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ABSTRACT Unix includes a simple group mechanism for access control. In this pa-
per we describe an experiment to extend this mechanism in two signi�cant ways that
are valuable in managing group-based access control in large-scale systems. The goal
of our experiment is to demonstrate how group hierarchies (where groups include other
groups) and decentralized user-group assignment (where administrators are selectively
delegated authority to assign selected users to selected groups) can be implemented by
means of Unix setgid programs. In both respects the experimental goal is to implement
previously published models, speci�cally RBAC96 for group hierarchies and URA97 for
decentralized user-group assignment. Our results indicate that Unix has adequate exi-
bility to accommodate modern access control models to some extent, but that it also has
critical limitations. The paper discusses how additional setgid based mechanisms could
be implemented to make our implementation more scalable.

1 INTRODUCTION

Groups have been used for access control ever since the �rst time-sharing systems were implemented
in the early 1970s. A group is a collection of users and serves as a convenient unit for granting and
revoking access. Membership in a group is presumably determined by the need to share resources
and information so the group provides a suitable unit for access decisions. A user or administrator
can make a resource available to an entire group without having to explicitly provide access to every
member. Similarly, access can be revoked from a group without explicitly revoking each member's
access. Also new users can be made members of appropriate groups, thereby obtaining access to a
number of resources.

Unix includes a simple group mechanism for access control [GS96]. Users belonging to a group are
explicitly enumerated in either /etc/passwd (for the primary group) or /etc/group (for secondary
groups). Unix notably lacks a facility for including one group in another. In practice, it is often
desirable that groups bear some relationship to each other. For instance, consider a project divided
into several independent tasks assigned to di�erent teams. We can de�ne a group for each task team
so its members have common access to �les relevant to the task. Since some �les may pertain to the
entire project we can de�ne a project group such that members of the individual task groups are
thereby also members of the project group. The project wide �les are then made explicitly available
to the project group alone. This is certainly more convenient than having to explicitly make such
�les available to every task group.1 It is also more convenient than explicitly making every member
of a task group a member of the project group. By allowing membership in a group to automatically
imply membership in some other groups we can reduce the number of explicit access decisions that
need to be made by users and administrators. Many commercial database management systems,

1Unix protection bits only allow �le permissions to be granted to one group. Several Unix implementations now
incorporate access control lists where a �le permissions can be con�gured for multiple groups. Hierarchical groups are
useful in either case.



such as Informix, Oracle and Sybase, provide facilities for hierarchical groups (or roles). Commercial
operating systems, however, provide limited facilities at best for this purpose.

Let x>y signify that group x is senior to y, in the sense that a member of x is also automatically
a member of y but not vice versa. Note that a member of x has the power of a member of y
and may have additional power, hence a member of x is considered senior to a member of y. It is
natural to require that seniority is a partial ordering, i.e., > is irreexive, transitive and asymmetric.
The irreexive property is obviously required since every member of x is already a member of x.
Transitivity is certainly an intuitive assumption and perhaps even inevitable. After all, if x>y and
y>z then a member of x is a member of y and so should also be a member of z. The asymmetric
requirement eliminates redundancy by excluding groups which would otherwise be equivalent. We
write x�y to mean x>y or x=y. If x is senior to y we also say that y is junior to x. For convenience
we use the term hierarchy to mean a partial order.

An example of a group hierarchy for a hypothetical engineering department is shown in �gure 1.
By convention, senior groups are shown toward the top and junior ones toward the bottom. Tran-
sitive edges from seniors to juniors are omitted. In this example there is a junior-most group E
to which all employees in the organization belong. Within the engineering department there is a
junior-most group ED and senior-most group DIR.2 In between there are groups for two projects
within the department, project 1 on the left and project 2 on the right. Each project has a senior-
most project lead group (PL1 and PL2) and a junior-most engineer group (E1 and E2). In between
each project has two incomparable groups, production engineer (PE1 and PE2) and quality engineer
(QE1 and QE2). We will use this example throughout this paper.

This example can be extended to dozens and even hundreds of projects within the engineering
department. Moreover, each project could have a di�erent structure for its groups. The example
can also be extended to multiple departments with di�erent structure and policies applied to each
department.

Another limitation of Unix groups is that membership is exclusively controlled by the root
account. This is a centralized model which does not scale gracefully to systems with large numbers
of groups and users. More generally, it is possible to decentralize user-group assignment by allowing
administrators to selectively delegate authority to assign selected users to selected groups. Our
decentralization philosophy is motivated by the principle that a manager who can assign a user to
work on a particular task should also have the authority to enroll that user in appropriate groups
which confer the necessary permissions to work on that task. E�ective decentralization of user-group
assignment is one step towards making security more acceptable to end users as an enabling and
empowering technology, rather than as the general nuisance it is often perceived to be.

In this paper we describe an experiment to extend the Unix group mechanism to include group
hierarchies and decentralized user-group assignment by means of setgid programs. A setgid program
runs with the permissions of the group associated with the program, rather than with permissions
of the groups associated with the user who invokes the program [GS96]. The setgid feature allows
the access control behavior of Unix to be extended in a controlled and protected manner.3

Although setgid has been a part of Unix for a long time we are not aware of prior experiments
in using setgid programs in such a comprehensive manner to extend Unix access control. Published
work on extending access control has usually focussed on changing the Unix kernel, an approach
which we deemed to be outside our experimental scope. Our objective was to focus on techniques
that do not require access to Unix kernel source code since this is typically proprietary and not

2For purpose of our example it is convenient to have a powerful senior-most group DIR. We emphasize that, in
general, our model allows arbitrary hierarchies so it is not required that there be such a senior-most group. In many
cases we would not want to have such a group. Similar comments apply to the junior-most group E.

3Many programs in a typical Unix installation that could be run setgid to an appropriate group are run setuid to
root. This latter practice is very dangerous and is the root cause (no pun intended) of many security penetrations in
Unix [GS96]. Our experiment uses setgid programs in the spirit of least privilege to avoid this vulnerability.
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available to most installations. Modifying the Linux kernel for our experiments was ruled out, since
we would like our solution to apply to commercial o�-the-shelf Unix. Some examples of extending the
access control behavior of Unix by means of kernel modi�cations are given in [BSS+95a, BSS+95b,
FH97, Mey97, STCYYS94].

One of the di�culties inherent in the kind of experiment we describe here is that we need models
for group hierarchies and for decentralized user-group assignment before the experimental implemen-
tation on Unix can be attempted. If these models are designed as part of the experiment there will
always be a question as to whether the model was designed (deliberately or inadvertently) to facilitate
a Unix setgid-based implementation. Fortunately we were able to use previously published models
for our experiment to avoid this possibility of bias in model design. Our model for group hierarchies
is based on the RBAC96 model for role-based access control [SCFY96].4 The model for decentralized
user-group assignment, called URA97, is adapted from [SB97]. Neither model was designed with
Unix setgid programs in mind. There are numerous papers in the literature on hierarchical groups
and alternate models for this purpose including [FWF95, HDT95, NO95, RBKW91, San88].

The example of �gure 1 is taken from [SB97]. URA97 distinguishes between regular groups and
administrative groups. Figure 2 shows a hierarchy of administrative groups. The senior-most group
is the senior security o�cer (SSO). Junior to SSO is a department security o�cer group (DSO) and
two project security o�cer groups (PSO1 and PSO2). These administrative groups are authorized
to grant and revoke membership of users in the regular groups of �gure 1, as we will see shortly. (For
simplicity, URA97 assumes that control of membership in the administrative groups is centralized.)

The rest of the paper is organized as follows. In section 2, we discuss how to implement group
hierarchies in Unix. In section 3 we review the URA97 model and discuss its implementation in
Unix. Implementation details are described in section 4. Section 5 discusses the lessons learned
from our experiment and describes how additional setgid based mechanisms could be implemented
to make our implementation more scalable. Section 6 concludes the paper.

2 GROUP HIERARCHIES

As we have mentioned Unix does not have the notion of hierarchy between groups. We show how
group hierarchies can be simulated in UNIX. The basic idea is that when a user is added to a senior
group the assign program automatically adds the user to all junior groups. Similarly, when a user is
removed from a senior group the revoke program automatically removes the user from appropriate
junior roles.5

Each account in Unix has a symbolic name that identi�es it. When adding a new user account
to the system, the administrator assigns a user identi�cation number (UID) which should be unique
(Unix itself does not enforce uniqueness). Internally, the UID is the system's way of identifying an
account. We assume that each account has a single human user associated with it. In practice a
single user could have multiple accounts and a single account could be shared by multiple users. We
assume the system administrator enforces a single user per account and a single account per user
policy. Therefore we will use the terms user and account as essentially synonymous.

The administrator assigns each user to one or more groups. The �le /etc/group lists all de�ned
groups and is public information; all users may read it, but only the superuser is allowed to modify it.
Group membership is given in /etc/passwd (for the primary group) or /etc/group (for secondary
groups). In this paper we will focus on the /etc/group �le. Extension to the /etc/passwd �le is
straightforward and would be tedious to describe.

4The notion of a role is similar to that of a group, particularly when we focus on the issue of user-role or user-group
membership. For our purpose in this paper we can treat the concepts of roles and groups as essentially identical.

5Discussion of scalability issues related to this approach is given in section 5.



DIR:: 47:
PL1:: 48: Alice
PL2:: 49:
PE1:: 50: Alice
PE2:: 51:
QE1:: 52: Alice
QE2:: 53:
E1:: 54: Alice
E2:: 55:
ED:: 56: Alice
E:: 57: Alice, Dave, Eve

DIR:: 47:
PL1:: 48: Alice
PL2:: 49:
PE1:: 50:
PE2:: 51:
QE1:: 52:
QE2:: 53:
E1:: 54:
E2:: 55:
ED:: 56: Alice
E:: 57: Alice, Dave, Eve

(a) /etc/group (b) /etc/explicit

Group Name Parent Group(s) Child Group(s)

DIR - PL1, PL2
PL1 DIR PE1, QE1
PL2 DIR PE2, QE2
PE1 PL1 E1
QE1 PL1 E1
PE2 PL2 E2
QE2 PL2 E2
E1 PE1, QE1 ED
E2 PE2, QE2 ED
ED E1, E2 E
E ED -

(c) /etc/grouphr

Table 1: The example group hierarchy of Figure 1

Table 1(a) shows the �le /etc/group corresponding to the list of groups in �gure 1. Each row
gives the group name, the group ID and a list of group members. For convenience we enumerate
group members by symbolic name. Unix actually uses UIDs for this purpose. The /etc/group

�le shows the group membership of each user. To maintain the group hierarchy we use the �le
/etc/grouphr to store the children and parents of each group. The group hierarchy of �gure 1 is
represented in /etc/grouphr as shown in table 1(c). The �rst column gives the group name, the
second column gives the (immediate) parent groups of that group, and the third column gives the
(immediate) children. The null symbol \�" means that the group has no parent or child as the case
may be. In table 1(c), the �rst row has the null symbol because the group director(DIR) does not
have any parent. The /etc/grouphr �le can be easily constructed for any group hierarchy.

Using /etc/grouphr, we can �nd all seniors and juniors for a group by respectively chasing the
parents and children. For example for the PE1 group of table 1(c) we can construct the seniors and
juniors list as follows.

Group Seniors Juniors

PE1 PL1, DIR E1, ED, E



We say a user is an explicit member of a group if the user is explicitly designated as a member
of the group. A user is an implicit member of a group if the user is an explicit member of some
senior group. A user can simultaneously be an explicit and implicit member of the same group.6 For
example, Alice can be an explicit member of ED and PL1, in which case she is also an implicit member
of ED (by virtue of membership in PL1). To simulate a group hierarchy we maintain information
about explicit and implicit membership in /etc/group. If Alice belongs explicitly or implicitly to
a group she will be added to that group's member list in /etc/group. However, /etc/group is not
su�cient to distinguish the case where Alice is both an explicit and implicit member of some group
from the case where she is only an implicit member of the group. For this purpose we introduce
another �le /etc/explicit that keep information about explicit membership only. An example is
shown in table 1(b). The format of this �le is same as /etc/group. Alice has explicit memberships
for PL1, ED and E. Alice also has implicit membership for all groups junior to PL1, i.e., PE1, QE1,
E1, ED, and E, as shown in table 1(a). If Alice's explicit membership is revoked from E there will
be no change in /etc/group but /etc/explicit will be changed to remove her from E. Suppose
after that Alice is further revoked from PL1 we will have the following result.

DIR:: 47:
PL1:: 48:
PL2:: 49:
PE1:: 50:
PE2:: 51:
QE1:: 52:
QE2:: 53:
E1:: 54:
E2:: 55:
ED:: 56: Alice
E:: 57: Alice, Dave, Eve

DIR:: 47:
PL1:: 48:
PL2:: 49:
PE1:: 50:
PE2:: 51:
QE1:: 52:
QE2:: 53:
E1:: 54:
E2:: 55:
ED:: 56: Alice
E:: 57: Dave, Eve

/etc/group /etc/explicit

In summary, to simulate group hierarchies in UNIX, we use /etc/group, /etc/explicit, and
/etc/grouphr �les. The /etc/group �le shows all group membership including implicit and explicit
group memberships. The /etc/explicit �le just has information about explicit group membership
and the /etc/grouphr �le keeps the structure of the group hierarchy. Modi�cations to these �les
are made by setgid programs as discussed in section 4.

The above example illustrates why we need the /etc/explicit �le in addition to /etc/group.
The /etc/grouphr �le is kept separate from /etc/group so that the structure of /etc/group does
not need to be changed. Modifying the /etc/group �le might break existing Unix system programs
which use this �le so it best not to tamper with it.

3 DECENTRALIZED GROUPS

Unix centralizes user-group assignment and revocation entirely in hands of the root account. How-
ever, this simple approach does not scale to large systems. Clearly it is desirable to decentralize
user-group assignment to some degree so that expensive system administrators do not need to spend
valuable time on routine tasks. In particular we can use administrative groups for this purpose. For
convenience we de�ne administrative groups as distinct from regular groups. (Of course, Unix does
not make this distinction and it must be enforced by the system administrators.)

6This is a property of the RBAC96 and URA97 models on which our experiment is based. There are other models,
such as [FB97, NO95] which do not permit this.



Sandhu and Bhamidipati [SB97] recently introduced the URA97 model for decentralized admin-
istration of user-role membership (URA97 stands for user-role assignment 1997). Since the notion of
a role is similar to that of a group, particularly when we focus on the issue of user-role or user-group
membership, we will adopt this model. This section reviews URA97 and describes our approach to
implementing it in Unix. In our review of URA97 we will use the term group rather than role. Our
description of URA97 is informal and intuitive. A formal statement of URA97 is given in [SB97].

3.1 User-Group Assignment

There are two issues that need to be addressed in decentralized management of group membership.
Firstly we would like to control the groups that an administrative group has authority over. Recall
�gures 1 and 2 which respectively show the regular and administrative groups of our example. We
would like to say, for example, that the PSO1 administrative group controls membership in project
1 groups, i.e., E1, PE1, QE1 and PL1. Secondly, it is also important to control which users are
eligible for membership in these groups.

URA97 addresses these two issues respectively by means of a group range and a prerequisite
group or more generally a prerequisite condition. URA97 has a can assign relation which we store
in the �le /etc/can assign. An example of /etc/can assign with prerequisite groups is given in
table 2. We put a colon between the columns to indicate the boundary. The �rst row authorizes
the administrative group PSO1 to assign users to groups in the range [E1,PL1]. A group range
is speci�ed by giving a junior and senior group. The range includes all groups between these two
endpoints. The [ and ] brackets indicate that respectively the junior and senior end point is included
in the range, whereas the ( and ) brackets indicate the end point is excluded. Thus [E1,PL1] consists
of E1, PE1, QE1 and PL1, while [E1,PL1) omits PL1.7 The prerequisite group speci�es which users
can be assigned by PSO1 to groups in the authorized range. Only those users who are already
members of ED can be assigned by PSO1 to [E1,PL1]. The other rows of table 3 are similarly
interpreted.8

Table 3 illustrates the more general case of /etc/can assign with prerequisite conditions. Let
us consider the PSO1 rows. The �rst row authorizes PSO1 to assign users with prerequisite group
ED into E1. The second one authorizes PSO1 to assign users satisfying the prerequisite condition
that they are members of ED but not members of QE1 to PE1. Taken together the second and
third rows authorize PSO1 to put a user who is a member of ED into one but not both of PE1 and
QE1. The fourth row authorizes PSO1 to put a user who is a member of both PE1 and QE1 into
PL1. Note that, a user could have become a member of both PE1 and QE1 only by actions of a
more powerful administrator than PSO1. The rest of table 3 is similarly interpreted.

Assignment of a user to a group in URA97 means explicit assignment. Implicit assignment
to junior groups happens as a consequence and side-e�ect of explicit assignment. In other words
/etc/can assign applies only to explicit membership.

3.2 User-Group Revocation

URA97 authorizes revocation by the can revoke relation which we store in the /etc/can revoke �le.
An example is shown in table 4. The meaning of each row in /etc/can revoke is that a member of
the administrative group can revoke membership of a user from any regular group in group range.

7The reader may recognize this as standard mathematical notation for open and closed intervals.
8It should be noted that administrative groups in URA97 are organized in a hierarchy such as shown in �gure 2.

As discussed in section 2, this hierarchy is implemented in /etc/group by members of a senior group are also added
to all junior roles. Also note that the concept of a session in which only some groups of a user are activated is not
supported by our Unix implementation. In Unix all groups of a user are activated every time the user logs into the
system.



Administrative Group Prerequisite Group Group Range

PSO1: ED : [E1,PL1]:
PSO2: ED: [E2,PL2]:
DSO: ED: (ED,DIR]:
SSO: E: [ED,ED]:

Table 2: Example of /etc/can assign with Prerequisite Groups

Administrative Group Prerequisite Condition Group Range

PSO1: ED : [E1,E1]:

PSO1: ED ^ QE1: [PE1,PE1]:
PSO1: ED ^ PE1: [QE1,QE1]:
PSO1: PE1 ^ QE1: [PL1,PL1]:
PSO2: ED: [E2,E2]:
PSO2: ED ^ QE2: [PE2,PE2]:

PSO2: ED ^ PE2: [QE2,QE2]:
PSO2: PE2 ^ QE2: [PL2,PL2]:
DSO: ED: (ED,DIR):
SSO: E: [ED,ED]:
SSO: ED: (ED,DIR]:

Table 3: Example of /etc/can assign with Prerequisite Conditions

Administrative Group Group Range

PSO1: [E1,PL1):
PSO2: [E2,PL2):
DSO: (ED,DIR):
SSO: [ED,DIR]:

Table 4: Example of /etc/can revoke



We would typically expect some correlation between the range authorized for an administrative
group in /etc/can assign and in /etc/can revoke, but this is not required by the model.

URA97 de�nes two notions of revocation called weak and strong. Weak revocation is straight-
forward and has impact only on explicit membership in the group in question. Strong revocation
requires revocation of both explicit and implicit membership. Strong revocation of U's membership
in x requires that U be removed not only from explicit membership in x, but also from explicit (or
implicit) membership in all groups senior to x. Strong revocation therefore has a cascading e�ect
upwards in the group hierarchy. In URA97 strong revocation is e�ectively equivalent to a series of
weak revocations. Strong revocation is a convenient operation for administrators even though it can
logically be accomplished by multiple weak revokes.

Let us consider the example shown in table 4 and interpret it in context of the hierarchies of
�gures 1 and 2. Let Bob be a member of PSO1, and let this be the only administrative group he
has. Bob is authorized to revoke membership of users from groups E1, PE1 and QE1. Table 5(b)
illustrates whether or not Bob can strongly revoke membership of a user from group E1 based on
table 5(a). The e�ect of Bob's strong revocation of each of these users from E1 is shown in table 5(c).
Bob is not allowed to strongly revoke Eve and Frank from E1 because they are members of senior
groups outside the scope of Bob's revoking authority. If Bob was assigned to the DSO group he could
strongly revoke Eve from E1 but still would not be able to strongly revoke Frank's membership in
E1. In order to strongly revoke Frank from E1, Bob needs to be in the SSO group. The general rule
is that strong revocation takes e�ect within the revocation range authorized for an administrative
group.

URA97 further de�nes two options for strong revocation. The options are called drop and
continue. In table 5(a), Bob is not allowed to strongly revoke Eve and Frank from E1 because they
are members of senior groups outside the scope of Bob's revoking authority. At this step, we can
choose one of two options. With the drop option strong revocation takes no e�ect. Otherwise we
can strongly revoke a user from groups inside the scope of Bob's revoking authority. For example
assume that we choose drop option for strong revocation of Eve from E1 and choose continue for
strong revocation of Frank from E1. The result will be as shown in table 6.

The strong revocation of Eve from E1 takes no e�ect because we chose the drop option but the
strong revocation of Frank from E1 takes partial e�ect. Frank still has group membership for PL1
and DIR groups outside the scope of Bob's revoking authority. We emphasize that the e�ect of
strong revocation can be achieved by a series of weak revocations, but it is a convenient operation
to have in both variations (drop and continue).

We use the setgid feature of Unix to enforce this behavior. The setgid (set group ID or SGID)
�le access modes provide a way to grant users access to which they are not otherwise entitled on a
temporary, command level basis via a speci�ed program. When a �le with SGID access is executed,
the e�ective group ID of the process is changed to the group of the �le, acquiring that group's
access rights for duration of the program contained in this �le. Using setgid a user who is working
as an administrative group can read and write the reference �les: /etc/group, /etc/explicit,
/etc/grouphr, /etc/can assign and /etc/can revoke. Thereby we can enforce desired behavior
of URA97 with respect to di�erent administrative groups.

4 IMPLEMENTATION DETAILS

To implement URA97 in Unix we use several reference �les introduced in the previous sections
and set their permission bits as shown in table 7. The three procedures assign, weak revoke and
strong revoke are setgid to the special group rbac de�ned for this purpose. These procedures can
read and write the �ve reference �les. We previously described the structure of �les /etc/group,
/etc/explicit and /etc/grouphr in section 2, and /etc/can assign and /etc/can revoke in



/etc/group /etc/explicit

DIR:: 47: Frank DIR:: 47: Frank
PL1:: 48: Frank, Eve PL1:: 48: Frank, Eve
PL2:: 49: PL2:: 49:
PE1:: 50: Frank, Eve, Dave, Cathy PE1:: 50: Frank, Eve, Dave, Cathy
PE2:: 51: PE2:: 51:
QE1:: 52: Frank, Eve, Dave QE1:: 52: Frank, Eve, Dave
QE2:: 53: QE2:: 53:
E1:: 54: Frank, Eve, Dave, Cathy E1:: 54: Frank, Eve, Dave, Cathy
E2:: 55: E2:: 55:
ED:: 56: ED:: 56:
E:: 57: E: 57:

(a) /etc/group and /etc/explicit prior to strong revocation

User E1 PE1 QE1 PL1 DIR Bob can revoke user from E1

Cathy Yes Yes No No No Yes
Dave Yes Yes Yes No No Yes
Eve Yes Yes Yes Yes No No
Frank Yes Yes Yes Yes Yes No

(b)Status prior to strong revocation

/etc/group /etc/explicit

DIR:: 47: Frank DIR:: 47: Frank
PL1:: 48: Frank, Eve PL1:: 48: Frank, Eve
PL2:: 49: PL2:: 49:
PE1:: 50: Frank, Eve PE1:: 50: Frank, Eve
PE2:: 51: PE2:: 51:
QE1:: 52: Frank, Eve QE1:: 52: Frank, Eve
QE2:: 53: QE2:: 53:
E1:: 54: Frank, Eve E1:: 54: Frank, Eve
E2:: 55: E2:: 55:
ED:: 56: ED:: 56:
E:: 57: E: 57:

(c) /etc/group and /etc/explicit after strong revocation

Table 5: Example of Strong Revocation



/etc/group /etc/explicit

DIR:: 47: Frank DIR:: 47: Frank
PL1:: 48: Frank,Eve PL1:: 48: Frank,Eve
PL2:: 49: PL2:: 49:
PE1:: 50: Eve PE1:: 50: Eve
PE2:: 51: PE2:: 51:
QE1:: 52: Eve QE1:: 52: Eve
QE2:: 53: QE2:: 53:
E1:: 54: Eve E1:: 54: Eve
E2:: 55: E2:: 55:
ED:: 56: ED:: 56:
E:: 57: E: 57:

Table 6:

PERMISSION OWNER Setgid GROUP FILE NAME

U:rw- G:rws W:--x root YES rbac assign
U:rw- G:rws W:--x root YES rbac weak revoke
U:rw- G:rws W:--x root YES rbac strong revoke
U:rw- G:rw- W:r-- root NO rbac /etc/group

U:rw- G:rw- W:r-- root NO rbac /etc/explicit

U:rw- G:rw- W:r-- root NO rbac /etc/can assign

U:rw- G:rw- W:r-- root NO rbac /etc/can revoke

U:rw- G:rw- W:r-- root NO rbac /etc/grouphr

Table 7: The permission of reference �les

section 3. For simplicity all these �les in our implementation are owned by root. We assume that
the rbac group has no members.

There is one procedure each for assigning a user to a group, doing a weak revoke of membership
and doing a strong revoke of membership. In our implementation a user invokes the procedure call
to grant or revoke a group from or to another user. The procedure calls are as follows.

� assign(user, tgroup)

� weak revoke(user, tgroup)

� strong revoke(user, tgroup)

The parameters user and tgroup (target group) specify which user is to be assigned to tgroup, or
to be weakly or strongly revoked from tgroup. If the strong revoke operation fails because it is not
authorized by /etc/can revoke the user will be asked for a choice of the drop or continue options
as discussed earlier.9

9In a more robust implementation we would like this option to be designated as part of the command line call to
strong revoke, so that it might be called from within programs and shell scripts without requiring user intervention.



RangeCheck()

/etc/can_assign

/etc/can_revoke

GroupHr()

Updategrp()

/etc/group

/etc/grouphr

/etc/explicit
FILE

FUNCTION

READ

WRITE

CALL

/etc/group Caller()

assign/revoke

Showgrp() /etc/group

Authorization()

/etc/group /etc/explicit

PrerequsiteTest()

Figure 3: Data Flow Diagram



Figure 4: User Interface:RBACGUI

Figure 5: User Interface:RBACINFO



All three procedures follow the basic steps shown in �gure 3. The diagram shows the data ow
and the relationship between functions and �les. Each procedure call include several functions. The
description for each function is as follows.

� caller():

returns a list of all groups to which the user belongs (explicitly or implicitly)

� showgrp():

returns a list of all administrative groups to which the invoker belongs (explicitly or implicitly)

� authorization():

checks the invoker's authorization with respect to /etc/can assign or /etc/can revoke

� PrerequsiteTest():

checks whether the user satis�es the prerequisite condition

� GroupHr():

return the senior and junior list for tgroup

� RangeCheck():

checks if strong revoke is authorized and o�ers option of drop or continue

� Updategrp():

updates /etc/group and /etc/explicit �les as appropriate

In general authorization needs to be tested for multiple rows in /etc/can assign or /etc/can revoke.
In such cases the authorization and PrerequisiteTest procedures are called repeatedly for each row.

These procedures are called at the Unix command line prompt as follows.

[usage] assign username target group

[usage] weak revoke username target group

[usage] strong revoke username target group

In order to make our implementation more convenient we developed two graphical user interfaces
(GUIs) which interact with these procedures to do user-group assignment and revocation. The
graphical user interfaces are illustrated in �gure 4 and 5 and are called RBACGUI and RBACINFO
respectively. They were developed using Motif programming. RBACGUI is used to initiate user-
group assignment and revocation instead of typing the above as command line procedure calls.
There are three buttons for doing user-group assignment and revocation; ASSIGN, W-REVOKE
(weak revoke), and S-REVOKE (strong revoke). RBACINFO allows the invoker to consult the
reference �les frequently. Figure 5 shows the information of /etc/group. This window will be
opened after typing rbacinfo group at the Unix command line prompt.

This implementation is convenient for administrative groups since they only need to de�ne the
group hierarchy and the relations can assign and can revoke.

5 LESSONS LEARNED

Our experiment indicates that the extensibility provided in Unix be means of setgid programs does
enable implementation of the two extensions described here, without changing the Unix kernel or
any of its system programs.

The implementation of the URA97 model is quite faithful and does not present signi�cant limita-
tions. The implementation of group hierarchy by explicitly making a member of a senior group to be



(a) Inverted Tree Hierarchy (b) Tree Hierarchy

Figure 6:

a member of all junior groups in /etc/group does raise a scalability issue. Many implementations
of Unix limit the number of groups activated in a process to a fairly small number such as 32 or 16.
The NFS system only accommodates 16 groups so we can take that as a benchmark number due to
the popularity of NFS.

Consider the scalability issue in the hierarchy of �gure 1. For the leader of a single project we
are reasonably safe. However, even with just two projects the DIR group has 10 juniors. If we have
hundreds of projects the DIR group cannot be handled by this technique. True scalability can only
be achieved if the Unix kernel is modi�ed to directly support hierarchical groups. However, there
are still some useful alternatives available without kernel modi�cation.

The RBAC96 model [SCFY96] has the notion of a session which we have not mentioned so far.
In a session a user can activate a subset of the groups to which they belong. In other words not all
groups are activated all the time. The motivation for this stems from the least privilege principle.
Thus if Bob is a project leader for multiple projects, say 1, 2 and 3, he need not activate all his
project lead groups simultaneously. Instead he can activate PL1, PL2 and PL3 in separate Unix
shells (probably on separate windows on a workstation). So we can accommodate scalability to some
extent by allowing a choice of which project lead groups are activated. In our context we may limit
this to only one project lead group at a time.

This idea of working on a single project in a window can work up to a point. Consider Alice who
is a member of the DIR group. If there are hundreds of projects in her department she can never
really activate the DIR role. Instead she can activate project lead roles for individual projects as
needed.

This leads us to the following approach for accommodating scalability beyond that indicated
above. We need to depart from RBAC96 and recognize due to the 16 group at a time limitation of
Unix-NFS we must interpret membership in a senior group as the ability to activate a junior group
whenever. In other words in our modi�ed model activation of a senior group does not automatically
lead to activation of junior groups. The activation is done only when requested. Thus Alice can log
on with the DIR group activated and then decide which groups junior to DIR to activate in a given
window. It may be possible to do this by means of setgid programs.



To provide another perspective on the scalability issue consider the inverted tree and tree hi-
erarchies of �gure 6. The inverted tree does not present a problem since activation of a senior
group amounts to activation of a single path (such as shown in bold-face in the �gure) from leaf to
root. The inverted tree is a commonly occurring hierarchy. For example, Novell Netware supports
it [SGE94]. In object-oriented terms it corresponds to a generalization-specialization hierarchy with
no multiple inheritance (although the root is shown at the top versus our convention of showing it
at the bottom). For the tree hierarchy, however, we have the scalability problem because a senior is
the root of a sub-tree of junior groups which be sizable in number due to the fan-out at each group.

To summarize, scalability of our approach can be handled in Unix by introducing the notion of
a session and rede�ning the meaning of the group hierarchy of RBAC96 as indicated above. It may
be possible to do this by means of setgid programs.

6 CONCLUSION

In this paper we have described our experiment to provide two useful extensions to the Unix group
mechanism by means of setgid programs. First we have added hierarchical groups by means of
explicit assignment to junior groups. When a user is assigned to a senior group the system auto-
matically adds the user to all junior groups. Similarly, when a user's membership is revoked from
a group, revocation from appropriate junior groups is automatically carried out. This behavior is
adapted from the RBAC96 model. Secondly we have adapted the URA97 model for decentralized
user-group assignment and implemented it in Unix. Our implementations use setgid programs to
enforce authorization to add and remove users from groups. Our results indicate that Unix has
adequate exibility to accommodate modern access control models to some extent. We also indi-
cated how additional setgid based mechanisms could be utilized to make our implementation more
scalable. The implementations are available in the public domain.
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