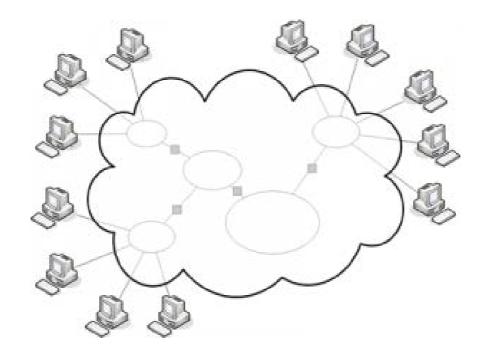


CS 6393: Cyber Security Models and Systems

Views of Cloud Computing

Ravi Sandhu

L6-1

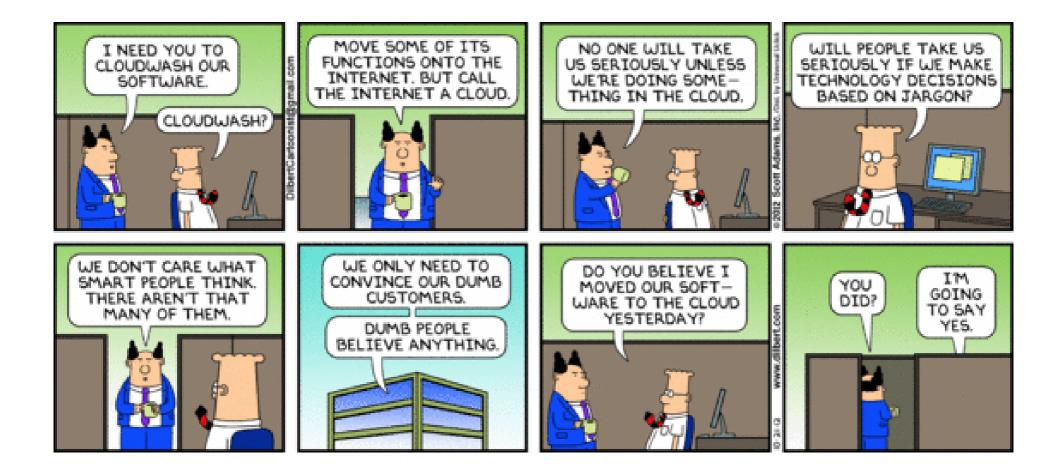


© Ravi Sandhu

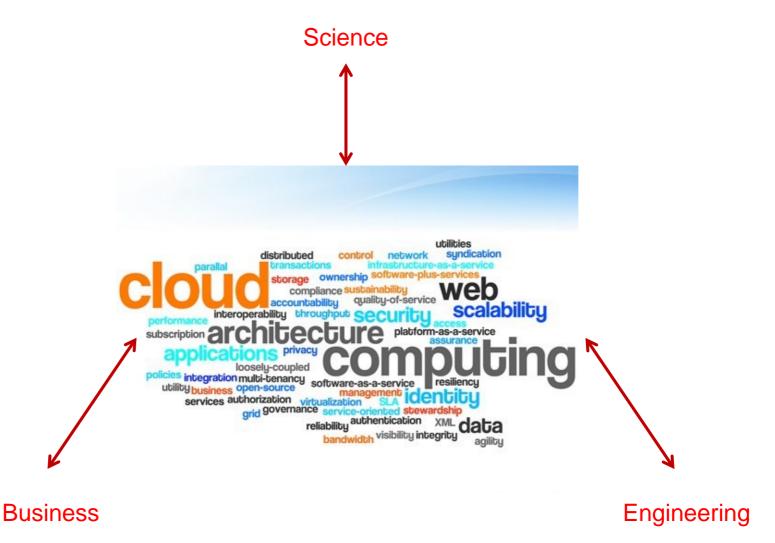
The Cloud

The Network is the Computer - Sun Microsystems, early 1990s The Cloud is the Computer - IEEE Spectrum, 2008

Datacenter as a Computer - Barroso and Hölzle, 2009


© Ravi Sandhu

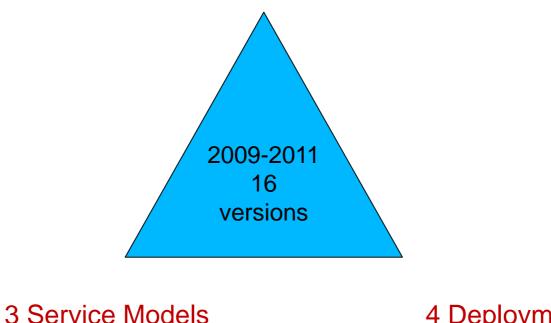
Cloudwashing



© Ravi Sandhu

World-Leading Research with Real-World Impact!

© Ravi Sandhu

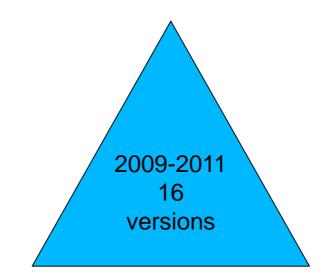


© Ravi Sandhu

NIST Cloud Computing 3-4-5 Definition

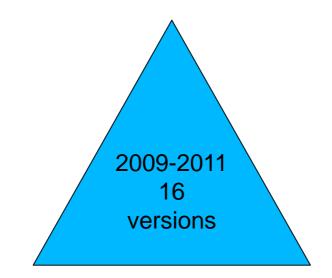
5 Essential Characteristics

4 Deployment Models



5 Essential Characteristics

3 Service Models


Software as a Service (SaaS) Platform as a Service (PaaS) Infrastructure as a Service (IaaS) 4 Deployment Models

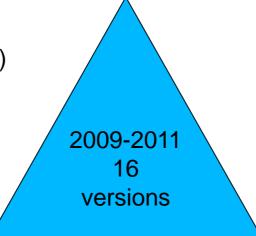
5 Essential Characteristics

3 Service Models

Software as a Service (SaaS) Platform as a Service (PaaS) Infrastructure as a Service (IaaS)

4 Deployment Models

Public Private Community Hybrid



5 Essential Characteristics

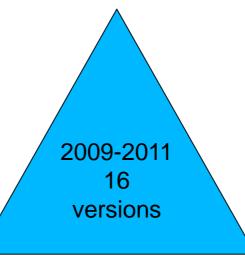
On-demand self service Broad network access Resource pooling (multi-tenant) Rapid elasticity Measured service

3 Service Models

Software as a Service (SaaS) Platform as a Service (PaaS) Infrastructure as a Service (IaaS)

4 Deployment Models

Public Private Community Hybrid



5 Essential Characteristics

On-demand self service Broad network access Resource pooling (multi-tenant) Rapid elasticity Measured service

Other Common Characteristics

Geographic distribution Homogeneity Resilience Massive scale Virtualization Security

3 Service Models

Software as a Service (SaaS) Platform as a Service (PaaS) Infrastructure as a Service (IaaS)

- 4 Deployment Models
 - Public Private Community Hybrid

- "We argue that Cloud Computing not only overlaps with Grid Computing, it is indeed evolved out of Grid Computing and relies on Grid Computing as its backbone and infrastructure support."
- I don't think so

Cloud and Grid: Foster et al 2008

Scale	Distributed Systems				
	Supercomputers				
	Grids	Clouds			
	Clusters				
		Web 2.0			
	Annelisation	Com i com			
	Application	Services			
	Oriented	Oriented			

Grid 3 Point Checklist: Foster 2002

- 1. Coordinates resources that are not subject to centralized control
 - Virtual Organization (VO)
- 2. Uses standard, open, general-purpose protocols and interfaces
 - Globus toolkit
- 3. Delivers non-trivial qualities of service

Grid

- Coordinates resources that are not subject to centralized control
 No but VOs may
 - Virtual Organization (VO)

No but VOs may be enabled on demand

- 2. Uses standard, open, general-purpose protocols and interfaces No but standard opensource software and APIs may emer
 - Globus toolkit

- software and APIs may emerge (OpenStack is the current contender)
- 3. Delivers non-trivial qualities of service

Yes

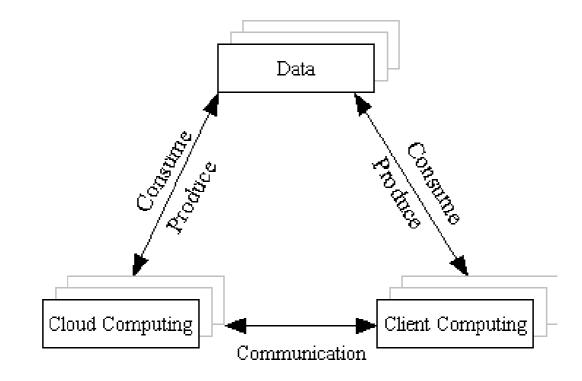
On-demand self service Broad network access Resource pooling (multi-tenant) Rapid elasticity Measured service Geographic distribution Homogeneity Resilience Massive scale Virtualization Security

Grid versus Cloud Drivers

Cloud

- Commercially developed
- Little or no academic input
- Pay-per-use
- Payment driven
- Centrally owned hardware
- Centrally scheduled
- Single point of trust
- Simple security
- Interactive
- Commodity computing
- Small and medium businesses
- Virtualization essential
- Not so predictable performance

Grid


- DoD funded, no commercial traction
- Mainly academic driven
- Pay-per-seat (one-time payment)
- Project oriented, proposal driven
- Multiply owned hardware
- Distributed scheduling
- Multiple trust points
- Complex PKI based security
- Batch
- High performance computing
- High end organizations
- Virtualization often not used
- Predictable performance

Cloud and Grid: Foster et al 2008

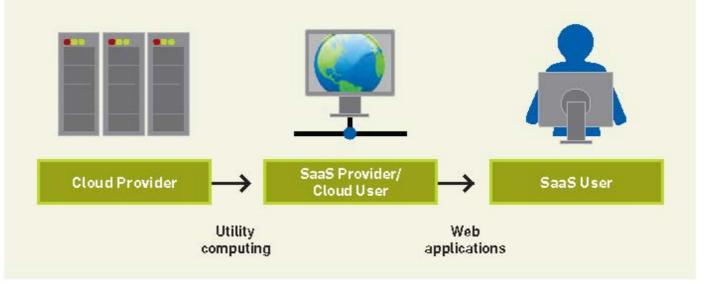

The triangle model of next-generation Internet Computing

Figure 1. Users and providers of cloud computing. We focus on cloud computing's effects on cloud providers and SaaS providers/cloud users. The top level can be recursive, in that SaaS providers can also be a SaaS users via mashups.

Not laaS or PaaS but classes of utility computing

UTSA Computer Science

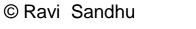
© Ravi Sandhu

Table 1. Comparing public clouds and private data centers.

Advantage	Public Cloud	Conventional Data Center
Appearance of infinite computing resources on demand	Yes	No
Elimination of an up-front commitment by Cloud users	Yes	No
Ability to pay for use of computing resources on a short-term basis as needed	Yes	No
Economies of scale due to very large data centers	Yes	Usually not
Higher utilization by multiplexing of workloads from different organizations	Yes	Depends on company size
Simplify operation and increase utilization via resource virtualization	Yes	No

Table 2. Top 10 obstacles to and opportunities for growth of cloud computing.

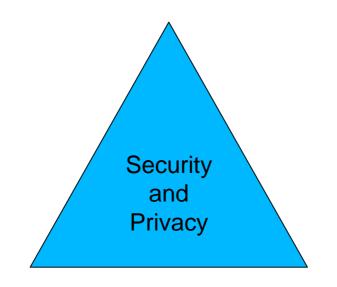
	Obstacle	Opportunity
1	Availability/Business Continuity	Use Multiple Cloud Providers
2	Data Lock-In	Standardize APIs; Compatible SW to enable Surge or Hybird Cloud Computing
3	Data Confidentiality and Auditability	Deploy Encryption, VLANs, Firewalls
4	Data Transfer Bottlenecks	FedExing Disks; Higher BW Switches
5	Performance Unpredictability	Improved VM Support; Flash Memory; Gang Schedule VMs
6	Scalable Storage	Invent Scalable Store
7	Bugs in Large Distributed Systems	Invent Debugger that relies on Distributed VMs
8	Scaling Quickly	Invent Auto-Scaler that relies on ML; Snapshots for Conservation
9	Reputation Fate Sharing	Offer reputation-guarding services like those for email
0	Software Licensing	Pay-for-use licenses



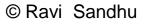
Cyber Security: What is Different in the Cloud?

Threats Risk = f (Threats, Vulnerabilities, Impact) Impact

Vulnerabilities



Cyber Security: What is Different in the Cloud?



Multi-Tenancy

Compliance and Forensics

Cloud Service Provider

