
1

Secure Sockets Layer (SSL) and
Man-in-the-Middle Vulnerability

Prof. Ravi Sandhu
Executive Director and Endowed Chair

Lecture 5

ravi.utsa@gmail.com
www.profsandhu.com

© Ravi Sandhu World-Leading Research with Real-World Impact!

CS 6393

2

Internet Security Protocols

© Ravi Sandhu World-Leading Research with Real-World Impact!

3© Ravi Sandhu World-Leading Research with Real-World Impact!

Internet Hourglass Model TCP/IP

IPv4 RFC 791
Sept. 1981

TCP RFC 793
Sept. 1981

4© Ravi Sandhu World-Leading Research with Real-World Impact!

Internet Security Protocols

IPv4 RFC 791
Sept. 1981

TCP RFC 793
Sept. 1981 Where to inject

security?

5© Ravi Sandhu World-Leading Research with Real-World Impact!

Internet Security Protocols

IPv4 RFC 791
Sept. 1981

TCP RFC 793
Sept. 1981

IPsec, 1998

SSL,1994

SET,1996

6© Ravi Sandhu World-Leading Research with Real-World Impact!

Internet Security Protocols

IPsec, 1998

SSL,1994

Largely failed

Half successfulDozens of other
security protocols

Some successes
Many failures

7© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way vs 2-way SSL

Client
(Browser) Server

1-way SSL

Client
(Browser) Server

2-way SSL

8© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way vs 2-way SSL

Client
(Browser) Server

1-way SSL

Client
(Browser) Server

2-way SSL

RSA encryption
certificate

RSA encryption
certificate

RSA signature
certificate

9© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way vs 2-way SSL

Client
(Browser) Server

1-way SSL

Client
(Browser) Server

2-way SSL

LESS SECURE
Phishing

Man-in-the-middle

MORE SECURE
Phishing

Man-in-the-middle

10© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way vs 2-way SSL

Client
(Browser) Server

1-way SSL

Client
(Browser) Server

2-way SSL

LESS SECURE
Phishing

Man-in-the-middle

MASS DEPLOYMENT

MORE SECURE
Phishing

Man-in-the-middle

MINIMAL DEPLOYMENT

Client-less trumps client-full
Start-ups (SSL) trump committees (IPSEC)

© Ravi Sandhu 11World-Leading Research with Real-World Impact!

The SSL Lesson

12

SSL Details

© Ravi Sandhu World-Leading Research with Real-World Impact!

 layered on top of TCP
 SSL versions 1.0, 2.0, 3.0, 3.1
 Netscape protocol
 later refitted as IETF standard TLS

(Transport Layer Security)
 TLS 1.0 very close to SSL 3.1

© Ravi Sandhu 13World-Leading Research with Real-World Impact!

SSL

 application protocol independent
 does not specify how application

protocols add security with SSL
 how to initiate SSL handshaking
 how to interpret certificates

 left to designers of upper layer
protocols to figure out

© Ravi Sandhu 14World-Leading Research with Real-World Impact!

SSL

© Ravi Sandhu 15World-Leading Research with Real-World Impact!

SSL vs TCP Ports

 https 443
 ssmtp 465
 snntp 563
 sldap 636
 spop3 995

 ftp-data 889
 ftps 990
 imaps 991
 telnets 992
 ircs 993

 peer entity authentication
 data confidentiality
 data authentication and integrity
 compression/decompression
 generation/distribution of session keys
 integrated into protocol

 security parameter negotiation

© Ravi Sandhu 16World-Leading Research with Real-World Impact!

SSL Services

© Ravi Sandhu 17World-Leading Research with Real-World Impact!

SSL Architecture

SSL Record Protocol
TCP
IP

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL
Alert

Protocol
HTTP

Other
Application
Protocols

 Handshake protocol: complicated
 embodies key exchange & authentication
 runs in plaintext
 10 message types

 Change Cipher Spec protocol: straightforward
 single 1 byte message with value 1
 could be considered part of handshake protocol
 transitions from plaintext to encrypted and mac’ed

 Record protocol: straightforward
 fragment, compress, MAC, encrypt
 uses 4 symmetric keys

 Alert protocol: straightforward
 2 byte messages
 1 byte alert level- fatal or warning; 1 byte alert code

© Ravi Sandhu 18World-Leading Research with Real-World Impact!

SSL Architecture

 4 symmetric keys

© Ravi Sandhu 19World-Leading Research with Real-World Impact!

SSL Record Protocol

Client
(Browser) Server

Key 1 for MAC
Key 2 for encrypt

Key 3 for MAC
Key 4 for encrypt

 4 steps by sender (reversed by receiver)
 Fragmentation
 Compression
 MAC
 Encryption

© Ravi Sandhu 20World-Leading Research with Real-World Impact!

SSL Record Protocol

 each SSL record contains
 content type: 8 bits, only 4 defined
 change_cipher_spec
 alert
 handshake
 application_data

 protocol version number: 8 bits major, 8 bits minor
 length: max 16K bytes (actually 214+2048)
 data payload: optionally compressed and encrypted
 message authentication code (MAC)

© Ravi Sandhu 21World-Leading Research with Real-World Impact!

SSL Record Protocol

 initially SSL session has null compression and
cipher algorithms

 both are set by the handshake protocol at
beginning of session

 handshake protocol may be repeated during the
session

© Ravi Sandhu 22World-Leading Research with Real-World Impact!

SSL Handshake Protocol

 SSL session negotiated by handshake protocol
 session ID
 chosen by server

 X.509 public-key certificate of peer
 possibly null

 compression algorithm
 cipher spec
 encryption algorithm
 message digest algorithm

 master secret
 48 byte shared secret

 is resumable flag
 can be used to initiate new connections
 each session is created with one connection, but additional

connections within the session can be further created

© Ravi Sandhu 23World-Leading Research with Real-World Impact!

SSL Session

 connection end: client or server
 client and server random: 32 bytes each
 keys generated from master secret, client/server random
 client_write_MAC_secret server_write_MAC_secret
 client_write_key server_write_key
 client_write_IV server_write_IV

 compression state
 cipher state: initially IV, subsequently next feedback block
 sequence number: starts at 0, max 264-1

© Ravi Sandhu 24World-Leading Research with Real-World Impact!

SSL Connection State

 4 parts to state
 current read state
 current write state
 pending read state
 pending write state

 handshake protocol
 initially current state is empty
 either pending state can be made current and reinitialized to empty

© Ravi Sandhu 25World-Leading Research with Real-World Impact!

SSL Connection State

 Type: 1 byte
 10 message types defined

 length: 3 bytes
 content

© Ravi Sandhu 26World-Leading Research with Real-World Impact!

SSL Handshake Protocol

© Ravi Sandhu 27World-Leading Research with Real-World Impact!

SSL Handshake Protocol

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

 Phase 1:
 Establish security capabilities

 Phase 2:
 Server authentication and key exchange

 Phase 3:
 Client authentication and key exchange

 Phase 4:
 Finish

© Ravi Sandhu 28World-Leading Research with Real-World Impact!

SSL Handshake Protocol

 these handshake messages must occur in order
 optional messages can be eliminated
 10th message
 hello_request
 can be sent anytime from server to client to request client to

start handshake protocol to renegotiate session
 change_cipher_spec is a separate 1 message protocol
 functionally just like a message in the handshake protocol

© Ravi Sandhu 29World-Leading Research with Real-World Impact!

SSL Handshake Protocol

© Ravi Sandhu 30World-Leading Research with Real-World Impact!

SSL 1-Way Handshake with RSA

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

 Establish security capabilities
 client hello message

 4 byte timestamp, 28 byte random value
 session ID:

 non-zero for new connection on existing session
 zero for new connection on new session

 client version: highest version
 cipher_suite list: ordered list

 key exchange method, encryption method, MAC method
 compression list: ordered list

 server hello message
 32 byte random value
 session ID:

 new or reuse
 version

 lower of client suggested and highest supported
 cipher_suite list: single choice
 compression list: single choice

© Ravi Sandhu 31World-Leading Research with Real-World Impact!

SSL Handshake Phase 1

© Ravi Sandhu 32World-Leading Research with Real-World Impact!

SSL 1-Way Handshake with RSA

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

 Server authentication and key exchange
 certificate message
 server’s X.509v3 certificate followed by optional chain of

certificates
 required for RSA

 server done message
 ends phase 2, always required

© Ravi Sandhu 33World-Leading Research with Real-World Impact!

SSL RSA 1-way Handshake Phase 2

© Ravi Sandhu 34World-Leading Research with Real-World Impact!

SSL 1-Way Handshake with RSA

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

 Client authentication and key exchange
 client key exchange message
 client generates 48-byte pre-master secret, encrypts with server’s RSA

public key

 client and server compute 48 byte master secret
 using 48-byte pre-master secret, ClientHello.random, ServerHello.random

 client and server compute 4 symmetric keys from master secret

© Ravi Sandhu 35World-Leading Research with Real-World Impact!

SSL 1-way Handshake Phase 3

Client
(Browser) Server

Key 1 for MAC
Key 2 for encrypt

Key 3 for MAC
Key 4 for encrypt

© Ravi Sandhu 36World-Leading Research with Real-World Impact!

SSL 1-Way Handshake with RSA

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

 Finish and move to record protocol
 change cipher spec message
 not considered part of handshake protocol but in some sense

is part of it
 1 byte message protected by current state
 copies pending state to current state

 Finished message
 sent under new algorithms and keys
 content is MAC of all previous messages with master secret

and constant “client finished” or “server finished”

© Ravi Sandhu 37World-Leading Research with Real-World Impact!

SSL 1-way RSA Handshake Phase 4

© Ravi Sandhu 38World-Leading Research with Real-World Impact!

SSL 1-Way Handshake with RSA

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

© Ravi Sandhu 39World-Leading Research with Real-World Impact!

SSL 2-Way Handshake with RSA

 Client Server

 ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not
 always sent.

Phase 1

Phase 2

Phase 3

Phase 4

Record
Protocol

 Client Server

 ClientHello -------->

 ServerHello

 Certificate*

 ServerKeyExchange*

 CertificateRequest*

 <-------- ServerHelloDone

 Certificate*

 ClientKeyExchange

 CertificateVerify*

 [ChangeCipherSpec]

 Finished -------->

 [ChangeCipherSpec]

 <-------- Finished

 Application Data <-------> Application Data

 Fig. 1 - Message flow for a full handshake

 * Indicates optional or situation-dependent messages that are not

 always sent.

 Server authentication and key exchange
 certificate message
 server’s X.509v3 certificate followed by optional chain of

certificates
 required for RSA

 certificate request message
 request a certificate from client
 specifies Certificate Type and Certificate Authorities

 server done message
 ends phase 2, always required

© Ravi Sandhu 40World-Leading Research with Real-World Impact!

SSL RSA 2-way Handshake Phase 2

 Client authentication and key exchange
 certificate message
 client’s X.509v3 certificate followed by optional chain of certificates

 client key exchange message
 client generates 48-byte pre-master secret, encrypts with server’s RSA

public key
 certificate verify message
 signs hash of master secret (established by key exchange) and all

handshake messages so far

 client and server compute 48 byte master secret
 using 48-byte pre-master secret, ClientHello.random, ServerHello.random

 client and server compute 4 symmetric keys from master secret

© Ravi Sandhu 41World-Leading Research with Real-World Impact!

SSL 2-way Handshake Phase 3

 2 byte alert messages
 1 byte level
 fatal or warning

 1 byte
 alert code

© Ravi Sandhu 42World-Leading Research with Real-World Impact!

SSL Alert Protocol

© Ravi Sandhu 43World-Leading Research with Real-World Impact!

SSL Alert Messages
Warning or fatal

 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed(21),
 record_overflow(22),

 decompression_failure(30),
 handshake_failure(40),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 user_canceled(90),
 no_renegotiation(100),

Warning or fatal

 close_notify(0),

 unexpected_message(10),

 bad_record_mac(20),

 decryption_failed(21),

 record_overflow(22),

 decompression_failure(30),

 handshake_failure(40),

 bad_certificate(42),

 unsupported_certificate(43),

 certificate_revoked(44),

 certificate_expired(45),

 certificate_unknown(46),

 illegal_parameter(47),

 unknown_ca(48),

 access_denied(49),

 decode_error(50),

 decrypt_error(51),

 export_restriction(60),

 protocol_version(70),

 insufficient_security(71),

 internal_error(80),

 user_canceled(90),

 no_renegotiation(100),

© Ravi Sandhu 44World-Leading Research with Real-World Impact!

SSL Alert Messages

 always fatal
 unexpected_message
 bad_record_mac
 decompression_failure
 handshake_failure
 illegal_parameter

45

SSL Man-in-the-Middle
(MITM) Attack

© Ravi Sandhu World-Leading Research with Real-World Impact!

46© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way SSL MITM

Client
(Browser) Server

RSA encryption
certificate

https

47© Ravi Sandhu World-Leading Research with Real-World Impact!

SSL

48© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way SSL MITM

Client
(Browser) Server

RSA encryption
certificate

https
MITM

http

49© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way SSL MITM

Client
(Browser) Server

RSA encryption
certificate

https
MITM

https

50© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way SSL MITM

Client
(Browser) Server

RSA encryption
certificate

https
MITM

https

fake server
certificate

51© Ravi Sandhu World-Leading Research with Real-World Impact!

Server-Side Masquerading

Bob
Web browser

www.host.com
Web server1 way SSL

Ultratrust
Security
Services

www.host.com

52© Ravi Sandhu World-Leading Research with Real-World Impact!

Server-Side Masquerading

Bob
Web browser

www.host.com
Web server

1-way SSL Ultratrust
Security
Services

www.host.comMallory’s
Web server

BIMM
Corporation

www.host.com

1-way SSL

53© Ravi Sandhu World-Leading Research with Real-World Impact!

Server-Side Masquerading

Bob
Web browser

www.host.com
Web server

1-way SSL Ultratrust
Security
Services

www.host.comMallory’s
Web server

1-way SSL

BIMM
Corporation

Ultratrust
Security
Services

www.host.com

54© Ravi Sandhu World-Leading Research with Real-World Impact!

1-way SSL MITM

Client
(Browser) Server

RSA encryption
certificate

https
MITM

https

RSA signature
certificate

fake client
certificate

fake server
certificate

55

OpenSSL Heartbleed Attack

© Ravi Sandhu World-Leading Research with Real-World Impact!

56© Ravi Sandhu World-Leading Research with Real-World Impact!

Heartbeat Protocol: RFC 6520, Feb. 2012

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56

