
1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 1

A Provenance-aware Access Control
Framework with Typed Provenance

Lianshan Sun, Jaehong Park, Dang Nguyen, and Ravi Sandhu

Abstract—Provenance is a directed graph that captures historical information about data items in Provenance-Aware Systems
(PAS). A variety of access control models and policy languages specific to PAS have been recently discussed in literature.
However, it is still not clear how to efficiently specify provenance-aware access control policies and how to effectively enforce
these policies with respect to complex provenance graph that can only be captured at run-time. To this end, we design and
implement a provenance-aware access control framework with a layered architecture that features an abstract layer, including
a Typed Provenance Model (TPM) and a set of TPM interpreters. TPM includes a set of abstract provenance types enabling
efficient specification of provenance-aware policies. New provenance types can be composed of extant ones for specifying new
policies. TPM interpreters can be integrated to enable the policy enforcement with respect to provenance graphs in different
physical representations. By treating provenance types as special attributes, the proposed framework enables an adoption of
provenance-aware access control in existing attribute-based access control frameworks, such as XACML-compliant ones. We
implement the proposed framework by extending SUN’s XACML implementation and show that it facilitates the specification of
provenance-aware policies in XACML with minor extensions. We also analyze the performance of the proposed framework.

Index Terms—Typed Provenance Model, Provenance-aware Systems, Access control Framework, OPM, PROV-DM, XACML.

F

1 INTRODUCTION

A Ccess control systems are common components
in modern multi-user software systems. An ac-

cess control system mediates a request to resources
and determines whether the request should be grant-
ed or denied according to given policies [1], [2]. These
policies are usually specified in policy languages [3]
under the guidance of access control models [2].

Provenance is information about entities, activities,
and people involved in producing a piece of data or
thing. In the last decade we have seen the emergence
of provenance-aware systems (PAS), which generate,
store, process, and disseminate provenance of data
items in domains such as scientific workflow, intelli-
gence, and healthcare systems [4], [5], [6]. Provenance
can be used to verify trustworthiness of data items or
to reproduce the experiment results [7], [8].

Multi-user PAS needs access control facilities to
protect not only normal data items but their prove-
nance [9]. Provenance impacts access control in at
least two ways. First, provenance access control (PAC)
is required to protect sensitive provenance [10]. Sec-
ond, provenance-based access control (PBAC) can be
used to adjudicate access requests to sensitive re-
sources [11], [12]. Note that we call both PAC policies
and PBAC policies as provenance-aware policies.

• L. Sun is with Shaanxi Univ. of Science and Technology, China;
E-mail: sunlianshan@gmail.com;

• J. Park (Corresponding author, jae.park@utsa.edu), D. Nguren and
R. Sandhu are with Univ. of Texas at San Antonio, USA;
E-mail: dnguyen@cs.utsa.edu, ravi.sandhu@utsa.edu.

Provenance captured inside a PAS differs from
traditional data items and meta-data in that it is
an immutable directed graph incrementally captured
at run-time. Nodes of a provenance graph denote
entities, activities, and people that are involved in
producing a piece of data. Edges of a provenance
graph denote causality dependencies between two
nodes [7]. Provenance subgraphs with certain path
patterns may reveal some meaningful information
that should be protected or can be used for access
control decisions [11], [13]. Extant access control mod-
els, policy languages, enforcement infrastructures, as
well as policy authoring methodologies and tools
cannot be straightforwardly adopted to accommodate
provenance-aware access control in PAS [9], [14], [15].

To this end, researchers have presented several
access control models [10], [11] as well as several
policy languages [13], [16] for either PAC or PBAC.
However, these models, languages and corresponding
enforcement infrastructures do not provide a flexi-
ble and efficient way to specify and enforce various
application-specific provenance-aware policies.

In order to specify provenance-aware policies in
existing policy languages, policy specifiers have to un-
derstand security requirements at conceptual level as
well as the complex provenance graph at implemen-
tation level. It is difficult to efficiently specify com-
plex provenance queries to identify provenance sub-
graphs with application-specific semantics. These se-
mantics are necessary for defining application-specific
provenance-aware policies [13], [17].

Note that some researchers have identified the diffi-
culty of specifying policies using complex provenance



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 2

graph. For example, Cadenhead et al. adopted sever-
al fixed (application-independent) provenance query
templates, such as why-query and where-query, to re-
duce the efforts of specifying provenance-aware poli-
cies. However, their solution suffers from the inflexi-
bility or inefficiency of specifying various application-
specific provenance semantics [13].

Furthermore, extant enforcement infrastructures
that come along with access control models and policy
languages specific to PAS [11], [13], [16] are either
conceptual architectures or just prototypes that are
developed without considering engineering issues,
such as facilitating efficient and flexible specification
of access control policies, ensuring compatibility with
current practices, and shielding the heterogeneity of
underlying provenance stores.

To address these issues, we design and implement
a provenance-aware access control framework with
a layered architecture, which supports both PBAC
and PAC [11]. The proposed architecture features an
abstract layer, including a Typed Provenance Model
(TPM) and a set of TPM interpreters.

TPM includes a set of abstract provenance types
that can be used to efficiently specify provenance-
aware policies during PAS development. Extant
provenance types can be used to flexibly compose
new ones to capture new provenance semantics that
are necessary for enforcing security requirements. TP-
M also shields the complexity and heterogeneity of
the underlying provenance graphs. So the proposed
framework is extensible to work with provenance
repositories in different physical representations by
introducing appropriate TPM interpreters.

The proposed framework can enforce the policies
specified using provenance types by introducing ap-
propriate TPM interpreters. It treats provenance-type as
a special attribute whose values are provenance types
that are further processed by TPM interpreters. So
it enables easy adoption of provenance-aware access
control in PAS that deployed attribute-based access
control frameworks, such as XACML-compliant ones.
As a proof of concept, we implement the proposed
framework by extending SUN’s XACML implementa-
tion. We show that it accommodates the specification
of provenance-aware policies in XACML with minor
extensions and we also analyze its performance.

The rest of this paper is organized as follows. Sec-
tion 2 and section 3 introduce PAS and provenance-
aware access control respectively as preliminaries.
Section 4 elaborates our goals and corresponding
tactics. Section 5 presents the typed provenance model
as the basis of designing the target framework. Section
6 presents a layered architecture of the target frame-
work. Section 7 implements the framework and eval-
uates its performance and computability with current
practices. Section 8 discusses related work and section
9 concludes this paper and envisions our future work.

2 PROVENANCE-AWARE SYSTEMS
This section introduces basic concepts of PAS which
influence the decision making during the construction
of the provenance-aware access control framework.

2.1 Basics of PAS
A PAS mainly includes three components for prove-
nance management: a capture mechanism, a repre-
sentation model, and an infrastructure for storage,
access and queries [17]. The capture mechanism col-
lects provenance which complies with a given repre-
sentation model. The underlying infrastructure stores
the collected provenance and executes queries on
provenance stores.

The capture mechanisms. Generally there are two
provenance collection strategies, the observed strategy
and the disclosed strategy [18]. The observed strategy
requires operating systems to continuously collect
provenance about running processes, their inputs and
outputs [19]. The disclosed strategy requires adapted
applications to collect provenance as designed by
software architects [20], [21]. Users sometimes need
to manually declare provenance when it cannot be
captured by the system or application [11], [18]. Most
PAS adopt the disclosed strategy because observed
provenance is application independent and difficult to
be used to answer application-specific questions [18].

The representation model. The collected prove-
nance is often documented according to a given
provenance data model, such as Open Provenance
Model (OPM) [7], PROV-DM [8], or some proprietary
provenance model [17]. OPM captures provenance
as causality dependencies among different entities
and enables provenance interoperability across sys-
tems [7]. PROV-DM [8] is the newest variant of OPM
and is a member of the provenance specification fam-
ily from W3C for provenance inter-operability across
web-based applications. Although neither OPM nor
PROV-DM has been universally accepted, their in-
tersection does capture a common consensus as re-
viewed in section 2.2.

The infrastructure. The collected provenance is
stored in a provenance repository in certain physical
representations (storage models), ranging from spe-
cialized Semantic Web Languages and XML dialects
stored as files to tuples stored in relational database
tables [17]. A query engine is usually specific to a
storage model. Hence, users have to write queries
in languages specific to the storage model, such as
SQL [22], Prolog [21], or SPARQL [23]. However, these
general languages were not designed specifically for
provenance. It is awkward and complex for users to
write queries on provenance in these languages [17].
Even queries that are specified in a language designed
specifically for provenance, such as OPQL [24] are
likely to be too complicated for many users because
provenance contains structural information represent-
ed as a graph [17]. For example, a policy language



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 3

that is an XML dialect requires specification of regular
expressions in provenance-aware policies to dynami-
cally identify sensitive provenance subgraphs [13].

Note that a provenance-aware access control frame-
work is a subsystem of a PAS and is supposed to
use the provenance graph that has been collected by
existing collection mechanisms in PAS according to a
given provenance representation model. However, the
observed provenance tends to include too many de-
tails that policy specifiers can neither understand nor
use in defining provenance-aware policies according
to security requirements. It may also be recorded in
inappropriate granularity for the purpose of defining
policies. Policy specifiers need a flexible and efficient
way to refer to provenance to enable efficient specifi-
cation of provenance-aware access control policies.

2.2 Basic Provenance Model
This section introduces the basic provenance model
that is used as the basis of our target framework. It is
mainly the core structure of PROV-DM.

The basic provenance model shown in Figure 1-a
includes three elements and seven relationships (or
dependencies) among elements. Elements are entities
(artifacts in OPM), activities (processes in OPM), and
agents. In PAS, entities are snapshots of data objects
at run-time, activities are processes that may take as
inputs some artifacts and may produce other artifacts
as outputs, and agents are special entities represent-
ing users or organizations that influence a process.
Dependencies are causality relationships between any
two elements (except from an agent to an entity or an
activity because these have no practical semantics).
Note that the core structure can be extended to in-
clude subtypes of core elements and dependencies to
capture application-specific casuality semantics [8].

p1

a1

a2

Ag1

u w

g

p2

u

Entity

Agent

Activity
Used (u)

wasGeneratedBy (g)

wasAttributedWith (w)

a)
b)

wasAttributedTo (t)

wasInformedBy (i)

ActedOnBehalfOf (b)

wasDerivedFrom (d)

i

d

Ag2

w

b

t

Fig. 1. a) The Core Structure of PROV-DM;
b) An Example of Provenance Graph.

Most dependency types in Figure 1-a are literally
comprehensible. Note that wasAttributedTo indicates
that Entity was owned, processed, influenced by A-
gent while wasAttributedWith indicates that Activity
was controlled or influenced by Agent. The name of
each dependency in Figure 1-a has an abbreviation
in brackets, such as used with its abbreviation ‘u’.
Each dependency can be denoted as R(n,m), where
R denotes its short name such as ‘u’ or ‘g’, n the effect
element, and m the cause element.

Figure 1-b shows a provenance graph with nodes
and edges instantiated from elements and relation-
ships in Figure 1-a. For example, the edge u(p2, a2)
denotes that an activity p2 used an entity a2.

Besides causality semantics denoted by individual
edges, some application specific semantics could also
be inferred from some paths in a provenance graph.
For example, a path u(p2, a2) · g(a2, p1) · u(p1, a1)
indicates that the behavior of the activity p2 might
be influenced by the entity a1. Note that neither
OPM nor PROV-DM guarantee that every path in a
provenance graph is semantically meaningful [7], [25].
However, some paths do reveal provenance semantics
that could be used in specifying provenance-aware
access control policies. We will discuss how to capture
the meaningful paths in section 5.

3 PROVENANCE-AWARE ACCESS CONTROL

This section introduces basic notions of PAC, P-
BAC, and their common requirements on group-
ing provenance for efficiently specifying provenance-
aware policies, and then discusses why they should
be and how they can be aligned with the generic
Attribute-Based Access Control (ABAC).1

3.1 PAC, PBAC, and their Common Foundation

There are at least two categories of provenance-aware
access control, provenance access control (PAC) [10]
and provenance-based access control (PBAC) [11].
PAC aims at protecting sensitive provenance from
unauthorized access, while PBAC aims at adjudicat-
ing access requests to sensitive resources (including
provenance) by using provenance as a decision factor.

Currently, there are no full-fledged access control
models for PAC [10] even though their necessity
has been well discussed in literature [9], [10], [14].
Instead, researchers have presented policy languages
and corresponding enforcement architectures for PAC
[13], [16]. These languages are usually results of ex-
tending XACML to incorporate provenance queries
inside access control policies. The query results are
sensitive provenance subgraphs to be protected. Var-
ious grouping mechanisms have been used to identi-
fy sensitive provenance subgraphs for defining PAC
policies, for example statically pre-defined groups [27]
and dynamically computed groups defined by regular
expressions of edges in provenance graph [13].

Park et al. proposed a family of PBAC models [11].
A PBAC policy has some provenance related pred-
icates as its decision part. Park et al. also adopted
regular expressions to dynamically group provenance
used in specifying PBAC policies. Furthermore, they
introduced the concept of Dependency Name or (named

1. Here we assume that ABAC has been adopted by PAS as a
generic model for provenance-unaware policies, such as traditional
DAC policies, MAC policies, and RBAC policies [26].



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 4

dependency) to refer to a regular expression that identi-
fies one or more paths of a provenance graph. Park et
al. defined a PBAC policy language in a context-free
grammar but did not discuss how to specify PBAC
policies in XACML-compatible languages.

In both PAC and PBAC, some provenance sub-
graphs should be grouped as a single unit that
carries application-specific semantics in order to be
protected as sensitive resources or to be used to
adjudicate access requests. Dependency Name is a
dynamic grouping mechanism that can be used to
enable simple specification of complex queries on
a provenance graph. Each dependency name is a
query template that can be applied to a starting node
to query its antecedents and even descendants in a
provenance graph. Here, the notion of dependency
name is common foundation for efficient specification
of both PAC and PBAC policies because dependency
names could be defined at first and then used later
in multiple places by different policy specifiers [28].
The dependency type introduced in section 5 is an
extension and formalization of Dependency Name.

Note that PAS may include user-declared prove-
nance that could be modifiable and somewhat less
trustworthy being user asserted. User-declared prove-
nance would require PAC to consider how to protect it
from being illegally modified and PBAC to determine
how much to trust it for purpose of adjudicating
access requests. For simplicity, we assume there is no
user-declared provenance, so this paper only consid-
ers query operations on immutable system-captured
provenance which is common to both PAC and PBAC.

3.2 Alignment of Both PAC and PBAC in ABAC

In real settings, provenance-aware policies are likely
to be applied in conjunction with some forms of
attribute-based policies since provenance alone usu-
ally are not enough to be used for access control
decision. For example, consider a policy that a user
can grade a homework and see its owner if and only if
the user’s position is a professor and the user did not
previously review the homework. Here, we can view
position as a general attribute that could have a string
of ‘professor’ as its value. The facts that both its owners
and the user did not previously review the homework
are provenance items involved in the policy. So it
is desirable to specify and enforce both provenance-
aware policies and generic attribute-based policies in
a unified manner.

Generally, each attribute-based policy can be de-
fined as a set of predicates on attributes of either
subjects, objects, or environments [3], [29], [30]. Fig-
ure 2 shows the XACML architecture for ABAC.
The request from an access requester is intercepted
by Policy Enforcement Point (PEP) and forwarded
to Policy Decision Point (PDP). PDP then evaluates
the request according to given policies from Policy

Fig. 2. The XACML Architecture [3]

Administration Point (PAP) by querying values of
attributes of subjects, objects, and environments from
Policy Information Point (PIP). PDP then returns the
evaluation result to PEP. PEP grants or denies the
request and triggers the obligation services when
necessary. Note that the context handler is responsible
for forwarding and translating requests and responses
in different representations among components.

From ABAC point of view, a PAC policy is a policy
that has provenance as the requested resources and
a PBAC policy is a policy that comprises predicates
on provenance about either the requesting subject
or the requested objects. Ideally, if we have spe-
cial attributes whose values are meaningful units of
provenance, then we would be able to specify and
enforce provenance-aware policies and other policies
in a unified manner.

However, most traditional attributes used in the
attribute-based policies are of simple data types, such
as String and Integer. Their values are usually easy
to be stored and retrieved to/from databases, and to
be compared to literal values. Things get much more
complex if we try to introduce provenance attributes.
First, it is difficult to specify literal provenance val-
ues.2 Second, it is difficult for policy specifiers to
flexibly define appropriate provenance attributes of
a subject or an object to denote different provenance
semantics. Third, it is difficult for the enforcement
framework to efficiently validate predicates on prove-
nance attributes and literal provenance values.

Based on the idea of Dependency Names [11], we
introduce the concept of provenance types in section
5. If we view each provenance type as a possible
value of a special attribute provenance-type of a subject
or an object, and develop mechanisms to extract a
provenance subgraph from a provenance graph by
taking as input the provenance type which is a query
template and the subject or the object which is the
starting node that is fed into the query template, then
it is feasible to specify provenance-aware policies as
generic attribute-based policies. Consequently, tradi-

2. Besides individual nodes and edges, some of them could be
provenance subgraphs with meaningful semantics.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 5

tional attribute-based access control frameworks, such
as XACML-compliant ones, can be adapted to inter-
pret provenance types for enforcing the provenance-
aware policies specified using provenance types.

4 GOALS AND TACTICS

In this section, we first identify high-level goals of
our provenance-aware access control framework. To
address these goals, we further identify four specific
tactics.
G1: Efficiency of specifying provenance-aware policies.

Policy specifiers are not likely to have enough
knowledge and skills to use complex provenance
graphs. So it is imperative to introduce appropri-
ate provenance abstractions for efficiently speci-
fying provenance-aware policies, especially, dur-
ing PAS development.

G2: Adaptability to changes of security requirements.
New security requirements keep emerging in
software development and even in software op-
eration. So it is imperative to enable policy spec-
ifiers to flexibly define new provenance abstrac-
tions that will be used to implement new security
requirements as provenance-aware policies.

G3: Extensibility to work with provenance reposito-
ries in different physical representations. The pro-
posed framework should be extensible to enforce
provenance-aware policies with respect to prove-
nance in different physical representations.

G4: Performance of enforcing provenance-aware policies
at run-time. Enforcement of provenance-aware
policies involves queries on a provenance graph,
which could be much more time-consuming than
queries on traditional attributes organized in lin-
ear structure. It is important to ensure that the
proposed framework will not introduce signifi-
cant performance overhead.

G5: Compatibility with generic attribute-based solutions.
G51: The policy language for provenance-aware

policies should be compatible with that for
generic attribute-based policies.

G52: The enforcement framework for provenance-
aware policies should be compatible with the
generic ABAC framework.

Fig. 3. Goals and tactics contributing to goals

To address these goals, below we identified four
tactics that can be applied to the framework. Figure

3 shows the identified tactics that can help achieving
the goals.
T1: Introducing an abstract layer of provenance can

free policy specifiers from directly handling com-
plex provenance graphs, shield the heterogeneity
of different provenance storage models, enable
the specification of provenance-aware policies
at development time, improve the efficiency of
policy specification and enable the enforcement
of policies defined in provenance abstractions.
However interpreting provenance abstractions
into provenance subgraphs will inevitably intro-
duce additional performance overhead.

T2: Separating concerns on policies authoring and
those on provenance modeling can facilitate effi-
cient policy specification. Policy specifiers can de-
fine policies using available provenance abstrac-
tions that were defined by software architects
during PAS development. Policy specifiers can
also define and evolve provenance abstractions
for specifying new access control policies together
with software architects or by themselves.

T3: Reusing XACML and extending the XACML ar-
chitecture is helpful for achieving the goal of high
compatibility. It allows us to specify and enforce
both provenance-aware policies and provenance-
unaware policies in a unified manner.

T4: Caching results of frequent queries on a specif-
ic starting node could be useful in mitigating
performance overhead introduced by querying
complex provenance graph.

In this paper, we applied the first three tactics in our
framework. Tactic 4 is discussed briefly but not imple-
mented in the prototype. This means our framework
partially achieves the identified goals except G4.

5 TYPED PROVENANCE MODEL

We have discussed possible benefits of introducing an
abstract layer of provenance between the consumers
of provenance (such as PDP and policy specifiers) and
the complex provenance graph. This section first in-
troduces a running example, then introduces the over-
all idea of the typed provenance model (TPM) and
its main elements and relationships among multiple
elements. Note that we interchangeably use the term
TPM either to denote the application-independent
meta-model for modeling provenance abstractions or
to denote a specific model instance of a PAS appli-
cation in the rest of this paper. Note that the way it
is used is similar to the way, in which the term class
model is used in the object-oriented methodology.

5.1 A Running Example
A homework grading subsystem (HGS) is a running
example in the rest of this paper. We assume that HGS
has a simple role-based subsystem deployed and can
authenticate a user as either a Student or a Professor.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 6

- A student can upload, replace, submit, and view
grade of her own homework.

- A homework can be submitted only once but can
be replaced many times before submission.

- A professor or a student on behalf of a professor
can review a submitted and ungraded homework
if she did not own or review it before, and if it
has been reviewed less than three times.

- A user can revise a review if she created the re-
view and the reviewed homework is not graded.

- A professor can grade a homework if it has been
reviewed at least two times.

- A student can see how many times her home-
work has been reviewed.

- A professor who grades a homework can see who
its owners and reviewers are, and if any of its
reviews was involved in conflict of interests.

5.2 Typed Provenance Model Overview
Provenance is usually viewed as retrospective infor-
mation3 about a system and can only be captured after
the system starts running [7]. So it is very difficult
for developers to define provenance-aware policies
during PAS development. As we have argued, an
intuitive idea is to introduce an abstract layer of
provenance.

In Figure 4, TPM is introduced to bridge the gap
between provenance questions in problem space and
complex provenance graph in solution space. TPM
abstracts underlying provenance graphs of a specific
application as element types, dependency types, as
well as relationships and constraints among them. On
one hand, it enables users to specify resolvable prove-
nance questions by flexibly composing new prove-
nance types using existing ones. On the other hand,
it guides provenance collection at run-time.

Fig. 4. Provenance abstraction.

5.2.1 Element Types and Dependency Types
Each provenance type in a TPM identifies a set of
nodes, edges, or subgraphs with commonalities in a
provenance graph. TPM captures two kinds of prove-
nance types: element types and dependency types.

Each element type in a TPM is an abstract data type
that can be instantiated into elements in a provenance
graph, including entities, activities, and agents [7]. For
example in the HGS, an entity could be instantiated

3. Some researchers argued that prospective provenance, typical-
ly the workflow specification, should also be captured [17].

from a class in design model, such as Homework. An
activity could be instantiated from a business oper-
ation in requirements model or a method of a class
in design model, such as upload or submit. An agent
could be instantiated from an acting user of the target
system, who plays organizational roles such as Student
or Professor. A class (role) may inherit or include other
classes (roles) to form a hierarchy. Provenance could
be captured with respect to objects at different levels
in a hierarchy and can be efficiently stored if the
hierarchical information is suitably utilized [31].

Dependency type is the core concept of TPM. It has
roots in the notion of Dependency Name [11], [28]. It
models a provenance semantic that can be verified by
one or more dependency paths (subgraphs) connect-
ing elements of specific types in a provenance graph.
A dependency type T defined below is a composition
of its name (N ), an element type E as effect, and an
element type C as cause.

T := N(E,C). (1)

Here N is a unique name of T and literally in-
dicates semantics of T . Note that T and N are in-
terchangeably used to refer to a dependency type
in the rest of this paper. A dependency type can
be instantiated into a provenance dependency in-
stance by instantiating both its effect node type and
cause node type. For example, a dependency type
ReviewedBy(Homework,User) can be instantiated in-
to ReviewedBy(hw1, u1) to denote that homework
hw1 was reviewed by user u1.

Note that we can view each dependency type
as a provenance question getting either the effect
or the cause nodes of a starting node. For ex-
ample, ReviewedBy(hw1) returns the set of users
who reviewed the homework hw1 and we have
ReviewedBy(hw1, u1) ≡ u1 ∈ ReviewedBy(hw1).
While N (such as ReviewedBy) of a dependency type
is similar to a dependency name [11], [28], E and
C clarify element types that will be involved in a
possible provenance dependency.

TPM includes two kinds of dependency types, the
primitive ones that can be instantiated into individual
edges of a provenance graph, and the composite ones
that can be instantiated into provenance subgraphs
rather than individual edges. Each composite type is
defined as a composition of primitive types to make
it resolvable against an underlying provenance graph.

5.2.2 Primitive Dependency Types
Each primitive dependency type abstracts the seman-
tic of a set of individual edges in a provenance graph.
It is a subtype of one of the application-independent
dependency types in PROV-DM core structure. It
is introduced mainly to accommodate application-
specific semantics with its literal name and types of
the involved elements.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 7

Fig. 5. Primitive provenance types

Figure 5 presents six primitive dependency types
specific to HGS. The primitive types that share the
same activity type form an activity-centered directed
graph. Here, we use multiple copies of the entity
type Review (Rw) to make the figure easier to read.
Figure 5 shows that the activity type review (rev) was
attributed with Professor (Prof) or Student (Stud) on
behalf of Prof and used Homework (Hw) and existing
Reviews of Hw as inputs to produce a new Review on
Hw. Note that we consistently capitalize the initial
letter of entity type names and agent type names, but
leave activity type names as lowercase for readability.
In the list below, the inside of [] shown at the end
of each dependency type describes its meaning in
natural language. If an activity review (p1) takes as
inputs a homework (h1) and optionally a previous
Review (r1) of h1, we can instantiate T1 and T2 as
Urev−Rw(p1, r1) and Urev−Hw(p1, h1) respectively.
T1 := Urev−Rw(review,Review)[ review used a Review];

T2 := Urev−Hw(review,Homework)[review used a Homework];
T3 := GRw−rev(Review, review)[a Review was generated by review];

T4 := Wrev−Prof (review,Prof )[review was attributed with Prof ].
T5 := Wrev−Stud(review, Stud)[ review was attributed with Stud].
T6 := BStud−Prof (Stud, Prof )[ Stud acted on behalf of Prof ].

Note that we name a dependency type in a pattern
which comprises two parts. The first part is a captial
letter such as ‘U’, ‘G’, ‘W’, and ‘B’, which denotes
that the corresponding primitive types are subtypes of
‘Used’, ‘wasGeneratedBy’, ‘wasAttributedWith’, or ‘Acte-
dOnBehalfOf ’ in PROV-DM respectively. The second
part comprises the abbreviated type names of both
effect and cause elements when the activity uses or
produces only one instance of a specific type. Oth-
erwise, the abbreviated type name of either effect or
cause element should be replaced by unique string
that denotes the role of the effect or cause element in
the context of an activity. For example, a divide (div)
process used two numbers, one as dividend and the
other as divisor. So two dependency types could be
Udiv−dividend and Udiv−divisor.

Each activity type is generally a method signature
in software design model or a business operation in
requirements model that can be eventually refined
into a set of methods. Each activity type can be
instantiated into one or more processes at run-time.
A PAS can easily capture primitive dependency types
that are directly related to an activity, such as was-
GeneratedBy, Used, and wasAttributedWith. These are

essential dependency types. Other depencency types
such as wasAttribuedTo, wasDerivedFrom, wasInformed-
By, and ActedOnBehalfOf are less essential in that they
need to be deliberately defined by software architects.

For example, suppose HGS has an activity dele-
gate (dlg) that was attributed with a professor and
used a set of students as its inputs to produce a
delegation relation among students and a professor.
Here, the software architect has two options to de-
termine the specific primitive provenance types to be
documented. One option is to capture two essential
primitive types Udlg−Stud and Wdlg−Prof , and then
to semantically construct BStud−Prof from them. In
this case, BStud−Prof becomes a composite dependen-
cy type. The other option is to deliberately define
BStud−Prof as a primitive dependency type while
omitting Udlg−Stud and Wdlg−Prof . Figure 5 visualizes
the latter option by showing the provenance type
BStud−Prof in solid line and Udlg−Stud as well as
Wdlg−Prof in dashed line.

5.2.3 Composite Dependency Types
Each composite dependency type can be defined as a
composition of primitive types. It is actually a path
pattern that can be instantiated into paths composed
of multiple edges instantiated from corresponding
primitive dependency types. This section introduces
various operators used to form a composite depen-
dency type.

First, the simplest composite pattern is the concate-
nation of two dependency types. We introduce a bina-
ry operator “·” to formally indicate the concatenation
of two dependency types. A composite dependency
type T := Ti · Tj indicates that the effect and the
cause node types of T are the effect node type of Ti

and the cause node type of Tj respectively, and that
the cause node type of Ti is the effect node type of
Tj . T means that some instances (ti, tj) of Ti and Tj

can be concatenated to indicate that the effect node
of ti is to some extent caused by the cause node of
tj . For example, T7 below indicates that a homework
(Hw) was uploaded by a student (Stud). Note that
GHw−up and Wup−Stud are primitive type names and
upload(up) is an operation of HGS.

T7 := UploadedBy(Hw, Stud)
:= GHw−up(Hw, up) ·Wup−Stud(up, Stud),

Second, provenance is usually captured in a direct-
ed graph. Usually, queries are made to trace prove-
nance graph backward in time. However, users could
ask about the effect nodes caused by a given cause
node. For example, a reviewer may want to know all
existing Reviews of a given homework as references
of his/her reviewing the homework. To this end, we
introduce an unary operator called “inversion” (“ −1”)
on dependency types. Letting Rw denote a class of
Reviews and Hw denote a class of Homeworks, we
define T8 and T9 as follows.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 8

T8 := Reviewof(Rw,Hw) := T3 · T2

T9 := Reviewof−1(Hw,Rw) := T−1
8 := T−1

2 · T−1
3 ,

Formally, we denote the inversion of a dependency
type T as T−1 = N−1(C,E). It means that a cause
node of type C caused one or more effect nodes of
type E in the sense of N . It allows us to traverse a
provenance graph from cause to effect.

Third, some provenance semantics could be con-
structed from paths with unspecified lengths because
some activities in PAS might be repeatedly activated
many times or optionally activated. For example, an
uploaded homework can be optionally replaced many
times before final submission. To concisely specify
possible path patterns, we can define composite de-
pendency types in regular expressions having the
available dependency types as alphabet table. Specif-
ically, we introduce the operator “*”, “+”, and “?” to
define a regular expression over available dependency
types. Note that T∗ means zero or more T concate-
nated with each other by the operator “·”; T+ means
T · T∗ and T? means zero or one T . For example, we
define a dependency type T14 to model dependencies
between the submitted homework and its historical
versions, where replace(rep) and submit(sub) are two
activities in HGS.

T10 := GHw−rep(Hw, rep), T11 := Urep−Hw(rep,Hw)

T12 := GHw−sub(Hw, sub), T13 := Usub−Hw(sub,Hw)

T14 := SubmisionOf(Hw,Hw) := T12 · T13 · (T10 · T11)∗,

Fourth, some provenance semantics can be validat-
ed by multiple paths in a provenance graph either
disjunctively or conjunctively. For example, only the
owner of a homework can upload, replace, and submit
it and a homework cannot be reviewed by its owner
due to conflict of interest. To this end, we introduce
both the conjunctive and disjunctive operator “∧” and
“∨” to enable the conjunctive or disjunctive composi-
tion of multiple fine-grained dependency types into a
composite dependency type. We define T15 - T20 for
tracing owners of a homework in HGS as follows.

T15 := Wrep−Stud(rep, Stud)

T16 := ReplacedBy(Hw, Stud) := ((T10 · T11)∗) · T10 · T15

T17 := SubmittedBy(Hw, Stud) := T12 ·Wsub−Stud(sub, Stud)
T18 := OwnedBy(Hw, Stud) := T17 ∨ (T14) ∗ ·T16 ∨ (T14) ∗ ·T7

T19 := ReviewedBy(Hw,User) := (T−1
2 · T5) ∨ (T−1

2 · T4)

T20 := ReviewedBySelf(Hw, Stud) := T18 ∧ T19,

Here T18 is defined as three disjunctive sub-types
to denote that the semantic of “OwnedBy” can be
validated in three ways. T17 says that the user who
submitted a homework is its owner. (T14) ∗ ·T16 says
that the users who replaced a homework are its owner.
(T14)∗· says that the user who uploaded a homework
is its owner. Note that Stud is a subclass of User. So T20

denotes that a homework was reviewed by its owner,
i.e. involving conflict of interests.

The proposed TPM provides high expressiveness in
a sense that necessary application-specific provenance
semantics are captured as regular-expression based
path patterns. It also enables efficient provenance-
aware policy specification and enforcement by utiliz-
ing named abstraction of the path patterns. However,
the discussed TPM specifications and expressions are
by no means complete or optimal. it is not our goal
to show such a model. In fact, each PAS application
may utilize a different set of provenance semantics.
Some PAS may need much simplified models while
others may need to extend the proposed model as
necessary. For example, we can define a subtraction
operation “\” among two dependency types. Then
we can define a new ownership between students
and their homework as T21 := T18\((T14) ∗ ·T7) to
indicate that only students who submitted or replaced
a homework are the owners of the homework and
that the student who uploaded the homework is not.
Note that the subtraction operator can be utilized as
part of TPM model or it can be also captured as part
of policy expression. Having it in the TPM model can
provide more expressive graph abstraction and sim-
pler policy specification while requires more complex
TPM interpreter. If captured in a policy instead, TPM
interpreter could be simpler but more complex policy
specification is needed.

6 ARCHITECTURE OVERVIEW

As shown in Figure 6, this section presents a lay-
ered architecture of a provenance-aware access control
framework as an extension of the XACML architec-
ture in Figure 2. It includes three layers. The top
layer and bottom layer include modules reused or
extended from either the existing XACML architec-
ture or provenance-aware systems. The middle layer
comprises TPM and a set of TPM interpreters and is
essential for efficient specification and enforcement of
provenance-aware policies.

.
PROV-DM Compliant Store (RDF)

Provenance Query Engine ( SPARQL)

PEP

Provenance-aware PAP

Typed Provenance Model (TPM)

Provenance-aware PDP

Acting Users

Resources/Provenance

Query Engine

Relational DB

Actions

Provenance-aware Access Control Framework

LegendReused ComponentData flow TPM InterpretersExtendedComponent
Permission

Request
constructor

PIP

TPM Interpreter

Fig. 6. A Layered Architecture of Provenance-aware
Access Control Framework

A typical access control process enforced by the pro-
posed architecture shown in Figure 6 is as follows. An
acting user initiates a request in a PAS for permissions
(actions against resources). Note that the requested
resource might be provenance and the acting user
has been authenticated as a subject at run-time by



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 9

the PAS. The request will be intercepted by PEP
and then be forwarded to PDP. PDP then evaluates
the request against provenance-aware policies from
PAP and may query necessary attributes (including
provenance) from PIP during evaluation. Note that a
provenance-aware policy is defined using dependen-
cy types in TPM and all dependency types in a policy
will be parsed by a TPM interpreter into provenance
queries specific to the underlying provenance store
(the provenance-aware PIP). Provenance query engine
executes the queries and returns the results to PDP.
PDP returns the decision of ’permit’ or ’deny’ to PEP
and PEP will then allow or block the request.

Note that the responsibility of PEP in a provenance-
aware system is same as that of PEP in general
systems. So we do not discuss the implementation of
PEP in our framework and assume that we can reuse
existing ones. In addition, PEPs in various forms that
function at different points in a PAS may send/receive
request/response messages in various formats. In X-
ACML architecture, a context handler is responsible
for communicating and translating these messages in
different formats. We assume that all requests and
responses are specified in XACML-compliant format
and Figure 6 omits the context handler for simplicity.
Except for PEP and context handlers, we need to make
Request Constructor, PDP, PAP, and PIP in Figure 2 be
provenance-aware to build a provenance-aware access
control framework.

Request Constructor: A PAS needs to provide
proper functionalities for users to access provenance
of data items. So in Figure 6, the Request Constructor
module needs to be extended to properly construct
access requests to provenance. Specifically, it should
construct not only the general access request (s, a, o)
including a subject (s), an action (a), and an object (o)
but an access request including provenance questions.
As discussed before, each dependency type applied
to a specific starting node is a provenance question
with respect to that node. We assume that a PAS
allows users to define a new dependency type as a
composition of existing ones in a TPM at run-time to
query arbitrary meaningful provenance. So an access
request to provenance can be formulated as a tuple
(s, a, 〈P, o〉), where P is a set of dependency types
that can be applied to the object o. Note that 〈P, o〉
that computes all cause or effect nodes of a starting
node o in the sense of a dependency type p ∈ P serves
as the requested object in the request. For example, in
the HGS, a request (s, read, 〈{OwnedBy}, h1〉) denotes
that a subject s wants to read the owner of a home-
work h1, that is, to get OwnedBy(h1).

Provenance-aware PDP and PAP: A provenance-
aware PDP needs to evaluate an access request against
applicable provenance-aware policies retrieved from
PAP. The provenance-aware PDP may not only query
generic attributes from traditional relational databases
but also query provenance from a PROV-DM compli-

ant provenance repository. A provenance-aware PAP
is responsible for specifying and storing provenance-
aware policies in PAS and responsible for retrieving
applicable policies according to the access request.
Note that the provenance-aware PDP and PAP can
function correctly if and only if the TPM and TPM
interpreter in the lower layer functions correctly.

TPM and TPM Interpreter: Both provenance-
aware PDP and provenance-aware PAP have one TPM
as their common foundation. PAP enables the policy
specifiers to specify provenance-aware policies using
dependency types in TPM and enables the efficient
retrieval of policies that are applicable to a given
request. PDP should be able to correctly interpret
dependency types in TPM by employing appropriate
TPM interpreters. Both TPM and a series of TPM in-
terpreters comprise an abstract layer in the proposed
layered architecture to facilitate both PDP and PAP.

In Figure 6, TPM captures a set of application-
specific provenance types that can be used to con-
struct access control policies and user provenance
questions. A TPM interpreter converts dependency
types defined in TPM into provenance queries. These
queries can then be executed by a provenance query
engine to get required provenance information from
the underlying provenance store. TPM interpreters
are application-independent and specific to prove-
nance query engines. Note that a provenance query
engine (such as SPARQL [32]) is usually specific to
a provenance repository in a particular physical rep-
resentation (such as RDF). Multiple TPM interpreters
and provenance query engines should be deployed
when multiple provenance stores in different physical
representations are used in a PAS.

Provenance-aware PIP: Policies in PAP may re-
fer to various attributes of subjects, objects, actions,
and the environment. A PIP provides an interface
for querying necessary attributes for evaluating ac-
cess control policies. Note that a provenance-aware
PIP should be able to query provenance from some
repositories. Because the infrastructure for storing and
querying provenance is an essential building block
of a provenance-aware system [17], we argue that
the provenance-aware PIP could be reused from the
overall database management infrastructure of PAS
as shown in the bottom layer in Figure 6. It in-
cludes not only relational database management sys-
tems and corresponding query engines for attributes
used in defining generic attribute-based policies, but
also the provenance repositories and corresponding
provence query engine for provenance used in defin-
ing provenance-aware policies. Note that the key to
reuse a specific provenance query engine and corre-
sponding provenance store in our framework is to
develop and deploy an appropriate TPM interpreter.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 10

7 IMPLEMENTATION AND EVALUATION
In this section, we implement a prototype of our
framework and then design experiments to evaluate
the compatibility and performance of the prototype.
7.1 Implementation
We extended the PDP class in SUN’s XACML frame-
work to get a provenance-aware PDP. The extended
PDP takes as inputs a provenance-aware access re-
quest and a set of available provenance-aware poli-
cies. Both of them should be written in XACML
format and stored in XML files. For simplicity, we
assume that both of them are directly specified in
XACML format in the following experiments. So our
prototype did not implement request constructor and
context handler and simply implemented PAP as a set
of policy files specified in XACML.

The TPM in our framework is pre-defined in a
two column table including pairs of provenance type
names and matching path patterns (composition rule).
A TPM interpreter retrieves the matching path pattern
of a given dependency type name from TPM table
and translates the path pattern into queries specific to
a particular query engine, such as SPARQL.

We implemented a SPARQL-specific TPM [32] in-
terpreter as an extension to the FunctionBase class in
SUN’s XACML framework. The TPM interpreter is
first registered into the provenance-aware PDP and
then invoked by the PDP at the time of each access
request evaluation. For examle, in the XACML Policy
2 given in the next subsection, the PDP invokes
our SPARQL-specific TPM interpreter class named
”provenance-query-SPARQL“.

We employed the Apache Jena framework [33] to
provide both the RDF-enabled [34] data store for
provenance graph and the ARQ query engine for
enabling SPARQL queries [32]. In this work, we are
using Jena-2.7.4 and the corresponding ARQ package.

7.2 Experiments and Evaluation
We deploy the implemented prototype onto a virtual
machine instance which resides in our local Joyent
SmartData center. The instance is an Ubuntu 12.10
image with 4GB Memory and a 2.5 GHz quad-core
CPU. We design experiments on top of HGS appli-
cation outlined in previous section to evaluate our
framework in terms of its compatibility with XACML
and performance overhead under extreme situations.
To enable the experiments, we have to implement
HGS-specific components, including TPM of HGS,
provenance graph of HGS, access requests, and poli-
cies of HGS, which are necessary for our experiments
besides the deployed application-independent frame-
work. Note that TPM of HGS mainly includes entity
types and dependency types introduced in section 5.
Provenance graph of HGS is generated as a set of RDF
tuples and stored in memory as a Jena model. Both
access requests and policies are specified in XACML.

7.2.1 Compatibility Evaluation

This experiment feeds a provenance-aware access re-
quest and a provenance-aware policy that are spec-
ified in XACML into our framework to show its
compatibility with XACML.

The following is an example of a provenance-aware
request. A subject with the identity au3 is requesting
who is the owner of a homework h1 (the prove-
nance). The requested provenance is identified by
two attributes, provenance-type with value OwnedBy
and provenance-startingnode with value h1. OwnedBy
is a dependency type that queries all owners of a
homework and is defined in TPM as a composition
of primitive dependency types (see T18 in section 5).
Note that both Policy 1 and Policy 2 are specified in
XACML with an minor extension. We introduce the
a function ID ”provenance-query-SPARQL”, and two
special attributes ”provenance-type” and ”provenace-
startingnode” into standard XACML.

Example 1. A provenance-aware request in XACML
<Request>
<Subject SubjectCategory="urn:oasis:names:tc:xacml:1.0

:subject-category:access-subject">
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:subject:subject-id" DataType="http://www.w3.org
/2001/XMLSchema#string">

<AttributeValue>au3</AttributeValue></Attribute>
</Subject>
<Resource>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:resource:provenance-type" DataType="http://www.
w3.org/2001/XMLSchema#string">

<AttributeValue>OwnedBy</AttributeValue></Attribute>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:resource:provenance-startingnode" DataType="
http://www.w3.org/2001/XMLSchema#string">

<AttributeValue>h1</AttributeValue></Attribute>
</Resource>
<Action>
<Attribute AttributeId="urn:oasis:names:tc:xacml:1.0

:action:action-id" DataType="http://www.w3.org
/2001/XMLSchema#string">

<AttributeValue>readprov</AttributeValue></Attribute>
</Action>

</Request>

The following is an example of a provenance-aware
policy that corresponds to the request above. The
target section of this policy shows that it is designed
for guarding the action readprov on a provenance-
type OwnedBy that could be applied to any instances
of Homework class. The access rule HwOwnerRule is
that a user will be allowed to see the owners of a
homework only if the user is one of those who have
been grading the homework. Note that the following
policy explicitly refers to a specific TPM interpreter
named provenance-query-SPARQL, which takes as in-
puts a starting node (designated as h1 specified in the
request) and a dependency type (GradedBy).

Example 2. A provenance-aware policy in XACML
<Policy PolicyId="PACPolicy" RuleCombiningAlgId="

urn:oasis:names:tc:xacml:1.0:rule-combining-
algorithm:ordered-permit-overrides">

<Description>...</Description>
<Target>
<Subjects> <AnySubject /> </Subjects>
<Resources> <Resource>



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 11

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0
:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">OwnedBy</AttributeValue>

<ResourceAttributeDesignator AttributeId="
urn:oasis:names:tc:xacml:1.0:resource:
provenance-type" DataType="http://www.w3.org
/2001/XMLSchema#string" />

</ResourceMatch>
</Resource> </Resources>
<Actions> <Action>

<ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0
:function:string-equal">

<AttributeValue DataType="http://www.w3.org/2001/
XMLSchema#string">readprov</AttributeValue>

<ActionAttributeDesignator AttributeId="
urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.org/2001/XMLSchema#
string" />

</ActionMatch>
</Action> </Actions>
</Target>

<Rule RuleId="HwOwnerRule" Effect="Permit">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-is-in">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-one-and-only">
<SubjectAttributeDesignator AttributeId="

urn:oasis:names:tc:xacml:1.0:subject:subject-id"
DataType="http://www.w3.org/2001/XMLSchema#string" />
</Apply>
<Apply FunctionId="provenance-query-SPARQL">
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0

:function:string-one-and-only">
<ResourceAttributeDesignator
AttributeId="urn:oasis:names:tc:xacml:1.0:resource:

provenance-startingnode"
DataType="http://www.w3.org/2001/XMLSchema#string" />
</Apply>
<AttributeValue DataType="http://www.w3.org/2001/

XMLSchema#string">GradedBy</AttributeValue>
</Apply>
</Apply>
</Rule>
<Rule RuleId="FinalRule" Effect="Deny" />
</Policy>

The experiment shows not only how to specify
access request to provenance but also how to refer to a
specific TPM interpreter in a provenance-aware policy.
It also shows that both provenance-aware policies and
generic attribute-based policies can be specified and
enforced in a unified manner.

7.2.2 Performance Evaluation

A provenance-aware PDP could receive multiple con-
current requests in real settings. So its performance is
critical. We perform experiments to evaluate the time
it takes for the PDP instance to completely handle 500
simultaneous access requests. These requests are actu-
ally replica of one request, which is almost simultane-
ously issued 500 times by an agent simulating the user
of HGS application. Note that the PDP instance will
create an independent thread to serve each request
it received. So there would exist multiple threads
running simultaneously to serve multiple requests.

Querying complex provenance graph could be a
time-consuming task. Different PAS may have prove-
nance graphs with different quantity of edges, width,
and depth, which would have influence on the prove-
nance overhead of our framework. On one hand,
some provenance information necessary for decision
making could be spread out widely in a provenance

graph. The outdegree of some nodes in a wide prove-
nance graph could be very high. For example, one
homework object can be reviewed by a multitude of
reviewers. In a provenance graph, each review process
is captured as a branch coming out of the homework
object. To obtain all reviewers of the object, a query
needs to trace through all these branches. It is inter-
esting to evaluate the performance of our framework
against a provenance graph with high width.

On the other hand, some provenance information
could be spread in depth in a provenance graph.
Some paths connecting a cause and an effect in a deep
provenance graph could be very long. For example, an
uploaded homework object can be replaced multiple
times (any times) by its owner. To obtain the original
version of a homework, a query needs to trace back
through a large number of edges. Similarly, it is inter-
esting to evaluate the performance of our framework
against a provenance graph with high depth.

We design different experiments to evaluate the
performance overhead of our framework prototype
when the size and shape of the provenance graph is in
different configurations. Note that we assume that the
provenance graph remains unchanged to accurately
evaluate the performance overhead of our framework
though granting an access request might result in
additional information being captured and the under-
lying provenance graph being changed. Specifically,
we proceed to perform the experiments in quantities
of 2000, 4000, 6000, 8000, 10000, and 12000 edges
traced in evaluating access requests. That means we
simulated both wide provenance graphs and deep
provenance graph having various edges. In a wide
provenance graph, a query may trace from 2000 up
to 12000 edges in width. In a deep provenance graph,
a query may trace from 2000 up to 12000 edges in
depth.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2000  4000  6000  8000  10000  12000

R
un

tim
e 

(s
ec

)

Number of trace edges

Multi Requests Evaluation (Wide vs. Deep)

wide
deep

Fig. 7. Throughput evaluation per 500 requests

The results in Figure 7 show that in the width-
tracing scenario, the performance overhead increases
linearly along with the increase in the number of
traced edges. In the depth-tracing scenario, the perfor-
mance overhead increases still linearly, but at a higher
slope. Here, for the most heavy tracing query, we



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 12

obtain the result of 500 requests per 80 seconds (0.16
second per deep request) in depth-tracing scenario
and 500 requests per 20 seconds (0.04 second per
wide request) in width-tracing scenario. At the same
time, for the lightest tracing query, the result is 500
requests per 7 seconds (0.014 second per deep request)
and 500 requests per 7 seconds (0.014 second per
wide request). That means that at the lightest tracing
scenarios, the performance overhead of both wide-
tracing and deep-tracing is very low and hardly differ-
entiable. In fact, according to canonical data structure
textbooks, the asymptotic time complexity of travers-
ing a graph is O(n+e), where n is the number of nodes
and e the number of edges in the traversed graph.
Our experiments consolidate the theoretical analysis.
We believe the heavier runtime increase of the depth-
tracing query is due to the SPARQL implementation
of query execution that utilizes more recursive calls
for each successive process step in depth-tracing sce-
nario than that in width-tracing scenario.

The result of the above analysis only demonstrates
the feasibility of our framework when the prove-
nance graph can be fully loaded into memory and
its depth and width traces would not exceed specific
quantities. When a provenance store grows extremely
large in a real application and it cannot be loaded
into memory as one Jena model, some queries would
involve provenance retrieval from disks, which ap-
parently costs more time. Also note that the perfor-
mance depends heavily on the underlying provenance
query engine. However this is outside of the scope of
this paper. With these restrictions in mind, while we
think the proposed framework can provide improved
performance for example by caching the abstracted
graph, we did not provide any further discussion on
achieving this. An extensive investigation is required
to properly address the performance issues.

8 RELATED WORK AND DISCUSSION

This section first discusses related work related to
provenance management systems, provenance model,
and secure provenance, and then discusses practical
issues of applying our framework in real settings.

8.1 Related Work
Existing literature on provenance was mainly con-
cerned with the conceptual or functional issues of
PAS, such as what is provenance in databases [4], [5],
[35], why provenance is important for the future [36],
how to capture provenance and by who [18], [37], how
to efficiently store and query provenance [22], [24],
[31], [38], how to communicate provenance across
multiple PAS [7], [8], what a provenance-aware sys-
tem is and how to build it in an engineering man-
ner [20]. Accordingly, a series of provenance man-
agements systems have been built to answer these
questions from different perspectives and to different

extent. Freire et al. surveyed the important concepts
related to provenance management so that potential
users can make informed decisions when selecting or
designing a provenance solution [17].

One of the most fundamental problems of building
a PAS is to clarify its provenance model [6], [7], [8],
[16]. A provenance model, such as PROV-DM and
OPM, is usually an application or domain indepen-
dent representation framework which tells the generic
types of elements and causality dependencies among
those elements that can be captured as provenance
of data items. In PROV-DM or OPM, these types are
generic enough so that the resulted provenance graph
is inter-operable across multiple PAS.

This paper introduced TPM on top of community
common consensus on provenance, such as that cap-
tured by the core structure of PROV-DM or OPM, to
enable the developers to capture application-specific
provenance semantics. Note that although PROV-
DM and OPM also provides a subtyping mechanism
to capture application-specific provenance semantics,
TPM provides more flexible composition mechanisms
for developers to do that. Developers can define a
dependency type in a TPM as not only a subtype of
PROV-DM core types but also a composition of avail-
able dependency types in a TPM. Each dependency
type in a TPM can be instantiated into one or more
paths in a provenance graph that denote causality
dependencies among elements of specific types, such
as Homework and Stud in HGS.

Furthermore, unlike PROV-DM that is mainly used
to shape the query and storage infrastructure of PAS,
a TPM that captures application-specific provenance
semantics is intended to drive specific PAS develop-
ment, such as to enable the efficient specification of
provenance-aware policies during PAS development.
A TPM of specific application is actually its prospec-
tive provenance that will be instantiated and captured
as retrospective provenance at run-time.

Secure provenance is critical to verify trustworthi-
ness of data items in a PAS [9], [14]. Traditional secu-
rity models and policy languages are not appropriate
for PAS [10], [14]. Correspondingly, the underlying
enforcement framework and policy authoring tools
which worked well for traditional access control poli-
cies would not work well in PAS [3], [39]. To this
end, researchers have presented several access control
models [10], [11] as well as policy languages [13], [16]
for either PAC or PBAC. However, these solutions
are not practical for efficiently specifying provenance-
aware policies during PAS development and then
efficiently enforcing these policies at run-time due to
their lack of considering the complexity of provenance
graph and several engineering issues.

In contrast, we introduce a novel provenance
model–TPM to facilitate the efficient specification of
provenance-aware policies during PAS development,
and build a provenance-aware access control frame-



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 13

work with TPM and a set of TPM interpreters as
key components to enforce these policies. TPM en-
ables flexible composition of novel composite types
to capture high-level provenance semantics that are
involved in emerging security requirements. So our
framework enables efficient and flexible specification
of provenance-aware policies even for newly identi-
fied security requirements. Furthermore, our frame-
work is extensible to work with provenance reposito-
ries in different storage models by introducing appro-
priate TPM interpreters. In addition, we facilitate the
compatibility of our framework with attribute-based
access control ones, such as XACML-compliant ones,
by treating provenance-type as a special attribute having
provenance types as its possible values that will be
further processed by TPM interpreters. As a proof
of concept, we show that provenance-aware policies
can be specified in XACML with minor extensions.
Note that Sun et al. have introduced the initial idea of
TPM with an emphasis on the engineering process of
defining provenance-aware policies using TPM [15].

8.2 Discussion

In order to apply our framework in real settings,
several issues need to be carefully considered.

Our framework prototype assumes that PEPs and
context handlers in a XACML architecture are avail-
able. So developers need to either integrate existing
PEPs and context handlers into our framework pro-
totype or build their own ones when these compo-
nents are not available. Our framework prototype
currently only implements a TPM interpreter for RDF-
based provenance store. In real settings, new TPM
interpreters are likely to be built for other PROV-DM
compliant provenance stores. Note that our frame-
work prototype assumes that underlying provenance
stores are PROV-DM (or OPM)-compliant. It cannot
be directly integrated into a PAS that creates a prove-
nance store following a proprietary provenance model
rather than PROV-DM or OPM. Even so, developers
could be able to implement the layered architecture
shown in Figure 6 in their own settings to get a
proprietary framework.

Currently, the proposed framework only consid-
ers provenance captured by application systems,
but not those observed at operating system level
mainly because they hardly reveal any application-
specific semantics that are necessary for provenance-
aware access control [18]. Our framework provides
an application-independent meta-model for TPM and
a set of application-independent TPM interpreters.
When deployed for a PAS, TPM is designed typically
by system/security architects. Specifically, system and
security architects could define TPM at first on the
basis of system models to drive the PAS development
and then security administrator can use them to de-
fine provenance-aware policies. Sometimes, a security

architect may need to define new dependency types
for specifying provenance-aware policies.

A construction of TPM involves many engineering
issues, such as who should create TPM, when and
how to create and evolve TPM, and how to use TPM
to drive PAS development. We have discussed some
of these issues in our previous work [15]. A more
extensive investigation on these issues is still a must.
Note that entities in a TPM can be derived from
special elements in system models of PAS, such as
UML models, and some primitive dependency types
could be automatically derived from the UML models.
So the size of TPM of an application should be rough-
ly propositional to the size of UML models of the
application. In that sense, we believe that the manual
labor of constructing TPM would be not unacceptable.

9 CONCLUSION

This paper argues that security architects should be
able to efficiently specify provenance-aware policies
during PAS development, and to have these poli-
cies enforced according to provenance graph cap-
tured at run-time. This paper achieves these goals
by introducing an abstract provenance model, called
Typed Provenance Model (TPM) and by designing
and implementing a provenance-aware access con-
trol framework with a layered architecture. The pro-
posed framework accommodates provenance-aware
policies in the same way of accommodating generic
attributed-based policies by treating provenance-type as
a special attribute. Furthermore, it is flexible enough in
accommodating provenance-aware policies involving
provenance in different level of abstraction. It is ex-
tensible to work with provenance stores in different
physical representations. We implement a prototype
for the proposed framework. We then analyze its per-
formance and evaluate its compatibility with XACML.
Our future work includes deploying and evaluating
the implemented prototype in real settings, exploring
and optimizing the performance overhead introduced
by provenance query engines, designing more practi-
cal engineering methodology to guide the usage of
our framework in practice.

ACKNOWLEDGMENTS

This work is partially supported by NSF (No. CNS-
1111925), NSF of China (No. 61202019), and Shaanxi
Provincial Education Department (No. 14JK1098).

REFERENCES
[1] P. Samarati and S. D. C. d. Vimercati, “Access control: Policies,

models, and mechanisms,” ser. FOSAD ’00. London, UK:
Springer-Verlag, 2001, pp. 137–196.

[2] R. Sandhu and P. Samarati, “Access control: principle and
practice,” Communications Magazine, IEEE, vol. 32, no. 9, pp.
40 –48, sept. 1994.

[3] T. Moses. (2005) eXtensible Access Control Markup Language
TC v2.0 (XACML). OASIS.



1545-5971 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TDSC.2015.2410793, IEEE Transactions on Dependable and Secure Computing

JOURNAL OF TDSC, VOL. X, NO. X, JANUARY 201X 14

[4] P. Buneman, S. Khanna, and W. C. Tan, “Data provenance:
Some basic issues,” ser. FST TCS 2000. London, UK, UK:
Springer-Verlag, 2000.

[5] J. Cheney, L. Chiticariu, and W.-C. Tan, “Provenance in
databases: Why, how, and where,” Foundation and Trends in
databases, vol. 1, no. 4, Apr. 2009.

[6] P. Groth, S. Jiang, S. Miles, S. Munroe, V. Tan, S. Tsasakou,
and L. Moreau, “An architecture for provenance systems,”
University of Southampton, Technical Report, February 2006.

[7] L. Moreau, B. Clifford, J. Freire, and et al., “The open prove-
nance model — core specification (v1.1),” Future Generation
Computer Systems, December 2009.

[8] K. Belhajjame, R. B’Far, J. Cheney, and et al., “Prov-dm: The
prov data model,” Tech. Rep., 2012.

[9] R. Hasan, R. Sion, and M. Winslett, “Introducing secure prove-
nance: problems and challenges,” ser. StorageSS ’07. New
York, NY, USA: ACM, 2007, pp. 13–18.

[10] U. Braun and A. Shinnar, “A security model for provenance,”
Harvard University, Tech. Rep. TR-04-06, Jan 2006.

[11] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based
access control model,” in 10th Annual Conf. on Privacy, Security
and Trust. IEEE, July 2012.

[12] C. Ringelstein and S. Staab, “Papel: Provenance-aware policy
definition and execution,” IEEE Internet Computing, vol. 15,
no. 1, pp. 49–58, Jan. 2011.

[13] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thu-
raisingham, “A language for provenance access control,” ser.
CODASPY ’11. New York, NY, USA: ACM, 2011, pp. 133–144.

[14] U. Braun, A. Shinnar, and M. Seltzer, “Secure provenance,” in
The 3rd USENIX Workshop on Hot Topics in Security. Berkeley,
CA, USA: USENIX Association, July 2008, pp. 1–5.

[15] L. Sun, J. Park, and R. Sandhu, “Engineering access control
policies for provenance-aware systems,” ser. CODASPY ’13.
New York, NY, USA: ACM, 2013, pp. 285–292.

[16] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, “An access
control language for a general provenance model,” ser. SDM
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 68–88.

[17] J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance
for computational tasks: A survey,” Computing in Science and
Engg., vol. 10, no. 3, pp. 11–21, May 2008.

[18] U. Braun, S. Garfinkel, D. A. Holland, K.-K. Muniswamy-
Reddy, and M. I. Seltzer, “Issues in automatic provenance
collection,” in IPAW’06. Berlin, Heidelberg: Springer-Verlag,
2006, pp. 171–183.

[19] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer, “Provenance-aware storage systems,” ser. ATEC’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 4–4.

[20] S. Miles, P. Groth, S. Munroe, and L. Moreau, “Prime: A
methodology for developing provenance-aware applications,”
ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 8:1–8:42,
Aug. 2011.

[21] A. Marinho, L. Murta, C. Werner, V. Braganholo, S. M. S.
da Cruz, E. S. Ogasawara, and M. Mattoso, “Provmanager:
a provenance management system for scientific workflows,”
Concurrency and Computation: Practice and Experience, vol. 24,
no. 13, pp. 1513–1530, 2012.

[22] R. S. Barga and L. A. Digiampietri, “Automatic capture and
efficient storage of e-science experiment provenance,” Concurr.
Comput. : Pract. Exper., vol. 20, no. 5, pp. 419–429, Apr. 2008.

[23] K. Belhajjame, J. Cheney, D. Corsar, D. Garijo, S. Soiland-Reyes,
S. Zednik, and J. Zhao, “Prov-o: The prov ontology,” Tech.
Rep., 2012.

[24] C. Lim, S. Lu, A. Chebotko, and F. Fotouhi, “Opql: A first opm-
level query language for scientific workflow provenance,” ser.
SCC ’11. Washington, DC, USA: IEEE Computer Society, 2011,
pp. 136–143.

[25] S. Dey, S. Köhler, S. Bowers, and B. Ludäscher, “Datalog as
a lingua franca for provenance querying and reasoning,” in
TaPP’12, 2012.

[26] X. Jin, R. Krishnan, and R. S. Sandhu, “A unified attribute-
based access control model covering DAC, MAC and RBAC,”
in DBSec, 2012, pp. 41–55.

[27] A. Syalim, Y. Hori, and K. Sakurai, “Grouping provenance in-
formation to improve efficiency of access control,” in Advances
in Infomation Security and Assurance. Springer, 2009, pp. 51–59.

[28] D. Nguyen, J. Park, and R. Sandhu, “Dependency path pat-
terns as the foundation of access control in provenance-aware
systems,” in TaPP’12, Boston, MA, USA, June 2012.

[29] E. Yuan and J. Tong, “Attributed based access control (abac)
for web services,” ser. ICWS ’05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 561–569.

[30] J. Y. Halpern and V. Weissman, “Using first-order logic to
reason about policies,” ACM Trans. Inf. Syst. Secur., vol. 11,
no. 4, pp. 21:1–21:41, Jul. 2008.

[31] A. P. Chapman, H. V. Jagadish, and P. Ramanan, “Efficient
provenance storage,” ser. SIGMOD ’08. New York, NY, USA:
ACM, 2008, pp. 993–1006.

[32] E. Prud’hommeaux and A. Seaborne, “SPARQL Query
Language for RDF,” W3C, Tech. Rep., 2006. [Online].
Available: http://www.w3.org/TR/rdf-sparql-query/

[33] “Apache Jena Framework.” [Online]. Available: http://jena.
apache.org/about jena/architecture.html

[34] G. Klyne and J. J. Carroll, “Resource description framework
(RDF): Concepts and abstract syntax,” World Wide Web Con-
sortium, Recommendation REC-rdf-concepts-20040210, 2004.

[35] W. C. Tan, “Provenance in databases: Past, current, and fu-
ture.” IEEE Data Eng. Bull., vol. 30, no. 4, pp. 3–12, 2007.

[36] J. Cheney, S. Chong, N. Foster, M. I. Seltzer, and S. Vansum-
meren, “Provenance: a future history,” in OOPSLA Companion,
2009, pp. 957–964.

[37] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture
and reconstruction of computational provenance,” Concurr.
Comput. : Pract. Exper., vol. 20, no. 5, pp. 485–496, Apr. 2008.

[38] O. Biton, S. Cohen-Boulakia, S. B. Davidson, and C. S. Hara,
“Querying and managing provenance through user views in
scientific workflows,” ser. ICDE ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 1072–1081.

[39] R. W. Reeder, L. Bauer, L. F. Cranor, M. K. Reiter, K. Bacon,
K. How, and H. Strong, “Expandable grids for visualizing and
authoring computer security policies,” ser. CHI ’08. NY, USA:
ACM, 2008, pp. 1473–1482.

Lianshan Sun received his PhD degree in software engineering
from Peking University. He is currently an associate professor at
Shaanxi University of Science and Technology. His research inter-
ests include methodologies, infrastructures, and tools on engineering
secure software system in the whole software development life-cycle.
He is currently focusing on infrastructures for engineering secure
provenance-aware systems.

Jaehong Park received the PhD degree in information technology
from George Mason University. He is currently a research associate
professor at the Institute for Cyber Security, University of Texas at
San Antonio. His research interests include data and application
security and privacy, access and usage control, cloud computing
security, secure provenance and social computing. He has pioneered
an area of usage control.

Dang Nguyen is currently a PhD candidate at University of Texas
at San Antonio where he received a BS (09) and MS (2013) in
Computer Science. His main area of interest is on the application
and security foundations of provenance data in multi-tenant cloud
environment. He is currently working on provenance-based access
control mechanisms in OpenStack platforms.

Ravi Sandhu is founding Executive Director of the Institute for
Cyber Security at the University of Texas San Antonio, and holds
an Endowed Chair. He is an ACM, IEEE and AAAS Fellow and
inventor on 29 patents. He is past Editor-in-Chief of the IEEE
Transactions on Dependable and Secure Computing, past founding
Editor-in-Chief of ACM Transactions on Information and System
Security and a past Chair of ACM SIGSAC. He founded ACM CCS,
SACMAT and CODASPY, and has been a leader in numerous other
security conferences. His research has focused on security models
and architectures, including the seminal role-based access control
model. His papers have accumulated over 26,000 Google Scholar
citations, including over 6,400 citations for the RBAC96 paper.

http://www.w3.org/TR/rdf-sparql-query/
http://jena.apache.org/about_jena/architecture.html
http://jena.apache.org/about_jena/architecture.html

