

Intrusion Detection: Base Rate Fallacy

Prof. Ravi Sandhu Executive Director and Endowed Chair

Lecture 8-1

ravi.utsa@gmail.com www.profsandhu.com

© Ravi Sandhu

S: Patient is <u>S</u>ick (has the disease)

		S	٦S
		RΛS	R ∧ ¬S
R: Test <u>R</u> esult	R	True positive	False positive
is positive		¬R∧S	¬R ^ ¬S
	¬R	False negative	True negative

S: Patient is <u>S</u>ick (has the disease) System is under attack S ¬S R ^ S $R \wedge \neg S$ R True positive False positive R: Test <u>R</u>esult ¬R ^ ¬S is positive $\neg R \land S$ Alarm is raised ¬R False negative True negative

© Ravi Sandhu

Malware Detection Techniques

© Ravi Sandhu

S: Patient is <u>S</u>ick (has the disease)

		S	¬S
		R ^ S	R ∧ ¬S
R: Test R esult	R	True positive	False positive
is positive		¬R∧S	¬R ∧ ¬S
	¬R	False negative	True negative

S: Patient is <u>S</u>ick (has the disease)

	S	¬S	
	R ^ S	R ∧ ¬S	
R	True positive P(R S) = 0.99	False positive $P(R \neg S) = 0.01$	
R: Test <u>R</u> esult			Rows must total between
is positive	¬R∧S	¬R ∧ ¬S	0 and 2
¬R	False negative	True negative	
These probabilities can be empirically estimated	P(¬R S) = 0.01	P(¬R ¬S) = 0.99	

Columns must total 1

Coincidentally equal

estimate P(R|S) = 0.99 $P(\neg R|S) = 0.01$ $P(R|\neg S) = 0.03$ $P(\neg R|\neg S) = 0.97$

In general will not be equal

Base-Rate Fallacy

S: Patient is <u>S</u>ick (has the disease)

	S	¬S	
	R ^ S	R ^ ¬S	
R Di Taat B aavilt	True positive P(R S) = 0.99	False positive P(R ¬S) = 0.03	Rows must
R: Test <u>R</u> esult is positive	¬R∧S	¬R ^ ¬S	total between 0 and 2
٦R	False negative	True negative	
These probabilities can be empirically estimated	P(¬R S) = 0.01	P(¬R ¬S) = 0.97	

Columns must total 1

We will continue

with these numbers

Base-Rate Fallacy

S: Patient is <u>S</u>ick (has the disease)

	S	٦S
	R ^ S	R∧¬S
R	True positive	False positive
	P(R S) = 0.99	P(R ¬S) = 0.01
R: Test R esult		
is positive	¬R∧S	¬R ∧ ¬S
¬R		
11	False negative	True negative
These probabilities can be empirically	$P(\neg R S) = 0.01$	P(¬R ¬S) = 0.99
estimated		

© Ravi Sandhu

Real Interest

Bayes' Theorem

 \succ P(\neg S| \neg R) = 1 - P(S| \neg R)

 $(P(S) \times P(\neg R|S))/$ (P(S) × P(¬R|S)+P(¬S)) × P(¬R|¬S))

▷ P(S|¬R) =

 \succ P(\neg S|R) = 1 - P(S|R)

We will continue

with these numbers

Test Outcomes

S: Patient is <u>S</u>ick (has the disease)

	S	٦S
	R ^ S	R ∧ ¬S
R	True positive	False positive
	P(R S) = 0.99	P(R ¬S) = 0.01
R: Test R esult		
is positive	¬R∧S	¬R∧¬S
¬R		
Ϋ́Υ	False negative	True negative
These probabilities can be empirically	P(¬R S) = 0.01	P(¬R ¬S) = 0.99
estimated		

I·C·S	Base Rate		UTSA .
The Institute for Cyber Security Assume P(S)=0.0001 1 in 10,000 has disease		nt is <u>S</u> ick disease) ¬S	
	R ^ S	R ^ ¬S	
R	True positive P(S R) = 0.009804	False positive P(¬S R) = 0.990196	Rows must
R: Test <u>R</u> esult is positive	¬R∧S	¬R ^ ¬S	total 1
¬R These probabilities can be computed by	False negative P(S ¬R) = 0.000001	True negative P(¬S ¬R) = 0.999999	
Bayes' theorem if we know P(S)	Columns must tota	al between 0 and 2	

False Alarms Predominate!

Assume P(S)=0.0001 1 in 10,000 has disease

P(S R)	requires	P(R ¬S)
0.01		0.01
0.09		0.001
0.5		0.0001
0.9		0.00001
0.99		0.000001

Base-Rate Fallacy

Total population = 1,00				
1 in 10,000 has (diseas	e S	¬S	
		100	999,900	
		R ^ S	R ^ ¬S	
	R	True positive	False positive	
R: Test <u>R</u> esult is positive		¬R∧S	¬R ∧ ¬S	
	¬R	False negative	True negative	
R is 99% accura for sick and non- populations				

Base-Rate Fallacy

Total population = 1,000			
1 in 10,000 has dis	ease	S S	¬S
		100	999,900
	ſ	R∧S	R ∧ ¬S
F	R	True positive	False positive
R: Test R esult		99	9,999
is positive		¬R∧S	¬R ∧ ¬S
٦F	R	False negative	True negative 989,901
R is 99% accurate for sick and non-sic populations	k	-	

© Ravi Sandhu