Privacy

Prof. Ravi Sandhu
Executive Director and Endowed Chair

March 8, 2013

ravi.sandhu@utsa.edu
www.profsandhu.com
Privacy versus Security

Privacy

Security

I think this is wrong
Privacy versus Security

But I could be persuaded to take this view
Security Objectives

INTEGRITY
modification

CONFIDENTIALITY
disclosure

USAGE
purpose

AVAILABILITY
access

© Ravi Sandhu

World-Leading Research with Real-World Impact!
Security Objectives

- **INTEGRITY**
 - modification

- **AVAILABILITY**
 - access

- **CONFIDENTIALITY**
 - disclosure

USAGE
- purpose

Privacy includes limits on collection and retention.
Privacy includes rights to see who has accessed your privacy sensitive information.

Privacy includes recourse to correct and consequently recourse to access.
Attacker aka Adversaries

- Your nation state
- Other nation states
- Employer
- Service provider
- Friends
- Family
- Enemies
- Media
- Criminals
- ...
Overall fragmented and slow to catch up with rapid technological change

Privacy in the workplace is sharply limited

Some US laws
- FCRA (Fair Credit Reporting Act), 1970, enforced by FTC
- FERPA (Family Educational Rights and Privacy Act), 1974
- IRS Disclosure Laws, 1976
- VPPA (Video Privacy Protection Act, 1988)
- HIPAA (Health Insurance Portability and Accountability Act), 1996

A failed standard
- P3P (Platform for Privacy Preferences) from W3C
Identity as Attributes

- MyEmployer.com
- Gov.org
- OnLineShop.com
- SportsClub.com
- Health.com

Attributes:
- foreign language
- education
- capabilities
- address
- name
- income
- denomination
- tax status
- marital status
- account number
- credit cards
- etc.
- hobbies
- phone number
- (dis)like
- insurance
- blood group
- health status
X.509 PKI: Identity Centric, Off-Line

Identity Certificate

ATTRIBUTE

Signature

Subject Public Key Info

Subject

Validity

Issuer

Signature Algorithm

Serial Number

Version

Attribute Certificate

Signature

Holder Public Key Info

Subject

Validity

Issuer

Signature Algorithm

Serial Number

Version
X.509 Characteristics

- Privacy friendly
 - Certificate issuer is not involved and therefore not aware when a user receives service from a relying party UNLESS
 - Certificate revocation needs to be verified in real-time

- Privacy unfriendly
 - Identity is central
 - Attributes strongly linked through identity
 - Attributes pre-packaged into certificates
Microsoft SSO (1990’s)

1. Request page
2. Auto redirect
3. Redirect
4. Request credentials
5. Login & password
6. Redirect with tokens in header
7. Request page with credentials
8. Set cookie

Knows which relying parties are being accessed
Decides which attributes to release to which relying party
Microsoft Infocard Identity Ecosystem (2000’s)

Identity Provider knows when security tokens are requested BUT does not necessarily know specific relying party

User decides which attributes to release to which relying party
Single private key

- Multiple unlinkable public keys, generated by the user from the single private key
- “A credential issued to one public key can be (repeatedly) transformed into a credential that’s valid on another public key of the same user. Moreover, the transformed credential can contain a selected subset of the attributes in the original credential.”
- “Transformed credentials are unlinkable. That is, for two transformed credentials with disjoint sets of revealed attributes, you can’t tell whether they originated from the same credential or different credentials.”
- “Instead of revealing attribute values, users can choose to merely reveal that some predicate over the attributes holds.”
- “Private credentials also let users provide attributes in verifiably encrypted form to the relying party, so that they’re available only to a dedicated trusted third party.”
1. An application should be designed so that only the minimal amount of (personal) information gets revealed to each party that is necessary for the party to perform its task.

2. Users need to be able to understand and control the usage of the information they have released.

3. All information related to users must be encrypted, both at rest and in transit.
1. The first type of mechanism is concerned with providing privacy at the network layer, to ensure that communication channels can be established without revealing identifying information such as IP addresses.

2. Once such communication has been established, the second type of mechanism comes into play. They allow users to reveal only information that is necessary for the task at hand.

3. The third category are mechanisms that implement special purpose applications.