Intrusion Detection: Base Rate Fallacy

Prof. Ravi Sandhu
Executive Director and Endowed Chair

Lecture 8-1

ravi.utsa@gmail.com
www.profsandhu.com

Testing Outcomes

S: Patient is Sick (has the disease)
$S \quad \neg S$

R: Test Result is positive

$R \wedge S$	$\mathrm{R} \wedge \neg \mathrm{S}$
True positive	False positive
$\neg \mathrm{R} \wedge \mathrm{S}$	$\neg \mathrm{R} \wedge \neg \mathrm{S}$
False negative	True negative

Testing Outcomes

R: Test Result is positive Alarm is raised

R	$R \wedge S$	$\mathrm{R} \wedge \neg \mathrm{S}$
	True positive	False positive
	$\neg \mathrm{R} \wedge \mathrm{S}$	$\neg \mathrm{R} \wedge \neg \mathrm{S}$
$\neg \mathrm{R}$	False negative	True negative

Malware Detection Techniques

Testing Outcomes

S: Patient is Sick (has the disease)
$S \quad \neg S$

R: Test Result is positive

$R \wedge S$	$\mathrm{R} \wedge \neg \mathrm{S}$
True positive	False positive
$\neg \mathrm{R} \wedge \mathrm{S}$	$\neg \mathrm{R} \wedge \neg \mathrm{S}$
False negative	True negative

Testing Outcomes

Estimating $\mathrm{P}(\mathrm{R} \mid \mathrm{S})$ etc

1000 not sick

Test R is positive 1980

Test R is negative

20

Test R is negative 990 estimate $\quad \mathrm{P}(\mathrm{R} \mid \mathrm{S})=0.99$

$$
P(\neg R \mid S)=0.01
$$

$$
P(R \mid \neg S)=0.01
$$

$$
P(\neg R \mid \neg S)=0.99
$$

Coincidentally equal

Estimating $\mathrm{P}(\mathrm{R} \mid \mathrm{S})$ etc

Test R is positive 1980

Test R is negative

20

1000 not sick

Test R is negative

970
estimate

$$
P(R \mid S)=0.99
$$

$$
\mathrm{P}(\neg \mathrm{R} \mid \mathrm{S})=0.01 \quad \mathrm{P}(\mathrm{R} \mid \neg \mathrm{S})=0.03
$$

$$
P(\neg \mathrm{R} \mid \neg \mathrm{S})=0.97
$$

In general will not be equal

Base-Rate Fallacy

S: Patient is Sick (has the disease)

Columns must total 1

Rows must total between 0 and 2

We will continue with these numbers

R: Test Result is positive

These probabilities can be empirically estimated

S: Patient is Sick
(has the disease)

S ᄀS

R	$R \wedge S$ True positive $P(R \mid S)=0.99$	$R \wedge \neg S$ False positive $P(R \mid \neg S)=0.01$
is positive	$\neg \mathrm{R} \wedge \mathrm{S}$	$\neg \mathrm{R} \wedge \neg \mathrm{S}$
$\neg \mathrm{R}$	False negative	True negative
These probabilities can be empirically	$\mathrm{P}(\neg \mathrm{R} \mid \mathrm{S})=0.01$	$\mathrm{P}(\neg \mathrm{R} \mid \neg \mathrm{S})=0.99$

Real Interest

Bayes' Theorem

$\Rightarrow \mathrm{P}(\mathrm{S} \mid \mathrm{R})=$
$(P(S) \times P(R \mid S)) /$
$(P(S) \times P(R \mid S)+P(\neg S)) \times P(R \mid \neg S))$
$>P(\neg S \mid R)=1-P(S \mid R)$
$>\mathrm{P}(\mathrm{S} \mid \neg \mathrm{R})=$
$(P(S) \times P(\neg R \mid S)) /$
$(P(S) \times P(\neg R \mid S)+P(\neg S)) \times P(\neg R \mid \neg S))$
$\Rightarrow \mathrm{P}(\neg \mathrm{S} \mid \neg \mathrm{R})=1-\mathrm{P}(\mathrm{S} \mid \neg \mathrm{R})$

We will continue with these numbers

Test Outcomes

Base Rate

Assume $P(S)=0.0001$ 1 in 10,000 has disease

R: Test Result is positive

These probabilities can be computed by Bayes' theorem if we know P(S)

S: Patient is Sick (has the disease)
$S \quad \neg S$

$R \wedge S$	$R \wedge \neg S$
True positive $P(S \mid R)=0.009804$	False positive $P(\neg S \mid R)=0.990196$
$\neg \mathrm{R} \wedge \mathrm{S}$	$\neg \mathrm{R} \wedge \neg \mathrm{S}$
False negative $P(S \mid \neg R)=0.000001$	True negative $P(\neg S \mid \neg R)=0.999999$

Rows must total 1

False Alarms Predominate!

Assume
$P(S)=0.0001$
1 in 10,000 has disease

$\mathrm{P}(\mathrm{S} \mid \mathrm{R})$	requires $\mathrm{P}(\mathrm{R} \mid \neg \mathrm{S})$
0.01	0.01
0.09	0.001
0.5	0.0001
0.9	0.00001
0.99	0.000001

