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PROTECTING CRYPTOGRAPHIC KEYS AND

FUNCTIONS FROM MALWARE ATTACKS

Timothy Parker, Ph.D.

The University of Texas at San Antonio, 2010

Supervising Professor: Shouhuai Xu, Ph.D.

Modern commodity operating systems, running on commodity hardware, are frequently

used to store cryptographic keys and/or to perform cryptographic functions such as digital

signatures. The importance of their security can hardly be overestimated because of the

following: Digital signatures can not only be used for binding agreements and authenticat-

ing Web sites, but are also used for code authentication, including authenticating software

updates, such as the widely-used Microsoft Windows Automatic Update. Cryptographic keys

are used to encrypt sensitive personal data stored on commodity operating systems.

While security of cryptographic primitives and protocols has been well-understood in

abstract models, there is relatively little understanding and study of the security of cryptog-

raphy on real commodity systems. Furthermore, while one could exploit special hardware to

ensure security of cryptographic keys, it is even more difficult to protect cryptographic func-

tions because an attacker can compromise a cryptographic function by compromising any of

many different points in the invocation process, including libraries and the operating system.

We examine the problem of protecting cryptographic keys and cryptographic functions on

commodity hardware and operating systems, with a focus on combating attacks committed

by software, primarily malware. Specifically, we make two significant technical contributions:

1. We demonstrate a technique for performing encryption without having the cryptographic

key in memory, thereby alleviating RAM disclosure attacks against keys. 2. We create a
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system for protecting both cryptographic keys and digital signatures from being disclosed

or abused (respectively) by malware, while allowing security properties of the signatures to

be verified offline by remote parties. As such, this thesis moves a significant step towards

bridging the gap between security properties of cryptosystems in abstract models and the

needs of security assurance in real-life systems. Our results are also generally applicable to

maintaining confidentiality and security of non-cryptographic secrets and functions.
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Chapter 1

INTRODUCTION

1.1 Motivation

Computer security has made impressive theoretical progress, such as proofs of security for

cryptographic protocols. However, the security of systems in practice depends on the se-

curity of cryptography in practice, because security properties such as authentication and

confidentiality rely on the services of cryptography. This causes a “chicken-and-egg” prob-

lem, because, in turn, the security of cryptography in practice depends on the security of

the entire system. In particular, the security of the cryptographic keys and cryptographic

functions in real systems depends on the security of the software stack. This is an area that

has not been well-understood. Worse, users of commodity hardware and operating system

software frequently find themselves besieged by spam, malware, and other security-related

issues which can contribute to reduced system security and further exacerbate the reduc-

tion of trustworthiness of cryptography (and thus trustworthiness of the security services)

in practice.

The threat of malware that discloses keys and other sensitive data is real. For an example

of a simple malicious software attack disclosing keys, see [34]. Unfortunately, even specialized

hardware is no panacea for software attacks because (1) many legacy systems may not deploy

or support such devices, and (2) such devices have a cost, which is often substantial. More

importantly, although special hardware could secure the keys themselves, the attacker can

compromise a private signing function without compromising a private signing key [46]. This
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would be particularly easy for malware because malware frequently runs using the same

account privilege as the user being attacked, making ordinary operating system defense

mechanisms useless.

In this dissertation we emphasize securing cryptographic keys and cryptographic func-

tions (especially digital signatures) against malware, while still allowing the user to run

ordinary hardware and software. In particular, we generally allow the user to run existing

applications and operating systems unmodified, as long as the application architectures use

a cryptographic library with a well-designed API. The overall goal of this work may be

summarized thus:

To protect cryptographic keys and functions from software attacks, particularly

attacks by malware.

1.2 Dissertation Overview

This dissertation will generally focus on securing cryptographic keys and cryptographic func-

tions, although our design and much of our implementation can be used to secure other kinds

of sensitive data and functions. Specifically, the dissertation presents two mechanisms, each

of which is realized by a software component.

1.2.1 Safekeeping Cryptographic Keys from Memory Disclosure

Attacks

Chapter 2 presents and analyzes a technique for using a cryptographic key without having the

key in memory.1 This gives protection against memory disclosure attacks which otherwise

can recover keys, such as in the case of Apache on Linux [34]. See Figure 1.1 for a simplified

depiction of the technique: basically we are able to utilize certain registers that were not

designed for general or cryptographic use. As a specific example, a prototype is created that

1This chapter essentially corresponds to our publication [54].
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CPU

Registers

RAM (Key)

(a) Before our solution

CPU

Registers (Key)

RAM

(b) With our solution

Figure 1.1: Before our solution, large keys such as RSA keys are in RAM while in use. With
our solution, keys can be contained in CPU registers.

modifies RSA private key signing in OpenSSL to use the technique. The resulting system

has the following features:

1. No special hardware is required; only resources found in typical CPU’s are used.

2. The scheme is shown to leave no words of the private key exponent d in RAM.

3. A RAM scrambling technique, which must be used to store the key in the single-

CPU-core case, is evaluated, showing that common attacks such as entropy scanning,

signature scanning, and content scanning are infeasible.

1.2.2 Assured Digital Signing

Chapter 3 presents the Assured Digital Signature Service Provider, which is an example of

protecting cryptographic functions against malware attacks.It secures both the cryptographic

keys used for signing and the signing function itself, even in the presence of malware running

at elevated privilege levels. In order to do this, it uses a foundational piece that we believe

might be of independent value, called the protected monitor. This provides a platform on

which assured services can be built. Figure 1.2 depicts the architecture of this system.

Further details will be explained in Chapter 3; in the meantime we summarize the features

of the resulting system:
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1. Signature requests are validated using four criteria: (i) static measurement of boot and

kernel (using TPM); (ii) secured crypto library; (iii) authentication of the requesting

program (measure binary); (iv) trusted path user confirmation dialog.

2. Key storage services are secure against malware and even raw disk access from within

the VM.

3. Signature request processing is likewise secure against malware.� � � � � � � �

Xen

� � � � � �� � � �	 
 
� � � � � � � � � � � � � �� � � �� � �� � � � � �� � � � � � � � � �

� � � �	 
 
� � � � � �� � � �� � �
� � � 
 � � � � 	 
 � ��� � � � 	 � �� � � � � � � � �

Figure 1.2: Architecture of Assured Digital Signature Service Provider (Chapter 3)

1.3 Combining the Pieces from the Chapters

The reader may wish to understand how the various pieces we have created fit together. One

way to understand this is to examine the key locations that are protected by the protection

pieces:

• SSE Key-in-Register Cryptography (Chapter 2) protects the key from any RAM attack,

including disclosure of physical RAM (e.g., via a Firewire attack).

• The Assured Digital Signature Service Provider (Chapter 3) protects keys on the VM’s

disk as well as in the VM’s RAM. (Of course, it also protects the signing function itself.)

4



The two building blocks could be used together, as discussed in future work in Section 5.2.

As such, they are two security building blocks for a more comprehensive defense framework

that we suspect remains to be discovered.
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Chapter 2

SAFEKEEPING CRYPTOGRAPHIC

KEYS FROM MEMORY DISCLOSURE

ATTACKS

2.1 Introduction

How should we ensure the secrecy of cryptographic keys during their use in RAM? This

problem is important because it would be relatively easy for an attacker to have unautho-

rized access to (a portion of) RAM so as to compromise the cryptographic keys (in their

entirety) appearing in it. Two example attacks that have been successfully experimented

with are those based on the exploitation of certain software vulnerabilities [34], and those

based on the exploitation of Direct Memory Access (DMA) devices [57]. In particular, [34]

showed that, in the Linux OS versions they experimented with, a cryptographic key was

somewhat flooding RAM, meaning that many copies of a key may appear in both allocated

and unallocated memory. This meant an attacker may only need to disclose a small portion

of RAM to obtain a key. As a first step, they showed how to ensure only one copy of a key

appears in RAM. Their defense is not entirely satisfactory because the success probability

of a memory disclosure attack is then roughly proportional to the amount of the disclosed

memory. Their study naturally raised the following question: Is it possible, and if so, practi-

cal, to safekeep cryptographic keys from memory disclosure attacks without relying on special
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hardware devices? The question is relevant because legacy computers may not have or sup-

port such devices, and is interesting on its own if we want to know what is feasible without

special hardware devices. (We note that the basic idea presented in this chapter may also be

applicable to protect cryptographic keys appearing in the RAM of special hardware devices

when, for example, the devices’ operating systems have software vulnerabilities that can

cause the disclosure of RAM content.)

2.1.1 Our Contributions

In this chapter we affirmatively answer the above question by making three contributions.

First, we propose a method for exploiting certain architectural features (i.e., certain CPU

registers) to safekeep cryptographic keys from memory disclosure attacks (i.e., ensure a key

never appears in its entirety in the RAM). Nevertheless, cryptographic functions are still

efficiently computed by ensuring that a cryptographic key appears in its entirety in the

registers. This may sound counter-intuitive at first glance, but is actually achievable as long

as the registers can assemble the key on-the-fly as needed.

Second, as a proof of concept, we present a concrete realization of the above method

based on OpenSSL, by exploiting the Streaming SIMD Extension (SSE) XMM registers

of modern Intel and AMD x86-compatible CPU’s [22]. The registers were introduced for

multimedia application purposes in 1999, years before TPM-enabled computers were manu-

factured (TCG itself was formed in 2003 [32]). Specifically, we conduct experimental studies

with the RSA cryptosystem in the contexts of SSL 3.0 and TLS 1.0 and 1.1. Experimental

results show that no portion of a key appears in the physical RAM (i.e., no portion of a

key is spilled from the registers to the RAM). The realization is not straightforward, and we

managed to overcome two subtle problems:

1. Dealing with interrupts: For a process that does not have exclusive access to a CPU

core (i.e., a single-core CPU or a single core of a multi-core CPU), we must prevent

other processes from reading the SSE XMM registers. This requires us to prevent other
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processes from reading the registers by disabling interrupts, and to avoid entering the

kernel while the key is in the registers (this is fortunately not difficult in our case).

Because applications such as Apache generally do not run with the root privilege that

is required for disabling interrupts, we designed a Loadable Kernel Module (LKM) to

handle interrupt-disabling requests issued by applications such as Apache.

2. Scrambling and dispersing a cryptographic key in RAM while allowing efficient re-

assembling in registers: Some method is needed to load a cryptographic key into the

registers in a secure fashion; otherwise, a key may still appear in RAM. For this, we

implemented a heuristic method for “scrambling” a cryptographic key in RAM and

then “re-assembling” it in the relevant registers.

Third, we articulate an (informal) adversarial model of memory disclosure attacks against

cryptographic keys in software environments that may be vulnerable. The model serves

as a systematic basis for (heuristically) analyzing the security of software against memory

disclosure attacks, and may be of independent value.

2.1.2 Discussion on the Real-World Significance

As will be shown in the case study prototype system, the method proposed in this chapter

can be applied to legacy computers that have some architectural features (e.g., x86 XMM

registers or other similar ones). Two advantages of a solution based on the method are

(1) it can be obtained for free, and (2) it could be made transparent to the end users;

both of these ease real-world adoption. However, we do not expect that the solution will

be utilized in servers for processing high-throughput transactions, in which case special

high-speed and high-bandwidth hardware devices may be used instead so as to accelerate

cryptographic processing. Nevertheless, our solution is capable of serving 50 new HTTPS

connections per second in our experiments. The attacks addressed in this chapter are memory

disclosure attacks, which are mainly launched via the exploitation of software vulnerabilities

8



in operating systems.

2.1.3 Chapter Outline

The rest of this chapter is organized as follows. Due to the complexity of the adversarial

model, we specify attacks against based on two dimensions. One dimension is independent

of our specific solution and is elaborated in Section 2.2.1 because it guides the design of our

specific solution. The other dimension is dependent upon our solution (e.g., the attacker may

attempt to identify weaknesses specific to our solution) and presented in Section 2.4, after

we present our specific solution in Section 2.3. Section 2.5 informally analyzes the security

of the resulting system. Section 2.6 reports the performance of our prototype. Section 2.7

concludes the chapter with some open problems. Note that related work is discussed in

Chapter 4.

2.2 Design Rationale for Our Solution

2.2.1 General Threat Model

Independent of our specific solution design, we consider an attacker who can disclose some

portion of RAM through some means that may also give the attacker some extra power (as

we discuss below). To make this concrete, in what follows we present a classification of the

most relevant memory disclosure attacks (see also Figure 2.1).

Pure memory disclosure attacks. Such attackers are only given the content of the

disclosed RAM. Depending on the amount of disclosed memory, these attacks are divided

into two cases: partial memory disclosure and full memory disclosure. Furthermore, partial

disclosure attacks can be divided into two cases: untargeted partial disclosures and targeted

partial disclosures. An untargeted partial attack discloses a portion of memory but does not

allow the attacker to specify which portion of the memory (e.g., random portions of RAM

9



Memory Disclosure Attacks

Pure Memory Disclosure Attacks Augmented Full Memory Disclosure Attacks

Full 
Disclosure

Partial 
Disclosure

Targeted 
Partial

Untargeted 
Partial

Use 
Executable

Run Processes 
On Machine

Combination

Run Executable in 
Emulator or VM

Reverse 
Engineer

Figure 2.1: Memory disclosure attack taxonomy.

that may or may not have a key in it). In contrast, a targeted partial attacker somehow

allows the attacker to obtain a specific portion of RAM. Although we do not know how to

accomplish this, this may be possible for some sophisticated attackers.

Augmented full memory disclosure attacks. Compared with the full memory disclosure

attacks where attackers just analyze the byte-by-byte RAM content, augmented full memory

disclosures give the attacker extra power. The first possible augmentation is to allow the

attacker to run processes on the machine that is being attacked. This requires the attacker

to have access to a user account on the machine, but neither root nor the account that owns

the key being protected (e.g., apache); otherwise, we cannot hope to defeat the attacker.

The main trick here is that the attacker here may seek to circumvent the ownership of the

registers that store the key (if applicable). The second possible augmentation is for the

attacker to use the victim user’s own executable image (which is probably in the disclosed

RAM) to recover the key, which is possible because the executable together with its state

must be able to recover the key. We further classify this augmentation into two cases:

reverse-engineering, where the attacker reverse-engineers the executable and state to recover

the key; and running the executable in an emulator or VMM (Virtual Machine Monitor),

where the attacker can actually execute the entire disclosed memory image and discover

(for example) what is put in the disclosed RAM or registers, if the attacker can somehow
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simulate the unknown non-RAM state such as CPU registers. Finally, an attacker could

employ multiple augmentations simultaneously, which we we label as “combination” in our

classification.

2.2.2 Why Use Registers?

There are four reasons for choosing to place the key in registers rather than in some other

location:

1. Registers have very fast access. In fact, registers can be accessed more quickly by the

CPU than any other part of the system, including on-chip cache [36]. This is by design.

2. We can control access to the registers in a CPU by dedicating the CPU to the process

that owns the key. Almost all other resources are accessible by all CPU’s in the system.

3. Registers are available on all x86 systems; no particular hardware is required. Note the

registers we use require support for SSE2, which has been offered since Intel’s Pentium

4 was introduced in 2000, and in AMD processors since 2003.

4. Virtually all other parts of the system are accessible using a RAM address access,

either by Direct Memory Access (DMA) or because caches are accessed using memory

addresses.

2.3 The Safekeeping Method and Its Implementation

In this section we first discuss the basic idea underlying our method, and then elaborate

the relevant countermeasures that we employ to deal with threats mentioned above (this

explains why we said that the threat model guided our design).
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2.3.1 Basic Idea and Resulting Prototype

The basic idea of our method is to exploit some modern CPU architectural features, namely

large sets of CPU registers that are not heavily used in normal computations. Intuitively,

such registers can help “avoid” cryptographic keys appearing in RAM during their use,

because we can make a cryptographic key appear in RAM only in some scrambled form,

while appearing in these registers in cleartext and in its entirety. In our prototype, we use

the x86 XMM register set of the SSE multimedia extensions, which were originally introduced

by Intel for floating-point SIMD use and later also adopted by AMD. Each XMM register is

128 bits in size. Eight such registers, totaling 1024 bits, are available in 32-bit architectures;

64-bit architectures have 16, for a total of 2048 bits. These registers can be exploited to run

cryptographic algorithms because a 32-bit x86 CPU can thus store a 1024-bit RSA private

exponent, and a 64-bit one can store a 2048-bit exponent.1

Our prototype is based on OpenSSL 0.9.8e, the Ubuntu 6.06 Linux distribution with a

2.6.15 kernel, and SSE2 which was first offered in Intel’s Pentium 4 and in AMD’s Opteron

and Athlon-64 processors. Figure 2.2 depicts the resulting system architecture. It adds a

Cryptographic applications

Crypto library

Supporting mechanism

Scrambled key bits Key in its entirety

Certain registers

CPU
RAM

Figure 2.2: The resulting system architecture

new supporting mechanism layer that loads a scrambled key into the relevant registers (i.e.,

assembling the scrambled key into the original key) and makes it available to cryptographic

1Product roadmaps for Intel and AMD contain extensions enlarging these registers to 256 bits (as part
of Advanced Vector Extensions (AVX)), and we anticipate continued enlargement in the future.
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routines.

2.3.2 Scrambling and Dispersing a Key in RAM

A crucial issue in our solution is to store the key in RAM such that it will be difficult for

attackers to compromise. For this, one may suggest to encrypt the key in RAM and then

decrypt and put the key directly into registers.

However, this approach has two issues that are not clear: (i) where the key for this “outer”

layer of encryption can be safely kept (i.e., we now have a chicken-and-egg problem, because

that key needs to be encrypted too), and (ii) how to ensure that there is no intermediate

version of the key in RAM. A similar argument would also be applicable to other techniques

aimed for a similar purpose. As such, we adopt the following heuristic method for scrambling

and dispersing a key in RAM:

• Initialization: This operation prepares a dispersed scrambled version of the key in

question such that the resulting bit strings are stored on some secure storage device

(e.g., hard disk or memory stick) and thus can later be loaded into RAM as-is. This

can be done in a secure environment and the resulting scrambled key may be kept on

a secure storage device such as a memory stick.

• Recovery: the key in its scrambled form is first loaded into RAM, and then somehow

“re-assembled” at the relevant registers so that the key appears in its entirety in the

registers.

As illustrated in Figure 2.3, the initialization method we implemented proceeds as follows.

(i) The original key is split into blocks of 32 bits. Note that the choice of 32-bit words is

not fundamental to the design, it could be a 16-bit word or even a single byte. (ii) Each

chunk is XOR’d with a 32-bit chaff that is independently chosen. As a line of defense, it

is ideal that the chaffs do not help the attacker to identify the whereabouts of the index

table. (iii) Each transformed block is split into two chunks of 16 bits. (iv) The chunks are
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…
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Figure 2.3: Prototype’s method for scrambling and dispersing key

mixed with some “fillers” (i.e., useless place-holders to help hide the chunks) that exhibit

similar characteristics as the chunks (e.g., entropy-wise they are similar so that even the

entropy-based search method [61] cannot tell the fillers and the chunks apart). Clearly, the

recovery can obtain the original key according to the index table, each row of which consists

of a chaff and the address pointers to the corresponding chunks. Since security of the index

table is crucial, in the next section we discuss how to make it difficult to compromise.

We note that some form of All-Or-Nothing-Transformation [15] (as long as the inver-

sion process can be safely implemented in the very limited environment of registers) should

be employed prior to the scrambling in order to safeguard against attacks that work on

portions of RSA keys (e.g., [10] gives an attack that can recover an RSA private key in

polynomial time given the least-significant n/4 bits of the key). Using such a transformation

protects our scheme from these attacks and insulates the scheme and analysis from progress
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in partial-exposure key breaking work. This also protects our scheme from attacks that

exploit structure in the RSA key, such as some attacks from Shamir and van Someren [61].

The exact technique and implementation should be be chosen carefully so as to not spill any

intermediate results into RAM.

2.3.3 Obscuring the Index Table

To defend against an attacker who attempts to find and follow the sequence of pointers to

the index table, we can adopt the following two defenses.

First defense. We can use a randomly-chosen offset for all the pointers in the table, as

well as a randomly-chosen delta number to modify the data values themselves. The offset

and delta are chosen once before the table is constructed, and then the pointer values in the

table are actually the memory location minus the offset. The actual data values stored at

the memory locations are the portions of the key minus the delta value. This means that

even if the attacker finds the table, the pointers in it are not useful without successfully

guessing the offset and delta.

We must prevent the attacker from simply scanning all of the statically-allocated data

for potential offset and delta values and trying all of them whenever interpreting a possible

table pointer. We can defend against this by using (for example) 16 numbers as the set

of potential pointer offsets, and 8 numbers as the set of potential delta values. A random

number chosen at compile-time determines whether the actual pointer or value is or is not

XOR’d with each member of the corresponding set. (make can compile and run a short

program to generate this number and emit it as a #define suffixed to a header file. Such

values do not have storage allocated and only appear in the executable where they are used.)

Carefully constructing an expression controlled by this value but where the appearance of the

value itself can be optimized away by the compiler means compiler optimization techniques

will ensure that this constant does not appear directly in the final executable (and therefore
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cannot be read from a RAM dump). 2 We will show an example expression below, using a

conceptual syntax for clarity.

Each number in the set is the same size as the pointer or short value. At compile time one

bit determines whether to XOR the two high halves, and the following bit whether to XOR

the two low halves. Note that breaking each number into two separately-operated pieces is

useful because it squares the factor that we are increasing the attacker’s search space by.

The use of each set forces the attacker to examine 416 and 48 possibilities for the pointers

and short values, respectively. Let us refer to the 64-bit set of numbers as 64B0..64B15, and

designate the top and bottom halves of these as 64BT
0
..64BT

15
and 64BB

0
..64BB

15
respectively,

and use p to denote the pointer being masked. Then,

p = p ⊕ (64BT
0
∧ bit0) ⊕ (64BB

0
∧ bit1)... ⊕ (64BT

15
∧ bit30) ⊕ (64BB

15
∧ bit31)

where ∧ is an operator that returns 0 if either operand is zero, and returns the first operand

otherwise. The computation is similar for the 16-bit short values that contain scrambled

RSA key pieces.

Second defense. Let us suppose the attacker has some magical targeted partial disclosure

attack that identifies the index table, chunks, offset XOR values, and delta XOR values (note

the actual possible attacks we know of are not nearly this powerful). The control values for

the offset XOR can be efficiently computed using the chunk addresses, and the control values

for the delta XOR may then be computed with a cost of 216.

In order to rigorously defend against this, we can add a compile-time constant (see Section

2.3.3) that is used to specify a permutation on the index table. Lookups on the index table

will now use this constant to control the order (e.g., the index used would be the index

sought plus the last several bits (lg t, t is table size) of a pseudo-random number generator

based on the pointer, modulus t. The pseudo-random number generator must have small

2We verified a sample expression compiled to a sequence of appropriate XOR’s, with the random constant
not appearing, in gcc 3.4 and 4.0, with -O2.
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state (current value kept in a register), be possible to compute entirely inside the x86 register

space (limiting on 32-bit but roomy for 64-bit), and the trailing bits must not repeat within

a period t). A 32-bit permutation constant (seed) would increase the attacker’s search space

by a factor of 232; a larger constant could be used if that simplified the implementation while

providing at least 232 permutations.

Discussion. Without these defenses, an attacker could just build the executable on an

identical system, run objdump and look for the appropriate variable name, and then examine

that memory location in the process to find the index table (this omits some details such as

how to recover the process page table which gives the virtual memory mapping). With these

defenses, the attacker must locate and interpret particular sequences of assembly language

instructions in the particular executable being used on this machine to determine how to

unscramble and order pointers and values in each of various stages in the scrambling process.

The possible attack routes are explained in Section 2.4 and analyzed in Section 2.5.

2.3.4 Disabling Interrupts

In order to ensure that register contents are never spilled to memory (for a context switch or

system event), we need to disable interrupts. This can be achieved by disabling interrupts

via, for example, a kernel module that provides a facility for non-root processes to disable

and enable interrupts on a CPU core. However, there are three important issues:

1. Since illegitimate processes could use the interrupt-disabling functionality to degrade

functionality or perform a denial-of-service attack, care must be taken as to which

programs are allowed to use this facility. A mechanism may be used to harden the

security by authenticating the application binary that requests disabling interrupts,

e.g., by verifying a digital signature of the binary.

2. The interrupt-disabling facility itself may be attacked. For example, the kernel module

we use to disable interrupts could be compromised or faked so that it silently fails to
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disable interrupts. Fortunately, we can detect this omission from userland using a non-

privileged instruction and refuse to populate the XMM registers, reducing the attacker

to a denial-of-service attack, which was already possible because the attacker had to

have kernel access.

3. A clever attacker might be able to prevent the kernel module from successfully disabling

interrupts. For example, the attacker might perpetrate a denial-of-service attack on

the device file used to send commands to the kernel module. Two points of our design

make this particular attack difficult for the attacker:

(a) First, the kernel module allows multiple processes to open the device file simul-

taneously, so that multiple server processes can access it, meaning an attacker

cannot open the device to block other processes.

(b) Second, the code that calls the kernel module automatically retries if interrupts

have not become disabled. So in the worst case, the attack is downgraded to a

denial-of-service attack, which is already easy when the attacker has this level of

machine access.

Discussion. Disabling interrupts could cause side-effects, most notably with real-time video,

or dropping network traffic if interrupts were disabled for a long time, which would cause

a retransmission and hence some bandwidth and performance cost. Having multiple cores,

as most 64-bit machines and almost all new machines do, would mitigate these problems.3

Moreover, no ill effects were observed from disabling interrupts on our systems. Note that

non-maskable interrupts such as page faults and system management interrupts cannot be

disabled on x86. Thus the scheme is susceptible to low-level attacks that modify their

handlers. Such attacks require considerable knowledge and skill, require privileges on well-

managed systems, and are frequently hardware-specific; we do not deal with such attacks in

the present work.

3In fact, according to /proc/interrupts, the Linux 2.6.15 kernel we used directed all external interrupts
to the same core, so simply using the other cores for our technique would avoid the problem entirely.
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2.4 Refining Attacks by Considering Our Design

Now we consider what key compromise methods may be effective against our design. We

emphasize these attacks include methods specific to our solution and thus are distinct from

the general threat model, whose classes of attacks are independent of our solution and

regulate the resources available to the attacker. These methods specify the rows of our

attack analysis chart (Figure 2.4), whereas our threat model specifies the columns. The

short designation used in the figure to name these parts is highlighted for easy reference

when examining the figure. Often multiple approaches can be used to achieve the same goal,

so sometimes the attack chart lists two ways to accomplish a goal, with an OR after the first.

When multiple steps are needed to accomplish a goal, they are individually numbered. Here

we list and explain the methods found in the table:

• Retrieve key from registers. The attacker may attempt to compromise the key by

reading it directly from the XMM registers.

• Retrieve key directly from RAM. The attacker may try to read the key directly

from RAM, if present.

• Descramble key from RAM. These are the most interesting and subtle attack

scenarios. Again, since multiple approaches may be used to achieve the same attack

effect, sometimes the attack chart lists two ways to accomplish a given objective, with

an OR after the first (see Figure 2.4). Moreover, when multiple steps are needed to

accomplish an objective, they are individually numbered. The descrambling attacks

may succeed via two means: index table or chunks.

– Via index table. This attack can be launched in three steps (see also Figure 2.4):

“1.Locate index table”, “2.Interpret index table”, and “3.Follow pointers”. Specif-

ically, the attacker must first locate the table by scanning RAM for it (e.g., using
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an entropy scan) or by following pointers to it. Assuming the attacker successfully

locates the table, the attacker must then determine how to properly interpret it,

since the pointers are scrambled and the chunk chaff values are scrambled also

(per Section 2.3.3). One way to interpret the table is to somehow compute the

actual XOR used on the offsets and compute the actual XOR used on the values,

“Determine actual XOR offset and XOR delta”. Another way is to “Use deltas

and offsets and determine combination”, this means to find the deltas and offsets

and then determine the proper combination of them (i.e., the value of the control

variable embedded in the executable specifying whether to use each individual

delta and offset). Finally, if the attacker has successfully located the table and

determined how to interpret the table itself, the pointers must be followed to

actually find the chunks in proper order. In Section 2.3.3 we discussed how to

defend against this by introducing a substantial number of permutations.

– Via chunks. The attacker can avoid interpreting the table and attempt to work

from the chunks directly. This requires three steps (see also Figure 2.4). First,

the attacker must locate the chunks themselves in the memory dump (“1.Locate

chunks”). Then, the attacker must interpret the chunks (“2.Interpret chunks”)

that were XOR’d with the chaff values. Lastly, the attacker must determine the

proper order for the chunks (“3.Order chunks”), which is demanding since the

number of permutations is considerable.

2.5 Security Analysis

It would be ideal if we could rigorously prove the security of the resulting system. Unfortu-

nately, this is challenging because it is not clear how to formalize a proper theoretic model.

The well-articulated models, such as the ones due to Barak et al. [6] and Goldreich-Ostrovsky

[30], do not appear to be applicable to our system setting. Moreover, the aforementioned
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“supporting mechanism” itself may be reverse-engineered by the attacker, who may then

recover the original key. We leave devising a formal model for rigorously reasoning about

security in our setting as an open problem. In what follows we heuristically discuss security

of the resulting system.

Figure 2.4 summarizes attacks against the resulting system, where each row corresponds

to a key-compromise attack method (see Section 2.4) whereas the columns are the various

threat models. At the intersection of a column and row is an attack effect, which is a one

or two letter code that explains the degree of success of that row’s key compromise method

given that column’s threat (see codes in Section 2.5.2).

2.5.1 Example Scenario

To aid understanding of the chart, we consider as an example the Full Disclosure threat

model where the attacker is given the full RAM content and attempts to compromise the

key in it. In this case, the specific attack “retrieving the key from registers” does not apply

because RAM disclosure attacks do not contain the contents of registers. Moreover, the

specific attack “retrieving the key from RAM” fails because RAM does not contain the key,

as detailed in effect “B” in Section 2.5.2. Thus, the attacker may then try to retrieve the

key via the index table, or via the chunks directly as elaborated below.

Via index table. Continuing down the column of the Full Disclosure threat model, the

attacker scans the RAM dump for the index table, but this fails because the table has no

readily-obvious identifying information (code “C” in Figure 2.4). Instead, the attacker can

build the executable on another machine so as to find the storage location for the pointer

to the index table, as shown in code “DS” in Figure 2.4. The attacker may try to guess

the actual XOR value used for pointer offsets and the actual XOR value used for chunk

deltas (“F1” in Figure 2.4), but the search space is 226, which will still have to be multiplied

by later cost factors since the guess can’t be verified until the actual key is assembled.

Instead, the attacker can find the values that are combined to produce the deltas (difficult
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Figure 2.4: Effects of different attack methods in different threat models. Legend: A —
Retrieving key from registers fails. B — Retrieving key from RAM fails because no copy is
there. C — Table scan fails because no identifying information. DD — Doable with caveat
(dispersed). DS — Doable with caveats (no symbols). E — Run executable in emulator or
virtual machine. F1 — Search 226 possibilities for actual XOR offset and actual XOR delta.
F2 — Search 236 to determine XOR offset control value and XOR delta control value. G
— Circumventing table compile-time constant ordering defense requires 232. H — Chunks
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Attack stage would succeed given the caveat in parentheses. Bold items indicate best key
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means requires substantial manual work for a highly-knowledgeable and skilled attacker, “if
possible” means if there is a targeted partial disclosure attack that somehow finds only the
items of interest.
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because they are dispersed throughout the process memory “DD”), and then determine

what combinations of these are used to form the actual offset XOR value and the actual

delta XOR value (“F2”), at a cost of 236 different guesses. In order to actually follow the

decoded pointers and reassemble the keys, the 232 permutation induced by a compile-time

random value (“G”) must be reversed, which requires considering 232 permutations for each

of those 236 guesses. Thus 232
·236 = 268 keys must be examined to attack via the index table

if the deltas and offsets are found and then their combinations examined. Since directly

determining the offsets and deltas costs 226 (“F1”), examining 232 permutations for each of

those yields a cheaper total cost of 258. As we will see, this is the most efficient attack, so

“DS” “F1” and “G” are bolded because together they form the best attack for this column.

Via chunks. In this case the chunks must first be located from dispersed memory, with

no particular identifying characteristics (“DD”). The chunks must then be decoded, which

is difficult since each has been XOR’d with its own random 16-bit quantity (“H”) which is

stored only in the index table (breaking this is prohibitively expensive because individual

chunks can’t be verified, e.g., a 1024-bit key has 64 16-bit chunks, so 21664
= 21024). Lastly,

the chunks must be ordered, but there are 2296 possible orders (“I”), so clearly the index

table attack above that yields 258 possible keys is faster.

Computational Cost of Best Attack. The fastest attack for the Full Disclosure threat

model was the index table attack that yields 258 possible keys. 258 = 2.9 ∗ 1017, meaning

an adversary with 8 cores that can each check 1000 RSA keys per second (i.e., 1000 sign

operations per second per core) could break the defense to recover the key in slightly more

than a million years (about ten million CPU years).

2.5.2 Effects of the Key Compromise Methods

Here we elaborate the effects of the key compromise methods in the threat models. For

example, effect A is what occurs when an attacker launches the attack “retrieve the key

from registers” in the threat model of “run processes on machine”.
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Effect A: Retrieving key from registers fails. The most obvious key compromise

method is to steal the key when it is loaded into the SSE registers. As discussed before,

special care was taken to prevent this attack by appropriately disabling interrupts, so that

our process has full control of the CPU until we relinquish it.

Effect B: Retrieving key from RAM fails because no copy is there. The second

most obvious way to recover the key is if it was somehow “spilled” from the registers to

RAM during execution. We conducted experiments to confirm that this does not happen.

Specifically, we analyzed RAM contents while Apache is running under VMware Server

on an Intel Pentium 930D. The virtual machine was configured as a 512MB single CPU

machine with an updated version of Ubuntu 6.06, with VMware tools installed. A Python

script generated 10 HTTP SSL connections (each a 10k document fetch) per second for 100

seconds. Then our script immediately paused the virtual machine, causing it to update the

.VMEM file which contains the VM’s RAM. We then examined this RAM dump file for

instances of words of the key in more than a dozen runs. In no cases were any words of the

key found.

Effect C: Table scan fails because no identifying information. The attacker can seek

to find the index table by scanning for plausible contents. Identifying the index table by its

contents is difficult because: (i) the chaff is low entropy, so it can’t be easily used to find the

table; (ii) the pointers in the table point to dynamically-allocated, rather than consecutive,

memory addresses, so they can’t be directly used either. Examining the contents of the

regions pointed to by the potential index pointers seems to be the attacker’s best approach.

Some candidates can now be ruled out quickly because they point to invalid locations or

locations that contain entirely zeroes. However, it remains quite difficult for the attacker

to decide if a sequence of pointers actually does point to the chunk and filler, because it is

difficult to differentiate a pointer to a location that contains 16 bits of scrambled key and 16

bits of filler from a pointer to any other location in memory.

Effects DD, DS: Doable with caveats. These symbols are used to mark combinations
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which can be accomplished but require a cost that is not expressible in computational terms.

We emphasize the security of our scheme is never reliant on these factors; they are merely

additional hurdles for the attacker to surpass. DD indicates that finding objects is theo-

retically possible given that they are located in RAM (and more precisely in the address

space for the process that uses the key), but difficult given that they are dispersed non-

deterministically by malloc(), an effect that may be enhanced by also allocating fake items

of the same size. This is particularly difficult when the items have no particular identifying

characteristics that readily distinguish them from other values in memory. True, in some

instances, such as the chunks, they will be of higher entropy than the surrounding data, but

we expect that it would be hard to pick out a single 16-bit chunk as higher entropy than its

surroundings, and extremely difficult for tiny 1-bit chunks. Still, because we cannot quantify

the difficulty of doing this, we must assume that it is possible. DS indicates that values are

statically allocated by the compiler but rather difficult to find because we do not include any

symbols, meaning they are simply particular bytes in the BSS (Block Start Symbol) segment

identified only by their usage in the executable. The attacker’s best attack is to rebuild the

executable to find the locations.

Effect E: Run executable in emulator or virtual machine. Executable images can

exploited by executing them. We believe executing disclosed memory images enables a pow-

erful class of attacks, which have not been previously studied to the best of our knowledge.

Namely, an attacker can acquire a full memory image and then execute it inside an emulator

or virtual machine, where its behavior can be examined in detail, without hardware probes

or other hard-to-obtain tools. Certain hardware state, primarily CPU registers, will not be

contained in the memory image and must be obtained or approximated. Since operating

systems save the state of the CPU when taking a process off of it, the attacker could simply

restore this state and be able to execute for at least a short duration, likely at least until

the first interrupt or system call. If a memory image was somehow obtained just before our

prototype started loading the MMX registers with the RSA key, this basic state technique
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would probably suffice for the attacker to observe what values are loaded into the registers

on the emulator (or virtual machine). We suspect that any obfuscation mechanism that

employs software will be amenable to some form of this attack. Fortunately, we expect this

attack will require significant manual work from a highly-skilled attacker. There might be

some approach that could allow the attacker to reduce the amount of manual work by making

a significant up-front investment.

Effect F1: Search 226 possibilities for actual XOR offset and actual XOR delta.

In order to interpret the index table, the attacker must circumvent the offsets and deltas,

as explained in Section 2.3.3. Since these have a range of 264 and 232, a brute force search

requires 296. By checking each value found in memory, rather than each possible delta and

offset, the search space can be reduced substantially. In this case the attacker must search

each possible value from memory (M) and then compute the delta and offset that would

match it on each index. That then gives a delta and offset which can be used to interpret

the remainder of the table. Let M = 1 megabyte = 220. Assuming a 1024-bit key broken

into 16-bit chunks, table size t = 1024

16
= 64 = 26. So that gives a total cost of M · t = 226 for

breaking the XOR offsets and deltas.

Effect F2: Search 236 to determine XOR offset control value and XOR delta

control value. In order to interpret the index table, the attacker must circumvent the

offsets and deltas, as explained in Section 2.3.3. Assuming the attacker has somehow found

the offsets and deltas in RAM, let us examine the possibility of determining the control

value that specifies which offsets to use to compute the XOR offset and the control value

that specifies which delta values to use to compute the XOR delta. Since the control values

have a range of 232 and 216 (and the offsets and deltas themselves have a larger range), a

brute force search would require 248. Limiting the XOR offset to a plausible set of values

yields a search space of 220 for the offset (i.e., only check XOR control values that result in

pointer values that address within the data segment, which we’ll assume is 1 M). Since the

attacker needs to find the offset XOR for the pointers and the delta XOR for the chaffs, the
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search space is 220
· 216 = 236. Note that since these values cannot be verified to be correct

until an RSA sign operation verifies the actual resulting key, this 236 is a multiplicative factor

in the computational cost of finding a key with any process that includes this step.

Effect G: Circumventing table compile-time constant ordering defense requires

232. Section 2.3.3 describes how the pointers in the index table can be permuted using a

compile-time constant providing 232 permutations. In order to discover the key, the attacker

must try all 232 permutations to see if each one gives a key that produces a correct result

when used.

Effect H: Chunks encoded with 16 bits of chaff (per chunk). Each chunk is XOR’d

with its own chaff (16 bits of random data). If attacker can’t decode and validate a chunk at

a time, brute-forcing these is clearly computationally infeasible: e.g., 216
1024

16 for a 1024-bit

key in 16-bit chunks. If the attacker were somehow able to validate an individual chunk,

then the cost is only 216
·

1024

16
, which is negligible. However, since a chunk is merely 16 bits

(or even 1 bit if b = 1 and s = 1) of high-entropy data with no particular structure, we

cannot conceive any way an attacker could validate an individual chunk.

Effect I: Chunks have 2296 possible orders. Even if the chunks were correctly decoded,

they still must be assembled in the correct order to form the key. However, even for a 1024-

bit key broken only into 16-bit pieces, there are 1089 permutations of the pieces, which is

approximately 2296.

2.5.3 Security Summary

The best computational attacks (”Full Disclosure” and ”Partial Disclosure Untargeted”

columns) require checking 258 RSA keys, which costs about 10 million CPU years. If a

special targeted partial disclosure attack can somehow be conceived, there is a 232 attack,

which takes some computation but is quite feasible. A skilled and knowledgeable attacker

that has a great deal of time and patience can break the scheme with a couple of different

highly-manual attacks: either reverse-engineering the particular executable on the attacked
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system and applying the results to the disclosed image, or setting up a carefully-timed dis-

closed image to be executed on an emulator or virtual machine and reading the key from

the registers when they are populated.

This is a great contrast to a typical system, which is fundamentally vulnerable to Shamir

and van Someren’s attacks [61] which scan for high entropy regions of memory (note keys

always must be high entropy so they cannot be easily guessed) and might require checking

around a few dozen candidate keys. Recall [34] showed that unaltered keys are visible in

RAM in the common real systems Apache and OpenSSH. The successful attacks shown

in [33] suggest that typical systems are likely also vulnerable to data-structure-signature

scan methods to find Apache SSL keys and scans for internal consistency of prospective key

schedules to find key schedules for common disk encryption systems.

From this analysis we see that our defenses would be especially effective against auto-

mated malware attacks, which we expect to be the most probable threat against low-value

and medium-value keys. High-value keys may be worthwhile for an attacker to specifically

target with manual effort, but we expect systems using those will likely use hardware so-

lutions such as SSL accelerator cards and cryptographic coprocessors. Such hardware is

too expensive for most applications, but provides high performance as well as hardware key

protection for high-end applications.

2.6 Performance Analysis of Prototype

Microbenchmark performance. First we examine the performance of RSA signature

operations in isolation. Using our modified version of OpenSSL on a Core2Duo E6400 dual

core desktop, a 1024-bit RSA sign operation requires 8.8 ms with our prototype versus 2.0

ms for unmodified OpenSSL. This is expected because we can’t use Chinese Remainder

Theorem (because we can’t fit p and q into the registers in addition to d due to their space

limitation). Nevertheless, our prototype just used the most basic (and therefore slowest)
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square-multiplication technique for modular exponentiation offered by OpenSSL, which could

be improved by using Montgomery multiplication.

Apache Web Server SSL Performance. Now we examine the performance of our pro-

totype within Apache 2.2.4, using a simple HTTPS benchmark. An E6400 acts as the client

and another E6400 dual core desktop on the same 100 Mbps LAN acts as the server. For

the first test we initiate 10 SSL connections every 0.2 seconds, fetching a ten kilobyte file

and then shutting down. The 0.2 second interval was chosen because it represented a rea-

sonable load of 50 new connections per second. We note our solution is not expected to be

used for high-throughput servers, which would often use special hardware for accelerating

cryptographic processing. The result is that average query latency over 100,000 requests

increases from about 80 milliseconds for unmodified Apache to about 120 milliseconds for

the prototype (recall all 10 queries are initiated simultaneously, which slows average response

time). Average CPU utilization also increased from 45% to 61%. From this we conclude

there is no substantial impact on observed performance under reasonable load, and that the

throughput we measured should be sustainable over long periods of time.

In many ways this experimental setup represents a worst-case. SSL negotiation including

RSA signing is done for every transfer, with no user think time to overlap with, whereas we

expect real-world SSL connections transfer multiple files consecutively and have long pauses

of user think time where other requests can be overlapped. Moreover, we access a single local

file that will doubtless be quickly retrieved from cache, whereas we expect that real-world

HTTPS interactions will frequently require a disk and/or database hit.

We also demonstrate the scalability of our prototype systems. Figures 2.5(a) and 2.5(b)

show Apache server CPU utilization and response time for the 1024-bit SSL benchmark as a

function of interval in seconds between sets of 10 requests, with 5000 requests per data point,

demonstrating that our prototype scales about as well as Apache. In these experiments, the

behavior of Apache becomes distorted when CPU utilization exceeds approximately 70%;

the reason for this is unknown but may be because of scheduling. This can be seen in the
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Figure 2.5: Apache SSL benchmark CPU utilization and response time, as function of interval
in seconds between sets of 10 requests

dips and valleys on the left of Figure 2.5(a), and likely causes the similarly-timed aberrations

on the left of Figure 2.5(b). Because each data point is from only 5000 requests, on a testbed

which is not isolated from the department network, there is some noise which causes minor

fluctuations in the curve, visible on the right of Figure 2.5(b).

2.7 Summary

In this chapter we presented a method, as well as a prototype realization of it, for safekeeping

cryptographic keys from memory disclosure attacks. The basic idea is to eliminate the ap-

pearance of a cryptographic key in its entirety in RAM, while allowing efficient cryptographic

computations by ensuring that a key only appears in its entirety in certain registers.
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Chapter 3

ASSURED DIGITAL SIGNING WITH

THE PROTECTED MONITOR

3.1 Introduction

In Chapter 2, we presented a mechanism to defeat a subclass of attacks against cryptographic

keys; namely attacks that exploit software vulnerabilities to steal cryptographic keys from

memory. In this chapter we move a step further to investigate a more powerful subclass of

attacks: namely attacks where the attacker isn’t primarily attempting to compromise the

cryptographic key itself (which could be protected with special hardware or the solution pre-

sented in Chapter 2), but rather to compromise the corresponding cryptographic functions.

As a side-effect, our new mechanism also secures the key itself from malware attacks.

Digital signatures are a widely used cryptographic tool for assuring various authenticity

needs, including non-repudiation, sources of data access control requests (while possibly

protecting privacy if desired [17]), and sources of data items or software programs in the

form of provenance for evaluating their trustworthiness [35, 80, 73]. However, there is a gap

between the authenticity offered by digital signatures in the abstracted models (see [31] for

the classic and standard definition) and the authenticity required by real-world applications.

This is because the abstracted models (inevitably) have to assume away some attacks that

are relevant in a broader security context otherwise.

A particular type of such attacks was called hit-and-stick but left as an open problem in
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the literature [75]. In this attack, the attacker (via malicious stealthy malware) penetrates

into a computer system, while possibly evading current security mechanisms. As a conse-

quence, the attacker can compromise the private signing functions by simply feeding any

desired message to the program or device that holds private signing keys or computes cryp-

tographic functions. The concept was highlighted many years ago by Loscocco et al. [46],

but the problem has since then remained open beyond the defense offered by various types of

intrusion detection systems that hopefully can detect the attack, and thus the cryptographic

key can be revoked. Unfortunately, as discussed in [75], this is far from sufficient.

3.1.1 Our Contributions

In this chapter we address the hit-and-stick attack against digital signing in real-life sys-

tems. Specifically, we present the design of a general, extensible framework for enhancing

the authenticity offered by digital signatures. The framework offers digital signatures with

systems-based assurances1 that can be verified by the signature verifiers, which is very useful

in application such as analyzing the trustworthiness of data via their digitally signed prove-

nance. The framework utilizes both trusted computing and virtualization simultaneously. It

is extensible because it can integrate other virtualization-based security mechanisms so as to

fulfill a more comprehensive security solution (rather than only protecting cryptosystems).

Further, we present a concrete implementation and evaluation of a light-weight system

as a prototype instantiation of the general framework (Section 3.4). The core of our solution

is a novel software module called the protected monitor, which is a light-weight software

substrate beneath the guest OS kernel but residing on top of the hypervisor, and might be

of independent value. In other words, it is less powerful than the hypervisor but is more

privileged than the guest OS kernel.

In addition to providing experimental performance evaluation (Section 3.7), we conduct

a systematic security analysis against a number of possible threats against the system, which

1This can be thought of as systems security repaying cryptography for its assistance.
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shows that the resulting system has no security flaws as long as the underlying hypervisor

is secure (Section 3.6). Finally, Section 3.8 presents additional detail on the contribution of

the protected monitor.

Our complete solution has several desirable features. First, private signing keys are not

directly accessible from the user’s (compromised) VM, even via raw disk access, meaning that

malware can no longer easily disclose the keys. Second, our solution does not require any

modifications to the source code of applications that use properly-designed cryptographic

libraries, which greatly increases its applicability. Third, applications requesting use of the

key can be attested before they are allowed to use the key.

3.2 Design Rationale for Our Solution

The objective of assured digital signing is to add systems-based security assurance to the

cryptographic properties of digital signatures so that we can get the best of both worlds —

systems security and cryptography. As a result, the signature verifier can expect greater

trustworthiness in the data the signature vouches for, which is important in the verifier’s

decision-making process.

Our proposed framework is to accompany a digital signature with assertions on the

system state under which the signature was generated. The framework is general in the

sense that it can accommodate many other specific techniques for monitoring the state of the

system and can be integrated into a large class of security mechanisms for a comprehensive

solution. Moreover, it can accommodate architectures that already offer a hardware device

for conducting cryptographic computation. Communication layers are provided to make

inter-VM communication transparent to the application, which is still written as if it is

invoking a cryptographic service provider as a local library. 2 In Section 3.3 we will explore

2Note that using a cryptographic library with a well-designed API is a best practice for security of
cryptographic applications, as compared to other alternatives such as writing cryptographic code in-house.
For example, this allows an application to switch to a different cryptographic library if implementation
weaknesses are discovered.
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the solution design space while bearing in mind the above requirements, after we present our

threat model and compare related work.

3.2.1 Threat Model

We use the same standard assumptions typical in virtualization security architectures ([56,

28, 27, 40]):

• The hypervisor and trusted VM are in the trusted computing base (TCB) and are thus

secure.

• Malicious code can only affect the guest VM, but this includes the guest OS kernel.

• The hypervisor provides isolation between the trusted VM and the untrusted VM.

Additionally, we assume that the user does not install and run applications in the trusted

VM, but performs all user activity in the untrusted VM. One way to achieve this for most

users is to simply make the trusted VM not be easily accessible.

This threat model is realistic, as it assumes the attacker can do anything he desires to

the guest VM, including inserting both user-space and kernel-space malicious code.

3.2.2 Why Hardware/TXT Alone Is Not Sufficient

In order to defeat the threat of software-based attacks against private signing keys, we can

certainly store them in hardware devices such as a co-processor [78] or Trusted Platform

Module (TPM) [32]. However, it is much more difficult to defeat software-based attacks that

target the private signing functions rather than the private signing keys. This is because

once the attacker penetrates into and compromises the operating system (OS), to which the

hardware devices are attached, the attacker can simply request the hardware devices to sign

any message desired. The same attack disqualifies both Intel’s Trusted Execution Technol-

ogy (TXT) technique [38] and AMD’s Secure Virtual Machine (SVM) [2], which provide
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a hardware-protected clean execution environment on-demand (i.e., without re-booting the

system). This is because the invocation of such an environment is realized through a privi-

leged instruction, which however can be launched by the malware that has compromised the

OS kernel already. As a consequence, this also disqualifies follow-on solutions that exploits

the TXT technique (e.g., [48]).

One obvious countermeasure to this attack would be to deploy a CAPTCHA (Completely

Automated Public Turing test to Tell Computers and Humans Apart) system [14], namely

by challenging the digital signing requester to solve some problems that can only be solved

by a human. However, this solution is either annoying because the requester has to solve a

CAPTCHA challenge for every digital signing, or not possible because the signing process

is invoked automatically by other applications programs (i.e., without involving a human in

the loop). More importantly, this solution is actually not secure because the attacker, who

has compromised the OS and controlled the communication channel between the user and

the hardware device, can launch the following man-in-the-middle attack: The attacker can

simply utilize the user to help it solve the CAPTCHA challenge and then prompt to the

user that the solution entered last time to the CAPTCHA challenge was incorrect. The user

may not suspect there is a man-in-the-middle attack because as human we might often make

mistakes in discerning or typing solutions to CAPTCHA challenges, which is especially true

as they become more and more sophisticated so as to defeat automatic CAPTCHA solvers

[14]. The use of TXT-based trusted I/O may be able to defeat this man-in-the-middle

attack because the malware cannot incept the user’s input. However, this approach has

the drawback that everything else running on the system has to be frozen in order to run

the system. Moreover, as mentioned above, the fact that no human is involved in many

applications disqualifies this solution.

3.2.3 Comparison to Other Possible VMM-based Approaches

Stock hypervisors. Ordinary stock hypervisors can be used to isolate an untrusted domain
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from a trusted domain. Applications in the untrusted domain could then request secure

services from applications in the trusted domain via some typical interdomain communication

mechanism. There are two disadvantages to this approach:

• There is no mechanism for the trusted domain to vet the application in the untrusted

domain requesting the service. For example the application in the untrusted domain

could be the victim of a code-injection attack launched by malware. (Systems aug-

mented with VM introspection are discussed below.)

• Ordinary interdomain communication mechanisms rely on the kernel to set up or per-

form the communication. In either case, a malicious kernel can easily disrupt the

service.

In contrast, our protected monitor approach has the following advantages:

• Our design allows the trusted domain to verify the code of the application sending a

message, as well as to protect the code of that application against modification.

• Our design provides for fast high-throughput communication from the untrusted do-

main to the trusted domain and also vice-versa.

• Our design removes the kernel from the interdomain communication process, reducing

the communication threat of a malicious kernel to a denial-of-service attack.

VM introspection. Our in-VM protected monitor is much more powerful than VM intro-

spection for two reasons:

• First, it greatly reduces the semantic gap problem, created by attempting to understand

the semantics of operations of a virtual machine from outside the VM. The protected

monitor allows us to securely run operations within the VM, where the semantic gap

does not apply. For example, instead of examining what an external observer expects

to be the process list and inferring what particular values mean, the protected monitor
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could call into the kernel to get a list of processes directly. However, this does not fully

and securely resolve the semantic gap problem because invoking functionality that is

only implemented in the guest OS kernel or applications is still subject to attacks on

those components, even though attacks on the monitor itself are not possible. Instead,

it gives the system a selectable tradeoff between completeness of information and secu-

rity of the information acquisition, such as in the above process list example where we

may be willing to trade some risk of getting compromised information from a compro-

mised kernel in exchange for full information on processes regardless of kernel version.

In this work we choose to maximize security of information acquisition. Note that

because checking the accuracy of information is often easier than acquiring the infor-

mation directly, we believe the protected monitor may be able acquire completeness of

information without necessarily reducing the security of information acquisition. We

leave study of the full potential of the completeness-security tradeoff and mitigation

techniques to future work.

• Secondly, the protected monitor provides for secure and efficient two-way communi-

cation between a trusted VM and userland applications in an untrusted VM, without

relying on the kernel during communication. In fact, not only can the kernel not inter-

cept nor block the communication process, but the application itself is protected during

communication by features such as write-protecting its executable and shared libraries

from modification by the kernel or other applications, even privileged applications.

This prevents code injection from occurring during communication, and allows the

system to measure an executable only when the communication process begins rather

than on every communication, which substantially reduces the overhead of measuring

the executable.
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3.3 System Logical Design

In the above we have discussed why hardware/TXT alone is not sufficient to defeat the hit-

and-stick attack against digital signing. The cause of this phenomenon is that the attacker

can penetrate into the OS of the victim computer and thus impersonate the user or user

program. The ideal solution to this problem is to ensure that the OS is never penetrated,

which is however a grand challenge that might remain open for decades. For a practical and

feasible solution, we would have to make some assumption that there is some small Trusted

Computing Base (TCB) in the software stack. This leads to the architectural framework

depicted in Figure 3.1, where the small TCB is naturally realized by the hypervisor. We

assume the hypervisor is secure, which is an active research topic [66, 71, 5].

Capturing dynamic system properties is an important yet challenging research problem

that remains to be tackled [41, 76]. Our approach is orthogonal to efforts in that because we

can take advantage of them in a plug-and-play fashion. This also applies to research that

aims to ensure kernel integrity and detect kernel rootkits [47, 16].
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Figure 3.1: Logical design of solution framework to the hit-and-stick problem (dashed arrows
represent logical, rather than physical, communication flows)

In this framework, a signature verifier verifies not only the cryptographic validity of a

digital signature (i.e., that the signature is valid with respect to the claimed public key

38



that was not revoked), but also the attestation about the system environment in which

the signature was generated. Because we want to prevent, rather than just detect after

the fact, attacks against the signer’s computer, the attestation ideally should include state

information such as whether the system (especially the application program that issued the

signature) is under attack or suspicious. Correspondingly, the signer’s system, which needs

to collect the relevant information, is characterized as follows. We separate the applications

from the signing server because we want to make our solution extensible so as to integrate

with other existing and to-be-developed solutions. We note that it is relatively more easy to

protect the cryptographic server than to protect the cryptographic service requester because

the former is almost always static, whereas the latter resides in a system that often needs

to be updated with new software programs or their patches. This justifies why we use

a trusted VM for the actual signing program, while the application runs in an untrusted

VM. This allows to integrate with existing and future VM-based introspection solutions

(such as those mentioned above) for a more comprehensive solution. Moreover, we use the

protected monitor with the user’s untrusted VM, which could be integrated with other in-

VM introspection security mechanisms. This is appealing because in-VM introspection has

certain advantages over out-of-VM introspection. The protected monitor is not designed to

be a part of the TCB because we want to make as few changes to the TCB as possible. The

protected monitor is a security-critical module that will reside directly on the TCB. Moreover,

the protected monitor can integrate existing countermeasures against the compromise of the

software making requests.

3.4 System Physical Design

Figure 3.2 depicts the the overall physical design of our signer system. We choose Xen as our

platform because the code is freely available. The physical design details many issues that

were abstracted away at the logical design mentioned above. In particular, the trusted VM
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is the Xen domain 0 (sometimes referred to with the shorthand dom0), and the untrusted

VM is a Xen domain U (sometimes referred to with the shorthand domU). In what follows

we elaborate on the main components in the system.� � � � � � � � �
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Figure 3.2: Overall software architecture of the system

3.4.1 System Components in Xen

The relevant mechanisms where our system needs support from the hypervisor are: memory

protection, hypercalls, and call gates. In the below we elaborate them.

Memory protection. Xen-enabled memory protection is a key component of our security,

because it allows us to protect data and code from modification by an attacker in the domain

U. Most importantly, we need to provide memory protection for the protected monitor itself

in order to protect the protected monitor from being compromised. We protect 4 megabytes

of memory in the domain U, and use each for a separate purpose. The individual megabytes

are designated as M0, M1, M2, and M3, respectively.
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A trusted VM runs a backend monitor that can persist information. (Note that hyper-

visors typically have no ability to persist data, and the file store in the user VM cannot

necessarily be trusted.) Highly secure code that authors do not wish to port to run within

the monitors themselves can also be run within the trusted VM, allowing them to make use

of ordinary operating system services.

We modify the Xen hypervisor to add memory protection for the protected monitor that

sits within the user VM, and also to augment Xen to allow inter-VM communication without

having to rely on the user VM kernel and operating system in any way. The protected monitor

within the user VM can handle simple access control decisions without having to cross the

VM boundary. More complex decisions, including decisions that are best made outside the

VM, are sent to the backend monitor in the Secure VM, which will be in Xen’s Domain 0.

User applications are run inside the user VM, where the protected monitor has been

inserted above the kernel. Our protected monitor can be seen as superior to the kernel,

meaning that the protected monitor is not only difficult to attack, but could be used to

mediate kernel actions if desired. The protection is achieved by using virtual machine page

protections to protect a region of kernel memory where our protected monitor will reside.

This memory is protected against execution and modification, except during a special mode

that only applies when the monitor is executing.

Hypercalls. We extend Xen’s hypercall mechanism to provide six additional hypercalls to

support our system design. Two are invoked by domain 0 only: one to send info about the

shared memory, and one to set the GDT. One is invoked by domain 0 or domain U, to send

a Xen virtual IRQ (VIRQ). One is invoked only by the domain U kernel module, to map the

entire 4M shared memory at once. One is invoked in domain U inside the call gate 3 code,

which allows it to performs privileged operations: map and unmap the M2 and M3 and send

message to domain 0. Lastly, one is invoked by the exit page in domain U, to restore the

page protections to their state before the PM was invoked. These will be further explained

as we go through the system operational sequence.
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Call gate. We utilize the call gate mechanism provided by x86 hardware in order to escalate

privilege from ring 3 (user mode applications in dom U) to ring 1 (the ring level for the

domU kernel and our protected monitor). The unique feature of the call gate mechanism

is that we can raise the privilege level without modifying or using the kernel or its data

structures. Normally the kernel would control access to the Global Descriptor Table (GDT)

(which specifies call gates and other system descriptors) but in a Xen system this access is

controlled by Xen. We modify the Xen code and tables that initialize this table. All of our

call gates are set to execute code in M0.

In theory privilege escalation could be achieved using system calls or hypercalls, which

we use in other places and are more typical mechanisms for escalation. Using call gates

rather than system calls or hypercalls has the following advantages:

• Call gates allow us to hash the dom U application and know we have the correct

process, since we read the CR3 directly from the registers the process was using.

• Call gates prevent modification of the CR3 or page table by the attacker, since we

know the CR3 and page table the process was actually using when it invoked the gate.

• Call gates allow the application to know it will actually invoke Xen (because Xen

controls access to the GDT), rather than some program in domain U pretending to be

the hypervisor.

• Communication via call gates ensures the kernel can’t selectively block messages. (I.e.,

if sent messages via kernel module, kernel could selectively block some messages.)

3.4.2 System Components in Domain U

The main system component in the user domain is a new substrate we call the protected

monitor. The function of the protected monitor, which is a core part of the system, is to allow

userspace domain U applications to communicate directly and securely with domain 0. The
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main issue encountered in the design of the protected monitor is to enable communication

between domain U and domain 0 without the support of kernel.

Stub. The stub layer automatically marshals and demarshals cryptographic library calls

and forwards the calls to domain 0, providing transparent access to the service provider in

domain 0.

The stub exists to allow the user application to transparently invoke what appear to

be ordinary library calls. However, instead of the request being processed inside the local

library, it automatically translates them into requests that travel via the protected monitor

to be served by the service provider in domain 0. The stub code declares functions in the

cryptography library so that the user code can link against them just like linking against

a static or dynamically-linked implementation of the cryptography library. Since the defi-

nitions of the functions accept the library arguments and marshal them appropriately and

send them to domain 0 which then processes them and then the stubs deserialize the reply,

the user application is completely unaware that the operations are not implemented directly

in the library.

Kernel module. The kernel module enables user processes to invoke certain hypercalls,

since user processes cannot invoke hypercalls directly. Invoking the kernel module is also

faster than using invoking a call gates, so best to not use gates for everything. The downside

of using a kernel module is that a compromised kernel could prevent it from operating. For

this reason we never use the kernel module for security-sensitive operations, only to set up

and tear down the system. If those operations fail, the result is merely a denial-of-service.

Protected Monitor. When an application process in domain U requires a cryptographic

service, it invokes the cryptographic service provider stub. The stub uses a call gate to

invoke an appropriately marshalled hypercall (including the identity of the specific function

that is requested) so as to send a Xen event across across a channel to the secure VM. Note

that some privilege escalation must be done by Xen hypercalls rather than the call gates or

invoking the kernel module. This is because hypercalls are the only way to communicate with
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hypervisor. Note that due to the design of Xen (and other typical hypervisors), hypercalls

can only be invoked directly from code in the kernel or a kernel module, so we could not

implement communication from userspace securely and efficiently using only hypercalls.

3.4.3 System Components in Domain 0

The system components in the trusted VM include: (i) backend monitor, (ii) remote attes-

tation service, (ii) crypto service, (iv) disk. Below we describe the components in detail.

Backend monitor. This is the counterpart to the protected monitor inside the trusted VM.

It has 3 major functions: facilitating communication (see Section 3.4.4), determining which

communication requests to approve or deny (the policy engine), and inspecting the domain

U caller generating a request. The most complex job of the backend monitor is inspecting

the domain U caller. The backend monitor has three primary responsibilities:

• Facilitating communication. Upon receiving the event, Xen maps in memory pages that

were transferred to the secure VM in order to read the marshalled function number

and arguments. A stub layer for the cryptographic service provider will recreate the

actual C language invocation from that data. Backend Monitor in Domain 0 receives

the VIRQ’s and translates them into appropriate user-level library invocations, which

requires unmarshalling the arguments.

• Policy engine. The goal of the policy engine is to allow the creation of flexible policies

for approving and denying requests made via the backend monitor, based on decision

criteria available to the backend monitor, such as whether hash values match. This is

relatively straightforward from a coding perspective and we did not implement it other

than some simple checks.

• Inspecting the domain U caller. In order to establish the authenticity and integrity of

an executing program that claims the right to use a certain key, we need to authenticate

the caller. A typical solution for such a problem would be to compute a hash of the
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executable image in memory. This presents two problems: how do we know what the

hash of an executable should be, and how do we deal with the need for updates to an

executable, which will change its hash? For a program that does not ever change the

answer is simple enough: if the hash of the program that requested generation of the

key is the same as the hash of the program that requested use of the key, then the

use should be permitted. For the more common case of a program whose executable is

periodically updated, a more sophisticated mechanism is required. Here we introduce

the concept of the provenance of an executable. By this we mean establishing a trail

that establishes how an executable was obtained or from what source it originated.

When an application initially creates a key, we compute a hash of the executable and

check it against a signature provided by the publisher. If the signature matches, we

then record the publisher as having the right to produce future applications of the

same name that can use this key. Neither applications from other publishers nor other

applications from this publisher have the right to use the key.

It’s important to note that we hash the executable at the first call gate, and then

lock the executable pages so they can’t be modified. This is for two reasons: (i) The

performance impact is lower, since there is a hash at the beginning of communication

instead of every time a message is sent. (ii) This prevents subtle TOCTOU (time-of-

check time-of-use) attacks which would otherwise be possible (e.g., changing the binary

just before sending the message, then somehow changing it back afterwards).

Some technical issues need to be resolved in order to compute this hash. First, we

need to know what comprises the executable, while avoiding any dependency on the

kernel as far as possible. Second, we wish to perform this operation efficiently since

a process could have a large set of pages. After evaluating alternatives, we chose to

examine the pages in the user process code segment. This gives us the executable and

all libraries, including shared libraries, while avoiding any reliance on the kernel or its

data structures and still giving better performance than other options.
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Crypto service. This component provides the cryptography service. It consists of two

pieces: the cryptography library itself and a wrapper which enables the library to receive

calls made across the VM boundary.

Disk. This is simply the ordinary disk in domain 0. Note that there is no way for the

domain U to access the domain 0 disk, so any information on the domain 0 disk is secure

from the domain U.

The disk is important because it stores the keys used by the crypto service, as well as

the implementation of that service and all other domain 0 software components.

Attestation service. Attestation criteria in our concrete implementation include the fol-

lowing: (i) static measurement of boot and kernel (using TPM); (ii) using a secured cryp-

tography library; (iii) authentication of the requesting program (measuring the binary and

libraries); (iv) trusted path user confirmation dialog.

Figure 3.3 depicts the optional trusted path user confirmation dialog. This runs from

domain 0 so that it displays directly on the console using X Windows and enables the user to

explicitly approve each signature request made with their key. While our prototype simply

records the bytes of the message and shows the corresponding file type, a full implementation

could feed the bytes to a document viewer so that the user could see the actual document

being signed (if it is of a type that is a viewable document). Because this dialog is part of

the domain 0 service provider code, its operation is completely transparent to domain U,

which is completely unaware of its existence, except for two changes in the behavior of the

signature request call: 1. the call does not return until the user indicates their decision, and

2. well-formed signature requests will fail if the user disapproves the request.

Trousers. Trousers is an open-source implementation of the TCG Software Stack (TSS),

created and released by IBM. This enables domain U applications to access the TPM using

the software API designed by the Trusted Computing Group.

46



Figure 3.3: User signature confirmation dialog (optional)

3.4.4 Putting the Pieces Together

Shared memory and communication flow. Shared memory is the mechanism we use for

efficient communication between the trusted VM and the user VM. By mapping the same

pages into both VM’s, messages can be sent from one domain to the other without any copy

operation, making message transmission a fixed cost irrespective of message size, which is

important since users may request signatures on large amounts of data.� � � � � � � � �
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Figure 3.4: A high-level description of the system shared memory

For the protected monitor we allocate 1024 physical pages of memory (4MB). The first
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256 physical pages (M0) contain the wrapper function that used to invoke the hypercall to

request trusted VM to send to the crypto service. The second 256 physical pages (M1) are

used to store parameters and the measurement of the user VM application’s code segment,

the user VM system call table, and the IDT (Interrupt Descriptor Table). The third 256

physical pages (M2) used for user VM application write the message that need to sign. The

last 256 physical pages (M3) are used for trusted VM to return a result back to the untrusted

VM.

There are three parts of virtual pages map to the physical pages: (i) In user VM’s kernel

space the protected monitor maps the M0 and M1. (ii) In user VM’s user space the user

application maps the M2 and M3. (iii) In trusted VM’s user space the crypto service maps

the M1, M2 and M3. Because (i) & (ii) are both in the user VM, the page tables of these

virtual pages need to be protect by memory protection in Xen.

Recall that our design goal is to require no code changes for the user applications, so

we simply relink it against a stub library, which is particularly easy if the application is

dynamically-linked. This stub library must achieve a communication layer where inter-VM

communication is completely hidden from the ordinary user-space application, which is still

written as if it is invoking the CSP (Cryptographic Service Provider) as a local library. In

order to fulfill secure kernel-free communication without making any modifications to the

domain U OS kernel, we need to realize privilege escalation as follows.

Figure 3.5 summarizes the steps in system execution, with emphasis on message flow

between entities. During the preparatory step, kernel modules are loaded in domain 0 and

domain U. It is important to note that the domain U kernel module is not used to implement

any security-sensitive functionality. If the domain U kernel blocked it or blocked some of its

functionality, it would be able to achieve only a denial-of-service attack. All interrupts are

sent and received through ioctl operations on the device files that are the interface to the

kernel modules. Here are the actual system steps as executed under the direction of user

land applications in domain 0 and domain U:
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Figure 3.5: A high-level description of the system control flow

1. The kernel module devices are opened, which causes them to register themselves to

handle certain virtual interrupts (software interrupts generated by Xen).

2. Domain U uses the kernel module to request that the hypervisor send an interrupt to

domain 0. This interrupt, ”irq1”, is used to signify that a client is starting up.

3. When the domain 0 application receives this interrupt, it allocates 4 megabytes of

memory.

4. The domain 0 application then creates the shared memory and uses two pages to store

the references to the 4 megabytes of shared memory (each page of shared memory has a

reference so 1024 pages of shared memory have 1024 references, later in step 5 our new
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hypercall can use these to map the 4 megabytes) and MFN (machine frame number,

for step 5 to use to protect the domU mapping of the shared memory). It then uses

a hypercall to send the location of the shared memory and the pages of reference and

MFN to Xen. That will allow domain U to use the new hypercall to map this memory.

5. After waiting on IRQ1, domain U invokes a special hypercall to map the megabytes into

kernel user address space for the domain U application. (Mapping the memory into its

address space is what allows domain U to “share” this memory with domain 0.) This

hypercall is different from the one ordinarily used to share memory in Xen, because

of our special security requirements. This memory is read-only and “map-protected,”

which prevents it from being mapped using normal Xen sharing hypercalls. This is

discussed in more detail in Section 3.6. domain U then indicates that it has finished

mapping the shared memory by sending IRQ 2.

6. When domain 0 receives IRQ2, it modifies the GDT (the x86 Global Descriptor Table)

to install the call gates for use in domain U. It then installs the wrapper function in

M0, where it will be invoked by domain 0, and exit page in the last page of M1. The

last page of M1 is always write-protected, so that domain U cannot write it. M0 cannot

be written from domain U normally, but becomes writable while domain U is inside

call gate 2. Domain 0 then sends IRQ2 to domain U to indicate that the call gates are

set up.

7. When domain U receives IRQ2, it can then invoke the first call gate. The effect of the

call gate is to raise the CPU privilege level to ring 1 from the user-level of ring 3 and

begin executing code at a specified location. At the same time, the CR3 and page table

in use do not change, so hypercalls can be made directly from the user application and

operate on the page table of the user application.

This M0 code for call gate 1 simply invokes a hypercall (which is otherwise not possible

without going through the kernel). This hypercall is used to map M2 and M3 memory
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into the user process. M3 is set read-only and M2 can be read and written.

A hash is then computed for the domain U application that invoked the call gate, from

the Xen hypervisor. Because the call gate invocation retained the CR3 and page table

of the process, this uses the page tables of the process, which prevents various attacks

that try to substitute different code when a process is being hashed. By using the

page table of the process, we can ensure these are the same pages the process would

actually access and execute. The executable pages of the application are then marked

read-only (if they weren’t already) and Xen is informed to protected the page table

entries (PTE’s) of the executable pages, so that the kernel can’t modify the page table

to point at different pages. I.e., the pages themselves cannot be changed, and the VM

subsystem “pointers” to the pages cannot be changed.

As soon as the call gate returns, the user application can place a message in M2

whenever it desires.

8. In the meantime domain 0 maps M1−3 into user space. This allows user space code

in domain 0 to access the hash of the domain U system call table, IDT, and userapp

executable pages in domain U, as well as to access the value of the two parameters

from domain U.

9. The user application copies its message into M2.

10. Domain U then invokes the second call gate, which means to send the message in M2.

Invoking this call gate runs the code in shared memory, which has two major steps:

(a) First, a single Xen hypercall is made, and then:

(i) M2 is marked as not writable. This is a second way to ensure that domain

U cannot interfere with the message being sent; we had already ensured that the

kernel could not write it and that it was only accessible by the process. Note

this is a second defense because there is potential for a race condition. The

51



race condition occurs if the process received a software interrupt that caused

some malicious code inside the process to execute after writing the message but

before invoking the call gate. In this case we would have detected the corrupted

executable when we measured the executable. For extra protection the messaging

code could temporarily disable software interrupts, (e.g., with sigprocmask()).

(ii) M0,1 is marked as writable (except the exit page, the last page in M1, which

remains executable but not writable).

(iii) The process hash, a, and b are recorded in M1.(hash of the domain U system

call table and IDT also recorded in M1).

(iv) Then in the callgate it sets a shared variable flag1 to inform domain 0 there

is a message waiting to be processed.3

(v) Domain U then polls waiting for another shared variable flag2, signifying the

message has been processed and a reply is available.

(b) Second, we execute exit page. This transitions us back to user mode after invoking

a hypercall that makes M0,1 read only.

11. When domain 0 observes that flag1 is set, it knows there is a message available, so it

reads it from M2. When a reply is ready, it places the reply in M3 and sets flag2 to

let domain U know the message has been processed and a reply is available.

12. When domain U observes that flag2 is set, it executes a hypercall to make M2 writable

again in case it wants to send another message. It reads the reply from M3.

13. If domain U wishes to send another message, it returns to step 10. Note that domain U

needs to send a termination message, because domain 0 has no way to know otherwise

when the connection should be torn down.

3 Our original system design used an interrupt here rather than polling. However, occasionally the
implementation with the interrupt will pause for a few seconds before continuing. So although work on the
interrupt-based implementation is ongoing, we chose to present the polling implementation in this thesis
rather than rely on the assumption that the pause issue will be fixed.
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14. When domain U has finished with all messages it wants to send, it invokes call gate

3. This unmaps M2,3 and sends IRQ3 to domain 0, to inform it that it is no longer

attached to the shared memory. Domain U then unmaps M0−3 and closes the device

file that connects it to the kernel.

15. When domain 0 receives the IRQ3, it unmaps M2,3, closes the device file that is con-

nected to the kernel module, and destroys the shared memory.

3.5 Implementation

Our system was implemented in the following environment. The hypervisor is Xen 3.3.1.

Domain 0 runs Ubuntu 8.04 (Linux 2.6.18.8-xen.hg kernel) as its guest OS, and domain

U runs Ubuntu 8.04 (Linux 2.6.18.8-xen.hg kernel) as its guest OS. For the digital signing

library, we use Peter Gutmann’s cryptlib library, which is available under both open-source

license (Sleepycat, which is GPL-compatible) and a commercial license for closed-source

commercial use. The cryptlib also provides certificate management services, including key

generation in response to certificate requests.

In order to safely and efficiently implement the runtime memory protection of the pro-

tected monitor, we did the following:

• First, we ensure that the shared memory cannot be unmapped, remapped, or mapped

partially via hypercalls from domain U. In order to achieve this goal, after the domain

0 shared the 4 megabytes, we fill the shared protection table with the references of

these 1024 pages. Then we set the flag shared memory = 1 (domain 0 already shared

memory, so the domain U cannot use the normal hypercall to map these memory

pages). When the domain U want to map the shared memory we check in function

gnttab map grant ref: we will see if shared memory == 1 or shared memory == 2

and the reference that domain U want to map is in our shared protection table or not.
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If is in the table we will prevent it to map this page. So the shared memory cannot be

mapped partially via hypercalls from domain U.

The only way to map these memory pages is using our new hypercall. Our new hy-

percall only accepts two inputs: One is the map or unmap flag. If the input equals

GNTTABOP map grant ref that means map the 4MB a single time. The other input

is the domain U shared pages addr; this will be stored in Xen. Later we will mod-

ify the GDT to let the address point to this one. In this hypercall if the variable

shared memory == 1, then we begin the mapping process. Before each page we map

we’ll temporarily set the shared memory to 0 to let the normal map progress, then

set the shared memory flag to 2 to prevent domain U kernel using this hypercall to

map the memory to another virtual address. To prevent domain U from removing

the mapping using the normal unmap hypercall we add a check in the Xen function

gnttab unmap grant ref. If shared memory == 2 and the reference domain U re-

quests to unmap is in our shared protection table, we reject the unmap request. So

the shared memory cannot be unmapped, nor unmapped partially, via hypercalls from

domain U.

There are two more things we need to take care of. One is the write access: we

don’t want the domain U kernel to write other things like the attack code in the

shared memory, so we need to make sure the shared memory is readonly. The other

is the NX bit. Our original implementation interfered with the use of the NX bit

during system development (32-bit PAE (Physical Address Extension) kernels use the

NX bit), and were able to work around it, so that we didn’t remove this important

defense. In order to achieve these two properties, we use *((unsigned long *)pl1e)

&= 0xfffffffd to change the page table entry to make the shared memory in domain

U readonly, and use *(((unsigned long *)pl1e)+1) &= 0x7fffffff to change the

M0 pages (protected monitor) and last page in the M1 (exit page) to make these pages

executable. This will allow the callgate to jump to the M0 (protected monitor).
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After the user application finishes sending all of its messages, it will ask the domain

U kernel module to unmap the shared memory using our new hypercall with input

GNTTABOP unmap grant ref. The hypercall checks that shared memory == 2 to verify

that the 4MB shared memory can be unmapped.

• Second, we check that the parameters of the domain U hypercall request to map

the shared memory are correct. The ordinary Xen hypercall do grant table op needs

domain U to give parameters including the id of the other domain, the references of the

the shared memory pages, and the virtual address of the shared memory. Our call only

requires the virtual address of the shared memory in domain U (later we will modify

the GDT to point to this address). The references for the shared memory pages we

will get from domain 0, in order to prevent domain U from using our hypercall to map

other memory that domain 0 shared into domain U. And the other domain’s id is the

secure VM’s id; so that domain U cannot use this hypercall to map the memory of

some different domain. Our hypercall also checks if this domain U is the one that was

specified for the server in the secure VM.

• Third, we modify the GDT to make the callgate point to the correct address. First

we need to copy the protected monitor code into M0 in domain 0. Since domain 0 is

the secure VM, the protected monitor is correct, and since the access to M0 in domain

U is readonly, the protected monitor code cannot be changed. We also copy the exit

page code into the last page of M1.

After this we use a hypercall to modify the GDT because only Xen can modify the GDT.

During the Xen boot we added GDT entries for our three new callgates. However, the

shared memory address in domain U could not be determined during boot. So here we

fill the GDT entry with the domain U shared memory address now that it is available.

• Fourth, we ensure that the kernel cannot modify page table entries that point to

the shared memory. This is difficult because the domain U kernel has three ways to
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modify the page table entry: hypercall do mmu update, do update va mapping and

ptwr do page fault. And each way could be subject to two kinds of attacks: one is

change its own PTE to map the protect page (shared memory), and the other is to

change the protected PTE to map other memory or change the write access bit. We

discuss how we protect against these in Section 3.6.

• Fifth, at all times access to the shared memory from domain U kernel space is protected

against writes. We write-protect access to M2 for for domain U userspace from the

beginning of call gate 2 until domain U receives the reply.

• Sixth, we ensure that kernel cannot modify M2. For example, the kernel cannot change

message after written to M2 but before call gate 2 invoked to send the message.

• Seventh, while protecting the domain U executable and the 4M shared memory is nec-

essary, searching the list of 1024 pages each time to see if this is a page we protect would

be very slow. So we use one bit in page->u.inuse.type info (in Xen’s frame table),

which we named PGT entry protected, to mark whether this page needs to be pro-

tected. So every time we merely need to check this bit, and if it is set then we prevent

domain U from changing the page table entry.

3.6 Security Analysis

Here we analyze the security of a system designed as described and carefully implemented.

We consider hit-and-run and hit-and-stick attacks that can compromise the user VM.

There are two basic ways to attack the system: (i) attacking the protected monitor; (ii)

attacking the crypto service via attacks against cryptography, or attacks against key secrecy,

or attacks against applications that request digital signatures, or attacks that falsely request

digital signatures. In what follows we argue why the attacks cannot succeed. We organize

the analysis by attacks against components organized by their physical location: domain U,
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domain 0, and components that are not contained within a specific domain, after introducing

our threat model.

3.6.1 Defeating Attacks against Domain U Components

Attack attempting to prevent installation of the protected monitor. We explain

why such an attack cannot prevent the protected monitor from being mapped into dom U

memory.

• An attacker in the kernel cannot intercept and fake the hypercall that maps the 4MB

memory into the kernel address space for dom U without being detected (then the

system can be cleaned up before installing the protected monitor). Here the attacker

deliberately does not actually make the real call to map the memory. However, this

will be detected because call gate 1 will report failure because it identifies that the

special 4M was never mapped.

• An attacker cannot interfere with the 4M mapping by calling Xen hypercalls themselves

because of the following. (i) Our modifications to Xen ensure that attacker cannot

map it before we do and cannot map only part of that memory. The latter is achieved

because we store the shared memory’s MFN in a page (step 4 of Figure 3.5), and after

domain 0 grants the 4MB memory Xen will prevent domain U from using the hypercall

do grant table op to map the shared memory pages. Although the attacker could

map 4MB using our call before we do, this just makes our mapping request redundant

and does not cause any security problem because it’s idempotent. (ii) Our modifications

to Xen ensure that the attacker can neither unmap nor remap (any portion of) the

4MB after we map it. This is because after using our hypercall the shared memory

flag is changed to mapped, which prevents domain U remapping the shared memory, so

that domain U cannot use our hypercall again to remap the shared memory to another

virtual address. Moreover, using the hypercall do grant table op cannot map or

57



unmap part of that memory somewhere else.

• An attacker cannot fake the malloc() result, which is used in ensure shared memory().

Either malloc returns 2MB of allocated memory in the process address space or it

doesn’t. After the 1st call gate the hypercall we write will map it to M2(readonly after

the 2nd callgate) and M3(readonly), then will protect the page table entries of these

2MB memory. So that attacker cannot map it to his own memory or write the M3 to

modify the signatures.

• An attacker that has compromised the kernel cannot modify the kernel’s own page

table in order to access the shared memory directly. Since the kernel can only modify

page tables through Xen, even for the kernel’s own page table, we can use Xen to

prevent the kernel from modifying its own page table to access the shared memory.

We use one bit in page->u.inuse.type info (in Xen’s frame table) that we named

PGT entry protected flag to mark the pages that need to protect. More specifically,

there are three kinds of page table entries (PTE’s) that need protection from modifi-

cation:

1. Domain U kernel space mapping of M0-M1.

2. The domain U user application mapping of M2-M3 (M3 always readonly and M2

is readonly from the beginning of the 2nd callgate until the return from the call

gate.

3. The domain U user application has its own executable pages (these need to be

protected to prevent TOCTOU attacks that change the executable after we first

measure it, so that we just need to measure it during the 1st callgate).

The attacker (i.e., compromised kernel) has two ways to attack these three kinds of

PTE’s: First, the attacker could try to use his own page table entries to map to the

M0-M3 or userapp executable pages, which seems possible because the kernel can set
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some page table entry with write access to it. However, the attacker cannot map his

virtual address to M0-M3 in domain U, because these pages are owned by dom0, so

that M0-M3’s page table entries cannot be attacked by this way. And we marked the

domain U user application executable pages as protected, so that the attacker who

wants to map his own page table entries to user application will be detected by Xen

which will then prevent this attack from succeeding. Second, the attacker can try to

modify the PTE’s of domain U’s M0-M3 or the application’s executable pages so as

to let the PTE’s map to the attacker’s own pages. If the attack succeeds, the domain

0 may help the attacker to sign a wrong message. But we also prevent this kind of

attack. We have mark these page table entries when the domain U map the shared

memory, so that these page table entries cannot be modify by attacker.

Attack attempting to tamper with the protected monitor memory content. This

is defeated because all reads, writes, and executes of bytes within the protected monitor’s

memory region are blocked by the hypervisor via the MMU. This means no software running

within the VM can read, write, modify, or arbitrarily execute protected monitor code, irre-

spective of the CPU privilege level. Recall there is a special entry page (“jump page”) that

when executed deprotects the protected pages so that the PM can be invoked from outside

the PM. The jump page contains only vectors (jumps) to specific known entry points, and

cannot be read or written until execution in it is begun. As a result, the PM code and data

cannot be tampered with in any way.

Attack attempting to starve the protected monitor of the CPU. For this, the

attacker would somehow prevent any user application from calling in to the PM. Because

we are not attempting to entirely control the user VM, this attack must succeed against the

prototype. Note this does not subvert the PM, nor guarantee access to resources controlled

by the PM. It merely means the PM will not execute.

Attack attempting to regain control of CPU when it is executing inside the

protected monitor. A major attack vector is to regain control of the CPU somehow
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while it is executing inside the protected monitor. The most obvious mechanism for this is

scheduling a timer interrupt. We can take care of this by masking interrupts while inside the

protected monitor. However, some system management interrupts (e.g., power events) are

non-maskable and hence cannot be disabled by disabling interrupts. Thus there are a few

intricate low-level attacks that the scheme is susceptible to. In particular, modifying BIOS

(Basic Input/Output System, basic PC firmware) or SMI (System Management Interrupt)

code could be used to stage an attack. Such attacks require considerable knowledge and

skill and are frequently hardware-specific. Note that the attacker cannot regain control by

causing VM faults, because Xen mediates all page faults. Moreover, all pages we will access

(the 4 megabytes of shared memory and the executable we hash) were paged in and then

locked, so there won’t be any faults on them while we run. If there were some way to regain

control of the CPU while it was operating inside the monitor, there might be some way to

use this to impersonate a user process and retrieve the key belonging to that process.

Attack attempting to impersonate the service caller. This is difficult to do because

the backend monitor inspects the binary making the invocation. So in order to impersonate

the caller, the attacker must somehow either use the same binary or subvert the hashing

process. In the first case, where the attacker somehow convinces the correct binary to

disclose a secret, this is an attack against the application itself and is outside our security

claim. We expect the second case, where the attacker subverts the hashing process to yield

an incorrect result, to be quite difficult for the attacker. Since we perform hashing from

outside domain U with the pages having already been forced into memory (preventing page

fault handler attacks), the only way we can see to do this is to misrepresent which pages

constitute the application in question, which is very difficult since we use the same data

structures to determine the application pages as the CPU does when it executes them.

It’s important to note that we hash the executable at the first call gate, and then lock

the executable pages so they can’t be modified. This is for two reasons: (i) The performance

impact is lower, since there is a hash at the beginning instead of every time a message is sent.
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(ii) This prevents subtle TOCTOU attacks which would otherwise be possible (e.g., changing

the binary just before sending the message, then somehow changing it back afterwards, even

by re-infecting the machine).

3.6.2 Defeating Attacks against Domain 0 Components

Intuitively, the components in domain 0 cannot be attacked from domain U because domain

0 is inaccessible except via our communication mechanism. Nonetheless, we analyze possible

attacks in more detail to ensure a correct analysis:

Attacks attempting to penetrate into domain 0. There are basically two ways an

attacker could do this:

• Subvert the Xen hypervisor. Successfully subverting the hypervisor from an untrusted

domain is precluded by our assumptions (see Section 3.2.1).

• Exploit some software the user has installed in domain 0 in order to control domain 0

from domain U. Here we must assume the user does not install some software in domain

0 that permits domain U to arbitrarily control, access, or modify domain 0. One way

to achieve this for most users is to simply make domain 0 not be easily accessible.

Attack against the domain 0 disk. The disk resides within the accessible space of

domain 0. Domain 0 may choose to give domain U access to the disk, but without such

explicit provision, domain U can see only the part of the disk that is designed for the use of

domain U, if any. Generally hypervisors do not provide any access to the domain 0 disk by

default, so our security here depends on the assumption that the hypervisor has not been

configured to a configuration that allows domain U direct access to the domain 0 disk, and

that no services have been installed in domain 0 that give domain U general access to the

domain 0 disk. (Indeed, not allowing such access is a default and typical configuration for

Xen, the hypervisor we chose).
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Attacks attempting to falsely request digital signatures. There’s no way for an

attacker in domain U to falsely request a digital signature from domain 0. This is because

the domain U falsely requesting digital signatures means either:

• pretending to be a different application or an uncompromised one (see Section 3.1).

• attacking the communication mechanism (see Section 3.3).

3.6.3 Defeating Non-Domain-Specific Attacks

Here we analyze attacks against components that are not contained within a specific domain.

Attacks against the inter-domain communication. The attacker has the following

options to attack inter-domain communication:

• Attacks using the kernel to block communication

Our system was very carefully designed to make the communication process function

without any reliance on the kernel so that we are not subject this attack. The kernel

can deny the CPU to an application, but this results only in a denial-of-service attack.

• Attacks against the application to block communication

– The attacker can’t attack the application binary because it’s protected by memory

protection once communication is set up.

– The attack can’t attack memory pages with the communication data in them

because they are protected from domain U access by anyone but the application

(and the application can’t be modified).

– This leaves the possibility that the attacker can somehow disrupt communication

by attacking internal data structures of the application in such a way as to disrupt

communication. This depends on the quality of the implementation itself and is

outside our scope – we do not and cannot attempt to protect the application itself

from its own design and implementation.
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• Attacks against the communication mechanism itself

– Attacker can’t modify call gate. The call gate is set up in the Global De-

scriptor Table (GDT), which by design in Xen can’t be modified by domain U.

– Attacker can’t attack communication in application. The cases and analy-

sis from “attack application to block communication” above apply here, with the

same result.

– Attacker can’t attack communication in kernel. As noted above, our design

excludes the kernel from the communication process, so there is nothing here to

attack.

– Attacker can’t attack communication in hypervisor. Attacking the Xen

hypervisor from within a guest domain is precluded by our standard assumptions.

Attacks committed using virtualization. Some attacks use virtualization in some

way to escalate an attacker to hypervisor privilege and hide a malware hypervisor from the

operating system. Hardware virtualization technology attacks like Blue Pill [59] are not

possible because they require executing virtualization instructions at ring 0 privilege, but

Xen only allows domain U to run at ring 1 and higher. Similarly, SubVirt [42], which relies on

adding a hypervisor early in the machine boot sequence, is not possible because the attacker

is contained within domain U, and it can’t support nested hypervisors anyway.

3.7 Experimental Evaluation of Performance

In order to measure the performance of our system, we consider two aspects. First, we

examine the time required to send a message using our protected monitor mechanism. This

message-sending mechanism is the substrate on which the signing system is built, and on

which any other application of the protected monitor would be built. Second, we examine the

total time required to actually make a signature using our full system. We use performance
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of an ordinary signing application linked directly against the ordinary cryptography library

as a baseline for comparison.

Our experimental setup is as follows. All experiments were performed on an HP xw4550

workstation, with a quad-core 2.3 GHz AMD Opteron processor and 4 gigabytes of RAM.

The machine has a v1.2 Broadcom TPM, revision level A2. The software environment for

all experiments was paravirtualized Xen 3.3.1 installed on Ubuntu 8.04 LTS with a 2.6.24

Linux kernel. The guest VM used the 2.6.18 paravirtualized kernel that is provided with

Xen 3.3.

3.7.1 Microbenchmark Performance of Inter-VM Communication
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Figure 3.6: Total time required for message creation and processing for large round-trip
messages. Merely sending the message both ways takes only 13.3 microseconds independent
of message size.

The time required to actually send and receive any message, including the two domain

transitions that entails, is a mere 13.3 microseconds when we performed a simple performance

experiment that sent 1 million messages. This included the time to hash the executable in

domain U once. Note that strictly speaking message send time is independent of message

size, because the memory pages containing the message are shared by both parties. In
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practice, however, this constant send time experiment assumes that the client and server

each want to send the same message to each other over and over (i.e, they only write the

message to RAM once), and don’t bother to read it. Thus we decided we should also create

a microbenchmark where each side reads and writes the message it sends each time, because

that time is more significant than the message send time.

Figure 3.6 shows total processing time required for simple large messages (i.e., the client

and server read and write each message each time but do not perform any significant compu-

tation between reading and writing the messages). This includes the time to create a message

in domU, send it to dom0, read it and write a reply message in domU, send it back to dom0,

and read it in dom0. Time is measured from when the executable is invoked through when

it sends 100,000 messages to when execution returns to the calling script. Each data point

is averaged over 10 runs. Recall that merely sending the message from dom0 to domU and

back again requires only 13.3 microseconds; thus the bulk of the time is spent reading and

writing the message in the buffer. The figure also includes the cost for hashing the domain

U application once per invocation.

Note that for sizes up to 500 kilobytes, the message send time is directly proportional

to the size. After message size exceeds 500 kilobytes, larger messages take less additional

time to send, although the send time is linearly related to the message size as size increases

further. I.e., the constant factor is smaller after 500 kilobytes. The reason for this effect is

unknown; it may be due to some efficiency in the memory system which kicks in when very

long sequential memory accesses occur (e.g., some sort of optimization for large memory

transfers to the cache). Note that even a 1 megabyte message takes only 3.2 milliseconds to

both send once and then send back in reply, meaning we achieve a little over 312 megabytes

per second round-trip. Assuming each direction has equal cost, we can roughly estimate that

our communication channel can send over 600 megabytes per second either direction.

The smallest messages are 100 bytes, 1 kilobyte, and 10 kilobytes, but these are hardly

visible in the normal graph. We examine a log-log graph of the same data (Figure 3.7) in
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order to see them better. Here we see that as message sizes decrease below 100 kilobytes

the curve seems to flatten out. Considering this, the fact that 100 byte messages take

14.7 microseconds, and the fact that sending an empty message takes 13.3 microseconds,

we believe that for such small messages the fixed send time per message is dominating the

memory access time. Only as messages increase from 10 kilobytes to 100 kilobytes does the

time to actually access the memory begin to dominate the fixed per-message overhead. We

suspect this means that the effective speed of large messages is limited primarily by the

memory bandwidth of the CPU and memory subsystem.
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Figure 3.7: LOG-LOG graph of total time required for message creation and processing for
large round-trip messages. Note how the curve flattens out towards the left, showing that
the fixed time per message is dominating the variable time for larger messages.

3.7.2 Assured Signing Performance

Figure 3.8 shows the performance of our system when creating signatures of varying sizes.

We run the system to create a single signature at a time, including hashing the domain U

executable each time. Each point in the graph is averaged over 100 runs.

Figure 3.8(a) shows three curves. The curve labeled “Plain crypto library” is execution

time when creating a signature directly in domain 0 by directly invoking the cryptography
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Figure 3.8: Time required to produce and verify signatures of varying sizes for different
variations of the system and a baseline of the ordinary cryptography library running inside
the same domain. The second graph removes the top curve (full system with TPM) to make
the two lower curves more visible.

library. This is shown only for comparison purposes. The curve labeled “System without

TPM” is execution time when creating a signature in domain 0 from a domain U request using

our system without using the TPM, which means we have the security guarantees except

remote verifiability. The curve labeled “Full system” is execution time of our full secure

system creating a signature in domain 0 from a domain U request, including generating

values for TPM remote verification. Figure 3.8(b) focuses on the two lower curves so they

can be seen clearly: our system without TPM, and directly invoking the normal cryptography

library.

From Figure 3.8 we make three observations: First, using the TPM slows down the system

substantially. TPM operations are often slow and even individual operations take up to 1

second, as described in [49]. Second, run time does increase as the size of the message being

signed increases, but not by much. Third, without the TPM our system is around thirty

milliseconds slower than the base line. We believe this performance impact is acceptable for

systems that are not performing signatures continuously, especially for interactive systems

that only perform signatures on user demand.

Notes on execution time. Our prototype was designed primarily for simplicity of imple-

mentation, since it directly maps each call on the cryptlib API to a call to the secure domain.
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Figure 3.9: LOG-LOG graph of time required to produce and verify signatures of varying
sizes for system with TPM, without using TPM, and a baseline. Although the logarithmic
scale reduces the differences between the curve magnitudes, it allows us to compare the shape
of the curves.

Coalescing these calls together using an intelligent communication layer would allow a signif-

icant reduction in the number of domain transitions Of course, simply redesigning the API

could easily give an API that sends as little as one message. However, redesigning the API

would break transparency with existing clients. Secondly, note that in these tests the data

to be signed does get copied once during the signing process, but this copy is required by

the design of cryptlib. cryptlib takes a pointer to the data; its API provides no way to say

where the data could be put to do zero copy processing – if it did then we could simply have

the client place the data directly in the shared buffer.

3.8 Discussion: Protected Monitor Generality and Con-

tribution

Section 3.3 introduced the protected monitor as part of a system that provided higher-

security digital signatures. While we introduced the mechanism along with an example
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application to facilitate explanation, the protected monitor is far more general than that

particular application.

Traditional OS security relies on the kernel as the root of trust for securing all applica-

tions. Since all security is derived transitively from the security of the kernel, the security

of applications (including antivirus programs, Internet security suites, and cryptographic

software) is dependent on the security of the kernel. However, attackers are frequently able

to subvert the kernel protection, such as with rootkits. Additionally, the kernel implements

almost all access control on a per-user level. While this is useful for separating the resources

of one user from another, the user-based security model provides little protection in the case

of malware that runs as the user who is being attacked.

Thus we created the “protected monitor”, a powerful software-based root of trust that

cannot be easily subverted by malware. This gives a platform for providing a variety of

secure services that is less privileged than the hypervisor but is more privileged than the

guest OS kernel while still allowing interaction with the guest OS and applications.

We believe there are a variety of suitable applications beyond the assured digital signature

service provider developed earlier in this chapter:

• a mechanism for providing transparent protection for critical user secrets, as described

further in Future Work (Section 5.2). The protected monitor allows us to implement

this without requiring any changes to the OS or application or libraries in the untrusted

VM. Note loading the kernel module does remain necessary.

• a protected cryptographic service library, also described further in Future Work (Sec-

tion 5.2).

• a host-based intrusion protection and containment system with intelligent monitoring

for malware behaviors, such as process self-hiding and executable packing (e.g., de-

crypting or decompressing executables on the fly) and unusual network activity. We

anticipate the ability to use provenance of the executable and secure user interaction
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to determine how to react to processes exhibiting suspicious behavior. By inserting

kernel hooks we can easily control whether the kernel allows suspicious processes to

access various resources without having to actually modify the kernel.

• securing traditional anti-virus and anti-malware software by building its implementa-

tion on the protected monitor, allowing it to be protected from attacks by the memory

protection and secured storage available by interacting with the trusted VM while still

interacting with the operating system in its traditional way. Additionally, direct access

to some resources of the untrusted VM, such as the disk and network, can be provided

via the trusted VM, so that malicious software cannot interfere with the access in any

way.

Comparison to related work. VM introspection has become an important security mech-

anism. The initial idea [18, 27] was to exploit hypervisor for isolating intrusion detection

systems (IDS) from the systems they monitor, but was later extended by numerous studies.

For example, one can insert traps into the monitored VM so as to capture certain events [4],

where the monitor code executes either in the hypervisor or in a trusted VM. This is different

from our solution because the protected monitor resides in the user VM, which allows it to

avoid much of the semantic gap in VM introspection. In Section 3.2.3 we discussed why our

in-VM protected monitor is much more powerful than VM introspection.

In many ways the work that is most related to our protected monitor is Sharif et al.’s

secure in-VM monitoring [62], which takes advantage of hardware-supported virtualization

to achieve better introspection.

That work only does virtual machine introspection and monitoring of the untrusted VM;

no provision is made for secure communication between user applications and the secure VM.

This could be emulated to a limited extent by having the secure VM examine the untrusted

VM and try to read application data, but there is no mechanism for it to communicate data

back to applications in the untrusted VM, and it also does not allow for synchronous func-

tion invocation (applications would need to use something like a shared-memory busywait
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model). There is no memory protection of the application data and no protection of the

application or the communication process from the kernel or other applications. Moreover,

their work requires Intel’s hardware support for virtualization (Virtualization Technology, or

VT), limiting them to recent Intel CPU’s (presumably their work could be ported to AMD’s

similar mechanism), whereas Xen can run on essentially any Intel-compatible CPU (we need

only 386 and higher with PAE support, which was introduced in the mid 1990’s).

3.9 Summary and Limitation

We present an effective solution to malware attempts to compromise private signing keys

or to falsely request digital signatures. Our solution not only completely secures the keys

from the malware, but also can be used by existing applications without any modification to

their source code. We also introduce a powerful mechanism for securely providing services to

applications in a VM, which we believe will be of independent value. Finally, we demonstrate

that our mechanisms have reasonable performance.

A limitation of this work and opportunity for future work is determining how to mea-

sure the domain U kernel code, without interference from the data structures and runtime

patching that cause variation in the contents of the Linux 2.6 kernel code space. This would

allow us to describe the state of the domain U kernel as part of our attested signatures, so

that a verifier could attest that the kernel binary was not compromised. One way to do this

would be to develop a comprehensive list of parts of the kernel that can change, and simply

omit all of those when measuring. The challenge would be identifying these bytes in a way

that is robust to changes in the kernel caused by continuing kernel development.
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Chapter 4

RELATED WORK

4.1 Overview

Here we examine the existing work that is most closely related to protecting cryptographic

keys and cryptographic functions. A relevant recent survey can be found in [55]. Because

keys are a special type of secret data, we also consider certain work that deals with securing

secrets. We organize the related work into three categories:

• Protecting cryptographic keys (Section 4.2)

• Protecting cryptographic functions (Section 4.3)

• Protecting cryptographic keys and functions (Section 4.4)

4.2 Protecting Cryptographic Keys

4.2.1 Protecting Keys with Special Hardware

The most straightforward method to protect cryptographic keys and other secrets is to utilize

some special hardware devices, such as cryptographic co-processors [78] or Trusted Platform

Modules [32]. Still, such devices may be no panacea because they introduce hardware-related

risks such as side-channel attacks [43]. Moreover, many systems do not have or support such

devices.
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4.2.1.1 Trusted Platform Module

The vast majority of hardware solutions proposed for securing critical secrets rely on the

Trusted Platform Module, or TPM, proposed by the Trusted Computing Group [32]. We note

that our work has several points of superiority compared to a typical TPM-based system:

• Our system does not require special hardware, unlike TPM, although we can leverage

a TPM to provide additional assurance to a remote verifier of signatures.

• We provide better performance, partly because the TPM is frequently handicapped by

its LPC bus, which was required to avoid too much cost.

• Our system can also be upgraded, whereas the TPM design deliberately precludes

upgrades.

• Our protected monitor platform (Chapter 3) does not fundamentally depend on the

integrity of the kernel, whereas functionality of the TPM software stack does depend

on kernel integrity (for example, it depends on the TPM device driver)

• Our platform’s capabilities are much more general than what the TPM directly sup-

ports. For example, our protected monitor can execute arbitrary code, including calling

into the operating system kernel.

• Significantly, we believe we are not subject to various kinds of binary-replacement

attacks that apply to typical software checksumming (note the TPM has to rely on

software to compute the hash of a binary–due to its low-bandwidth bus it could not

perform hardware-checksumming even if it were part of the design). Oorschot capably

lays out several such attacks in [72] and [68]. Essentially, these attacks defeat “self-

hashing” code by utilizing “operating system level manipulation of processor memory

management hardware” on compromised kernels. Since the hypervisor is at a higher

level of abstraction (and in fact is often responsible for managing the illusion of direct
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access to that memory management hardware), it is not subject to such attacks. In

fact, our external verifier is essentially completely isolated by VM isolation.

Caveat: This imperviousness to some checksumming attacks does not come entirely for

free; virtual-machine introspection has to rely on kernel-level data structures in the VM in

order to establish the pages that constitute the code for a given process, for example. The

technical report [65] studies implications of the reliance of virtual-machine introspection tools

on the integrity of kernel data structures, concluding that efficacy of VM-based introspection

typically still relies on data structures the VM can manipulate, and gives examples of attacks.

According to their report, they demonstrate their attacks can still “undetectably hide a kernel

module, hide a running process, and add Trojan versions of critical software.”1 However,

they also develop a tool that can still perform some monitoring without being subject to

such attacks.

We also can provide secure auditing for cryptographic operations, storing logs in an

inaccessible protection domain, where they cannot be tampered with or destroyed from the

insecure domain. This greatly reduces vulnerability to denial-of-service attacks on logging.

A Time-Of-Check Time-of-Use attack on a TPM system is demonstrated in [11]. The

application binary is modified after the TPM computes the hash but before the binary is

executed.

4.2.1.2 Other Hardware Solutions

“Architecture for Protecting Critical Secrets in Microprocessors” [45] proposes an elaborate

and thorough “secret-protected” hardware architecture to protect against software and DMA

attacks. The work is impressive and complete, with features such as cryptographic keys that

follow their users between devices, rather than being tied to particular devices. However, it

is highly-complex in addition to requiring changes to the CPU and operating system, and

1Although we make no attempt to demonstrate it, we believe such attacks can be defeated, at least in-
principle. A powerful way to defeat these attacks would be by actually running the code in question from
the hypervisor, since when the code is running it must provide the actual version of itself to be executed.
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we suspect is thus unlikely to be used in practice.

[64] proposes managing security at the level of memory regions rather than only at the

level of processes, giving a finer level of granularity and simplifying shared access to secret

data in memory. It proposes small CPU hardware changes to make this more efficient,

such as having a hardware cache in the CPU for the memory access descriptors, and uses

encryption for confidentiality of data, code, and security descriptors.

[26] assumes that computers will largely adopt non-volatile RAM due to potential ad-

vantages such as lower power consumption and “instant on” starts. This leads to a new

security risk: adversaries reading the RAM of a powered-down system. The authors solve

this problem by introducing a small Memory Encryption Control Unit, or MECU, between

the CPU cache and RAM, so that all data stored in actual RAM will be encrypted. Using

AES (Advanced Encryption Standard) to generate a one-time pad while the memory fetch

is ongoing and then simply XOR’ing with the pad allows the performance hit of encryp-

tion to be minimal. However, the pad has to generate substantial amounts of key material

with a low latency in order to keep up with the substantial memory bandwidth of modern

CPU’s and DMA devices such as graphics cards, so we believe that even in quantity MECU

chips could not be cheap. Additional complexity, or substantial performance hits, come from

maintaining coherency in the tables between the multiple MECU’s on a system.

InfoShield [63] enforces “information usage safety” as described in program semantics

by extending hardware with secure load and store operations and encrypting sensitive data

when it is stored to memory. InfoShield relies on the semantics of the original source code

to be correct, and requires annotation to specify which data is sensitive.

4.2.2 Protecting Secrets with Virtual Machines

Many recent works utilize virtual machines to help secure critical secrets. Perhaps the

most general and relevant of these are the works that use VMM’s to encrypt application

pages for confidentiality against any other accessor, including the running operating system.
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Overshadow [19] does this with “multi-shadowing”, where a VMM can present the illusion

of multiple versions of a page of physical RAM to a client VM. This allows an application to

quickly access unencrypted versions of a page while ensuring the OS and any other processes

see only the encrypted version of the page. This also encrypts files on disk, because the

data on the page is already encrypted when the OS accesses it for a disk transfer. This

requires modifications to the VMM, in this case VMware Workstation, as well as a shim

that runs when applications first load, but means that the applications themselves and

Linux kernel can run unmodified. Although technically they do not modify the OS, they do

require applications to use a special loader and shim runtime. We do not modify the OS nor

applications at all, although we do hook into the OS. Whether their approach could actually

be used in Windows is not clear, since it doesn’t easily view resources as memory pages.

Since Overshadow is one of the most closely-related non-hardware solutions to our work,

we examine some additional points of comparison. We believe that our solution is rather

more flexible than Overshadow. For example, Overshadow’s design appears to require that

protection domains be completely isolated from one another; there is no provision for protect-

ing information other than enclosing it within a protection (encryption/integrity) domain.

So if an application needs to be able to access secured data files belonging to another ap-

plication, the two applications must be in the same protection domain. By contrast, we not

only can allow multiple applications to access the same protected data if desired, but we

support policies which can be used to specify in detail what data files are shared and how.

It is not clear to us whether Overshadow requires all data on the system to be within some

protection domain; if so, we speculate that many existing applications would be difficult to

use without putting all of them in the same protection domain, which would greatly reduce

the security added. Additionally, this would mean Overshadow does not allow even the

sharing of unprotected data, since there would be no unprotected data.

The performance impact of Overshadow can be substantial, because of the CPU impact

of decrypting or encrypting a page whenever access alternates between the application and
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the operating system. This is more visible in some contexts than others. For example,

a UNIX fork microbenchmark performs at only 20% of native performance without Over-

shadow. Actual applications performed no slower than 80% of native performance when only

anonymous pages were encrypted. When all pages and files were encrypted, performance

was lower; in particular Apache’s throughput was less than 50% of its throughput compared

to running without Overshadow. We do not believe our CPU impact and total performance

impact are as significant.

Additionally, Overshadow provides only moderate protection against physical RAM dis-

closure attacks, because pages in physical RAM are encrypted only if the page’s last accessor

was the operating system. However we expect such attacks to be difficult for malware com-

pared to attacks disclosing the virtual memory space. Overshadow might foil attacks against

the virtual memory space, depending on who accessed the pages last and whether the attack

comes through the kernel, which would cause Overshadow the encrypt the pages.

[77] is a similar work published concurrently that uses a similar technique on the Xen

hypervisor, using manipulation of the VM’s TLB to provide access to encrypted and unen-

crypted versions of page frames. We expect this work would compare much the same against

ours as Overshadow.

[44] uses virtual machines to isolate the use of critical secrets from the user’s ordinary op-

erating system. Whenever a user needs to use a critical secret for authenticating themselves,

they use a special non-interceptable UI command (e.g., CTRL-ALT-Delete) to switch to the

VMM and then switch to a secure VM. The critical secret is input there and appropriately

transmitted, e.g., to a remote Web site that explicitly requests it from the secure VM. The

secure VM relays the authentication success to the ordinary VM when switching back to it.

Unfortunately, this means the user has to learn new behavior and the client software and

server software both have to be modified to support Vault.
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4.2.3 Protecting Cryptographic Keys via Conventional Software

We begin by examining approaches to enhance the secrecy of cryptographic keys against

attacks that may exploit system vulnerabilities. Here we elaborate the basic ideas of investi-

gations under this approach, assuming that no copies of a key appear in unallocated memory

(see [21, 34] for examples of techniques that address this issue). Later in this section we will

examine in detail certain work on critical secrets that is particularly closely related to our

work. Without loss of generality, suppose a cryptographic key is stored on a hard drive (or

memory stick), fetched to RAM to use, and occasionally swapped to disk. Thus, we consider

three aspects.

• Safekeeping cryptographic keys on disk: Simply storing cryptographic keys on hard

drives is not a good solution. Once an attacker has access to the disk (even the raw

disk) the key can be compromised through means such as an entropy-based method

[61]. The usual defense is to use a password to encrypt a cryptographic key while

on disk. However, an attacker can launch an off-line dictionary attack against the

password (Hoover and Kausik [37] is an exception but with limitations). A more

sophisticated protection is to ensure “zero” key appearances on disk (i.e., a key never

appears in its entirety on disk). For example, Canetti et al. [15] exploit an all-

or-nothing transformation to ensure an attacker who has compromised most of the

transformed key bits still cannot recover the key.

• Safekeeping cryptographic keys when swapped to disk: The concept of virtual memory

means that cryptographic keys in RAM may be swapped to disk. Provos [58] presents

a method to encrypt swapfile for processes with confidential data. (In a different

setting, Broadwell et al. [12] investigate how to ship crash dumps to developers without

revealing users’ sensitive data.)

• Safekeeping cryptographic keys in RAM: Ensuring secrecy of cryptographic keys in

RAM turns out to be a difficult problem, even if the adversary may be able to disclose
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only a portion of RAM. Recent investigations by Chow et al. [20, 21] show some best

practices in developing secure software (e.g., clearing sensitive data such as crypto-

graphic keys promptly after their use, stated years ago by Viega et al. [69, 70]) have

not been widely or effectively enforced. Moreover, Harrison and Xu [34] found that a

key may have many copies appearing in RAM. The present work makes a significant

step beyond [34] by ensuring there are no copies of the key appearing in RAM. As a

side product, our Key-in-Register method in Chapter 2 should defeat the impressive

recent attack of extracting cryptographic keys from DRAM chips when the computers

are inactive or even powered off [33] because a because a key never appears in its en-

tirety in RAM. This work also highlights that it may be necessary to treat RAM as

untrusted, per our work.

4.2.3.1 Microsoft Windows Key Protection

As an example of common practice we look at Microsoft Windows. Windows standards

provide for the use of cryptography via a Cryptographic Service Provider [51], such as the one

bundled with Windows, and more recently the Cryptography API: Next Generation (CNG)

[50]. It appears that long-lived private keys are supposed to be isolated from application

processes (and hence presumably should not appear in process RAM) as of Windows Vista

and Windows Server 2008, but not in earlier versions of Windows [52]. (Windows XP Service

Pack 3 does include fips.sys, a kernel-mode cryptographic module compliant with FIPS

140-1 Level 1, which can provide services to other kernel mode drivers. We found no reason

to believe these operations are made available to user-land applications.)

4.2.4 Protecting Keys Cryptographically

A completely different approach to protecting cryptographic keys is to mitigate the damage

caused by their compromise. Notable results include the notions of threshold cryptosys-

tems [23], proactive cryptosystems [53], forward-secure cryptosystems [3, 7, 8], key-insulated
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cryptosystems [24], intrusion-resilient cryptosystems [39]. [75] proposes a model for un-

derstanding digital signature security of credential infrastructures in the presence of key

compromise and proposes engineering techniques to improve it.

Another approach to protecting cryptography against memory disclosure attacks is taken

by [1], which shows that certain cryptosystems are naturally resistant to partial-key-exposure

memory disclosure attacks, in the sense that a large fraction of the key bits can be disclosed

without endangering the secrecy of the actual key. Nevertheless, our experience shows that

it may be likely that memory disclosure attacks, once successful, will expose a cryptographic

key in its entirety when no countermeasures like those presented in this work are taken.

A different approach is taken in our paper [74]. Here we examine the possibility of using

secret sharing to distribute a user’s key amongst the computers of some set of individuals

whom they trust. The implications of this for security and availability of the key are analyzed

analyzed mathematically and with simulation. The paper focus includes the effects from

some number of the individual computers being compromised and from some number of

them not being available at any given point in time (e.g., powered off).

All of these techniques are orthogonal to our approach, and hence may be combined with

our work.

4.2.5 Protecting General Secrets

XFI [67] is a pure software mechanism that uses a binary rewriting with a binary verifier to

enforce fine-grained memory access control. This provides access control for critical secrets

when stored in RAM, as long as all programs have had their binaries rewritten and verified.

[13] proposes adding small CPU hardware changes to increase the efficiency of XFI, as well

as the efficiency of a related mechanism that enforces control-flow integrity in order to make

it more difficult to hijack program control flow. Tightlip [79] takes an interesting approach

to securing user secrets; when unauthorized applications access files containing user secrets,

a “doppelganger” duplicate process is created, which gets a sanitized version of the bytes
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from the file. The doppelganger and the original process run in parallel, until one attempts

to communicate some output that is different from the other, at which time a privacy breach

might be occurring, and so a policy decision must be made, e.g., whether to replace the

original with the doppelganger or to allow the output of the original.

4.3 Protecting Cryptographic Functions

4.3.1 Protecting Cryptographic Functions with TPM

More recent versions of the TPM support a new functionality mode that allows the launch of

highly-isolated signed code, when used with a CPU with appropriate support (Intel’s Trusted

Execution Technology (TXT), or AMD’s Secure Virtual Machine technology (SVM), which

are included in many of their recent CPU’s). This allows a small piece of Secure Loader

Block (SLB) code to launch in a completely protected environment, including disabling all

other CPU cores and typically DMA as well. Unfortunately, this suffers from a number of

limitations. Only 64k of code can be executed at a time in this fashion. This code cannot

have any dependencies on other software in the system, e.g., it cannot call into other pieces

of code. Invocation of the SLB code is frequently too slow to use for many purposes [49], and

moreover the there is the impact on system performance of disabling all other CPU’s, CPU

cores, and threads of CPU execution (e.g., hyperthreading). Because of the slowness and

the difficulty of interacting with any other code in the system, the TXT/SVM mechanism is

not suitable for hooking into the kernel.

Flicker [48] builds on the TXT/SVM technologies, greatly simplifying the development

of SLB code for an application and providing additional useful functionality like secured

storage between executions of the SLB code. However, in the end it cannot overcome the

fundamental limitations of the technology as designed and implemented in the TPM and

CPU hardware. In particular, even though Flicker could be used to check for the existence

of hooks in a kernel, it could not be used to service those hooks because SLB invocation is
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too slow.

4.4 Protecting Cryptographic Keys and Functions

4.4.1 Protecting with Virtual Machines

Sujit Sanjeev first implemented the concept of a cryptographic service provider secured by

a VMM, as detailed in the master’s thesis [60]. The service was implemented directly in

the hypervisor. Since our assured digital signature solution provider is based on a partial

cryptographic service provider, we note a few of the important differentiations of our work:

1. Their work offers little if any protection of cryptographic keys. This because placing

their cryptographic service provider in the hypervisor subjects it to certain limitations.

Most notably, there is no facility for persisting data, so keys cannot be stored by the

provider, which would be more secure; instead they have to be stored in the user VM.

This may be why their work contains no provision for key management. Indeed, it

appears that only a single key can be used, and may even be hardwired into the code.

2. We use the virtual machine monitor Xen, which has excellent performance and security

and is suitable for production use, whereas their hypervisor lguest does not have those

attributes. lguest is a minimal hypervisor designed chiefly for ease of implementation

and modification, where performance and probably security suffers because the chief

aim is simple code. lguest is described by its author as a “toy hypervisor” and is merely

a simple kernel module that multiplexes kernel data structures.

3. We use a production-grade cryptographic implementation, which would be suitable for

actual use in practice. Their work relies on the Linux kernel cryptography implemen-

tation, which is designed only to suffice for expected kernel use, such as IPSEC and

dm-crypt.
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The Terra paper [28] uses virtual machines to build an impressive edifice on a machine

with a secure coprocessor similar to a TPM. Virtual machines run within a Trusted Virtual

Machine Monitor, as one of two types. Open-box VM’s can run any operating systems and

software. Closed-box VM’s run only software stacks attested by the TVMM (the entire

stack must be attested). Measuring an entire VM requires an extremely large number of

combinations be the same as certified. Moreover, there is no facility for securely examining

or controlling what’s going on within a VM; closed-box VM’s are entirely independent of

open-box VM’s that users could run their own choice of software within. Although it is not

emphasized, Terra appears to assume the entire hardware platform is tamper-resistant, not

merely the trusted co-processor.

The technique of virtual machine introspection [18, 29] examines the contents of a virtual

machine from outside the VM. Compared to our protected monitor foundation, typical virtual

machine introspection has the following disadvantages:

1. The semantic gap problem: the virtual machine state is much more easily interpreted

from inside the VM’s context than from outside. In other words, it’s very difficult to

piece together what’s going on inside the VM from outside.

2. Introspection cannot be used to hook functions, because it provides only the ability to

examine the state of the VM.

A technique called virtual machine introspection can help with this by allowing secure

detailed inspection of the state of a VM in a way that’s hard to realize on a physical machine

without additional hardware.

VM introspection has become an important security mechanism. The initial idea [18, 27]

was to exploit hypervisors for isolating intrusion detection systems (IDS) from the systems

they monitor, but was later extended by numerous studies. For example, one can insert traps

into the monitored VM so as to capture certain events [4], where the monitor code executes

either in the hypervisor or in a trusted VM. This is different from our protected monitor

83



because our security monitor resides directly in the User VM, meaning it has more power to

bridge the semantic gap in VM introspection (e.g., our security monitor could understand

the semantics of objects like the kernel).

In many ways the work that is most related to our protected monitor is Sharif et al.’s

secure in-VM monitoring [62], which takes advantage of hardware-supported virtualization

to achieve better introspection. That work only performs virtual machine introspection and

monitoring of the untrusted VM; no provision is made for secure communication between

applications and the secure VM. This could be emulated to a limited extent by having the

secure VM examine the untrusted VM and try to read application data, but there is no

mechanism for it to communicate data back to applications in the untrusted VM, and it

also does not allow for synchronous function invocation (applications would need to use

something like a shared-memory busywait model). There is no memory protection of the

application data and no protection of the application or the communication process from

the kernel or other applications. Moreover, their work requires Intel’s hardware support

for virtualization (Virtualization Technology, or VT), limiting them to recent Intel CPU’s

(presumably their work could be ported to AMD’s similar mechanism), whereas Xen can run

on essentially any Intel-compatible CPU (we need only 386 and higher with PAE support,

which was introduced in the mid 1990’s).

Lares [56] extends VM introspection by using Xen’s memory protection to protect hooks

that are placed inside the guest kernel, including placing a small piece of “trampoline” code

inside the guest VM where the hooks go to in order to communicate back to the secure VM.

There is no functionality for placing hooks or protecting hooks in user-land applications nor

for communicating with the applications.
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Chapter 5

CONCLUSION

5.1 Summary

We provide and analyze defenses for malware attacks against cryptographic keys and crypto-

graphic functions. In particular, this dissertation sets forth two pieces for defending against

these attacks:

1. Safekeeping Cryptographic Keys from Memory Disclosure Attacks (Chapter 2) is a

technique for using a cryptographic key without ever having the key in memory. This

gives protection against memory disclosure attacks that otherwise could can recover

keys, e.g., in the case of Apache on Linux [34]. As an example, we created a prototype

that modified RSA private key encryption in OpenSSL to use the technique.

This technique allows complete protection of keys from memory disclosure attacks,

even for hardware memory disclosure attacks such as Firewire ([25]) while requiring

no special hardware (only resources found in typical CPU’s). Because we prototype

this on a single-core machine, we have to use a RAM scrambling technique to store

the key in the single-CPU-core case, so we show that common attacks such as entropy

scanning, signature scanning, and content scanning are infeasible.

2. The Assured Digital Signature Service Provider (Chapter 3) allows clients of digital

signatures to have high-confidence and remotely-attestable secure digital secures and

key storage, even in the presence of malware running at elevated privilege levels. Key
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storage services are secure against malware and even raw disk access (from within

the VM). Callers are heavily validated and the secure domain can be attested by the

TPM if desired so that remote verifiers can have high confidence in the authenticity

of the signatures. Moreover, the design provides for a smaller TCB for cryptographic

operations, since the cryptography implementation can rely on a smaller and controlled

software stack.

Chapter 3 also introduces the Protected Monitor, which serves as a foundation for the

secured signature system, and may also be useful for many other security applications,

because it provides a platform on which secured services can be built. It is particularly

well-suited to securing against malware attacks, although it can also be used for other

types of attacks. The monitor’s architecture gains memory protection from a virtual

machine manager but still allows the monitor to operate from within the memory

space of the virtual machine, unlike virtual machine introspection. This secures the

monitor against most attacks from the user VM while still allowing services built on

the platform to interact with the kernel.

5.2 Future Work

Here we discuss some opportunities for useful future work.

Integrated system. Figure 5.1 depicts a possible system architecture that uses all of the

pieces proposed in this dissertation. Keys are never left in memory, but are used directly

out of registers (Chapter 2). The entire system is built on the protected monitor (Chapter

3). The Assured Digital Signature Service Provider (Chapter 3) uses the key-in-register

cryptography for its cryptographic operations, and provides digital signature services to

cryptographic applications as well.

Note we did not build this integrated system for the dissertation since our existing pro-

totypes cannot be directly combined in this way. This is primarily because Chapter 2’s SSE
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Figure 5.1: An architecture combining all pieces from the chapters. Chapter numbers are
set in parentheses.

Key-in-Register implementation is a modified version of the OpenSSL cryptographic library,

which was unsuitable for the work in Chapter 3. However, we expect that porting the Key-in-

Register mechanism to Peter Gutmann’s cryptlib, the cryptographic library used in Chapter

3, would not be difficult. It is important to note that two mechanisms are mostly orthogonal

and provide different kinds of protection; the Key-in-Register implementation would protect

against memory disclosure attacks in domain 0. Technically the assured digital signature

service provider protects against memory disclosure attacks in domain U, although that is

not a major goal of the design.

Safekeeping Cryptographic Keys from Memory Disclosure Attacks. Our investi-

gation in Chapter 2) inspires some interesting open problems such as the following:

• First, our work focused on showing that we can practically and effectively exploit some

architectural features to safekeep cryptographic keys from memory disclosure attacks.

However, its security is based on heuristic argument. Therefore, it is interesting to

devise a formal model for rigorously reasoning about the security of our method and

similar approaches. This turns out to be non-trivial partly due to the following: If

an adversary can figure out the code that is responsible for loading and resembling

cryptographic keys into the registers, the adversary would still possibly be able to
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compromise the cryptographic keys. Therefore, to what extent we can say at which

degree the adversary can reverse-engineer or understand the code in RAM? Intuitively,

this would not be easy, and is related to the long-time open problem of code obfuscation,

which was proven to be impossible in a very restricted model in general [6]. However,

it is open whether we can achieve obfuscation in a less restricted (i.e., more practical)

model.

• Second, due to the limitation of the volume of the relevant registers, our RSA real-

ization was not based on the Chinese Remainder Theorem for speeding up modular

exponentiations, but rather the traditional “square-multiplication” method. This is

because the private key exponent d itself occupies most or all of the XMM registers. Is

it possible to circumvent this limitation by, for example, designing algorithms in some

fashion similar to [9]?

Protected Monitor. There are two major components that we believe would be especially

useful to build on the protected monitor and plan as future work:

• The VM-Isolated Cryptographic Service Provider would allow clients of cryptographic

services to have high-confidence cryptography and key storage, even in the presence of

malware running at elevated privilege levels. Basically this can be done by extending

the crypto implementation used for the assured digital signature service provider into a

general crypto service provider. We will use a flexible policy mechanism to express what

applications may use what keys and cryptographic services in terms of rules describing

various criteria including suspicious malware behavior. As with the signature service

provider, key storage services are secure against malware and even raw disk access (from

within the VM). Callers are heavily validated (authentication, provenance-checking,

and checking for malware behaviors that may indicate the calling application is infected

with malware). Moreover, the design provides for a smaller TCB for cryptographic
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operations, since the cryptography implementation can rely on a smaller and controlled

software stack.

• Transparent Critical Secrets Protection would transparently secure critical secrets on

disk from disclosure via malware (such as for identity theft). No modifications would

be required for legacy applications nor for the operating system. The persistent stor-

age is not accessible without authentication and approval, even with raw disk access

(from within the virtual machine). The goal is to have files with secrets are identified

automatically; the user does not have to manually specify files or policies. The user

may specify policies if desired.

Another opportunity for future work is determining how to measure the domain U kernel

code, without interference from data structures and runtime patching that cause variation

in the contents of the Linux 2.6 kernel code space. This would allow us to describe the state

of the domain U kernel as part of our attested signatures, so that a verifier could attest

that the kernel binary was not compromised. One way to do this would be to develop a

comprehensive list of parts of the kernel that can change, and simply omit all of those when

measuring. The challenge would be identifying these bytes in a way that is robust to changes

in the kernel caused by continuing kernel development.

Lastly, might there be some way to integrate the cryptographic service provider and

transparent critical secrets protection to provide something very general?

Assured Digital Signature Service Provider. We would like to develop and implement

a better scheme for attesting the security and isolation of the assured digital signature ser-

vice provider without the use of a TPM. This is particularly desirable since our experiments

show the TPM has a significant performance impact, as well as not always being available.

Achieving this without hardware support is a difficult remote attestation problem, particu-

larly since we would like it to be possible to verify signatures offline (i.e., without interaction

with the original signing computer). For example, it might be possible to achieve this by
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forming networks of machines which attest each other and then make a group signature

attesting the signing machine.

Secure in-VM monitoring [62]. Would there be any additional value if we incorporated

the secure in-VM monitoring in [62] into the protected monitor? Or into the signature service

provider system specifically?
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Appendix A

GLOSSARY OF ACRONYMS

BIOS Basic Input/Output System. Basic PC firmware.

CAPTCHA Completely Automated Public Turing test to Tell Computers and Humans

Apart. A method for establishing that requests are made by an actual human rather

than an automated process.

CSP Cryptographic Service Provider.

GDT Global Descriptor Table (GDT). Specifies call gates and other system descriptors.

IDS Intrusion Detection System.

IDT Interrupt Descriptor Table.

IPSEC Internet Protocol SECurity. Specifies encryption and authentication standards for

securing the IP layer of the TCP/IP stack.

LKM Loadable Kernel Module.

LPC Low Pin Count. Used to describe the bus for the TPM, which was designed to be

inexpensive and thus have a low pin count, rather than fast.

MFN Machine Frame Number. The number of the physical page frame (as seen from the

perspective of the hypervisor rather than the virtual machine).

MMX MultiMedia eXtensions. An Intel standard for SIMD graphics processing.
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PAE Physical Address Extensions. x86 addressing mode originally designed to allow 32-bit

CPU’s to address more than 4 gigabytes of RAM.

PTE Page Table Entry.

SIMD Single Instruction Multiple Data.

SLB Secure Loader Block.

SMI System Management Interrupt, a capability of PC firmware to enter a highly privileged

firmware mode known as System Management Mode.

SSE Streaming SIMD Extensions.

SVM Secure Virtual Machine technology. AMD’s secure late launch technology, competitor

to Intel TXT.

TCB Trusted Computing Base.

TCG Trusted Computing Group. Industry consortium that created TPM.

TLB Translation Look-aside Buffer. Essentially a hardware cache for virtual-to-memory

mappings.

TLS Transport Layer Security. Successor to Secure Sockets Layer (SSL).

TOCTOU Time-Of-Check Time-Of-Use attack. Type of attack that relies on changing

data or privileges between the time they are verified and the time they are used.

TPM Trusted Platform Module.

TSS TCG Software Stack. Software interface to TPM.

TXT Trusted eXecution Technology. Intel’s secure late launch technology, competitor to

AMD’s SVM technology.
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VIRQ Virtual IRQ.

VMM Virtual Machine Monitor. Also known as a hypervisor.

XMM Set of multimedia registers designed by Intel. The name derives from spelling MMX,

which was the name of the previous iteration, backwards.
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