
(11) NetWare 4 as an Example of
Role-Based Access Control

Jeremy Epstein, Cordant, Inc., and Ravi Sandhu. George Mason
University

jepstein@cordant.com. 11400 Commerce Park Drive, Reston VA 22091

sandhu@isse.gmu.edu, Department of Information and Software Systems Engineering,
Fairfax. VA 22030

1.0 Introduction

In [SAND96a], the second author describes a taxonomy of role-based
access control (RBAC) models, divided into four classes shown in
Figure 1 l-l(a), Taxonomy of RBAC Models. A complementary set of
models is used for administrative role-based access control (ARBAC), as
shown in Figure 1 l-l(b), Taxonomy of ARBAC Models. In this position
paper, we describe how the RBAC and ARBAC models can be partially
implemented using unmodified NetWare 4 servers.

RBAC,
Base Model

Figure 11-l(a). Taxonomy of RBAC Models

ARBAC,
Administrative

Role Hierarchies

ARBAC, ARBAC,
Administrative Administrative

Role Hierarchies Constraints

\ /
ARBAC,

Administrative
Base Model

Figure 11-l(b). Taxomony of ARBAC Models

2.0 NetWare Access Control Policies

Copyright 1996 Association for Computing
Machinery. Permission to make digital/hard copy of
all or part of this work for personal or classroom use
is granted without fee provided that copies are not
made or distributed for profit or commercial advan-
tage; the copyright notice, the title of the publication,
and its date appear; and notice is given that copying
is by permission of ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to
lists requires prior specific permission and/or a fee.

ACM RBAC Workshop, MD, USA
0 1996 ACM 0-99791-759-6/95/0011 $3.50

NetWare includes two major types of objects with separate but
interrelated security policies. NetWare Directory Services (NDS) objects
represent abstractions such as users, roles, groups, and computers, while
file system objects provide a traditional hierarchical file system. Both
file and NDS objects are supported by sophisticated access control
mechanisms that allow assignment of rights to users, groups, and other
entities. In addition, they allow rights assignments to be inherited in a
hierarchical fashion. Most importantly, they allow assignment of access

II-7 1

rights in a granular fashion: rights to a file or directory can be
controlled independently from the ability to change file or directory
access rights. That is, a user can, through a role, be granted the ability
to read, write, create, or delete files without having any ability to share
those files with others.

2.1 NDS Obiect Access Control Policv

NDS is an X.500-like system for managing data that represents an
organization’s assets. Every object in NDS has a class, which is defined
in the schema. The schema contains approximately 20 built-in classes
(e.g., User, Organization), and can be extended by authorized users.
Depending on the class of an object, it will have one or more attributes,
also known as properties. Attributes are used to store information about
some aspect of an object. For example, an object of class User has
attributes to represent the person’s name, home directory, login script,
etc. Some attributes are security relevant (e.g., those relating to
passwords) while others are not (e.g., the user’s telephone number).

NDS objects are organized in a tree, much as many file systems
organize files and directories into a tree’. NDS objects are either
confuiner objects, which correspond to directories in a file system, or
leaf objects, which correspond to files in a file system. Whether an
object is a container or leaf object is determined by its class, as defined
in the NDS schema. Figure 11-2, Sample NDS Structure, shows an
NDS structure that might represent an organization. Objects are named
by their complete path to the root, starting at the leaf. For example,
Sally.Finance.Acme is the complete name of the left-most node in the
tree.

-

Figure 11-2. Sample NDS Structure

The tree structure does not include anything akin to a “hard” link in a UNIX file system. However, objects
of class Asias can be used to provide a symbolic link-like capability.

II-72

Users log in to NetWare servers by providing the name of their NDS
User object. When presented with the proper password (and meeting
other restrictions, such as an unexpired account), the user is logged in,
and his or her security equivalence2 list, which is used in calculating
access rights, is computed as follows:

l All users are security equivalent to the pseudo-object named
[Public].

l Users are security equivalent to all container objects in the path
from their User object to the root of the tree, designated [Root],
including both themselves and [Root].

l Users are security equivalent to those objects to which they are
explicitly made security equivalent by the administrator.

All rights in NDS are passed through security equivalence. Group
membership is just one example of security equivalence, but does not
play any special role (contrary to what is stated in [SCHA94]).

Note that users cannot choose a subset of security equivalences to be
used for a session: they gain all security equivalences. Thus, a given
user may be represented by several NDS User objects to reflect different
uses of the system (e.g., as an administrator or as an ordinary user).
The user would select which NDS User object to use. depending on the
task to be accomplished.

While NDS can be configured in many different ways, typical
configurations allow administrative users (but not ordinary users) to
create and delete NDS objects in one or more containers.
Administrative users can usually modify the attributes of NDS objects
that they are responsible for. Non-administrative users may be able to
modify some of the attributes of their User objects, such as the Login
Script or Telephone Number attributes.

2.1.1 NDS Object Access Control Algorithm

Every NDS object has an Access Control List (ACL), which is stored as
an attribute of the NDS object. An ACL is a list of triples, where the
elements of the triple are as follows:

0 The subject name, which is either the name of an NDS object (e.g.,
a specific User, Group, or Organization), or a pseudo-ID such as
[Root], [Public], or [Inherited Rights Filter] (abbreviated IRF).

l Protected attribute, which for NDS object rights calculation is the
reserved symbol [Entry Rights].

l Access rights, which is zero or more of Supervisor, Create, Delete,
Rename, and Browse. The Supervisor right implies all other rights.

2 “Security equivalence” is a misnomer. Security equivalences are neither transitive nor reflexive.

II-73

An object 01’s rights to object 02 is computed as follows:

l For each object 0’ to which 01 is security equivalent, compute the
rights for 0’ to 02 by searching from the root of the tree toward
02. R, which is initially empty, represents the object rights 0’ has
to 02. For each node N along the path, perform the following
steps:

- If N’s ACL includes an entry with the subject name [Inheri,ted
Rights Filter] and a protected attribute of [Entry Rights], then
remove all access rights from R except those listed in the IRF.

- If N’s ACL contains an entry with the subject name of 0’ a.nd a
protected attribute of [Entry Rights], then set R to the access
rights for the entry.

l Union the value of R calculated in the first step for each 0’
together, yielding the rights of 01 to 02.

This algorithm allows setting an ACL at one location in the NDS tre:e
and allowing the rights to flow down using inheritance. For example, in
Figure 1 l-1, if Edward.Acme has the Supervisor right to the Acme
object, then he will have the Supervisor right (and therefore all righl:s) to
all objects in the NDS tree (unless they are blocked with an IRF). If
Sally.Finance.Acme is made security equivalent to Edward.Acme, then
she will also have the Supervisor right to all objects. An alternate
method is to assign Admin.Acme the Supervisor right to Acme, and
make Edward.Acme security equivalent to Admin.Acme. In this case,
Sally.Finance.Acme would not gain the Supervisor right to Acme unless
she is security equivalent to Admin.Acme (i.e., she does not obtain the
rights transitively through Edward.Acme).

Note that groups are simply a particular case of security equivalence in
this scheme: assigning rights to an NDS Group object and making NDS
User objects security equivalent to the Group object is no different than
assigning rights to any other class of NDS object and establishing
security equivalence of NDS user object to object of that other class.

2.1.2 NDS Attribute Access Control Algorithm

The ACL for an NDS object is also used for NDS attributes, with the
following changes:

l The protected attribute can be either the name of a specific attribute
(e.g., Home Directory) or the pseudo-attribute [All Properties
Rights].

0 The access rights are zero or more of Supervisor, Compare, Add or
Delete Self, Read, and Write. Note that the Supervisor attribute --
right is different from the Supervisor object right.

An object 01’s rights to attribute A of object 02 is computed as follows:

Add or Delete Self is one right, not two (i.e., the word “or” does not indicate there are two rights).

II-74

1. For each object 0’ to which 01 is security equivalent, compute the
rights for 0’ to all attributes of 02 by searching from the root of the
tree toward 02. R, which is initially empty, represents the attribute
rights 0’ has to 02. For each node N along the path, perform the
following steps:

a. If N’s ACL includes an entry with the subject name [Inherited
Rights Filter] and a protected attribute of [All Properties
Rights], then remove all access rights from R except those
listed in the IRF.

b. If N’s ACL contains an entry with the subject name of 0’ and a
protected attribute of [All Properties Rights], then set R to the
access rights for the entry.

2. For node 02 only, perform the following steps:

a. If 02’s ACL includes an entry with the subject name [Inherited
Rights Filter] and a protected attribute of A, then remove all
access rights from R except those listed in the IRF.

b. If 02’s ACL contains an entry with the subject name of 0’ and
a protected attribute of A, then set R to the access rights for the
entry.

3. Union the value of R calculated in steps 1 and 2 for each 0’
together, yielding the rights of 01 to attribute A of 02.

4. For each object 0’ to which 01 is security equivalent, determine
whether 0’ has the Supervisor object right to 02 by searching from
the root of the tree toward 02. S, which is initially false, represents
whether 0’ has the Supervisor object right to 02. For each node N
along the path, perform the following steps:

a. If N’s ACL includes an entry with the subject name [Inherited
Rights Filter], a protected attribute of [Entry Rights], and the
IRF does not include the Supervisor right, then clear S.

b. If N’s ACL contains an entry with the subject name of 0’, a
protected attribute of [Entry Rights], and the access rights
include the Supervisor right, then set S.

5. If the value of S for any of the values of 0’ computed in step 4 is
set, then 01 has all rights to attribute A of 02, regardless of the
results of step 3.

There are certain attributes, which are flagged in special ways, that are
not modified by the ACL. For example, attributes may be marked as
Read-Only, which precludes modification to the attribute, even if the
user has adequate rights. Other attributes are marked as Public-Read,
which is equivalent to the ACL entry < [Public], A, Read > (where A is
the name of the attribute). Attributes are marked as Read-Only or
Public-Read as part of the attribute definition, and not as part of the
ACL for the object.

An important aspect of the above policy is that rights to individual
attributes are not inherited, but rights to all attributes (as represented by

II-75

the symbol [All Properties Rights]) are inherited. Thus, a user could be
given the Read and Write rights to [All Properties] at the root of the
NDS tree, which would provide access to all lower objects (unless
modified by IRFs or subsequent trustee assignments), but giving the
Read and Write rights to the Telephone Number attribute at the root
would only affect access to the attribute of that particular object.

2.2 File System Object Access Control Policy

Files in a NetWare file system are organized in a hierarchical tree, much
as any traditional file system. Files are organized into volumes, which
typically represent disk drives. File system rights rely on many of the
same concepts as NDS rights: security equivalence, inheritance, and
inherited rights filters. The file system access control policy is similar,
but not identical, to the NDS object and NDS attribute policy. Every
file system object (file or directory) may have a trusree list, which is
equivalent to an ACL. Elements of a trustee list are pairs’, where the
first element is the subject name and the second element is the access
rights (zero or more of Supervisor, Read, Write, Create, Erase, Modify,
File Scurr. or Access Control). Any NDS object with at least one right
to a file system object is called a frusree of the object, indicating that it
has (partial) responsibility for the data contained in the file or directory.
An object 01’s rights to a file or directory F is computed as follows::

l For each object 0’ to which 01 is security equivalent, compute the
rights for 0’ to F by searching from the root of the volume toward
F. R, which is initially empty, represents the object rights 0’ has to
F. For each node N along the path, perform the following steps:

- If N’s trustee list includes an entry with the subject name
[Inherited Rights Filter], then remove all access rights from R
except those listed in the IRF6.

- If N’s ACL contains an entry with the subject name of 0’, then
set R to the access rights for the entry, unless R already
contains the Supervisor right, in which case R is unchanged.

0 Union the value of R calculated in the first step for each 0’
together, yielding the rights of 01 to F.

Just as inheritance is used to assign rights in a relatively small numb,er of
locations in NDS, so too can it be used in the file system. For example,
assigning the single trustee entry < [Public], {Read, File Scan) > to the
\PUBLIC directory will allow all users access to all files in that
directory (and all subdirectories) without assigning any rights to
individual files in the directory.

l There is no “protected attribute” field in a trustee list entry, whereas there is in an NDS ACL entry.
The Access Control right allows changing the trustee list, except to add an entry with the Supervisor right.
Note that there is no Executive right, because users execute programs on workstations over which the server

6
has no control. Similarly, there is no “setuid” concept as in UNIX for protected subsystems.
The IRF for a file cannot block inheritance of the Supervisor right.

II-76

Note that because of inheritance, rights are typically not assigned at the
root of a volume, because that would provide rights to the whole volume
(unless blocked by an IRF).

3.0 Using NetWare for RBAC

NetWare 4 can be used to enforce portions of the RBACO, RBAC 1,
ARBACO, and ARBACl policies described in [SAND96a]. The objects
to be protected for RBACO and RBACl are files and directories, while
the objects to be protected for ARBACO and ARBACI are NDS objects.
We do not believe that NetWare can be used for implementation of role
constraints (RBAC2 and ARBAC2) and, therefore, it cannot be used for
the consolidated model (RBAC3 and ARBAC3), which presumes the
presence of role constraints.

3.1 RBACO: Base Model

RBACO provides basic RBAC features. The objects we wish to protect
using RBACO are files and directories in the file system. The users of
RBACO are equivalent to users in NetWare, and the permissions are the
NetWare file rights (Supervisor, Read, Write, Create, Erase, Modify,
File Scan, and Access Control). Roles can be implemented using any
NDS object, although the Organizational Role object is most suitable for
the purpose because of its name.

3.1.1 What Can be Done

RBACO calls for a many-to-many relationship between roles and users
and between roles and permissions. In NetWare, users may be security
equivalent to an arbitrary number of other objects, and objects may have
an arbitrary number of users that are security equivalent to them. This
allows us to establish a many-to-many relationship between users and
roles. Similarly, the same permission (right) can be assigned to any
number of roles and vice versa.

The essence of RBACO in NetWare is the ability to assign access rights
independently from access control rights. That is, a role could have the
ability to create, delete, read, and write files in a directory without the
ability to grant others access to that directory. This would be done by
not assigning the Access Control right to the role. In turn, user’s rights
are limited by the roles to which they are security equivalent.

3.1.2 What Cannot be Done

As noted above, NetWare has no concept of sessions operating in
different roles as called for in RBACO. Users obtain those rights
associated with all objects to which they are security equivalent. Thus,
there is no capability for dynamic activation and deactivation of roles
during a session; a user must log out from one NetWare User account
and log in as a different one to change their role. This is a weakness of
NetWare, as it forces users to either have their maximum rights

II-77

available at all times or to maintain multiple accounts, each of which is
used for a different purpose (e.g., user or administrator).

A client operating system could maintain a mapping of user identities to
roles and transparently log the user in and out as necessary. For
example, the user might present a name and a role, and the client would
map that to an NDS User object. Similarly, given sufficient client
operating system support, users could have multiple windows each of
which is logged in to a NetWare server as a different user ID, thus
presenting the facade of having multiple concurrent sessions. We are
unaware of any implementation of this mechanism. In addition,
maintaining multiple synchronized identities would be administratively
cumbersome.

3.1.3 Possible Extensions

NetWare has no concept of a granularity below files. For example, it
might be desirable to have RBAC to records in a database. This can be
accomplished by extending the NetWare server using NetWare Loadable
Modules (NLMs), which extend the server operating system’. Addi-
tional messages could be defined between clients and servers to provide
access to database records. Such messages could rely on the authentica-
tion services provided by NetWare and could “piggy-back” by using the
existing access controls to enforce RBAC on a row or column basis.

3.2 RBACl: Role Hierarchies

The purpose of role hierarchies is to allow structuring of rights as they
are typically done in an organization to reflect authority and
responsibility. NetWare’s rights inheritance coupled with NDS
hierarchy works well for such a concept. Container objects, which are
used for grouping NDS objects, can be trustees of a file just as any
other NDS object. Because users are security equivalent to all
containers they are transitively contained in, assigning rights to a
container assigns those rights to all users (and other NDS objects) in that
container.

However, NDS containers are inverted with respect to the usual
organizational model that individuals near the top (i.e., root) have more
authority and responsibility and authority than individuals closer to the
bottom (i.e., the leaves).

A second difficulty with mapping NetWare access controls to RBACl is
the notion of transitivity. [SAND96a] suggests that access controls
should be transitive, so a Vice President would obtain not only those
rights assigned to the Department Head role, but also transitively the
rights associated to the Engineer role. However, security equivalence is
not transitive, so this concept must be implemented administratively
(e.g., either by assigning the Vice President role all of the rights of
Department Head and Engineer roles, or by making each instance of a
user who is a Vice President security equivalent to all three roles).

Commercial database systems (e.g., ORACLE) that run on NetWare use this technology.

II-78

[SAND96a] also describes the notion of inheriting rights from multiple
roles. This is done easily in NetWare by making a User object security
equivalent to an arbitrary number of other NDS objects.

NetWare does not meet the proposed requirement of role hierarchies
being partial orders. Partial orders are reflexive, transitive, and anti-
symmetric. NetWare’s security equivalence mechanism provides
reflexivity and anti-symmetry, but not transitivity.

As with RBACO, RBACl includes the concept of sessions that can be
used for a role. RBACl extends the concept further by requiring that
users be able to assume any subset of the roles to which they are
authorized, given the hierarchical nature of roles. This is impossible in
NetWare, short of creating a separate user account for each unique
combination of roles that a user might wish to exercise.

3.3 ARBACO: Administrative Base Model

The notion of ARBACO is identical to that of RBACO, except that it is
concerned with administrative controls rather than access to files and
directories. Just as NetWare’s file access control policy can be used to
provide roles with access to files and directories, so can the NDS access
control policy be used to provide roles with access to NDS objects and
their attributes. For example, by providing a role with the Supervisor
object right to a container, individuals security equivalent to that role
can administer objects within the container, subject to access blocked by
IRFs. The role-based administrative access can be divided at an
arbitrarily fine-grained level. For example, a Telephone-Manager role
could be defined that has the Read and Write rights to the Telephone
Number attribute of all NDS objects. However, to do this, the role
would have to be listed on the ACL for every object in the NDS tree,
because attribute-specific rights are not inherited.

3.4 ARBACl: Administrative Role Hierarchies

The relationship of ARBAC 1 to RBAC 1 is the same as ARBACO to
RBACO. Just as hierarchies of users can be established to provide
access to file system objects, so too can hierarchies be used for access to
NDS objects. As with RBAC 1, though, the lack of transitivity in the
security equivalence mechanism limits the ability to meet the criteria
established in [SAND96a].

4.0 Examdes

In this section we provide several examples of how the NetWare
mechanisms can be used to implement an RBAC policy.

4.1 File System Examples

Consider the NDS structure as shown previously in Figure 1 l-2 and the
tile system structure as shown in Figure 1 l-3, Sample File System
Structure.

II-79

Figure 11-3. Sample File System Structure

Table 1 l- 1, Sample File System Trustee Assignments, shows sample
trustee assignments for this configuration. Recall that all users are
automatically security equivalent to each container in which their user
object is located and that users obtain the union of rights available to
each object to which they are security equivalent. Thus, with no
additional assignments, users Alice and Bob will have File Scan, Create,
Read, and Write rights to all files and directories in \MKTG\EUROE’E
(by virtue of being security equivalent to Europe.Marketing.Acme,
which is a trustee of the directory). Similarly, users Cheryl and David
will have the File Scan, Create, Read, and Write rights to all files and
directories in \MKTG\ASlA (by virtue of being security equivalent to
Asia.Marketing.Acme, which is a trustee of the directory). Alice, Bob,
Cheryl, and David will all have the File Scan, Create, Read, and Write
rights to all files in \MKTG\COMMON (by virtue of being security
equivalent to Marketing.Acme). Note that none of these assignments
allow the users to propagate permissions, because no one has the Access
Control or Supervisor right. Without any explicit security equivalences,
no one has rights to \MKTG\FORECAST.

Table 11-l. Sample File System Trustee Assignments

\MKTG

\MKTG\EUROPE

\MKTG\ASIA

\MKTG\COMMON

\MKTG\FORECAST

A,+:: q’;‘,-;E. &&Y,yy j ‘7 .‘.T~~,,‘~~~~~~,~‘~~, ; +& ; :

Mktg-Mgr.Marketing.Acme Supervisor

Europe.Marketing.Acme File Scan, Create,

Mgr.Europe.Marketing.Acme Access Control

Asia.Marketing.Acme File Scan, Create, Read, Write

Mgr.Asia.Marketing.Acme Access Control

Marketing.Acme 1 File Scan, Create, Read, Write

Mgr.Europe.Marketing.Acme
I

File Scan, Read, Write ~ -. .-
Mgr.Asia.Marketing.Acme File Scan, Read, Write

II-80

Now assume that Bob.Europe.Marketing.Acme is made security
equivalent to Mgr.Europe.Marketing.Acme, and similarly
Cheryl.Asia.Marketing is made security equivalent to
Mgr.Asia.Marketing.Acme. By this assignment, each will obtain the
Access Control right to the respective \MKTG\EUROPE or
\MKTG\ASIA directory, and the File Scan, Read, and Write rights to
the \MKTG\FORECAST directory. If Bob goes on vacation, Cheryl
can be made security equivalent to Mgr. Europe.Marketing. Acme and
will instantly obtain the rights usually exercised by Bob. Note that it is
not sufficient for Cheryl to be made security equivalent to Bob, because
Bob is not directly a trustee, and security equivalence is not transitive.

By making Edward.Acme security equivalent to Mktg-
Mgr.Marketing.Acme, he will obtain the Supervisor right to the
marketing portion of the file system. Note that no one has access to the
root of the file system tree: because of inheritance, access to the root is
rarely granted.

In an analogous fashion, we could assign rights to the \FINANCE
portion of the file system. There is, of course, no reason why objects in
Finance.Acme could not have rights to files in \MKTG, or vice versa.

Thus, by using security equivalence and inheritance, a small number of
access control assignments are sufficient for controlling a large file
system tree. Using Organizational Role and Organizational Unit objects
as trustees simplifies the management of the file system, which is a key
goal of RBAC.

4.2 NDS Exam&s

Again consider the NDS structure as shown previously in Figure 1 l-2.
Table 11-2, Sample NDS Trustee Assignments, shows sample ACL
assignments for this configuration. With these trustee assignments, all
users in Finance.Acme will have the Browse right to the Finance
container, while all users in Marketing.Acme will have the Browse right
to the Marketing container. The Finance organization has an
administrator who has the Supervisor right to that portion of the NDS
tree, while the Marketing organization has a less powerful administrator
with Create and Delete rights, but not the Supervisor right. In addition,
the organization as a whole has an administrator who has the Supervisor
right to the entire tree.

Table 1 l-2. Sample NDS Trustee Assignments

II Object Name TIllStee Rights

Finance.Acme Finance.Acme Browse

Manager.Finance.Acme Supervisor

Marketing. Acme Marketing. Acme Browse

Mktg-Mgr.Marketing.Acme Create, Delete
‘t

Acme Admin.Acme Supervisor

II-8 1

By making Edward.Acme security equivalent to Admin.Acme, he will
obtain the Supervisor right to the whole tree. If Sally.Finance.Acme is
made security equivalent to Manager.Finance.Acme, then she will have
the Supervisor right to the Finance part of the NDS tree. Using an
Inherited Rights Filter, Admin.Acme could be blocked from having any
rights in Finance.Acme, thus allowing only Sally to administer those
portions of the tree.

Because of security equivalence, any user can take over administration
of the tree simply by being made security equivalent to Admin.Acme (or
Manager. Finance. Acme, for that portion of the tree). As in the f&e
system examples, because security equivalence is not transitive, it is not
sufficient to make a user security equivalent to Sally, because her rights
are not assigned directly, but rather come from security equivalence.

Thus, using assignment of rights to Organizational Unit and
Organizational Role objects, we can configure access rights in the NDS
tree with a bare minimum of configuration settings.

5.0 Conclusions

RBAC can be partially implemented using existing commercial products.
The inability to provide some of the features suggested by the
[SAND96a] family of models suggests that perhaps a finer-grained
distinction of features would be desirable, rather than an all-inclusive
definition of meeting a given set of RBAC criteria. By analogy, this is
similar to defining a security target using the ITSEC [ITSEC91] or the
proposed Common Criteria [COMM96] and comparing a product to the
target, rather than using a one-size-fits-all approach to security as in the
Orange Book [DOD85].

NetWare provides many useful features for implementing RBAC. It
would be significantly more useful if it provided the ability for users to
select sessions by selecting at login time what objects they want to be
security equivalent to (as a subset of their authorized set), and
transitivity in security equivalence.

6.0 References

[COMM:96] Common Criteria Editorial Board, Common
Criteria,for Information Technology Security Evaluation,
Version 1 .O, January 1996. Available from:
http://csrc.nist.gov/nistpubs/cc/read_me.ccl.

[DOD851 U.S. Department of Defense, Trusted
Computer Systems Evaluation Criteria, DOD 5200.28-
STD, Washington, DC, December 1985.

[SAND96a] Ravi S. Sandhu, Edward J. Coyne, Hal L.
Feinstein. and Charles E. Youman, “Role-Based Access
Control,” IEEE Computer, 2912, February 1996, 38-47.

[SCHA94] M. Schaefer, G. Grossman, and J. Epstein,
“Using a Semiformal Model 2C a C2 Better,”
Proceedings of the 17th National Computer Security
Conference, Baltimore, MD, 11-14 October 1994,
153-164.

[ITSEC91] Information Technology Security Evaluation
Criteria (ITSEC), Provisional Harmonised Criteria,
Version 1.2, Luxembourg: Office for Official
Publicat.ions of the European Communities, June 1991.

II-82

