
Page 1

Access Control Policy Mining:
Feasibility Analysis

L10-1
CS6393

Spring 2020

@Shuvra Chakraborty

Page 2

Object 1

Object 2

Object n

Can we
access

objects?

Legitimate users get legitimate access only
e.g., Role-Based Access Control (RBAC), Attribute-Based Access Control (ABAC)

A
C
C
E
S
S

C
O
N
T
R
O
L

Introduction

@Shuvra Chakraborty

Page 3

 Problem: migration from an existing access control model
to another one

Introduction

New access
control

Changing
mode of

operation

Organization
size changes

Manual effort
often error-
prone, time

consuming and
costly

Switch to
existing

better one

Is automation possible?
@Shuvra Chakraborty

Page 4

Introduction

Mining is partially automated so far…

 More Access Control List / Log / RBAC
+ Supporting attribute data

ABAC policy
mining

Access Control List + Supporting
Relationship data

ReBAC policy
mining

Given an access control system
+ Supporting data

General term
Access control
policy mining

Another access
control model

*** Relationship-Based Access Control (ReBAC)
@Shuvra Chakraborty

Page 5

Problem Statement and Scope

The feasibility analysis of the access control mining
problem studies whether the migration process is possible
or not under the set of imposed criteria.

ABAC Policy
Mining ReBAC Policy

Mining Continues...

Domain of feasibility analysis in Access Control Policy Mining
@Shuvra Chakraborty

Page 6

What is being done…

Developing feasibility analysis algorithms for certain set of
access control mining problem with complexity analysis.

 In case of infeasibility, solution algorithms are presented to
make it feasible under given criteria.

@Shuvra Chakraborty

Page 7

Background

To the best of our knowledge: feasibility analysis of access
control policy mining is proposed for the first time
Hence, no directly related background work

Some access control policy mining works
Role Mining
ABAC policy mining [from authorization, RBAC, log

data, sparse log] etc.

Our study includes 3 types of Access Control System
 Enumerated Authorization System (EAS)
 RBAC System
 ABAC System

@Shuvra Chakraborty

Page 8

EAS is a tuple <U, O, OP, AUTH, checkAccessEAS>
 U, O, and OP are finite sets of users, objects and operations,

respectively
 AUTH ⊆ U X O X OP
Example 1:
 U = {John, Lina, Ray, Tom}, OP = {read, write}, O = {Obj1, Obj2}

AUTH Explanation
(John, Obj1, write)
(John, Obj2, write)
(John, Obj1, read)
(Lina, Obj2, write)
(Tom, Obj1, read)
(Ray, Obj1, read)

e.g., John is allowed to
do read operation on
Obj1 but not allowed to
do read operation on
Obj2

Background

@Shuvra Chakraborty

Page 9

RBAC system
- is a tuple <U, O, OP, Roles, RPA, RUA, RH, checkAccessRBAC>

 Roles is finite set of roles
 RH is the role hierarchy relation [RH’: reflexive transitive closure of RH]
 RPA : Role Permission Assignment
 RUA: Role User Assignment
 Permission is an object-operation pair
 authPerm(r) = {p ∈ RPA(r’)|(r, r’) ∈ RH’}, where r,r’ ∈ Roles
 authUser (r) = {u ∈ RUA(r’)|(r’, r) ∈ RH’} where r,r’ ∈ Roles

 checkAccessRBAC(u:U, o:O, op:OP) ≡ ∃r ∈ Roles.(u ∈ authUser(r)
∧ (o, op) ∈ authPerm(r)

Background

@Shuvra Chakraborty

Page 10

Equivalency
Two access control systems are equivalent iff
 U, O, and OP are equal for both systems

 ꓯ(u,o,op) ϵ UxOxOP. checkAccesssystem1 (u,o,op) ≡ checkAccesssystem2 (u,o,op)

EAS and RBAC system defined in example 1 and 2 are equivalent ​​

Background

Example 2:
• U = {John, Lina, Ray, Tom}, OP = {read, write}, O = {Obj1, Obj2}

[same as Example 1]
• Roles = {R1, R2, R3}
• RPA(R1) = {(Obj1, write)}, RPA(R2) = {(Obj2, write)}, RPA(R3)

= {(Obj1, read)}
• RUA(R1) = {John}, RUA(R2) = {Lina}, RPA(R3) = {Ray, Tom}
• RH={(R1,R2), (R1, R3)} [R1 is a senior role than R2, R3]

@Shuvra Chakraborty

Page 11

• ABAC system is a tuple <U, O, OP, UA, OA, UAValue, OAValue, RangeSet,
RuleSet, checkAccessABAC >

Example 3
• U, O, OP are same as Example 1
• UA ={Position, Dept.}, OA = {Type}

• RuleSet contains one separate rule for each operation, {Ruleread, Rulewrite}
• ABAC system is incomplete in Example 3 (No rules given!)

RangeSet

Position {Officer, Student,
Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

UAValue
User
(U)

Position Dept.

John Officer CS
Lina Student CS
Ray Officer CS
Tom Officer CS

OAValue
Object
(O)

Type

Obj1 File
Obj2 Printer

Background

@Shuvra Chakraborty

Page 12@Shuvra Chakraborty

ABAC rule structure
For any operation op ∈ OP, Ruleop grammar

 Ruleop ::= Ruleop∨ Ruleop | (Atomicexp)
 Atomicexp ::= Atomicuexp ∧ Atomicoexp | Atomicuexp |

Atomicoexp
 Atomicuexp ::= Atomicuexp ∧ Atomicuexp | uexp
 Atomicoexp ::= Atomicoexp ∧ Atomicoexp | oexp
 uexp ∈ {ua(u) = value | ua ∈ UA ∧ value ∈ Range(ua)}
 oexp ∈ {oa(o) = value | oa ∈ OA ∧ value ∈ Range(oa)}

 checkAccessABAC (a:U, b:O, op:OP) ≡ Ruleop(a:U, b:O)

*** Illustrated ABAC rule examples can be found in later slides

Background

Page 13

Contribution

 More EAS + Incomplete ABAC system
(Paper 1)

RBAC + Incomplete ABAC system
(Paper 2)

Use additional attribute
to solve infeasibility

ABAC policy mining is
feasible or not

Not
feasible?

@Shuvra Chakraborty

Page 14

On the Feasibility of Attribute-Based Access
Control Policy Mining

Paper 1

@Shuvra Chakraborty

Page 15

Paper 1 Workflow

Check ABAC RuleSet Existence (partition-based approach)

Rule Generation

Infeasibility correction
(use additional attributes with random values)

Given EAS with supporting data

yes

No

@Shuvra Chakraborty

Page 16

Age Version No

Review: ABAC

Attribute-Based Access Control (ABAC) limits user to object
access by using properties of both user and objects, namely
“attribute”.

Salary

Name

TypeUser Object

@Shuvra Chakraborty

Page 17

ABAC policy mining

Does an equivalent ABAC system exist for the given access
control system and supporting data?

RangeSet

Position {Officer, Student, Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

Access Control System UAValue
User
(U)

Position Dept.

John Officer CS

Lina Student CS

Ray Officer CS

Tom Officer CS

OAValue
Object
(O)

Type

Obj1 File
Obj2 Printer

Authorization (AUTH)

(John, obj1, write)

(Lina, obj2, write)

Su
pp

or
tin

g
D

at
a

Equivalent ABAC
system

@Shuvra Chakraborty

Page 18

RangeSet

Position {Officer, Student, Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

Access Control System UAValue
User
(U)

Position Dept.

John Officer CS

Lina Student CS

Ray Officer CS

Tom Officer CS

OAValue
Object
(O)

Type

Obj1 File
Obj2 Printer

Authorization (AUTH)

(John, obj1, write)

(Lina, obj2, write)

Su
pp

or
tin

g
D

at
a

Equivalent ABAC
system

Example A: no ID

No IDs → Not possible
no way to separate John from Ray and Tom

@Shuvra Chakraborty

Page 19

Example A: with ID

RangeSet

Position {Officer, Student, Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

Access Control System UAValue
User
(U)

uID Position Dept.

John u1 Officer CS

Lina u2 Student CS

Ray u3 Officer CS

Tom u4 Officer CS

OAValue
Object
(O)

oID Type

Obj1 o1 File

Obj2 o2 Printer

Authorization (AUTH)

(John, obj1, write)

(Lina, obj2, write)

Su
pp

or
tin

g
D

at
a

Equivalent ABAC
system

Entity IDs → Always possible
Rule_write =

(uID(U)=u1 ∧ oID(O)=o1) ∨ (uID(U)=u2 ∧ oID(O)=o2)
@Shuvra Chakraborty

Page 20

Example B

Determine the feasibility before rule generation!
Our solution: Partition-based strategy

RangeSet

Position {Officer, Student, Faculty}

Dept. {CS, EE}
Type {File, Printer, Scanner}

Access Control System UAValue
User
(U)

Position Dept.

John Officer CS

Lina Student CS

Ray Officer CS

Tom Officer CS

OAValue
Object
(O)

Type

Obj1 File
Obj2 Printer

Authorization (AUTH)

(John, obj1, write)

(Ray, obj1, write)

(Tom, obj1, write)

(Lina, obj2, write)

Su
pp

or
tin

g
D

at
a

Equivalent ABAC
system

@Shuvra Chakraborty

Page 21

John, Obj1

Ray, Obj1

Tom, Obj1

Lina, Obj1
Lina, Obj2

John, Obj2
Ray, Obj2

Tom, Obj2

Partition Set

Partition set: example B

Partition set is conflict-free w.r.t. write → Yes
@Shuvra Chakraborty

Page 22

John, Obj1

Ray, Obj1

Tom, Obj1

Lina, Obj1
Lina, Obj2

John, Obj2
Ray, Obj2

Tom, Obj2

Partition Set

Partition set: example A

Conflict

Authorization
(AUTH)

(John, obj1, write)
(Lina, obj2, write)

Ray and Tom has no
authorization compared
to example B

@Shuvra Chakraborty

Page 23

Partition Partition the sets of users and
objects present
e.g., {John, Ray, Tom} is partitioned as
{John} and {Ray, Tom}

Generate a conjunctive clause

Infeasibility correction

Exact Solution can be achieved many ways

conflict

conflict-free, (UA, OA)

if needed
a. Add an attribute to UA (exU)
b. Add an attribute to OA (exO)

Use unique random values to identify
e.g., exU(John)=a, exU(Ray)=b and exU(Tom)=b.
exO is not required here!

conflict-free
(UA ꓴ exU), (OA ꓴ exO)

OR to Ruleop

@Shuvra Chakraborty

Page 24

John, Obj1

Ray, Obj1

Tom, Obj1
Lina, Obj2

Example A: Rule Generation

Conflict

Rulewrite ≡ (Position = officer AND Dept = CS AND exU = a AND Type = File) OR
(Position = student AND Dept=CS AND Type = Printer)

ABAC system
<U, O, OP, UA, OA, RangeSet, UAValue, OAValue,{Rulewrite}, checkAccessABAC>

Conflict-free

Equivalent ABAC system generation is always possible!

John, Obj1

Ray, Obj1

Tom, Obj1

@Shuvra Chakraborty

Page 25

Partition Set

If all partitions
are Conflict-free

There exists at least
one conflicted partition

ABAC RuleSet Infeasibility
Correction

Generate an equivalent
ABAC RuleSet

X

At a Glance

@Shuvra Chakraborty

Page 26

{Stud., Fac., Off.} {CS, EE} {F., Pr., Sc.}

Represented: 4
e.g., (Off., CS, F.),

(Stud., CS, Pr.)

Unrepresented: 14
e.g., (Fac., CS, Pr.),

(Stud., EE, Pr.)

Outcome of peculiarity in attribute value assignment

Unrepresented Partition

@Shuvra Chakraborty

Page 27

 Formalized notion: feasibility of ABAC policy mining for the first time
 The overall asymptotic complexity of ABAC RuleSet Existence problem is

O(|OP| × (|U| × |O|))
 The overall asymptotic complexity of ABAC RuleSet Infeasibility Correction is:

O(|OP| × (|U| × |O|) 3)

 Challenges
 Can you replace random values?
 More compact set of rule generation
 Exact solution:

 Reduce number of split partitions
 Change number of attributes required
 Changing existing attribute set, possible?

 Approximate Solution
 Change authorization
 Change existing attribute value assignment

Summary: Paper 1

@Shuvra Chakraborty

Page 28

References

1. Shuvra Chakraborty, Ravi Sandhu and Ram Krishnan, On the
Feasibility of Attribute-Based Access Control Policy Mining. In
Proceedings of the 20th IEEE Conference on Information Reuse and
Integration (IRI), Los Angeles, California, July 30-August 1, 2019, 8
pages.

@Shuvra Chakraborty

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	ABAC policy mining
	Example A: no ID
	Example A: with ID
	Example B
	Slide Number 21
	Slide Number 22
	Infeasibility correction
	Slide Number 24
	Slide Number 25
	Unrepresented Partition
	Slide Number 27
	Slide Number 28

