Authentication with Passwords

Prof. Ravi Sandhu
Executive Director and Endowed Chair

February 1, 2013

ravi.sandhu@utsa.edu
www.profsandhu.com
User Authentication

- Something you know
e.g., passwords
- Something you have
e.g., token, smartcard
- Something you are
e.g., fingerprint

Single factor / Multi factor
Primary / Secondary
Weak / Strong
On Line Attack / Off Line Attack
Reset / Revocation
Single sign on / Reduced sign on
 Kill the Password

WISH LIST: 85 GIFTS & GADGETS FOR THE HOLIDAYS

WIRED

Kill the Password

Think a jumble of characters can keep your stuff safe? You're wrong.

I was the victim of an epic hack. Here's what it taught me about the illusion of online security.

by Mat Honan
Many things have changed beyond recognition in the past 20 years, but passwords have advanced little. Arguably, the Internet could not have grown to its current size and influence without them. Repeated and sustained effort has failed to uncover a silver-bullet replacement for passwords. It’s time to admit that this is unlikely to change.

In the absence of a silver bullet, we can’t escape the messy work of tradeoffs. We assert that passwords are the best fit for many (but alone, not the highest level of) authentication needs.

We might say that passwords are the worst possible authentication system, except for all the other systems.
Ending the Belief that Passwords Are Dead
Understanding Strength and Attack Resistance
Policies and Support Tools
  Password aging policies.
  Realistic password guidance.
  Password managers.
Prioritizing Competing Requirements

“Although passwords might not be viewed as the “rocket science” of security research, their scale of deployment is such that any improvement in their usability would be hard to equal for impact.”
Although we lack the data to attach likelihoods to the individual pie-chart threats, we can reasonably conjecture that keystroke logging harvests more passwords than phishing and phishing harvests more than online brute-force attacks.
Although we lack the data to attach likelihoods to the individual pie-chart threats, we can reasonably conjecture that keystroke logging harvests more passwords than phishing and phishing harvests more than online brute-force attacks.
Evolution of UNIX password mechanism

- Store passwords in a highly protected file
 - Single point of total failure
 - Easily copied by privileged users
 - Stored in plaintext on backups
 - Protection mechanisms are imperfect

- Store hashed passwords

```
Plaintext = Fixed Constant
Encrypt
Key = Password
Hashed Password
```
Evolution of UNIX password mechanism

- Store hashed passwords

- Invention of dictionary attack rather than inversion attack
- In the initial enthusiasm hashed passwords were put in a world readable file!!
DoD Green Book requirement 1985:
- The goal is to resist a year’s worth of dictionary attacks with a cracking probability of 10^{-6} (or 10^{-20} for sensitive systems).

Cheswick Table 2, page 42
- Trying to meet this requirement by changing passwords regularly is rather hopeless.
“We demonstrate that as long as passwords remain human-memorable, they are vulnerable to “smart-dictionary” attacks even when the space of potential passwords is large.”

It’s not just human-memorable it is also human-enterable.