follows. Section 2 provides a brief review of the TAM
model, following which SO-TAM is de�ned in Section 3. Section 4 expresses the ORCON policy
in SO-TAM. This is achieved by taking the ORCON solution of TAM [9], and manipulating it to
�t the requirements of SO-TAM. The basic architecture for implementing SO-TAM is discussed in
Section 5. Implementation and protocol details of SO-TAM are covered in Section 6. In Section 7
it is then shown how the ORCON example relates to the implementation. Section 8 gives our
conclusions.

2 THE TYPED ACCESS MATRIX MODEL

In this section we brie
y review the typed access matrix (TAM) model. In a nutshell, TAM is
obtained by incorporating strong typing into the model of Harrison, Ruzzo and Ullman [5]. The
principal innovation of TAM is to introduce strong typing of subjects and objects. This innovation
is adapted from Sandhu's Schematic Protection Model [6].

As one would expect from its name, TAM represents the distribution of rights in the system
by an access matrix. The matrix has a row and a column for each subject and a column for each
object. Subjects are also considered to be objects. The [X;Y] cell contains rights which subject X
possesses for object Y .

Each subject or object is created to be of a speci�c type, which thereafter cannot be changed. It
is important to understand that the types and rights are speci�ed as part of the system de�nition,
and are not prede�ned in the model. The security administrator speci�es the following sets for this
purpose:

� a �nite set of access rights denoted by R, and

� a �nite set of object types (or simply types) denoted by T .

Once these sets are speci�ed they remain �xed (until the security administrator2 changes their
de�nition). For example, T = fuser; so; fileg speci�es there are three types, viz., user, security-
o�cer and �le. A typical example of rights would be R = fr; w; e; og respectively denoting read,
write, execute and own.

The protection state (or simply state) of a TAM system is given by the four-tuple (OBJ; SUB; t; AM)
interpreted as follows:

� OBJ is the set of objects.

� SUB is the set of subjects, SUB � OBJ .

� t : OBJ ! T , is the type function which gives the type of every object.

� AM is the access matrix, with a row for every subject and a column for every object. The
contents of the [S;O] cell of AM are denoted by AM [S;O]. We have AM [S;O] � R.

The rights in the access matrix cells serve two purposes. First, presence of a right, such as
r 2 AM [X;Y] may authorize X to perform, say, the read operation on Y . Second, presence of
a right, say o 2 AM [X;Y] may authorize X to perform some operation which changes the access
matrix, e.g., by entering r in AM [Z; Y]. In other words, X as the owner of Y can change the matrix
so that Z can read Y .

The protection state of the system is changed by means of TAM commands. The security
administrator de�nes a �nite set of TAM commands when the system is speci�ed. Each TAM
command has the following format:

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
if r1 2 [Xs1 ; Xo1] ^ r2 2 [Xs2 ; Xo2] ^ : : :^ rm 2 [Xsm ; Xom]
then op1; op2; : : : ; opn

end

or

command �(X1 : t1, X2 : t2, : : : , Xk : tk)
op1; op2; : : : ; opn

end

Here � is the name of the command; X1, X2, : : : , Xk are formal parameters whose types are
respectively t1, t2, : : : , tk; r1, r2, : : : , rm are rights; and s1, s2, : : : , sm and o1, o2, : : : , om are
integers between 1 and k. Each opi is one of the primitive operations discussed below. The predicate
following the if part of the command is called the condition of �, and the sequence of operations
op1; op2; : : : ; opn is called the body of �. If the condition is omitted the command is said to be an
unconditional command, otherwise it is said to be a conditional command.

A TAM command is invoked by substituting actual parameters of the appropriate types for
the formal parameters. The condition part of the command is evaluated with respect to its actual
parameters. The body is executed only if the condition evaluates to true.

There are six primitive operations in TAM as follows.

2It should be kept in mind that TAM treats the security administrator as an external entity, rather than as another
subject in the system.

enter r into [Xs; Xo]
create subject Xs of type ts
create object Xo of type to

delete r from [Xs; Xo]
destroy subject Xs

destroy object Xo

(a) Monotonic Primitive Operations (b) Non-Monotonic Primitive Operations

We require that s and o are integers between 1 and k, where k is the number of parameters in the
TAM command in whose body the primitive operation occurs.

The enter operation enters a right r 2 R into an existing cell of the access matrix. The contents
of the cell are treated as a set for this purpose, i.e., if the right is already present the cell is not
changed. The enter operation is said to be monotonic because it only adds and does not remove
from the access matrix. The delete operation has the opposite e�ect of enter. It (possibly) removes
a right from a cell of the access matrix. Since each cell is treated as a set, delete has no e�ect if the
deleted right does not already exist in the cell. Because delete (potentially) removes a right from
the access matrix it is said to a non-monotonic operation.

The create subject and destroy subject operations make up a similar monotonic versus non-
monotonic pair. The create subject operation requires that the subject being created does not
previously exist. The destroy subject operation similarly requires that the subject being destroyed
should exist. Note that if the pre-condition for any create or destroy operation in the body is false,
the entire TAM command has no e�ect. The create subject operation introduces an empty row
and column for the newly created subject into the access matrix. The destroy subject operation
removes the row and column for the destroyed subject from the access matrix. The create object
and destroy object operations are much like their subject counterparts, except that they work on
a column-only basis.

To summarize, a system in speci�ed in TAM by de�ning the following.

1. A set of rights R.

2. A set of types T .

3. A set of state-changing commands.

4. The initial state.

We say that the rights, types and commands de�ne the system scheme. Note that once the system
scheme is speci�ed by the security administrator it remains �xed thereafter for the life of the system.
The system state, however, changes with time.

3 SINGLE-OBJECT TAM

In this section we present a simpli�ed version of TAM called Single-Object TAM (SO-TAM). Our
principal motivation in de�ning SO-TAM is to arrive at a model well-suited to a distributed im-
plementation. We, of course, do not wish to lose or compromise the expressive power of TAM in
doing so. We conjecture that SO-TAM is theoretically equivalent to TAM. Arguments in support
of this conjecture are given at the end of this section. The natural expressive power of SO-TAM is
demonstrated in the next section, where we show how the ORCON policy for originator control of
documents is speci�ed in SO-TAM.

The principal restriction in SO-TAM is that all primitive operations in the body of a command
are required to operate on a single object. An object is represented as a column in the access matrix.
Similarly, when a subject is the \object" of an operation, that subject is viewed as a column in the
access matrix. SO-TAM stipulates that all operations in the body of a command are con�ned to a
single column.

Now consider the usual implementation of the access matrix by means of access control lists
(ACL's). Each object has an ACL associated with it, representing the information in the column
corresponding to that object in the access matrix. The restriction of SO-TAM implies that a single
command can modify the ACL of exactly one object. These modi�cations can therefore be done at
the single site where the object resides. This greatly simpli�es the protocols for implementing the
commands. In particular, we do not need to be concerned about coordinating the completion of a
single command at multiple sites. There is therefore no need for a distributed two-phase commit for
SO-TAM commands.

Commands in SO-TAM are further categorized into the following two classes, depending upon
the single or multi-object nature of the condition part of the command.

� Class I: In these commands the condition part is also single object, i.e., the tests are con�ned
to the ACL of a single object. Unconditional SO-TAM commands also fall into this class. An
example of a Class I command is given below.

command �(S1 : t1; O : t2; S3 : t3)
if x 2 [S1; O] then
enter z into [S2; O]

end

� Class II: In these commands the condition part is multi-object, i.e., the tests require reference
to the ACL of more than one object. An example of a Class II command is given below.

command �(S1 : t1; O : t2; S3 : t3)
if x 2 [S1; O]^ y 2 [S1; S3] then
enter z into [S1; O]

end

In Class I commands the condition and body of the command reference the ACL of a single object.
These commands can therefore be executed completely at the site where this single object resides.
In Class II commands evaluation of the condition part requires reference to the ACL's of several
objects. In general these objects can be located at di�erent sites. Various pieces of the condition
will need to evaluated at di�erent sites and then combined together. Class II commands therefore
require a more complex protocol than Class I commands. Implementation of Class I and Class

II commands is discussed in section 6.

Now let us consider the expressive power of SO-TAM. SO-TAM with Class I commands alone
is quite expressive by itself. In particular it subsumes the various transform models of [7, 10, 11].
SO-TAM with Class II has very strong expressive powers. As is shown in the next section it can
express the ORCON policy. Moreover SO-TAM can easily model the Extended Schematic Protection
Model (ESPM) [1, 2]. SO-TAM therefore inherits the theoretical expressive power of ESPM, which
is equivalence to the Harrison, Russo and Ullman (HRU) model [5] for the monotonic case (i.e., no
delete or destroy primitive operations). We conjecture that this equivalence of SO-TAM and HRU
will also extend to the non-monotonic case. Formal consideration of this matter is beyond the scope
of this paper. SO-TAM also inherits the practical expressive power of ESPM demonstrated in [1, 8].
It should be noted that the expressive power of SO-TAM is obtained without compromise on safety
analysis.

4 ORCON IN SO-TAM

In this section we demonstrate the expressive power of SO-TAM by specifying an ORCON (originator
control) policy [4]. In doing so we also show how multi-object TAM commands can be reduced to

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s
: : :

(a) Subject S1 creates an ORCON object O

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s cread
: : :

(b) S1 gives S2 the cread (con�ned-read) right for O

S1 : s S2 : s O : co S3 : cs : : :

S1 : s own, read, write
S2 : s cread
S3 : cs read
: : :

(c) S2, jointly with O, creates the con�ned subject S3 to read O

Figure 1: Illustration of the ORCON Policy with multi-object TAM operations

single object operations. Speci�cally we �rst review the ORCON solution given in [9]. This solution
uses multi-object TAM commands. We then show how to construct equivalent SO-TAM commands.

ORCON requires that the creator (i.e., originator) of a document retains control over granting
access to the information in the document. For example, let Tom be the creator of an ORCON
document3 called SDI. Suppose Tom authorizes Dick to read SDI. The ORCON policy requires that
Dick cannot propagate the information in SDI to, say, Harry; either directly by granting Harry read
access to SDI, or indirectly by granting Harry read access to a copy of SDI. The prohibition that
Dick cannot directly grant read access to Harry is straightforward to enforce. The real challenge for
the ORCON policy is how to prevent Dick from copying the information from SDI into some other
document, say, SDI-Copy and authorizing Harry to read SDI-Copy.4

The ORCON solution given in [9] is based on the ability in TAM to have multiple parents jointly
create a child subject.5 Figure 1(a) shows a fragment of the access matrix in which subject S1 is
the creator (and therefore owner) of object O as indicated by own 2 [S1; O]. The notation S1 : s
denotes that S1 is of type s, and similarly for the names on the other rows and columns. The type
of O is co for con�ned object. In Figure 1(b), S1 gives S2 the cread (i.e., con�ned-read) right for
O. This right allows S2 to create jointly with O subject S3 of type cs (for con�ned-subject). This
creation results in S3 getting the child right for S2 and O. By virtue of being the child of S2 and

3An ORCON document is one to which the ORCON policy applies as opposed to, say, ordinary documents to
which ORCON does not apply.

4Note that Dick as a human being is trusted not to divulge information from SDI to Harry without concurrence of
Tom. The problemhere is to ensure that Trojan Horse laden subjects executing on behalf of Dick do not surreptitiously
leak the information in SDI to Harry.

5The solution prohibits subjects spawned by Dick from making copies (or extracts) of SDI. The solution can be
extended to allow this with the stipulation that the copies (or extracts) will themselves be originator controlled by
Tom.

O and S2 possessing the cread right, S3 obtains the read right for O. This results in the situation
shown in Figure 1(c). The scheme will ensure that S3, by virtue of its type being cs, will never be
able to write to any object or create any objects.

The de�nition of the TAM scheme for this ORCON solution is given below.

1. Rights R = fown; read;write; creadg

2. Types T = fs; cs; cog

3. The following TAM commands

(a) command create�orcon�object(S1 : s;O : co)
create object O of type co;
enter fown, read, writeg in [S1; O]6

end

(b) command grant�con�ned�read(S1 : s; S2 : s;O : co)
if own 2 [S1; O] then enter cread in [S2; O]

end

(c) command use�con�ned�read(S2 : s;O : co; S3 : cs)
if cread 2 [S2; O] then create subject S3 of type cs;

enter read in [S3; O]
end

(d) command destroy�orcon�object(S1 : s;O : co)
if own 2 [S1; O] then destroy object O

end

(e) command revoke�con�ned�read(S1 : s;O : co; S2 : s)
if own 2 [S1; O] then delete cread from [S2; O]

end

(f) command revoke�read(S1 : s;O : co; S3 : cs)
if own 2 [S1; O]^ read 2 [S3; O] then destroy subject S3

end

(g) command �nish�orcon�read(S2 : s;O : co; S3 : cs)
if cread 2 [S2; O]^ read 2 [S3; O] then destroy subject S3

end

Use of the �rst three commands is illustrated in Figure 1. The remaining commands are for revoca-
tion of rights and destruction of objects and subjects.

This scheme is not an SO-TAM scheme, because of command (c) which has multi-object opera-
tions. In command (c) subject S3 has to be created and the ACL of object O has to be modi�ed.
In general, this requires the command to execute at two sites contrary to the constraints of SO-
TAM. All commands other than (c) are actually Class I commands, i.e., single-object condition
and operations.7

This scheme can be easily converted to SO-TAM. We do this by introducing a parent right.
Command (c) is replaced by the following two commands.

6Strictly speaking this should be written as three separate enter operations, one for each of the three rights being
entered.

7One might question how destroy subject is a single site operation, since it requires removal of a row from the
access matrix potentially a�ecting a large number of ACL's. However, we don't need to purge these ACL's immediately
in an atomic manner.

(c.1) command create�con�ned�subject(S2 : s;O : co; S3 : cs)
create subject S3 of type cs;
enter parent in [S2; S3];
enter parent in [O;S3];

end

(c.2) command get�read(S2 : s;O : co; S3 : cs)
if cread 2 [S2; O] ^ parent 2 [S2; S3] ^ parent 2 [O;S3]
then enter read in [S3; O]

end

Figure 2 shows how the scenario of Figure 1 plays out with this modi�cation. In the modi�ed scheme
we enter the parent privilege during joint creation by command (c.1). Prior to grant of the read
privilege to S3 the condition in command (c.2) tests for the presence of the parent right. This simple
manipulation makes the entire scheme an SO-TAM scheme with single-object operations. Note that
command (c.1) is a Class I command while command (c.2) is a Class II command.

5 THE ARCHITECTURE

In this section we describe a client-server based architecture for implementing SO-TAM. This archi-
tecture has evolved from our earlier work [2, 10, 11].

5.1 Global Identi�ers

Every subject and object is assigned a type when it gets created. The typing is strong and cannot
be altered thereafter. Moreover each subject or object in the system has a globally unique identi�er
i.e., no two subjects or objects in a system can have the same identi�ers. We assume the type of a
subject or object is embedded in its identi�er. These identi�ers have the following structure.

type identi�er

The type �eld denotes the type of the subject or the object. The identi�er �eld uniquely identi�es
each subject or object among instances of the same type. Uniqueness of object identi�ers reduces to
requiring each object to have a unique identi�er among instances of the same type. If a particular
type is managed by more than one server, uniqueness of the identi�er can be ensured by having the
following structure.

type server identi�er identi�er

Having made this point, we will use the former global identi�er structure in rest of this paper.

5.2 Access Control Lists

Each object in the system is managed by an object server. When the object is a subject, we
sometimes call the server a subject server. Each server manages a particular type of object, but
the same type of object may be managed by several servers. For example, there may be several �le
servers in the system. Each object resides at exactly one server.

Each object has an Access Control List (ACL) associated with it. The ACL has the following
structure.

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s
O : co
: : :

(a) Subject S1 creates an ORCON object O

S1 : s S2 : s O : co : : :

S1 : s own, read, write
S2 : s cread
O : co
: : :

(b) S1 gives S2 the cread (con�ned-read) right for O

S1 : s S2 : s O : co S3 : cs : : :

S1 : s own, read, write
S2 : s cread parent
O : co parent
S3 : cs
: : :

(c) S2, jointly with O, creates the con�ned subject S3

S1 : s S2 : s O : co S3 : cs : : :

S1 : s own, read, write
S2 : s cread parent
O : co parent
S3 : cs read
: : :

(d) S3 acquires read right for O

Figure 2: Illustration of the ORCON Policy in SO-TAM

oid

sid1 rights
sid2 rights
. .
. .

sidn rights

To make the construction of the architecture clear we refer to a subject identi�er by sid and a object
identi�er by oid.

Any access to an object is determined by the rights speci�ed in the ACL for that subject.
Similarly all accesses to subjects are dictated by the rights in the ACL possessed by the requesting
subject. The ACL's are dynamic in nature and can be manipulated by SO-TAM commands.

5.3 Certi�cates

In addition each server is associated with a certi�cate server. The certi�cate server acts as a mediator
for any form of communication between two servers. The certi�cate server is responsible for creating,
encrypting and decrypting certi�cates for the servers to which it is associated. The certi�cate
generated by a certi�cate server has the following structure.

oid Rights sid

The oid contains the unique identi�er for the object in question. The sid is the unique identi�er of
the subject. The rights �eld speci�es the rights that the subject identi�ed in the sid �eld has for
the object in the oid �eld.

Since these certi�cates travel over insecure lines they are made secure by using a public key based
encryption algorithm. For this we specify a pair of keys for each server. Out of this pair one of
the keys is secret known only to that server's certi�cate server, while the other one is public and
known to all certi�cate servers. Certi�cates are doubly encrypted in the usual manner in public-key
systems, to ensure their authenticity and con�dentiality. They are also time-stamped to avoid replay
attacks. Further details are given in the next section. Authentication between users and their servers
is assumed. Any authentication protocol from the literature [3] can be employed for this purpose.

6 IMPLEMENTATION OF SO-TAM

The implementation of SO-TAM commands is based on the architecture described in the previous
section. All accesses to an object are mediated by the object server responsible for managing that
object. Similarly for subject accesses the subject server responsible for that subject mediates the
access.

Authentication is also carried out at the time of object/subject access, and must be incorporated
into the RPC (Remote Procedure Call) mechanism of the client-server architecture. The servers
must authenticate the source of every RPC request. This can be achieved by any of the encryption
protocols found in literature [3]. One method would be to provide means for every subject to place
its digital signature on every RPC communication to a server. Digital signatures for the reverse
communication from object/subject servers to clients can also be incorporated.

We now describe the execution of a primitive operation at a server, followed by protocols for
Class I and Class II commands.

6.1 Primitive Operations

Let us consider each of the primitive operations in turn.

1. enter x into [S1; O]

In this operation the server managing object O enters the x right for subject S1 into the ACL
for object O.

2. delete x from [S1; O]

For this operation the server managing object O deletes the x right that S1 has from O's ACL.
This operation is exactly the opposite of the enter operation.

3. create subject S1 of type t1

The server who will manage subject S1 creates S1 with an empty ACL.

4. destroy subject S1

The server managing S1 destroys the subject S1 and discards S1's ACL.

5. create object O of type t2

The server who will manage object O creates object O with an empty ACL.

6. destroy object O

The server managing O destroys the object O and discards O's ACL.

6.2 Class I Commands

For an unconditional command the server in question simply executes the primitive operations in
the body as indicated above. The operations of conditional Class I commands are executed only
if the speci�ed condition is satis�ed. In Class I commands the if condition can be tested by the
server who manages the object in question, simply by reference to the object's ACL.

A typical command with single-object condition veri�cation is shown below.

command �(S1 : t1; O : t2)
if x 2 [S1; O]
then op1; op2; : : : ; opn

end

This command is sent to the server where the listed operations op1; op2; : : : ; opn are to be executed.
The command is executed as follows.

1. (a) The server on receiving the request veri�es the types of the subjects and objects against
the security policy to check the validity of the command. Once the validity is con�rmed
the server tests the if conditional statement. If the command fails the validity tests the
request is aborted.

(b) The server checks the ACL for object O to see if S1 really possesses the x privilege for O
and if so it executes the next step, otherwise the request is aborted.

(c) If the if condition is true the server performs the operations op1; op2; : : : ; opn.

6.3 Class II Commands

Veri�cation of the condition inClass II commands requires reference to multiple sites. Our protocol
for multi-object condition veri�cation is based on inter-server communications. Various pieces of the
condition as veri�ed at individual servers and communicated to server A as certi�cates. Each server
has an associated certi�cate server to generate the certi�cate.

Consider the following typical example of multi-object veri�cation of a conditional command.

command �(S1 : t1; O : t2; S3 : t3)
if x 2 [S1; O]^ y 2 [S1; S3]
then op1; op2; : : : ; opn

end

As speci�ed by the constraints of SO-TAM all the operations op1; op2; : : : ; opn involve only one
server. Let us say this is the server for object O and is called server A. In the above command
veri�cation of the condition part involves only one additional site, viz., the site of S3's server. Let
us call S3's server as server B. The protocol is easily extended to additional sites.

In this command, to verify the conditional if statement, server A needs information from the
subject server managing subject S3 as to whether or not S1 possesses the y right for S3. This is
achieved as follows.

1. (a) Server A checks the security policy to determine the validity of the request. If the validity
tests fail the request is aborted.

(b) Server A checks O's ACL to see whether S1 possesses the x right for O. If S1 does indeed
possess x for O the command proceeds, otherwise it is aborted.

(c) Server A further needs information from the subject server managing subject S3 as to
whether or not S1 has the y right for S3, so A waits for a certi�cate from S3's server. (To
prevent A from waiting inde�nitely for the certi�cate to arrive, it waits for a speci�ed
period of time and then aborts the command.)

2. (a) Server B, i.e., S3's server, checks into S3's ACL to ascertain whether S1 possesses the y
right for S3. If this is so, B informs B's certi�cate server to create a certi�cate and send
it to server A. Otherwise server A is noti�ed of a failed condition.

(b) B's certi�cate server encrypts the certi�cate with its own secret key. Then the certi�cate
is again encrypted with the public key of the A's certi�cate server. The certi�cate is
shown below.

(S3 : t3 y S1 : t1 TS KB

d
)KA

e

where KB

d
is the secret key of B (known only to B's certi�cate server), KA

e is the public
encryption key of A (known to all certi�cate servers) and TS is a timestamp.

3. (a) When A's certi�cate server receives the certi�cate it decodes it in two steps. First it
applies A's secret key KA

d
, and it applies B's public key KB

e . If decryption fails or the
timestamp is out of date the request is aborted.

(b) If the certi�cate is decoded correctly the information it holds is in the clear and server A
has the necessary veri�cation it needs to process the command request.

(c) If the condition is met server A executes the requested operations op1; op2; : : : ; opn.

7 IMPLEMENTATION OF ORCON

In this section we give a concrete example of the abstract implementation of section 6 by showing
how the ORCON policy of section 4 is enforced.

1. Let Tom be a subject of type s who initiates the following command to create the ORCON
object SDI of type co.

command create�orcon�object(Tom : s; SDI : co)

The kernel of Tom's host, makes a remote procedure call (RPC) to the object server which
is responsible for managing ORCON objects created by Tom. This RPC contains the action
requested, the sid and oid; all signed under Tom's digital signature. In this instance, the sid
= s.Tom and the oid = co.O.

2. On receiving the request the object server authenticates the request originating from Tom. The
server then checks the command create�orcon�object with respect to its actual parameters
to determine its validity. Once the command is determined to be valid, the object server
proceeds to create a new ORCON object SDI with the ACL shown below.

co.SDI s.Tom own,read,write

The ACL shows Tom to be the owner of the document SDI and possessing own, read and write
privileges for it.

3. In this step Tom grants cread (con�ned read) privilege to Dick (sid = s.Dick). The command
is sent to SDI's object server. The request is shown below.

command grant�con�ned�read(Tom : s;Dick : s; SDI : co)

The server on receiving the RPC authenticates its origin as Tom. Then it performs the validity
checks on the request by checking the sids and oids of the subjects and objects involved in the
operation. The server then evaluates the condition part of the command. The server looks
into SDI's ACL to see if Tom is the owner of SDI. With this fact con�rmed, the if condition
evaluates to true and the server enters cread privilege for Dick into the ACL, as shown below.

co.SDI
s.Tom own,read,write
s.Dick cread

With this Dick possesses the cread privilege for the con�ned-object SDI.

4. Now Dick and the object SDI jointly create a new subject Dick0 which is of the type con�ned-
subject (cs). The command shown below is sent to the appropriate subject server.

command create�con�ned�subject(Dick : s; SDI : co;Dick0 : cs)

The subject server on receiving the request authenticates the sender and tests the sids and
oids of the subjects and objects involved to determine the validity of the request. Since this
is an unconditional command, the subject server proceeds to create a new subject Dick0 with
the ACL shown below.

cs.Dick0
s.Dick parent
co.SDI parent

5. Next the read right is obtained by Dick0 via the following command. This command is sent to
the object server managing SDI.

command get�read(Dick : s; SDI : co;Dick0 : cs)

Like before the object server makes the authentication and validity tests. Then it checks into
its ACL to determine whether Dick possesses the cread privilege for SDI. This information
completes one part of the if statement. For the other part it relies on information from the
subject server managing Dick0.

6. The subject server for Dick0 checks into its ACL to determine whether Dick and SDI are
parents of Dick0. Since this is the case, the server informs its certi�cate server which frames
two certi�cates, shown below, to be sent to SDI's object server.

(s.Dick parent cs.Dick0 TS KB

d
)KA

e

(co.SDI parent cs.Dick0 TS KB

d
)KA

e

where the KB

d
is the secret key of the subject server for Dick0 and KA

e
is the public encryption

key of the object server for SDI. Recall that TS is a timestamp.

7. The certi�cate server for SDI's object server �rst applies its secret key KA

d
and then the public

key KB
e

of the certi�cate server for the subject server. Now the certi�cates are in the clear as
shown below.

s.Dick parent cs.Dick0

co.SDI parent cs.Dick0

Now SDI's object server has complete information to evaluate the condition part of the com-
mand. Since the condition evaluates to be true, the server updates the ACL by adding the
read right for Dick0 for the ORCON object SDI.

co.SDI
s.Tom own,read,write
cs.Dick0 read

Now Dick0 can read SDI but cannot copy it or pass it to another subject (due to Dick0 being
a con�ned subject).

8. Now suppose Tom wants to revoke the read access to Dick0. To do this he issues the following
command.

command revoke�read(Tom : s; SDI : co;Dick0 : cs)

The object server for SDI authenticates the command and performs the regular validity tests
on the command. With validity of the command con�rmed the server checks SDI's ACL to see
whether Tom is the owner of SDI and whether Dick0 has the read privilege for it. Since this is
true, the server deletes the read privilege for Dick0 for SDI. The purged ACL is shown below.

co.SDI
s.Tom own,read,write
cs.Dick0

Since the read privilege is deleted from the ACL all future accesses by Dick0 to read SDI are
denied.

This completes the example.

8 CONCLUSION

In this paper we have considered implementation of the Typed Access Matrix (TAM) model, recently
de�ned by Sandhu [9]. TAM has rich expressive power and yet has strong safety properties. We
have de�ned a simpli�ed version of TAM called Single-Object TAM (SO-TAM). We have shown
that SO-TAM has a particularly simple and e�cient implementation in a distributed environment.
This paper demonstrates how the ORCON policy can be expressed in SO-TAM and implemented in
the architecture. We conjecture that SO-TAM has the same expressive power as TAM. Theoretical
arguments in support of this conjecture have been provided.

The implementation is based on an architecture which makes use of both access control lists
and certi�cates. All accesses to subjects and objects are mediated by subject and object servers
respectively. Access control lists are used for this purpose. Each server in addition has a certi�cate
server under its domain. The certi�cate server has the function of creating and decrypting certi�cates
used for communications between servers over a potentially hostile network.

References

[1] Ammann, P.E. and Sandhu, R.S. \The Extended Schematic Protection Model." Journal of

Computer Security, to appear.

[2] Ammann, P.E., Sandhu, R.S. and Suri, G.S. \A Distributed Implementation of the Extended
Schematic Protection Model." Seventh Annual Computer Security Applications Conference,
1991, pages 152-164.

[3] Davies, D.W. and Price, W.L. Security in Computer Networks. John Wiley & Sons (1989).

[4] Director of Central Intelligence Directive No. 1/7 \Control of Dissemination of Intelligence
Information," 4 May 1981.

[5] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. \Protection in Operating Systems." Communi-

cations of ACM 19(8), 1976, pages 461-471.

[6] Sandhu, R.S. \The Schematic Protection Model: Its De�nition and Analysis for Acyclic Atten-
uating Schemes." Journal of ACM 35(2), 1988, pages 404-432.

[7] Sandhu, R.S. \Transformation of Access Rights." Proc. IEEE Symposium on Security and Pri-

vacy, Oakland, California, May 1989, pages 259-268.

[8] Sandhu, R.S. \Expressive Power of the The Schematic Protection Model." Journal of Computer

Security, Volume 1, Number 1, 1992, pages 59-98.

[9] Sandhu, R.S. \The Typed Access Matrix Model" IEEE Symposium on Research in Security

and Privacy, Oakland, CA. 1992, pages 122-136.

[10] Sandhu, R.S. and Suri, G.S. \A Distributed Implementation of the Transform Model" 14th

National Computer Security Conference, Washington, DC, October 1991, pages 177-187.

[11] Sandhu, R.S. and Suri, G.S. \Non-Monotonic Transformation of Access Rights" IEEE Sympo-

sium on Research in Security and Privacy, Oakland, CA. 1992, pages 148-161.

