

Intrusion Detection: Base Rate Fallacy

Prof. Ravi Sandhu Executive Director and Endowed Chair

Lecture 11

ravi.utsa@gmail.com www.profsandhu.com

© Ravi Sandhu

S: Patient is <u>S</u>ick (has the disease)

		S	¬S
		R ^ S	R ∧ ¬S
R: Test R esult	R	True positive	False positive
is positive		¬R∧S	¬R ∧ ¬S
	¬R	False negative	True negative

S: Patient is <u>S</u>ick (has the disease) System is under attack S \neg S R \land S True positive R \land S False positive

R: Test <u>R</u>esult is positive Alarm is raised

Malware Detection Techniques

University, Feb 2007.

© Ravi Sandhu

S: Patient is <u>S</u>ick (has the disease)

		S	¬S
		R ^ S	R ∧ ¬S
R: Test R esult	R	True positive	False positive
is positive		¬R∧S	¬R ∧ ¬S
	¬R	False negative	True negative

S: Patient is <u>S</u>ick (has the disease)

	S	¬S
	R ^ S	R ∧ ¬S
	True positive P(R S) = 0.99	False positive P(R ¬S) = 0.01
R: Test <u>R</u> esult is positive	¬R∧S	¬R ∧ ¬S
¬R	False negative	True negative
These probabilities can be empirically estimated	P(¬R S) = 0.01	P(¬R ¬S) = 0.99

Coincidentally equal

estimate P(R|S) = 0.99 $P(\neg R|S) = 0.01$ $P(R|\neg S) = 0.03$ $P(\neg R|\neg S) = 0.97$

In general will not be equal

S: Patient is <u>S</u>ick (has the disease)

	S	¬S	
	R ^ S	R ^ ¬S	
R P: Toot P ocult	True positive P(R S) = 0.99	False positive P(R ¬S) = 0.03	Rows must
is positive	¬R ∧ S	¬R ∧ ¬S	total between 0 and 2
¬R These probabilities	False negative P(¬R S) = 0.01	True negative P(¬R ¬S) = 0.97	
can be empirically estimated			

Columns must total 1

We will continue

with these numbers

Base-Rate Fallacy

S: Patient is <u>S</u>ick (has the disease)

	S	٦S
	R ∧ S	R ∧ ¬S
R	True positive	False positive
	P(R S) = 0.99	P(R ¬S) = 0.01
R: Test <u>R</u> esult		
is positive	¬R∧S	¬R∧¬S
−R		
	False negative	True negative
These probabilities can be empirically	P(¬R S) = 0.01	P(¬R ¬S) = 0.99
estimated		

Real Interest

Bayes' Theorem

 \succ P(\neg S| \neg R) = 1 - P(S| \neg R)

 $(P(S) \times P(\neg R|S))/$ $(P(S) \times P(\neg R|S)+P(\neg S)) \times P(\neg R|\neg S))$

➢ P(S|¬R) =

 \succ P(\neg S|R) = 1 - P(S|R)

We will continue

with these numbers

Base-Rate Fallacy

S: Patient is <u>S</u>ick (has the disease)

	S	٦S
	R ∧ S	R ∧ ¬S
R	True positive	False positive
	P(R S) = 0.99	P(R ¬S) = 0.01
R: Test <u>R</u> esult		
is positive	¬R∧S	¬R∧¬S
−R		
	False negative	True negative
These probabilities can be empirically	P(¬R S) = 0.01	P(¬R ¬S) = 0.99
estimated		

I·C·S	Real In	terest	UTSA
The Institute for Cyber Security Assume P(S)=0.0001 1 in 10.000 has	S: Patient is <u>S</u> ick (has the disease)		
disease	S	¬S	1
	R A S	К Л ¬S	
R	True positive	False positive	
D. Toot D ooult	P(S R) = 0.009804	P(¬S R) = 0.990196	Rows must
is positive	¬R ^ S	¬R ^ ¬S	total 1
¬R	False negative	True negative	
These probabilities can be computed by	P(S ¬R) = 0.000001	P(¬S ¬R) = 0.999999	
Bayes' theorem if we know P(S)	Columns must tota	al between 0 and 2	•

False Alarms Predominate!

Assume P(S)=0.0001 1 in 10,000 has disease

P(S R)	requires	P(R ¬S)
0.01		0.01
0.09		0.001
0.5		0.0001
0.9		0.00001
0.99		0.000001

Total population = 1,000,0		S: Patient is <u>S</u> ick (has the disease)	
1 in 10,000 has disease		e S	¬S
		100	999,900
		R∧S	R ∧ ¬S
	R	True positive	False positive
R: Test <u>R</u> esult is positive		¬R∧S	¬R ∧ ¬S
	¬R	False negative	True negative
R is 99% accurations	ite -sick		

Total population = 1,000,000 1 in 10,000 has disease		S: Patier 0,000 (has the	S: Patient is <u>S</u> ick (has the disease)	
		e S	¬S	
		100	999,900	
		R ^ S	R ∧ ¬S	
	R	True positive	False positive	
R [.] Test R esult		99	9,999	
is positive		¬R∧S	¬R ∧ ¬S	
	¬R	False negative	True negative 989.901	
R is 99% accurations	ate -sick			