Constraints for Attribute Based Access Control with Application in Cloud IaaS

Khalid Zaman Bijon

Department of Computer Science & Institute for Cyber Security
University of Texas at San Antonio

Dissertation Defense

Committee:
Dr. Ravi Sandhu (Advisor)
Dr. Ram Krishnan (Co-Advisor)
Dr. Gregory B. White
Dr. Shouhuai Xu
Dr. Weining Zhang

World-Leading Research with Real-World Impact!
It's OK to have your head in the cloud, if your feet are on the ground

- Adapted from Wilferd Arlan Peterson
Cloud IaaS

Cloud Service Provider (CSP)
- e.g., AWS, Rackspace.
- Offers virtualized computing resources to enterprises

Enterprises (Tenants)
- e.g., Netflix, Expedia.
- Consume virtualized computing resources
Control access of the IT-User to resources
(e.g., who can stop virtual machine vm1, who can connect virtual network vn1 to virtual machine vm1)

Received interests from academia and industry
1. Jin et. al. ABAC for cloud IaaS
2. Wu et. al. RBAC for AWS cloud
3. AWS IAM, OpenStack Keystone

Constrain the mappings between resources.
(e.g., if a virtual network vn1 can connect to the virtual machine vm2)

No significant research
Mandatory Constraint

Focus of this dissertation

World-Leading Research with Real-World Impact!
Problem Space

- Mapping between Resources in Cloud IaaS
- Shared Responsibility: CSP and Tenants
- Dissertation Scope: VR-to-VR and VR-to-PR Mappings

World-Leading Research with Real-World Impact!
A suitably devised attribute based constraints specification mechanism can provide effective and expressive capabilities in laying out higher-level security policies for a traditional organization that exercises attribute based access control as well as for the mapping configuration management of virtual resources in cloud infrastructure-as-a-service.
Outline

1. Constraints for VR-to-VR Mapping

2. Constraints for VR-to-PR Mapping

3. Constraints for Attribute Based Access Control
1. Constraints for VR-to-VR Mapping
 - Constraint Specification and Enforcement
 - Automated Constraint Construction

2. Constraints for VR-to-PR Mapping

3. Constraints for Attribute Based Access Control
1. Khalid Bijon, Ram Krishnan, and Ravi Sandhu.

Virtual Resource Orchestration Constraints in Cloud Infrastructure as a Service. *ACM CODASPY’15.*

2. Khalid Bijon, Ram Krishnan, and Ravi Sandhu.

Automated Constraints Construction in Cloud Infrastructure as a Service. *Under Preparation (will be submitted to IEEE TDSC).*
VR-to-VR Mapping

- Complex Management Process
- Scope: Intra-Tenant
- Goal: Diversity of Tenant

World-Leading Research with Real-World Impact!
Constraint Policy
- For each VR-to-VR mappings

Satisfied By
- Individual virtual resources

World-Leading Research with Real-World Impact!
An Attribute Based Approach

- Attribute Specifies Virtual Resource Properties

- A name:value Pair

- Designed as Functions

World-Leading Research with Real-World Impact!
A Constraint

- Logical Formula
- Compares Certain Attribute Values

Constraint Policy

If tier='database'
Then ioType='fast'

True False

Request volumeAttach

Virtual Machine Instance j

 tier: x

 ioType: y

Virtual Storage Instance i
Use Case (3-Tier System)

Constraint 1: If a VM is for presentation layer, attaching storage’s ioType cannot be fast.

Constraint 2: Only an application layer VM can connect to a virtual network which is created for passing application layer data.

Constraint 3: If a router is for connecting to out-side internet, only presentation layer network or web-front network can connect to it.

World-Leading Research with Real-World Impact!
Constraint 1: Only jobTracker and nameNode VMs can connect to a network created for passing data to/from name Nodes.
Specify and Enforce

Tenant's Admin-User
(1) Specify Attributes and Scopes of Virtual Resources

Cloud Database

Tenant's Admin-User
(2) Specify Constraints for Resource Configuring Operations

Cloud Database

2. Retrieve attribute values of respective virtual resources

Cloud Database

3. Retrieve constraints for requested operations

Constraint Evaluator

4. Evaluate

1. Execute operation to configure two virtual resources

Constraint Evaluator

5. Allow/Deny
Implemented in OpenStack

Execution of “attribute-creation” operation

Similarly,

- Attribute-value specification
- Constraint Specification
- Attribute-value assignment
Enforcer Implementation

- Implemented in OpenStack
- A Constraint Parser
- Invoked by Resource Mapping Operations (e.g., *volume-attach*)

Diagram:

1. Get User Token
2. Request volume-attach with VM Id, Storage Id and Token
3. Token Revoked?
4. Storage Table
5. VM Table
6. Verify Project of VM, Storage and User
7. Constraint Table
8. VM Attribute Table
9. Storage Attribute Table
10. Evaluate Constraint
11. Allow/Deny

Legend:
- KEYSONE
- NOVA
- Tenant Users

World-Leading Research with Real-World Impact!
Automated Constraint Construction

- Helps the tenants to find policy
- From Previous Configurations
- Construct Relation between values of two attributes
Automated Constraint Construction

- **Association Rule Mining (Frequent-Itemset Mining)**
 - relations between variables in large databases

- **Apriori Algorithm**
 - Consider relations between all combination of values

- **With customization for cloud IaaS (CVRM-Apriori)**
 - Only consider relations between every pair of values of two attribute
World-Leading Research with Real-World Impact!
Evaluation

- Policy for VM-Network Connectivity Mapping
- From VM-Network Table (table `virtual_interfaces` in Nova, OpenStack)
- 10 Attributes each with 10 values
- 10 Virtual Networks
- At least three Networks per VM
- Mine relations between every pair of attribute values
1. Constraints for VR-to-VR Mapping

2. Constraints for VR-to-PR Mapping
 - Conflict-Free Virtual Resource Scheduling
 - Physical Resource Optimization
 - Experimental Analysis

3. Constraints for Attribute Based Access Control
Khalid Bijon, Ram Krishnan and Ravi Sandhu.
Problem Space

- Shared Responsibility: CSP and Tenant
- Tenant: Control Placement of Virtual Resource
- CSP: Optimize the Physical Resources

World-Leading Research with Real-World Impact!
Goal

- Restrict VR-to-PR Mapping
 - For security and performance

- Security Example (DoD Cloud)
 - Should not co-locate conflicting vms to same server
 - E.g., VM processing top-secret for Navy might not want to co-locate with top-secret Air Force

- Host Optimization
 - Increase host utilization

- Scope
 - Focus on virtual machine to compute host mapping
 - Anti-Affinity (Must-not co-locate)

World-Leading Research with Real-World Impact!

Credit:
www.bartley.hants.sch.uk
www.opsrules.com
Process

Step 1

VM 1
VM 2
VM 6

VM 4
VM 5
VM 3

VM 3
VM 6

Identifies Co-locating VMs

Step 2

VM 1
VM 4

VM 2
VM 5

VM 3
VM 6

Step 3

Host1

Host2

Host3

Host4

World-Leading Research with Real-World Impact!
An Attribute Based Approach

- Attribute Specifies Virtual Resource Properties
 - sensitivity
 - tenant

- Attribute-based conflict-free Virtual Machine Scheduling
 - Specify conflicts between values of attributes

Credit: www.iconarchive.com

World-Leading Research with Real-World Impact!
Conflict-free VM Scheduling

Step 1: Specify Conflicts among attribute values of each attribute

- Conflict Set Sensitivity

- Conflict Set Tenant

Step 2: Create Conflict-free partitions of the values of each attribute

- Partition Sensitivity

- Partition Tenant

Step 3: Create Conflict-free Segments (each segment contains an element of the conflict-free partition of each attribute)

World-Leading Research with Real-World Impact!
Step 4: Create VM partition that can co-reside
Conflicts-aware VM Scheduling

- Step 5: Allocate Separate Hosts for each VM Partition

VM 1
VM 3
VM 2
VM 6
VM 4
VM 5

Host 1
Host 2
Host 3
Host 4

Credit: www.iconarchive.com

World-Leading Research with Real-World Impact!
Outline

1. Constraints for VR-to-VR Mapping

2. Constraints for VR-to-PR Mapping
 - Conflict-Free Virtual Resource Scheduling
 - Physical Host Optimization
 - Experimental Analysis

3. Constraints for Attribute Based Access Control
Physical Host Optimization

- **Step 1:** Specify Conflicts among attribute values
- **Step 2:** Create Conflict-free partitions *(Crucial)*
 - Minimum number of conflict-free partitions
 - Minimum number of conflict-free segments
 - Minimum number of VM partitions
- **Step 3:** Create Conflict-free Segments
- **Step 4:** Create VM partition that can co-reside
- **Step 5:** Allocate Separate Hosts for each VM Partition

Optimization Problem:
- Input-conflicts among values of an attribute
- Output-minimum number of partitions

K-Partition:
- Input-conflicts among values and K
- Output-if there is K number of partitions
Physical Host Optimization

- **K-Partition is NP-Complete**
 - Reduction from k-coloring

- **Approximation Algorithms for Graph Coloring can Apply**

- **Develop an Exact Algorithm (Backtracking)**
 - Useful for small number of attribute-values
Outline

1. Constraints for VR-to-VR Mapping

2. Constraints for VR-to-PR Mapping
 - Conflict-Free Virtual Resource Scheduling
 - Physical Host Optimization
 - Experimental Analysis

3. Constraints for Attribute Based Access Control

World-Leading Research with Real-World Impact!
1. Performance of Backtracking algorithm

- Required Time for Small Scope and Conflict-Set
- Required Time for Large Scope and Conflict-Set

World-Leading Research with Real-World Impact!
2. Scheduling Latency

Less than 0.2 seconds for scheduling (once the conflict-free partitions are created)
1. Constraints for VR-to-VR Mapping

2. Constraints for VR-to-PR Mapping

3. Constraints for Attribute Based Access Control
1. Khalid Bijon, Ram Krishnan, and Ravi Sandhu.
 Towards An Attribute Based Constraints Specification Language.
 IEEE PASSAT’13.

2. Khalid Bijon, Ram Krishnan, and Ravi Sandhu.
 Constraint Specification in Attribute Based Access Controls.
 ASE Science Journal’13.
Overview of an ABAC Model

- **Basic Entities**
 - User (U), Subject (S) and Object (O)
 - Their Attributes (UA, SA, OA)

- **Attribute** can be atomic or set valued *(in cloud IaaS it was only atomic value)*
 - e.g., clearance vs. role

- **Permission has Authorization policy**
 - Verify subject and object attributes
Motivation

- ABAC is policy neutral
 - Subject with required attribute can access

- Proper attribute assignment to the entities
 - Need to ensure authorized access

- Constraints for the attribute assignment
 - Verify subject and object attributes
 - Configure high level security policy
Attribute Based Constraints Specification

- Develop an attribute based constraints specification language (ABCL)
 - Identify relation between values (of same attribute or across attributes)
 (across attribute (VR-to-VR) and same attribute (VR-to-PR))
 - A relation restricts an entity to get certain values of an attribute.
 - Benefit attribute represents customers’ assigned benefits in a Bank
 - A customer cannot get both benefits ‘bf1’ and ‘bf2’ (mutual exclusion)
 - Cannot get more than 3 benefits from ‘bf1’, ‘bf3’ and ‘bf6’ (cardinality on mutual exclusion)
A mechanism to represent different types of such relationships as a set

1. Mutual-Exclusive relation of the *benefit* attribute values (single attribute conflict)

\[\text{Attribute_Set}_{U,\text{benefit}} \quad \text{UMEBenefit}\]
\[\text{UMEBenefit}=\{\text{avset1, avset2}\} \text{ where}\]
\[\text{avset1}=\{\{\text{bf1, bf2}\}, 1\} \text{ and}\]
\[\text{avset2}=\{\{\text{bf1, bf3, bf4}\}, 2\}\]

2. Mutual-Exclusive relation of the *benefit* and *felony* (cross attribute conflict)

\[\text{Cross_Attribute_Set}_{U,\text{Aattset},\text{Rattset}} \quad \text{UMECFB}\]
\[\text{Here, Aattset}=\{\text{felony}\} \text{ and Rattset}=\{\text{benefit}\}\]
\[\text{UMECFB}=\{\text{attfun1}\} \text{ where}\]
\[\text{attfun1}(\text{felony})=(\text{attval, limit})\]
\[\text{where attval}=\{\text{fl1, fl2}\} \text{ and limit}=1\]
\[\text{attfun1}(\text{benefit})=(\text{attval, limit})\]
\[\text{where attval}=\{\text{bf1}\} \text{ and limit}=0\]
- A grammar in Backus Normal Form (BNF)
- Declaration of the Attribute_Set and Cross_Attribute_Set
- Constraint Expression

```plaintext
Declaration of the Attribute_Set and Cross_Attribute_Set:
<attribute_set_declaration> ::= <attribute_set_type> <set_identifier>
<attribute_set_type> ::= Attribute_SetU, <atname> | Attribute_SetS, <atname> | Attribute_SetO, <atname>
<cross_attribute_set_type> ::= Cross_Attribute_SetU, <Attrset>, <Rattrset> | Cross_Attribute_SetS, <Attrset>, <Rattrset>

<Aattrset> ::= {<atname>, <atname>}
<Rattrset> ::= {<atname>, <atname>}
<set_identifier> ::= <letter> | <set_identifier><letter> | <set_identifier><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

Constraint Expressions:
<statement> ::= <connective> <statement> | <expression>
<expression> ::= <token> <atomiccompare> <token> | <token> <atomiccompare> <size>
<token> ::= <token> <setoperator> <term> | <term> | <term>
<term> ::= <function> (<term>) | <attributefun> (<term>) | OE (<relationsets>).<item>
<relationsets> ::= <set_identifier>
<atname> ::= uA_1 | uA_2 ... | uA_x | sA_1 | sA_2 ... | sA_y | oA_1 ... | oA_x
<attval> ::= ‘uA_1 val_1’ | ‘uA_1 val_2’ ... | ‘uA_x val_r’ | ‘sA_1 val_1’ | ‘sA_1 val_2’ ... | ‘sA_y val_s’ | ‘oA_1 val_1’ ... | ‘oA_x val_e’
<size> ::= φ | 1 | | ... | N
```

World-Leading Research with Real-World Impact!
1. A customer cannot get both benefits ‘bf1’ and ‘bf2’

Expression: \(|OE(UMEBenefit).attset \cap benefit(OE(U))| \leq OE(UMEBenefit).limit \)

2. If a customer committed felony ‘fl1’, She can not get more than one benefit from ‘bf1’, ‘bf2’ and ‘bf3’

Expression:

\[
OE(UMECFB)(felony).attset \cap felony(OE(U))| \geq OE(UMECFB)(felony).limit \Rightarrow |OE(UMECFB)(benefit).attset \cap benefit(OE(U))| \leq OE(UMECFB)(benefit).limit
\]
Use Cases

- ABCL can configure well-known RBAC constraints
 - Role can be considered as a single attribute
 - Can express SSOD and DSOD constraints
 - Just need to declare conflict-relation sets for conflicting roles

- It can configure several security requirements of traditional organization (e.g. banking organization)
 - E.g. Constraints on benefit attribute assignment
Conclusion

- A Constraint Specification Framework for ABAC and Cloud IaaS
- Easily manageable and generic
- Automatic Generation of Constraints
- Flag Generator System
- Improve mining (incorporate noise)
- Analysis for other VR-to-PR

World-Leading Research with Real-World Impact!
Khalid Bijon, Ram Krishnan and Ravi Sandhu
Automatic Constraint Constructions Cloud Infrastructure as a Service.
Under Preparation (target IEEE TDSE)

Khalid Bijon, Ram Krishnan and Ravi Sandhu
Mitigating Multi-Tenancy Risks in IaaS Cloud Through Constraints-Driven Virtual Resource Scheduling.

Khalid Bijon, Ram Krishnan and Ravi Sandhu
Virtual Resource Orchestration Constraints for Cloud Infrastructure as a Service.
ACM Conference on DATA and Application Security and Privacy, 2015.

Khalid Bijon, Ram Krishnan and Ravi Sandhu
A Formal Model for Isolation Management in Cloud Infrastructure-as-a-Service.

Khalid Bijon, Ram Krishnan and Ravi Sandhu
Towards An Attribute Based Constraints Specification Language.
IEEE International Conference on Privacy, Security and Trust, 2013.

Khalid Bijon, Ram Krishnan and Ravi Sandhu
Constraints for Attribute Based Access Control
Khalid Bijon, MM Haque and Ragib Hasan
A TRUst based Information Sharing Model (TRUISM) in MANET in the Presence of Uncertainty.

Khalid Bijon, Ram Krishnan and Ravi Sandhu
A Framework for Risk-Aware Role Based Access Control.

Khalid Bijon, Ram Krishnan and Ravi Sandhu
Risk-Aware RBAC Sessions.

Khalid Bijon, Tahmina Ahmed, Ravi Sandhu and Ram Krishnan
A Lattice Interpretation of Group-Centric Collaboration with Expedient Insiders.

Yuan Cheng, Dang Nguyen, Khalid Bijon, Ram Krishnan, Jaehong Park and Ravi Sandhu
Towards Provenance and Risk-Awareness in Social Computing.

Khalid Bijon, Ravi Sandhu and Ram Krishnan
A Group-Centric Model for Collaboration with Expedient Insiders in Multilevel Systems.

Tahmina Ahmed, Ravi Sandhu, Khalid Bijon, and Ram Krishnan
Equivalence of Group-Centric Collaboration with Expedient Insiders (GEI) and LBAC with Collaborative Compartments (LCC).
Technical Report CS-TR-2012-010, Department of Computer Science, 2012

Ravi Sandhu, Khalid Zaman Bijon, Xin Jin and Ram Krishnan
RT-Based Administrative Models for Community Cyber Security Information Sharing.
IEEE International Workshop on Trusted Collaboration, 2011.

World-Leading Research with Real-World Impact!
Thank You!
Evaluation

- Mining Time with Increasing Scope

![Graph showing the evaluation of mining time with increasing scope. The x-axis represents the scope size of each attribute (3 VM and 2 Net Attributes), while the y-axis shows the average time (seconds). The graph compares Anti-Apriori (RBAC) and CVRM-Apriori methods.](image-url)
3. Required Number of Hosts

Required Number of hosts for Varying Number of Conflicts

Required Number of hosts for Max Degree of Conflicts

World-Leading Research with Real-World Impact!
World-Leading Research with Real-World Impact!
Motivation

- Not Scalable
 - Manual Groupings of Virtual Resources

- Inefficient Scheduler (e.g., filter-scheduler in OpenStack)
 - Host Exhaustion problem

World-Leading Research with Real-World Impact!
Conclusion

- A Constraint Specification for Attribute Based Access Control

- Mechanism for High Level Security Policy Specifications for an Organization
Conclusion

- Scalable Constraint-Aware Scheduling
- Host Optimization

Future Work

Affinity Constraints

Combine both of them

World-Leading Research with Real-World Impact!