
FORMALLY ENSURING THE PERMISSIBILITY OF OBLIGATIONS IN

SECURITY AND PRIVACY POLICIES

APPROVED BY SUPERVISING COMMITTEE:

Jianwei Niu, Ph.D., Chair

Ravi Sandhu, Ph.D.

Gregory White, Ph.D.

Jeffery von Ronne, Ph.D.

Ninghui Li, Ph.D.

Limin Jia, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2013 Omar Haider Chowdhury
All rights reserved.

DEDICATION

This dissertation is dedicated to my parents and also to my mentor William H. Winsborough for
their unconditional affection and guidance.

FORMALLY ENSURING THE PERMISSIBILITY OF OBLIGATIONS IN

SECURITY AND PRIVACY POLICIES

by

OMAR HAIDER CHOWDHURY, B. SC.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
August 2013

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3594559
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3594559

ACKNOWLEDGEMENTS

I am deeply indebted to my deceased Ph.D. advisor Will Winsborough. He has taught me not

only how to become an independent researcher but also how to be a better person. Without his

vision, patience, insight, and motivation, it would have been difficult to finish my dissertation. I

sincerely thank him for giving me the right tools to survive in this journey. He was the best role

model a Ph.D. student can have.

I am also grateful to my Ph.D. advisor Jianwei Niu. She has immensely helped me to bring

stability in my academic career during the torrid time of Will’s death. She has helped me to focus

on the right things in the right time which has helped me to eventually complete this journey. I am

also thankful for her guidance, motivations, and patience.

I also want to thank my collaborators, Ting Yu, Keith Irwin, Anupam Datta, Ninghui Li, Jeffery

von Ronne, Limin Jia, and Deepak Garg for their constant guidance and insightful scrutiny of my

work. Their suggestions and insightful comments have helped me improve the quality of my work

significantly.

I also want to thank my committee members Ravi Sandhu and Gregory White for spending

their precious time on giving me suggestions on how to improve the quality of my dissertation.

I also want to thank my collaborator, lab mate, and good friend Murillo Pontual. I am deeply

indebted to him for introducing me to Will. It has been nice experience working with Murillo

because he was always ready to do the heavy lifting whenever it was necessary.

I also want to thank my best friend Andreas Gampe. He has helped me to crystallize a lot of

abstract technical ideas in many of my papers, in some as a co-author. I am also deeply indebted

to him for proof-reading my dissertation and also for providing suggestions on proving a lot of the

theorems in this dissertation.

I also want to thank my colleagues and friends Shamim Ashik, Hui Shen, Jared Bennatt, Mark

Robinson, and Haining Chen with whom I have had a lot of useful brainstorming sessions. I

also want to specially thank my friends Jeff McAdams, Jane Liang, Giovanni Del Valle, Arsen

iv

Melkonyan, Arpine Soghoyan, Keith Harrison, Emanuelle Vasconcelos, and BazouMana Kone for

their company and a lot of good times we had together.

I am also deeply indebted to my parents for their unconditional love and guidance. Their

sacrifice and attention to all my needs have helped me see this day. I am also thankful to my sister

Shanta and my younger brother Risad for their inspiration, love, and motivation.

I am also thankful to in-laws for their support. I am also greatly thankful to my sister-in-law

Fariba for her useful and critical advices. I am also thankful to my brother-in-laws Atanu and Deco

for their motivations and support.

Last but not by any means least, I am really grateful to my lovely wife, Samira, for her in-

spiration, unconditional love, and support. She has been always there with me in good times and

specifically in difficult times. I want to sincerely thank her for making my journey easier, enjoy-

able, and fun.

August 2013

v

FORMALLY ENSURING THE PERMISSIBILITY OF OBLIGATIONS IN

SECURITY AND PRIVACY POLICIES

Omar Haider Chowdhury, Ph. D.
The University of Texas at San Antonio, 2013

Supervising Professor: Jianwei Niu, Ph.D.

Our society is becoming increasingly dependent on computer information systems for the

management of personal information (e.g., medical records, financial data.). Organizations are

required to manage and share such information in a manner that conforms to specific privacy

regulations (e.g., the Health Insurance Portability and Accountability Act (HIPAA), the Gramm-

Leach-Bliley Act (GLBA).). Privacy policies like HIPAA can impose restrictions based on the

finite execution history (present requirements) and can also impose future requirements (obliga-

tions). Existing work on checking compliance only investigates whether a certain action respects

the present requirements of the policy or investigates whether a certain pending obligation is vio-

lated. However, when an obligation is violated they cannot report whether the user was not diligent

or whether the policy did not permit the obligation. To this end, we formally specify a property

of the policy which we call the ∆-property that statically guarantees that any incurred obligations

can be met. When an obligation is violated according to a policy that has the ∆-property, it is safe

to assume that the obligation violation is not due to a malformed policy. We prove that check-

ing whether a policy has the ∆-property is undecidable in general. We then develop a sound,

semi-automated technique to check whether a policy has the ∆-property under some constraints.

We demonstrate the efficacy of our technique by verifying that our interpretation of the HIPAA

privacy rule has the ∆-property.

Organizations that intend to be compliant with privacy policies need to rely on their own ac-

cess control policies to safeguard their resources against unauthorized access. For instance, having

access control policy to ensure only valid organization employees have access to the individual’s

personal information. These access control policies can allow access to a resource provided that

vi

the requesting user or some other user promises to perform some obligations. We are particularly

interested in user obligations that can depend on and affect the authorization state of the sys-

tem. Existing work introduces the property “accountability” that ensures that all the incurred user

obligations are authorized. However, they assume that obligations cannot further incur other obli-

gations (i.e., no cascading obligations). As a result, it significantly reduces the expressive power

of their obligation model as it cannot express several real life scenarios. We show that deciding

accountability in the most general case is NP-hard. We then consider several special yet prac-

tical cases of cascading obligations and provide a decision procedure for accountability in their

presence.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xiii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Formally Ensuring Permissibility of Obligations in Privacy Policies 5

1.1.1 Specification Language for Privacy Policy 5

1.1.2 Privacy Policy Compliance . 7

1.1.3 Policy Analysis Providing Formal Assurance That Obligations can be Met . 10

1.2 Formally Ensuring Permissibility of Obligations in Security Policies 12

1.3 Thesis Statement . 15

1.4 Contributions . 15

1.4.1 Formally Ensuring Permissibility of Obligations in Privacy Policies. 15

1.4.2 Formally Ensuring Permissibility of Obligations in Security Policies. . . . 18

1.5 Roadmap . 19

Chapter 2: Background . 20

2.1 Temporal Logic . 20

2.1.1 Linear Temporal Logic (LTL) and First Order Temporal Logic (FOTL) . . 20

2.1.2 Computational Tree Logic (CTL) . 25

2.2 Safety and Liveness Properties . 33

2.2.1 Safety Properties. 33

2.2.2 Liveness Properties. 34

viii

2.3 Model Checking . 35

2.4 Runtime Monitoring . 36

2.5 Overview of HIPAA . 38

2.6 XACML . 41

Chapter 3: Privacy Policy Specification Language . 44

3.1 Features for HIPAA Specification . 46

3.2 Evaluating XACML for HIPAA . 48

3.2.1 Stateful Policies vs. Stateless Mechanism 49

3.2.2 Interactive vs. Non-interactive Policy Evaluation 50

3.2.3 Attribute Inference vs. Authorization Decisions 50

3.2.4 Quantification Over Infinite Domains . 51

3.3 Extensions of XACML to Support HIPAA Policies 51

3.3.1 Obligations . 52

3.3.2 History Management . 53

3.3.3 Interactions with Users . 54

3.3.4 Attribute Inference Policies . 56

3.3.5 Additional Policies . 56

3.3.6 Policy Combination . 57

3.3.7 Architecture Design for Checking Compliance With XACML 58

3.4 FOPSL . 60

3.4.1 Top-level Policy . 61

3.4.2 Syntax of Norms in FOPSL . 62

3.4.3 Restrictions . 63

3.4.4 Differences between CI and FOPSL . 64

3.4.5 Example norms from HIPAA Expressed in FOPSL 64

ix

Chapter 4: Privacy Policy Compliance . 66

4.1 Weak Compliance (WC) . 67

4.2 Strong Compliance (SC) . 68

4.3 Mode Driven Mechanism for Checking Weak Compliance 71

4.3.1 Policy Language . 74

4.3.2 Substitution . 78

4.3.3 Modes to the Rescue . 82

4.3.4 Labeling formulas for which summary structures can be built 85

4.3.5 Mode Checking . 91

4.3.6 Weak Compliance Checking Algorithm 98

4.3.7 The Algorithm . 107

4.3.8 Correctness and Properties of the Algorithm 110

Chapter 5: Privacy Policy Analysis . 133

5.1 The WC Entails SC Property (∆-property) . 134

5.2 Sufficient and Necessary Condition for ∆-property 147

5.3 Analysis Technique for Checking the ∆-property 153

5.3.1 Assumptions and Limitations . 155

5.3.2 Privacy Policy Slicing . 159

5.3.3 Small Model Theorem (SMT) . 171

5.4 HIPAA: A Case Study . 173

5.4.1 Specification of HIPAA. 173

5.4.2 Satisfiability of HIPAA. 173

5.4.3 Incremental satisfiability of HIPAA. 173

5.4.4 Policy slicing algorithm implementation. 174

5.4.5 Making the slicing procedure more precise. 174

5.4.6 Small Model Theorem. 177

x

5.4.7 Policy Analysis Results. 185

5.4.8 Observation. 186

5.4.9 Discussion. 186

5.4.10 Counter Example. 186

Chapter 6: Formally Ensuring Permissibility of Obligations in Security Policies 187

6.1 Introduction . 187

6.2 Background . 190

6.2.1 Obligation Model . 190

6.3 Enhancement of the Model . 193

6.3.1 Time Interval of the Incurred Obligation 193

6.3.2 Selection of Obligatee . 194

6.4 Strong Accountability . 197

6.4.1 Restricted Strong Accountability . 198

6.4.2 Unrestricted Strong Accountability . 199

6.4.3 Computational Complexity . 202

6.4.4 Special Cases of Cascading Obligation 206

6.4.5 Algorithm . 208

6.5 Empirical Evaluation . 215

6.5.1 Experimental Environment . 215

6.5.2 Input Instance Generation . 216

6.5.3 Empirical Results . 216

6.6 Summary . 222

Chapter 7: Related Work . 223

7.1 Access Control and Obligations . 223

7.2 Privacy Policy Specification Language . 224

7.3 Privacy Policy Analysis and Compliance Checking 228

xi

Chapter 8: Conclusion . 235

8.1 Summary . 235

8.2 Open Problems . 240

Appendix A: HIPAA Privacy Rule Specification in FOPSL . 248

Bibliography . 275

Vita

xii

LIST OF TABLES

Table 2.1 Complexity of Model Checking For Different Property Specification Logic 35

Table 4.1 Labeling rules for B labels . 85

Table 4.2 Mode checking judgements for ϕ≡⊤ | ⊥ | p(t1, . . . , tn) 92

Table 4.3 Mode checking judgements for ϕ≡ ϕ1∨ϕ2 93

Table 4.4 Mode checking judgements for ϕ≡ ϕ1∧ϕ2 93

Table 4.5 Mode checking judgements for ϕ≡ ϕ1 S ϕ2 94

Table 4.6 Mode checking judgements for ϕ≡ ∃~x.ϕ1(~x) 94

Table 4.7 Mode checking judgements for ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x)) 94

Table 5.1 Policy analysis result: HIPAA case study 185

xiii

LIST OF FIGURES

Figure 2.1 XACML schema of policy set, policy and rule in BNF form 42

Figure 3.1 Proposed architecture . 59

Figure 3.2 Forms of our privacy policy (℘) specified in FOPSL 61

Figure 3.3 Norms of transmission in FOPSL . 63

Figure 3.4 Meta-variables and syntactic categories of the FOPSL 63

Figure 4.1 Weak Compliance . 67

Figure 4.2 Strong Compliance . 69

Figure 4.3 Policy language for checking weak compliance (̂FOPSL) 74

Figure 4.4 Function definition: b-tsub(ϕ) . 104

Figure 4.5 The definition of the cc function . 107

Figure 4.6 The definition of the ips function. 109

Figure 5.1 FO-CTL*lp formulation of the ∆-property 135

Figure 5.2 Macros used in the reduction . 140

Figure 5.3 Step 1: Intermediate negative norm template to setup the initial configura-

tion of T . 141

Figure 5.4 Step 2: Intermediate negative norm template for transition of form δ(A, p)=

(B,q,L) where T’s tape head is not on the left-most seen cell 142

Figure 5.5 Step 2: Intermediate negative norm template for transition of form δ(A, p)=

(B,q,L) where T’s tape head is in the left-most seen cell 144

Figure 5.6 Step 2: Intermediate negative norm template for transition of form δ(A, p)=

(B,q,R) where T’s tape head is not on the right most seen cell 145

Figure 5.7 Step 2: Intermediate negative norm template for transition of form δ(A, p)=

(B,q,R) where T’s tape head is in the right most seen cell 146

xiv

Figure 5.8 Step 4: Template of two additional negative norms, one of which incurs an

unsatisfiable obligation when T reaches state q f and the other one disallows

the obligation. 147

Figure 5.9 Violation (1) . 148

Figure 5.10 Violation (2) . 148

Figure 5.11 Overview of the policy analysis technique 153

Figure 5.12 Different kinds of send events and their position in the policy, Blue=regulatory,

Green=conditional, Red=obligatory . 162

Figure 5.13 Sliced HIPAA policy (℘HP1
) norms w.r.t the obligation in §160.310 of HIPAA.177

Figure 5.14 Sliced HIPAA policy (℘HP2
) norms w.r.t the obligation in §164.524 of HIPAA.178

Figure 5.15 Sliced HIPAA policy (℘HP3
) norms w.r.t the synthetic obligation. 179

Figure 5.16 Small model property for Attribute domain 181

Figure 6.1 Time Interval of the Incurred Obligation. (A) Previous Approach (top). (B)

Our Approach (bottom) . 194

Figure 6.2 Example Policy Rules with Role Expressions 197

Figure 6.3 Possible obligations incurred by action a 201

Figure 6.4 Computing Period of Infinite Repetitive 211

Figure 6.5 Unrolling Infinite Repetitive Obligations 212

Figure 6.6 Base Line (No Cascading Obligations). 217

Figure 6.7 Finite Cascading Obligations. 218

Figure 6.8 Finite Cascading Obligations (with Infinite Repetitive Obligations). 219

Figure 6.9 Finite Repetitive Obligations. 220

Figure 6.10 Finite Repetitive Obligations (with Infinite Repetitive Obligations). 221

Figure 6.11 Infinite Repetitive Obligations. 222

Figure 8.1 FOmp−ATL∗ formulation of the ⋆-property for℘. We denote this formula

by ∂(℘). 244

xv

Chapter 1: INTRODUCTION

Organizations (e.g., banks, hospitals, credit card companies.) collect personal information from in-

dividuals to provide them with various services (e.g., financial, healthcare.). The individuals have

the expectation from the organizations that they will not disclose the customers’ personal informa-

tion in any unauthorized fashion. To ensure that the customers personal information is not used

or disclosed by organizations in some unauthorized fashion, there are federal privacy regulations

like the Health Insurance Portability and Accountability Act (HIPAA) [62], Gramm-Leach-Bliley

Act (GLBA) [2], Sarbanes-Oxley Act (SOX) [116]. The federal privacy regulations mandate how

the collected personal information can be lawfully used or disclosed by organizations. These fed-

eral privacy regulations carry the force of law and violation of these federal regulations can bring

down heavy financial penalties on the organizations. For instance, Cignet Health Center of Prince

George’s County, Maryland, was fined a staggering $1.3 million for failing to be compliant with

§164.524 of HIPAA [112] a total of 41 times. It is thus incumbent on the organizations to have

means for efficiently checking compliance1 with applicable privacy regulations.

Moreover, the organizations are using computer information systems to manage, store, and

share the collected personal information. In the healthcare industry, the federal government has

introduced programs such as the Medicare and Medicaid EHR Incentive Program [1] that compen-

sate the organizations which use certified electronic healthcare systems. To this end, it is paramount

for the organizations to have the means to check compliance of their computer information systems

with applicable federal privacy regulations in an automated fashion.

A privacy policy like HIPAA can generally impose two kinds of requirements, present require-

ments and obligations [4,23,28,39–41,54,67,69,70,86,95,97,100,107,110]. Present requirements

restrict when a contemplated action is permissible based on the finite history leading up to the con-

1The final arbiter of compliance with a binding privacy regulation is–in the United States, at least–the judicial
system. The judges and jurors that make up the judiciary are not bound to interpret these regulations according any
particular logical formalization. In that sense, we use the term “compliance” in a non-restrictive way for expressing
conformance or permissibility of an action with respect to a formalized privacy policy. We use this term for being
consistent with the terminology of the existing work in the literature.

1

templated action. Obligations on the other hand are actions that a principal or a system might be

required to perform at some point of time in the future. An action will be compliant with a privacy

policy like HIPAA provided that it satisfies the present requirements imposed by the privacy pol-

icy and does not prevent obligations that might be incurred from being fulfilled. An example of

the present requirements can be found in §164.502(e)(1)(i) of HIPAA. It specifies that a covered

entity (hospital) can disclose a patient’s protected health information (PHI) to the covered entity’s

business associate if the covered entity has received a satisfactory assurance from the business as-

sociate ensuring that the business associate will protect the patient’s PHI. According to this rule, a

covered entity receiving the satisfactory assurance from its business associate is a present condition

imposed by the policy rule. An example of an obligatory requirement can be found in §164.524 of

HIPAA, which states that when an individual requests the covered entity to access her own PHI,

then the covered entity is obligated to provide the individual access to her PHI. Requiring the

covered entity to give access to the PHI to the patient is an example of an obligatory requirement.

Although whether an action satisfies the present requirements imposed by the privacy policy

can be checked efficiently, giving the assurance that obligations will be fulfilled on the contrary

is not possible. This is due to the fact that it is not possible to force a principal to take an action

although it is feasible to check whether an incurred obligation is violated. The majority of the

current work on checking compliance of privacy policies [13, 55, 73, 79] only checks whether the

current contemplated action satisfies the present requirements imposed by the policy or whether

a certain incurred obligation is violated. However, when an obligation goes violated, they cannot

differentiate between the following two cases: (1) the policy did not permit the obligation, (2) the

principal was not diligent enough to fulfill the obligation. At a first approximation, this distinc-

tion might not seem interesting or important, but we will justify that this detailed information is

important.

Recall that Cignet Health Center was fined for violating the §164.524 of HIPAA 41 times. Note

that §164.524 of HIPAA imposes obligatory requirement on the covered entity (e.g., hospital).

Consider the situation where the HIPAA policy does not allow the covered entity to discharge

2

the imposed obligation. In that case, the covered entity should not be blamed for not fulfilling

the obligation as the policy is not well-formed. Moreover, individual(s) violating federal privacy

regulations can be prosecuted. Thus, before prosecuting somebody, it is desirable to have formal

assurance that any incurred obligation according to the privacy policy can be carried out without

violating the policy itself. If providing such formal assurance is possible for a privacy policy, then

whenever any incurred obligation is violated, it is sound to consider that it was violated due to

the lack of diligence from the principal under the assumption that the principal is unconstrained

in causing actions permitted by the policy to occur. In the literature, there are very few work [11]

that focuses on providing formal guarantee that incurred obligations can be discharged in a privacy

policy compliant fashion. To this end, in this thesis we develop a static privacy policy analysis

method that provides a formal guarantee that all the incurred obligation by the principal or the

system can be carried out in a privacy policy compliant fashion.

Organizations that are required to be compliant with federal privacy regulations like HIPAA

also have access control policies for protecting their resources from unauthorized access. For

instance, recall §164.502(e)(1)(i) of HIPAA which specifies that a covered entity (hospital) can

disclose a patient’s protected health information (PHI) to the covered entity’s business associate if

the covered entity has received a satisfactory assurance from the business associate ensuring that

the business associate will protect the patient’s PHI. Now, it should be the case that only authorized

employee of the covered entity should get access to the patients’ PHI. To ensure this, the covered

entity should put forward an access policy that denies access to a patient’s PHI to all unauthorized

employee of the covered entity. Access control policies decide who can access what resource

under which conditions. Generally, access control policies make the decision of whether to allow

an access based on the current state and past history. However, research has shown that integrating

obligations in access control policies can be particularly useful. For instance, researchers have

shown application of obligations on policy management [17, 18], risk management and tackling

insider threat [10,25], managing pervasive systems [117], usage control [105], data protection [63],

3

etc. As mentioned before, obligations specifically user obligations2, are also actions which require

appropriate authorizations to be carried out and additionally they can alter the authorization state

of the system. Thus, we can have a situation where a user incurs an obligation and it is not carried

out which in turn impacts the performance evaluation of the user. Now, as before, the obligation

violation could possibly be the result of one of the following two possibilities: (1) the user was not

authorized to perform the obligation or (2) the user was not diligent to discharge her obligation. In

case the user did not possess proper authorization to carry out her obligation, then the user should

not be blamed and her performance evaluation should not be impacted negatively. However, in

the case the user was not diligent enough to fulfill her obligation, then it is desirable that the

user’s performance evaluation should be negatively impacted. To this end, to have the assurance

that whenever an obligation is not realized, it is always due to the lack of diligence of the user, one

should make sure that all users who incurred obligations should have the appropriate authorizations

to fulfill their obligations.

To provide such an assurance, existing work proposes a property of the authorization state and

pending obligations called “accountability” [67, 109, 110]. The accountability property roughly

specifies the requirement that all incurred obligations should be authorized during the appropriate

time interval. They propose to maintain the accountability property as an invariant and thus dis-

allowing any actions that violate this property. However, their definition and decision procedure

for accountability require a simplifying assumption that obligations cannot further incur obliga-

tions (no cascading obligations). However, there are practical scenarios which can be naturally

captured by cascading obligations. For instance, consider a scenario where, when a sales assistant

submits a purchase order, the clerk incurs an obligation to issue a check in the amount identified

in the purchase order. As soon as the clerk issues the check, the manager incurs an obligation that

requires him to check the consistency of the purchase order. If the purchase order is consistent and

the manager approves it, then the accountant incurs another obligation to approve the check. To

2System obligations are future actions that are required to be carried out by the system and can be assumed to be
fulfilled.

4

this end, the goal of this thesis in this regard is to generalize the accountability definition to support

cascading obligations, study the complexity of the accountability decision problem in presence of

cascading obligations, and develop a decision procedure for accountability that can support special

yet practical cases of cascading obligations.

We have seen situations where it is important to have guarantees that incurred obligations

can be carried out in a way that conform to applicable privacy and security policies. Thus, the

overarching goal of this thesis is to develop a static and a dynamic technique which can provide

formal assurance that incurred obligations can be discharged in a policy conforming fashion. We

now provide more details in the context of providing formal assurance that obligations incurred in

both privacy and security policies can be discharged in a policy conforming fashion.

1.1 Formally Ensuring Permissibility of Obligations in Privacy Policies

Recall that we have already motivated the necessity to have efficient compliance checking al-

gorithm for checking compliance with applicable privacy regulations. Privacy regulations like

HIPAA can impose both present requirements and also obligatory requirements. An action will be

compliant with the privacy policy if it is compliant with both present requirements and obligatory

requirements. Present requirements impose restrictions based on the system’s finite execution his-

tory whereas obligatory requirements impose future restrictions. Although present requirements

can be enforced, obligatory requirements cannot be enforced. Thus, it is necessary to have formal

guarantees that any incurred obligation will be permitted by the policy. Otherwise, it is impossible

to pin-point whether an obligation violation is due to lack of diligence or is due to a malformed

policy. To mitigate this, we propose a static policy analysis method which gives the guarantee

that all the incurred obligation will be permitted by the policy. We first introduce the readers to

our privacy policy specification languages. We then introduce the reader to the notion of privacy

policy compliance and finally introduce our sound, semi-automated policy analysis technique.

5

1.1.1 Specification Language for Privacy Policy

The privacy regulations like HIPAA [62], GLBA [2], SOX [116], are specified in natural language.

To develop efficient compliance checking algorithms that can automatically check whether a cer-

tain action is compliant with the applicable privacy policies or to give formal guarantees that a

policy permits any incurred obligations, it is first necessary to express the privacy requirements

imposed by the regulation in some formal policy specification language. Several frameworks have

been proposed for specifying and analyzing privacy policies [3,11–13,20,31,35,37,55,73,79,94].

To this end, we consider two possible policy specification languages. One of the candidate pri-

vacy policy specification languages we consider is a generic, off-the-shelf access control policy

specification language, XACML [127]. OASIS’s eXtensible Access Control Markup Language

(XACML) [127] is one of the most popular access control specification languages. Along with the

rich specification language, XACML [127] also has a robust enforcement engine that can enforce

policies specified in the language. Although, XACML is an expressive specification language it

lacks features needed to specify privacy policies like HIPAA. This is natural as XACML is de-

signed for specifying access control policies rather than privacy policies like HIPAA. We thus

assess XACML’s adequacy for expressing HIPAA. More precisely, we investigate what features a

specification language requires to sufficiently specify HIPAA. We also discuss which of these fea-

tures XACML possesses and also propose extensions of XACML to support the missing features.

One of the apparent advantages of extending XACML to support privacy policies like HIPAA

is that one uniform specification language and enforcement mechanism can be used to specify and

enforce the access control policies and the privacy policies of the system. Managing the access

control policies and the privacy policies separately is cumbersome as an action can be mandated

by both policies. However, if we use XACML for expressing both policies, then XACML’s en-

forcement mechanism will combine the permissibility decision of an action by using the policy

combination algorithms (PCAs). Furthermore, organizations can have their own business privacy

policy on top of the federal privacy regulations. In this case, the organization’s privacy policy

6

would be the composition of their business privacy policy and the federal privacy regulations. This

composition of privacy policies can be very easily achieved by XACML.

Our evaluation of XACML as a candidate specification language is based on a set of features

required for expressing HIPAA, proposed by DeYoung et al. [35]. In our evaluation of XACML,

we found that XACML has some features (e.g., attributes, policy/policy rule combination) rich

enough to support HIPAA. However, it lacks some other necessary features (e.g., event history,

obligations, subjective belief, reference to other rules) to adequately capture the HIPAA privacy

rules. We thus propose the necessary extensions for XACML to specify HIPAA.

In our analysis of XACML’s candidacy as a possible specification language, we found that

features like temporal conditions, quantification, which are necessary to specify HIPAA, cannot

be expressed in XACML in a flexible and extensible way. To mitigate this, the next candidate

specification language we consider is specialized for expressing privacy policies like HIPAA and

is inspired by the specification languages proposed by Barth et al. [11] and DeYoung et al. [35]. We

denote this privacy policy specification language with FOPSL, which is short for First-order Policy

Specification Language. FOPSL is based on a restricted fragment of first order temporal logic

(FOTL). We demonstrate the efficacy of FOPSL by expressing all 84 disclosure related HIPAA

clauses in it (see Appendix A). Due to its well-defined formal semantics and its expressive power,

we use FOPSL as the language of our choice for our static policy analysis technique which gives

formal assurance that incurred obligations can be met in a privacy policy conforming way. As

we shall show, in general the problem of policy analysis is undecidable. Thus, we impose some

restrictions, some of which are on the specification language, to make the problem decidable. The

language FOPSL is thus developed keeping the necessary restrictions required for policy analysis

on mind. Although FOPSL has some restrictions, it is still expressive enough to capture the HIPAA

privacy rule which we use in our case study.

7

1.1.2 Privacy Policy Compliance

Once a privacy policy like HIPAA is specified in a formal language like FOPSL, the next step is to

formally define what it means for an action to be compliant with a privacy policy. An organization

or an individual complies with a privacy policy if it only takes actions permitted by the policy

and performs all actions required by the policy. We consider a particular action to be compliant

if it does not cause the organization or person in question to no longer be in compliance with the

privacy policy. Barth et al. [11] present a framework, Contextual Integrity (CI), for specifying

privacy regulations like HIPAA. They also introduce two notions of compliance, weak compliance

(WC) and strong compliance (SC). WC ensures that all actions are compliant with the present

requirements of the policy, whereas SC ensures that obligatory (future) requirements incurred due

to performing an action will be consistent with the present conditions of the policy [33]. We borrow

this notion of compliance and extend it to specify what it means for an action to be compliant with

a policy written in FOPSL. Note that Barth et al.’s definitions of compliance (WC and SC) are

not sufficient for our case as they are restricted to only propositional linear temporal logic (pLTL),

which cannot be feasibly used for specifying privacy regulations like HIPAA.

Due to the syntactic restrictions of FOPSL, we can replace all the future temporal subformulas

in a policy ℘ specified in FOPSL with logical true and the resulting FOTL formula is a pure past

formula which we denote with weak(℘). The formula weak(℘) represents the present requirements

imposed by the policy ℘. Thus, given a finite execution history σ f and a current contemplated

action a, we call the action a a weakly compliant action with respect to σ f and ℘, if every position

of finite execution trace σ f · a 3 satisfies the formula weak(℘). We have developed an algorithm

that takes as input a privacy policy ℘, a finite execution history (or, log) L , and an action a, and

it computes to see whether a is weakly compliant with respect to ℘ and L . In the literature there

are techniques which can be used to check whether an action is weakly compliant with respect to a

finite execution history and a privacy policy specified in pLTL [60, 61, 85, 115]. One possibility is

to write quantifications as finite conjunctions and disjunctions and apply the techniques available

3· represents the concatenation.

8

for pLTL. However, FOPSL allows quantification over on unbounded domains and this approach

will not terminate. To achieve termination, we borrow a technique from logic programming called

mode checking [9,34,96]. Given a n-ary relation symbol p, the mode of p is function mp that maps

each argument position of p to either ’+’ or ’-’ where ’+’ represents input position and ’-’ represents

output position. The implication of the mode of a predicate is that when all the arguments in the

input position are ground (concrete values), then the number of concrete values for the output

argument positions of the predicate that satisfy the relation will be finite. For instance, let us

consider a predicate mul(x,y,z) which holds true when x× y = z. One possible moding of this

predicate mul is mul(+,−,+). It suggests that provided that we have concrete values for x and z,

the number of concrete values for y which will make the condition x×y = z true is finite. We have

developed a mode checking technique which checks the policy in linear time of the policy size and

decides whether the policy satisfies our moding rules. Our weak compliance checking algorithm

is complete for policies which satisfy our moding restrictions.

Note that using mode checking or some variations of it (e.g., safe range checking [13]) in

the context of compliance checking termination is not new [13, 55]. The majority of existing

work [13, 15, 16, 73] assumes that the number of satisfiable valuations for each predicate is finite.

In other words, they only allow predicates in which all the argument positions are in the output

mode. Thus, they store all the necessary valuations that appeared in the finite history in a summary

structure (instead of the whole finite execution history) and look it up when it is necessary for mak-

ing a policy decision. This existing work cannot handle any policies that contain a predicate for

which not all argument positions are in the output mode. We have developed a labeling algorithm

which labels parts of a policy formula for which a summary structure with all necessary satisfiable

valuations can be kept. Moreover, our labeling algorithm can handle policies which contain predi-

cates of which not all arguments positions are in the output mode. In that sense, we have identified

a more expressive fragment of the policy than previously known for which it is sufficient to keep

only the summary structure (instead of the whole execution trace) to make a sound policy deci-

sion. The closest to our weak compliance checking algorithm is the algorithm developed by Garg et

9

al. [55]. They were the first to explicitly use mode checking for policy compliance checking. Their

specification language is first order logic instead of FOTL and additionally they require the whole

finite history to be stored. However, their algorithm can handle policies that are more expressive

than any other prior work. Our specification language is as expressive as theirs. In that sense, our

algorithm adopts all the advantages of the previous algorithms and is more space efficient than the

algorithm of Garg et al. [55] in some cases and also can handle more expressive policies than what

is considered in some prior work [13, 15, 16, 73]. Given a finite execution history (or, log) L and a

privacy policy ℘, our weak compliance checking algorithm has a runtime complexity of O (|L ||℘|)

and a space complexity of O (|℘|) in which |L | and |ϕ|, respectively, represents the size of finite

history (or, log) and the size of the policy.

Given a finite execution history σ f and a contemplated action a, we call the action a a strongly

compliant action with respect to σ f and the policy ℘, if there exists an infinite extension σi such

that every position of the infinite trace σ f · a ·σi satisfies ℘. Strong compliance ensures that if

an obligation is incurred, then there is an extension of the current execution trace in which that

obligation can be discharged. To check whether an action is strongly complaint we have to check

whether the formula representing the future requirement is satisfiable. FOPSL is a fragment of

the non-monadic FOTL, the satisfiability of which has been shown to be undecidable [64]. In this

vein, we will show that to check whether an action is strongly compliant with a policy specified in

FOPSL is in general undecidable.

1.1.3 Policy Analysis Providing Formal Assurance That Obligations can be Met

To check whether an action is compliant with a policy ℘ specified in FOPSL, we have to check

whether the action is both weakly and strongly compliant with℘. We will prove that checking WC

is feasible whereas checking SC is undecidable. Existing work in this area [3, 13, 31, 37, 55, 79],

while checking compliance, only considers WC without taking SC into account. Thus, when only

WC is checked, if an obligation is violated, it could be due to a malformed policy or lack of

diligence from the principal. Existing compliance checking algorithm cannot distinguish between

10

these two cases.

To mitigate the undecidability of SC, we formally specify the property WC entails SC (denoted

by ∆) [11] of a privacy policy. Note that although the ∆-property has been introduced before [11],

we are the first to present sound techniques to decide whether a policy has the ∆-property and apply

this technique to a practical privacy policy like HIPAA. Prior work presents a semantic definition

and a decision procedure for checking the ∆-property restricted to only pLTL policies. As noted

before, pLTL cannot be used to concisely specify a policy like HIPAA. We are the first to specify

∆-property in a formal logic which is applicable to a practical privacy policy specification language

FOPSL in which practical privacy policy like HIPAA can be expressed.

A policy has the ∆-property if every weakly compliant action is also strongly compliant. To

check compliance of a policy ℘which has the ∆-property, it is sufficient to check only weak com-

pliance. Moreover, when a policy ℘ has the ∆-property, it ensures that for every finite execution

trace and for all pending obligations, there is an infinite extension in which the obligations can

be discharged. Thus, when an obligation is violated for a policy with the ∆-property, it is safe to

assume that the obligation was violated due to the principal’s lack of diligence.

The ∆-property can be checked once statically before the policy is deployed. Given a privacy

policy ℘written in FOPSL, we syntactically generate a first order CTL∗ with linear past (denoted

by FO-CTL*lp) [77] formula δ(℘) from℘. We prove that δ(℘) is satisfiable in the most permissive

model M℘ if and only if ℘has the ∆-property. The most permissive model with respect to a policy

℘ (denoted by M℘) is the model in which at each step one action from all the possible actions

referred to by ℘ is non-deterministically chosen to be performed. We will proof that to check

whether a policy ℘ specified in FOPSL has the ∆-property, is in general undecidable. We reduce

the Turing Machine halting problem [47] to checking the ∆-property of a policy. Moreover, model

checking a FO-CTL*lp formula with respect to M℘ is undecidable in general.

While checking the ∆-property for a policy specified in FOPSL is in general undecidable,

this result is not discouraging as we can develop a sound, semi-automated technique with which

we can check the ∆-property for practical privacy policies like HIPAA efficiently based on some

11

reasonable assumptions. We prove that there are exactly two cases in which the ∆-property can be

violated. In the first case, taking a weakly compliant action might cause the system to transition

to a bad state from which there is no weakly compliant infinite extensions of the current finite

trace. In the second case, the policy allows to incur an obligation which is not consistent with the

present requirements imposed by the policy [33]. We prove that for policies written in FOPSL,

due to a syntactic restriction, the former violation case cannot happen. Thus, it is sufficient to

consider the second violation case only. We then present a sound and complete privacy policy

slicing algorithm which decomposes the original policy analysis problem into multiple smaller

policy analysis problems by slicing the policy with respect to one obligation at a time assuming

obligations do not interact with each other.

Finally, we use HIPAA as a case study to show the efficacy of our analysis techniques. We first

show that the HIPAA policy℘H is trivially satisfiable. HIPAA does not restrict transmission of any

message that does not contain protected health information (PHI) of an individual. One can thus

satisfy the HIPAA privacy policy by only sending messages not containing any PHI. Thus, ℘H

can violate the ∆-property only through allowing a weakly compliant action to incur unsatisfiable

obligations. We then slice ℘H with respect to two different obligations from HIPAA (§160.310,

§164.524)4. The size of the sliced policies in both cases is only 6.5% of ℘H , which is a significant

reduction of the policy size to be considered. We then develop a small model theorem [46] for each

sliced policy of ℘H which reduces the problem of checking the ∆-property with infinite carrier

sets to checking the ∆-property for finite carrier sets. A small model theorem for the complete

language FOPSL remains an open question. We then formally verify that the two sliced HIPAA

policies have the ∆-property. While there is currently no tool support for model checking CTL*lp,

which we leave as future work, we utilize the approach of Barth et al. [11] which is applicable in

this case.
4There are two more obligations in HIPAA which require sending privacy notice to the patient. We assume that

privacy notices do not contain any individually identifiable information and thus not regulated by HIPAA. In that case,
those obligations are trivially allowed.

12

1.2 Formally Ensuring Permissibility of Obligations in Security Policies

The organization that is required to be compliant with applicable practical privacy policies like

HIPAA will also have some organizational access control policy to protect their resources from

unauthorized access. For instance, consider the HIPAA privacy policy rule in §164.508 which re-

quires that a covered entity can disclose a patient’s psychotherapy note provided that it has already

received a valid authorization that allows the covered entity’s action. Now the covered entity must

ensure that one of the authorized employee can get access to it rather than any arbitrary employee

of the covered entity. To ensure this, the covered entity should put forward an access control policy

that only allows the authorized employee to access the patient’s psychotherapy notes. Many ac-

cess control policies contain some notion of actions that are required to be performed by a system

or its users in some time in the future. Such required actions can be naturally modeled as obli-

gations. Based on who incurs the obligations, we have two types of obligations, namely, system

obligations and user obligations. A user (resp., system) obligation is an action that is to be carried

out by a user (resp., the system) in some time in the future. The notion of obligations is not new.

Several researchers [3, 11, 18, 31, 69, 94, 95, 97, 101, 122, 127] have proposed frameworks for mod-

eling and managing obligations. The majority of the existing work [3, 11, 18, 31, 94, 101, 122, 127]

focuses on policy specification languages for obligations rather than efficient management of obli-

gations [11,39,54,67,86,100,110]. Even for works on the management of obligations, they mainly

consider system obligations. On the contrary, our goal is to develop techniques necessary for the

management of user obligations.

Managing user obligations is challenging as system obligations can be assumed to be always

fulfilled whereas this is often not the case for user obligations. More generally, we consider user

obligations that can require authorization and can also alter the authorization state of the system.

As a user obligation is an action, it is subjected to the authorization requirements imposed by the

security policy of the system.

While managing user obligations that may depend on and effect authorization, we have to con-

13

sider the case where a user incurs an obligation that she is not authorized to discharge. This is

important due to the fact that when an obligation violation occurs it is difficult to decide whether

the violation is the result of the user’s negligence or due to insufficient privileges. Existing

work [67,109,110] introduces a property of the authorization state and the current obligations in the

system named accountability. The accountability property ensures that all the incurred obligatory

actions are authorized. This enables us to realize that any obligation violation is due to the user’s

negligence instead of absence of required authorization. Existing work assumes that obligatory

actions cannot further incur obligations (i.e., no cascading obligations). Cascading obligations

can be used to model several real life situations which cannot be captured by existing obligation

models [67, 109, 110]. Thus, this assumption significantly reduces the expressive power of their

obligation model.

In this thesis, we formally specify the accountability property in presence of cascading user

obligations. We also prove that deciding accountability in the presence of cascading user obliga-

tions is NP hard. We then consider several special yet practical cases of cascading user obligations.

For these special cases of cascading obligations, we provide a tractable decision procedure for ac-

countability and also present associated empirical evaluation results.

Difference Between ∆-property and the Accountability Property

We have used two properties which ensure that incurred obligations in privacy policies and security

policies, can be carried out in a policy conforming fashion. Although, the intend of both of the

properties are same, there are some subtle differences between these two properties. We briefly

discuss them now.

Accountability is a property of the authorization state (for our case, this is keeping track of

users and their role assignments), the security policy, and the set of pending obligations. This is a

property we intend to maintain as an invariant of the system. We achieve this by disallowing any

action that violates it. Moreover, we maintain the accountability property in the runtime, during

the execution of the system. ∆-property on the other hand is a property of the privacy policy only

14

(irrespective of the system state). We check the ∆-property statically once before the privacy policy

is deployed. In that sense, ∆-property gives a static guarantee about obligations’ permissibility

unlike the dynamic accountability property.

Accountability property requires that when an obligation is incurred (not when the obligation

is due), it principal who incurred the obligation should have the appropriate authorization to carry

out the obligation. On the contrary, the ∆-property requires that whenever an obligation incurred

then there exists a way in which the obligatee can carry out the obligation in a policy conforming

fashion. The ∆-property is maintained even when the obligation is incurred and the obligatee is

not authorized to fulfill the obligation, instead there is a way that the obligation can be carried out

by the obligatee. For instance, consider in an abstract setting in which we have a policy that incurs

an obligation for user uo to carry out the obligation oi. Let us assume, when the oi is incurred, at

that time uo is not authorized to perform oi. In that case, the accountability property is violated.

However, the ∆-property is not violated as long as there exists a way in which uo can get the proper

authorization to carry out oi in its associated time frame. In this sense, one might say that the

accountability property is stronger than the ∆-property.

1.3 Thesis Statement

This thesis demonstrates that, for a class of practical privacy and security policies

(e.g., HIPAA), it is possible to provide formal assurance that all incurred obligatory

actions are allowed.

1.4 Contributions

The technical contributions of this thesis can be broadly partitioned into two categories. We discuss

each of these just below.

1.4.1 Formally Ensuring Permissibility of Obligations in Privacy Policies.

Privacy Policy Specification Language:

15

• We evaluate XACML as a possible specification language for expressing HIPAA. To the

best of our knowledge, we are the first to consider XACML as a specification language

for HIPAA. Our evaluation of XACML as a candidate specification language is based on

a set of features required for expressing HIPAA, proposed by DeYoung et al. [35]. In our

evaluation of XACML, we found that XACML has some of the features (e.g., attributes,

policy/policy rule combination) necessary to support HIPAA. However, it lacks some other

necessary features (e.g., event history, obligations, subjective belief, reference to other rules)

to adequately capture the HIPAA privacy rules. We believe that the support for the missing

features will enable XACML to specify HIPAA.

• In our evaluation of XACML as a candidate specification language to specify practical pri-

vacy policies like HIPAA, we found out that some of the features necessary (e.g., temporal

conditions, quantifications) cannot be easily expressed in XACML in a flexible and exten-

sible way. To mitigate this, we develop a privacy policy specification language based on a

restricted fragment of first order temporal logic (FOTL). We call our privacy policy specifi-

cation language FOPSL. It is inspired by the specification language of Barth et al. [11] and

DeYoung et al. [35]. To show the expressive power of FOPSL, we have expressed all 84

disclosure related clauses in it (see Appendix A).

Privacy Policy Compliance:

• We then formally specify what it means for an action to be compliant with a privacy pol-

icy specified in FOPSL. We borrow the notion of privacy policy compliance from a prior

work [11] which introduced two notions of compliance, weak compliance (WC) and strong

compliance (SC). Their definitions and compliance checking algorithms are inadequate for

a policy specification language like FOPSL as their formalization and compliance checking

algorithm assumes the policy to be specified in propositional linear temporal logic (pLTL).

However, practical privacy policies like HIPAA cannot be concisely represented in pLTL.

We then present a mode driven algorithm for checking weak compliance with a policy spec-

16

ified in FOPSL. The algorithm has a time complexity of O (|L ||℘|) where |L | represents the

finite history size and |℘| represents the policy size. The algorithm has a space complexity

of O (|℘|). We then prove that checking strong compliance of a policy written in FOPSL is

undecidable in general. We show this by reducing the Turing machine halting problem [47]

to checking whether a policy has the ∆-property.

Privacy Policy Analysis:

• To overcome the undecidability of SC, we borrow the ∆-property of the policy from the

work of Barth et al. [11] They however provide a semantic definition of the ∆-property and

a decision procedure which is only applicable to policies specified in pLTL. We provide a

formal definition of what it means for a policy specified in FOPSL to have the ∆-property.

Given a privacy policy ℘ specified in FOPSL, we syntactically generate a first order CTL*

with linear past logic (FO-CTL*lp) formula which we denote with δ(℘). We prove that

a policy ℘ has the ∆-property if the most permissive model of ℘, M℘, satisfies the δ(℘)

formula (M℘ |= δ(℘)). We are the first to pose the problem of checking whether a policy ℘

has the ∆-property, as a FO-CTL*lp model checking problem. However, checking whether

℘ has the ∆-property is undecidable in general as FO-CTL*lp model checking problem is

undecidable in general.

• We then develop a sound, semi-automated technique to check whether a policy has the ∆-

property. To this end, we show that for policies written in FOPSL, a policy ℘can violate the

∆-property, if a weakly compliant action incurs an unsatisfiable obligation. Based on this and

the assumption that obligations do not interact with each other, we develop a privacy policy

slicing algorithm. It takes as input a policy and an obligation, and returns a sub-policy. We

prove that to check whether the obligation in question is satisfiable, it is sufficient to analyze

the sub-policy. A small model theorem will need to be proved for each policy to which our

techniques are applied. Proving the small model theorem for an analytical problem ensures

that it is sound to consider only a small, bounded size of carriers instead of an unbounded

17

one while solving the problem. It is not clear whether all policies written in FOPSL will have

a small model theorem, we believe small model theorems can be proved for most practical

privacy policies. If such a small model theorem exists, we can rewrite the quantifiers as

finite conjunctions and disjunctions and replace the relations with propositions to obtain a

pLTL policy as the carriers are small and finite. There are two possible approaches to check

whether a policy specified in pLTL has the ∆-property. The first approach is based on CTL*lp

model checking and proposed by us. The other approach is tableau-based and is proposed

by Barth et al. [11].The complexity of both approaches is EXPSPACE-complete.

• To show the efficacy of our static policy analysis approach to check whether a policy has

the ∆-property, we applied our technique on our interpretation of the HIPAA privacy rule.

According to our analysis, we have verified that our interpretation of the HIPAA privacy rule

has the ∆-property the implication of which is that, to check whether an action is compliant

with our interpretation of the HIPAA privacy rule, it is sufficient to check only weak com-

pliance. Moreover, any incurred obligation which has been violated is due to the lack of the

principal’s diligence rather than a malformed policy.

1.4.2 Formally Ensuring Permissibility of Obligations in Security Policies.

• We enhance the previous concrete user obligation model [67, 109, 110] to specify cascading

user obligations. We propose several guidelines which can be used to select the user who

incurs the obligation when an action is performed. Moreover, we present a way of specifying

the time interval of the new obligation in the access control policy rule.

• We then formally define what it means for a system state to be accountable in presence of

cascading user obligations. There are two possible interpretations of accountability when

considering cascading user obligations. We define both interpretations, existential and uni-

versal, and give motivations for choosing the existential interpretation. We also show that

deciding both variations of accountability in presence of cascading user obligations is NP-

18

hard.

• We propose several special yet practical cases of cascading user obligations for which ac-

countability can be decided efficiently. We propose a polynomial time algorithm for deciding

accountability in presence of those special cases of cascading obligations. We also present

empirical evaluations of the accountability determination algorithm.

1.5 Roadmap

The thesis is organized in the following way. Chapter 2 briefly overviews the background material

necessary to understand the technical contributions of this thesis. In Chapter 3, we introduce both

our specification languages (XACML and FOPSL). We then formally specify what it means for an

action to be compliant with a policy specified in FOPSL in Chapter 4. In that section we also show

the complexity result of both notions of compliance and also provide mechanism to efficiently

check weak compliance. In Chapter 5, we formally define what it means for a policy to have the

∆-property. We also show the complexity of checking the ∆-property of a policy, develop a sound,

semi-automated technique for checking ∆-property, and finally use HIPAA as a case study for our

policy analysis technique. In Chapter 6, we formally define accountability in presence of cascad-

ing obligations, show the complexity of maintaining accountability, and provide an algorithm for

checking accountability for special yet practical cases of cascading obligations. We then discuss

related work in Chapter 7. Finally, we discuss future work and conclude in Chapter 8.

19

Chapter 2: BACKGROUND

In this section, we briefly summarize the different background concepts necessary for understand-

ing our technical contributions.

2.1 Temporal Logic

In this section, we briefly overview the different temporal logics used in the formal policy analysis.

The notion of temporal logic is important to understand our technical contributions. While defining

temporal logic, there are two possible views of time. One of which is where time is viewed as linear

(linear temporal logic [108,118]). In this view, for each moment of time there is only one possible

future. On the other view, the time is branching and tree like (computational tree logic [30,43]). In

the branching view of time, on each moment, time can get split into several possibilities resulting in

the situation where each moment of time can have several possible future. The computational tree

logic is particularly useful for specifying properties of systems with non-deterministic behavior.

Moreover, they are also useful for sanity checking of the models used for verification. We formally

specify the syntax and semantics of these logics.

2.1.1 Linear Temporal Logic (LTL) and First Order Temporal Logic (FOTL)

Temporal logic [108] is concerned with characterizing (typically, infinite) sequences of states

and/or events. We are principally interested in supporting (many sorted) first-order linear tem-

poral logic (FOTL), though many of the works we will draw upon consider only propositional

linear temporal logic (PLTL), in which propositions involve no parameters and quantifiers do not

occur.

Linear temporal logics characterize reactive computations in terms of infinite sequences states

called traces, which we denote by σ. FOTL generalizes propositional linear temporal logic in the

same way that first-order logic generalizes propositional logic, namely, by replacing propositional

variables by predicate symbols and by introducing quantification and variables. In the formulation

20

we use, trace elements are states and events are embedded in states. We further discuss the structure

of states presently.

Sorts resemble a primitive type system; each variable occurring in a formula is assigned a sort

when it is quantified and ranges over values in a unique carrier associated with that sort. Predicate

argument positions also have associated sorts with which actual arguments must agree. This as-

sociation is called the signature of the predicate symbol. An FOTL language is given by a set of

variables, a set of sorts, and a set of predicate symbols over those sorts. In our formulation, events,

which induce state transitions, are represented by atomic formulas that hold in the destination state.

Our policy language uses only one event predicate, send, which takes a sending agent, a receiving

agent, and a message: send(p1, p2,m). The semantics of this event predicate will be made precise

later.

FOTL formulas include non-temporal formulas, which are constructed from atomic formulas,

possibly with variables, logical connectives, and quantifiers over variables, just as in standard

many-sorted, first-order logic. As in the latter logic, a variable is free if it is not within the scope

of any quantification of that variable. A formula is closed if it contains no free variables.

FOTL formulas can also contain temporal operators, each of which takes either one or two

FOTL subformulas as arguments, depending on the operator. The temporal operators we use are

standard and have the following intuitive meanings. Note that, our policy language does not use

 (next) or (previous) for technical reasons that will be discussed in a later section. Note that

we consider the discrete, point-based semantics of LTL [42]. Moreover, we consider the non-strict

versions of the temporal operators where the reasoning of the past and the future operators do not

include about present state. Future Operators. Henceforth: φ says that φ holds in all future

states. Eventually: φ says that φ holds in some future state. Past Operators. Historically: φ

says that φ held in all previous states. Once: φ says that φ held in some previous state. Since:

φ1 S φ2 says that φ2 held at some point in the past, and since then φ1 has held in every state; it is

sufficient to consider the most recent point at which φ2 held.

A state is an interpretation, meaning that each state s is a mapping of predicate symbols p to

21

relations. Each position in each tuple in s(p) is occupied by a value from the appropriate carrier,

based on the signature of p.

A logical environment η maps each variable to a value in the carrier that corresponds to the

variable’s sort (denoted as τ). That a formula φ is satisfied by σ at an index i under η is denoted

by σ, i,η |= φ, and can be defined inductively on the structure of φ. Note that, we use “rigid”

quantification. This signifies that each variable bound to a quantifier ranges over the same domain

in all the different worlds. One says that σ satisfies φ, written σ |= φ, if and only if for all logical

environments η, we have σ,0,η |= φ.

[[x]]η =

η(x) if x : τ

x otherwise (constants),

We now formally present the syntax and semantics of propositional linear temporal logic (LTL)

introduced by Pnueli [90, 108]. This can be extended for the First Order Linear Temporal Logic

(FOTL) as we will show later. The propositional linear temporal logic formulas are composed of a

finite set AP of atomic propositions, their boolean connectives, and temporal operators. The syntax

of LTL can be defined inductively in the following way.

Definition 1 (Syntax of LTL). Every atomic proposition p ∈ AP is an LTL formula. When φ1 and

φ2 are well-formed LTL formulas, then so are the following:

• ⊤ (logical true), ⊥ (logical false)

• ¬φ1

• φ1∧φ2, φ1∨φ2, φ1→ φ2, φ1⇐⇒ φ2

• φ1 S φ2,φ1,φ1

• φ1,φ1, φ1Uφ2

The semantics of temporal logics are often defined in terms of traces of Kripke structures. A

Kripke structure is a tuple K = (S, I,R,L,Ω) in which:

22

• S is a finite set of states.

• I ⊆ S is a set of initial states.

• R⊆ S×S is a transition relation that is left-total.

• L : S−→Ω is a function that maps each state to an element of Ω, and Ω is a set the elements

of which are called labels. Ω can be defined as Ω = 2AP.

In this context, trace σ is a infinite sequence of states, in which for each i∈N, σi ∈ S, (si,s(i+1))∈R,

and additionally σ0 ∈ I. The set of infinite and finite sequences of states are given by Sω and S∗,

respectively. The semantics of LTL is given with respect to a Kripke structure K, a trace of it σ,

and a position in the trace i ∈ N.

Definition 2 (Semantics of LTL). The semantics of LTL is given below.

• K,σ, i |=⊤

• K,σ, i 2⊥

• K,σ, i |= p holds if and only if p ∈ AP and p ∈ L(si).

• K,σ, i |= ¬φ1 holds if and only if K,σ, i 2 φ1

• K,σ, i |= φ1∧φ2 holds if and only if K,σ, i |= φ1 and K,σ, i |= φ2

• K,σ, i |= φ1∨φ2 holds if and only if K,σ, i |= φ1 or K,σ, i |= φ2

• K,σ, i |= φ1→ φ2 holds if and only if K,σ, i |= φ1 implies that K,σ, i |= φ2

• K,σ, i |= φ1⇐⇒ φ2 holds if and only if K,σ, i |= φ1→ φ2 and K,σ, i |= φ2→ φ1

• K,σ, i |= φ1 S φ2 holds if and only if there exists an i1 ∈ N such that K,σ, i1 |= φ2 holds and

for all i1 < i2 ≤ i, K,σ, i2 |= φ1 holds.

• K,σ, i |=φ1 holds if and only if for all i1 ∈ N and i1 ≤ i, K,σ, i1 |= φ1 holds.

23

• K,σ, i |=φ1 holds if and only if there exists an i1 ∈ N and i1 ≤ i such that K,σ, i1 |= φ1

holds.

• K,σ, i |=φ1 holds if and only if there exists an i1 ∈ N and i1 ≥ i such that K,σ, i1 |= φ1

holds.

• K,σ, i |=φ1 holds if and only if for all i1 ∈ N and i1 ≥ i, K,σ, i1 |= φ1 holds.

• K,σ, i |= φ1Uφ2 holds if and only if there exists an i1 ≥ i and i1 ∈ N such that K,σ, i1 |= φ2

and for all i≤ i2 < i1 and i2 ∈ N, K,σ, i2 |=φ1 holds.

We now briefly overview the syntax and semantics of FOTL [64]. Let us assume we have

a finite set of predicate symbols represented by R. We have a finite set of constants denoted by

C. We denote the finite set of variables with X . As mentioned before, we use η to represent an

environment (or, substitution) which maps free variables to values in the appropriate domain. We

use D (possibly with subscripts) to represent the associated domain. Although FOTL may also have

function symbols, we do not include this in our presentation as our policy language do not allow

function symbols. We use r ∈ R (possibly with subscripts) to represent n-ary predicate symbols,

x∈ X (possibility with subscripts) to represent variables, we use c∈C (possibly with subscripts) to

represent constants. We use t (possibly with subscripts) to represent terms (variables or constants)

of the logic. FOTL has the following syntax:

Definition 3 (Syntax of FOTL). We denote ϕ to represent well-formed FOTL formulas.

ϕ ::= ⊤ | ⊥ | r(t0, t1, . . . , tn) | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 |

ϕ1 S ϕ2 | ∀~x.(ϕ1(~x)→ ϕ2(~x)) | ∃~x.ϕ(~x)

Definition 4 (Semantics of FOTL). Given a trace σ, a position in the trace i ∈ N, an environment

η, and a formula ϕ, we use σ, i,η |= ϕ to represent that ϕ is satisfied in the ith position of the trace

σ with respect to the environment η. This is defined inductively as below. We use σi to denote

24

the ith position of the trace. Note that in our presentation of FOTL semantics we keep the Kripke

structure implicit.

• σ, i,η |=⊤

• σ, i,η 6|=⊥

• σ, i,η |= r(t0, . . . , tn) if and only if ri ∈ R and η(ri)(η(t0), . . . ,η(tn)) ∈ Di.

• σ, i,η |= ¬ϕ if and only if σ, i,η 6|= ϕ

• σ, i,η |= ϕ1∧ϕ2 if and only if σ, i,η |= ϕ1 and σ, i,η |= ϕ2.

• σ, i,η |= ϕ1∨ϕ2 if and only if σ, i,η |= ϕ1 or σ, i,η |= ϕ2.

• σ, i,η |= ∃~x.ϕ(~x) if and only if there exists~t such that σ, i,η[~x 7→~t] |= ϕ(~x).

• σ, i,η |= ∀~x.(ϕ1(~x) → ϕ2(~x)) if and only if for all ~t if σ, i,η[~x 7→~t] |= ϕ1(~x) holds then

σ, i,η[~x 7→~t] |= ϕ2(~x) holds.

• σ, i,η |= ϕ1 S ϕ2 if and only if there exists k ≤ i, where k ∈ N, such that σ,k,η |= ϕ2 and for

all j, where j ∈ N and k < j ≤ i, it implies that σ, j,η |= ϕ1 holds.

2.1.2 Computational Tree Logic (CTL)

The branching time temporal logic also known as the computational tree logic (CTL) [30, 43, 81],

assumes the structure of time to be branching in nature. Each moment of time, in this view, can

have multiple possible futures. The structure of time can thus be viewed as an infinite tree like

structure. The tree like view of time assumed in CTL, comes handy to reason about a lot of

systems. One possible application of this computation-tree like reasoning is sanity checks of the

model which is being verified. For instance, to detect vacuous satisfaction of specifications, one

might check the satisfiability of a witness formula [74,75], which is basically an existential formula

representing a non-trivial behavior of the model. In the same vein, one might check satisfiability

25

of a possibility property [75, 82], which ensure that computations of the model can be extended

to a computation exhibiting the required behaviors. Another application of computation tree like

reasoning is in the field of automated task planning [51,75,106]. It also useful for reasoning about

programs with non-deterministic behavior [81]. Along with the future temporal operators defined

above, CTL additionally has universal (A) and existential (E) path quantifiers. CTL syntax allows

each such path quantifiers to be followed by a future temporal operator described above. Past

temporal operators (e.g., S ,,) are not directly incorporated in the logic. The syntax of CTL

can be inductively constructed as follows.

Definition 5 (Syntax of CTL). Let us consider that AP represents a set of atomic propositions.

Every atomic proposition p ∈ AP is a CTL formula. If φ1 and φ2 are CTL formulas then so are the

following:

• ¬φ1

• φ1∧φ2, φ1∨φ2, φ1→ φ2, φ1⇐⇒ φ2

• Aφ1, Eφ1, Aφ1, Eφ1, Aφ1, Eφ1

• A[φ1Uφ2], E[φ1Uφ2]

Note that in the literature F and G are used to denote the temporal operators eventually ()

and henceforth (), respectively.

Now, we turn our attention to the formal semantics of the logic CTL. A CTL formula is in-

terpreted with respect to a labeled state transition graph M. In this structure, states are labeled

with atomic propositions. Note that in the same vein CTL formula can be interpreted over kripke

structures. De Nicola and Vaandrager has shown that there are correspondence between kripke

structures and labeled transition graphs [32]. They have provided translation from one to another.

Definition 6 (Labeled State Transition Graph). A labeled state transition graph is a tuple M =

(S,R,L) where:

26

• S is the finite set of states.

• R⊆ S×S represents the state transition relation that is left total.

• L : S −→ 2AP is the labeling function that assigns each state a set of propositions that are

true in that state.

Before we can formally specify the semantics of CTL, we should first introduce the following

concepts. A full path (or, just path) π in the structure M = (S,R,L) is an infinite sequence of states

π = (s0,s1, . . .) such that ∀i.(si ∈ S) and ∀i.(si,si+1) ∈ R. Additionally, we use M,s |= φ to denote

that the formula φ holds true in the state s of the structure M = (S,R,L) where .

Definition 7 (Semantics of CTL). We now inductively define the |= relation as follows.

• M,s |= p holds if and only if p ∈ L(S).

• M,s |= ¬φ1 holds if and only M,s 2 φ1.

• M,s |= φ1∧φ2 holds if and only if M,s |= φ1 and M,s |= φ2.

• M,s |= φ1∨φ2 holds if and only if M,s |= φ1 or M,s |= φ2.

• M,s |= φ1→ φ2 holds if and only if M,s |= φ1 implies that M,s |= φ2.

• M,s |= φ1⇐⇒ φ2 holds if and only if M,s |= φ1→ φ2 and M,s |= φ2→ φ1.

• M,s |= Aφ1 holds if and only if for all ŝ such that (s, ŝ) ∈ R and M, ŝ |= φ1.

• M,s |= Eφ1 holds if and only if there exists a ŝ such that (s, ŝ) ∈ R and M, ŝ |= φ1.

• M,s |= Aφ1 holds if and only if for all full paths π = (s0,s1, . . .) such that s0 = s and for all

i ∈ N, M,si |= φ1 holds.

• M,s |= Eφ1 holds if and only if there exist a full path π = (s0,s1, . . .) such that s0 = s and

for all i ∈ N, M,si |= φ1 holds.

27

• M,s |= Aφ1 holds if and only if for all full paths π = (s0,s1, . . .) such that s0 = s and there

exists an i ∈ N such that M,si |= φ1 holds.

• M,s |= Eφ1 holds if and only if there exists a full path π = (s0,s1, . . .) such that s0 = s and

there exists an i ∈ N such that M,si |= φ1 holds.

• M,s |= A[φ1Uφ2] holds if and only if for all full paths π = (s0,s1, . . .) such that s0 = s there

exists an i≥ 0 such that M,si |= φ2 and for all j such that 0≤ j < i that M,s j |= φi holds.

• M,s |= E[φ1Uφ2] holds if and only if there exists a full path π = (s0,s1, . . .) such that s0 = s

there exists an i ≥ 0 such that M,si |= φ2 and for all j such that 0 ≤ j < i that M,s j |= φi

holds.

Expressive power. The expressive power of CTL and LTL are not comparable [44, 81]. There

are requirements (or, specifications) that can be easily expressed in one but not the another. For

instance, consider the LTL formulap which specifies that there is a point in time in the future

after which p will always hold true. One cannot express this requirement in CTL. Additionally

consider the CTL formula A(Ep) which specifies that for all paths and each point of time in it,

there will be a path from that point where p would eventually hold true. There is no LTL equivalent

of this formula.

2.1.2.1 The Logic CTL*

As we have seen in the previous section, the expressive power of LTL and CTL are not comparable.

As a result, Emerson and Halpern [44] have introduced CTL* which is also known as the full

branching time temporal logic. The logic CTL* is a superset of both CTL and LTL. More precisely,

every LTL and every CTL formula is a well-formed formula of the logic CTL*. Note that the

semantics of both LTL and CTL formula remains the same when they are interpreted as a CTL*

formula. CTL* generalizes CTL by allowing each path quantifiers to be followed by a LTL formula

(path formula). We now formally define the syntax and semantics of CTL* [44].

28

There are two types of formulas in CTL*, namely, state formulas and path formulas. State

formulas are true in a specific state whereas path formulas are true in a specific path. Let us

consider that AP represents the set of atomic propositions.

Definition 8 (Syntax of CTL*). CTL* formulas are state formulas generated in the following way.

• State Formulas: Every atomic proposition p ∈ AP is a state formula.

– If φ1 and φ2 are state formulas, then so are : ¬φ1, φ1∧φ2, φ1∨φ2.

– If ψ is a path formula then Aψ and Eψ are state formulas.

• Path Formulas: Every state formula φ is also a path formula. If ψ1 and ψ2 are path formulas

then so are the following.

– ¬ψ1, ψ1∧ψ2, ψ1∨ψ2

– ψ1,ψ1,ψ1, ψ1Uψ2

Similar to CTL, CTL* formulas are interpreted with respect to a labeled state transition graph

M = (S,R,L). Furthermore, we use π = (s0,s1, . . .) to denote a path where for all i≥ 0, (si,si+1) ∈

R. We use πi to denote the suffix of the path π starting at si. We use M,s |= φ to denote that the

state formula φ holds in the state s of structure M. Similarly, we use M,π |= ψ to denote that the

path formula ψ holds in the path π of structure M.

Definition 9 (Semantics of CTL*). Let us consider φ1 and φ2 to be state formulas whereas ψ1 and

ψ2 are path formulas. The relation |= can be defined inductively as follows.

• State Formulas:

– M,s |= p if and only if p ∈ L(s).

– M,s |= ¬φ1 if and only if M,s 2 φ1

– M,s |= φ1∧φ2 if and only if M,s |= φ1 and M,s |= φ2

29

– M,s |= E(φ1) if and only if there exists a path π = (s0,s1, . . .) such that s0 = s and

M,π |= φ1.

• Path Formulas:

– M,π |= ¬ψ1 if and only if M,π 2 ψ1.

– M,π |= ψ1∧ψ2 if and only if M,π |= ψ1 and M,π |= ψ2.

– M,π |=ψ1 if and only if M,π1 |= ψ1.

– M,π |= ψ1Uψ2 if and only if there exists a k ≥ 0 such that M,πk |= ψ2 and for all

0≤ j < k M,π j |= φ1 holds.

The semantics of other CTL* formulas can be easily derived from the semantics above using

the following equivalences.ψ≡⊤Uψ. ψ≡¬¬ψ. A(φ)≡¬E¬φ. φ1∨φ2 ≡¬(¬φ1∧¬φ2).

φ1→ φ2 ≡ ¬φ1∨φ2. φ1↔ φ2 ≡ φ1→ φ2∧φ2→ φ1.

2.1.2.2 The Logic CTL* with Linear Past

As we have seen already, it is not trivial to add past temporal operators in CTL*. Adding past

time temporal operators to LTL does not increase the expressive power of LTL [53] but makes it

exponentially more succinct [84]. Kupferman et al. [76] extends branching time temporal logic

CTL* with past time temporal operators. There are two possible views of past in a branching time

model, namely, branching past and linear past. In the branching past view, each moment of time

can have several futures and several possible pasts. In the linear past view, each moment of time

can have several possible futures but a unique past. In both views however past is assumed to be

finite. For our purposes, we chose the linear past view. We call the extended CTL* logic with linear

past, CTL∗l p. Note that, Kupferman et al. [76] have shown that adding linear past to CTL* does not

increase the expressive power of CTL* whereas adding the branching past to CTL* increases the

expressive power of CTL*.

Similar to CTL*, CTL∗l p has two types of formulas, namely, state formulas and path formulas.

Let us consider that AP represents the set of atomic propositions.

30

Definition 10 (Syntax of CTL*). CTL∗l p formulas are state formulas generated in the following

way.

• State Formulas: Every atomic proposition p ∈ AP is a state formula.

– If φ1 and φ2 are state formulas, then so are : ¬φ1, φ1∧φ2, φ1∨φ2.

– If ψ is a path formula then Aψ and Eψ are state formulas.

• Path Formulas: Every state formula φ is also a path formula. If ψ1 and ψ2 are path formulas

then so are the following.

– ¬ψ1, ψ1∧ψ2, ψ1∨ψ2

– ψ1,ψ1,ψ1, ψ1Uψ2

– ψ1,ψ1,ψ1, ψ1 S ψ2

The semantics of CTL∗l p we use is inspired by Kupferman et al. [76] and is defined with respect

to a variation of the Kripke structure called computation trees. The key feature of computation

trees is that each state (called a “node”) has exactly one path reaching it from the start state. This is

essential for expressing linear past. Note that the computation tree can be viewed as the unwinding

of a given Kripke structure [76]. This is due to the fact that CTL*lp is not sensitive to unwinding

unlike its branching past counterpart. We now formally define computation trees and use it to

specify the semantics of CTL∗l p.

One way of constructing computation trees is as follows. Let D be a set the elements of which

are called directions. A D -tree is a set T⊆D ∗ such that for all x ·c∈T in which x∈D ∗ and c∈D ,

x ∈ T also holds. The elements of T are called nodes; the empty string E is called the root of T.

For every x ∈ T, the nodes x · c ∈ T where c ∈ D are the successors of x. We consider here trees

in which each node has at least one successor. A path ρ of a tree T is a set ρ⊆ T such that E ∈ ρ

and for every x ∈ ρ there exists a unique c ∈ D such that x · c ∈ ρ. For a path ρ and j ≥ 0, let ρ j

denote the node of length j in ρ. Given a set D of directions and a set ∑ of alphabets, a ∑-labeled

D tree is a pair 〈T,L 〉 where T is a D -tree and L : T→ ∑ is a function that takes an element of T

31

and maps it to an element of ∑. A computation tree is a ∑-labeled D tree with ∑ = 2AP for some

set of atomic propositions. The set of directions D is arbitrary and we can use D = N where N

represents the set of natural numbers.

We now formally define the semantics of CTL∗l p with respect to a computation tree 〈T ,L 〉. We

use x |= φ to represent that a state formula φ holds in the node x ∈ T . We use ρ, i |= ψ to denote

that a path formula ψ holds in the position i of the path ρ⊆ T .

Definition 11 (Semantics of CTL∗l p). Let us consider φ1 and φ2 to be state formulas whereas ψ1

and ψ2 are path formulas. The relation |= can be defined inductively as follows.

• State Formulas:

– x |= p if and only if p ∈ L (x).

– x |= ¬φ1 if and only if x 2 φ1

– x |= φ1∧φ2 if and only if x |= φ1 and x |= φ2

– x |= φ1∨φ2 if and only if x |= φ1 or x |= φ2

– x |= φ1→ φ2 if and only if when x |= φ1 holds then x |= φ2 holds

– x |= E(φ1) if and only if there exists a path ρ and an i≥ 0 such that ρi = x and ρ, i |= φ1.

– x |= A(φ1) if and only if for all paths ρ and there exists i ≥ 0 such that ρi = x and

ρ, i |= φ1.

• Path Formulas:

– ρ, i |= φ1 for a state formula φ1 if and only if ρi |= φ1.

– ρ, i |= ¬ψ1 if and only if ρ, i 2 ψi.

– ρ, i |= ψ1∧ψ2 if and only if ρ, i |= ψ1 and ρ, i |= ψ2.

– ρ, i |=ψ1 if and only if ρ, i+1 |= ψ1.

– ρ, i |=ψ1 if and only if i≥ 0 and ρ, i−1 |= ψ1.

32

– ρ, i |= ψ1Uψ2 if and only if there exists k ≥ i such that ρ,k |= ψ2 and for all i≤ j < k

so that ρ, j |= ψ1.

– ρ, i |=ψ1 S ψ2 if and only if there exists 0≤ k≤ i such that ρ,k |=ψ2 and for all k < j≤ i

so that ρ, j |= ψ1.

The semantics of other CTL∗l p formulas can be easily derived from the semantics above and the

following equivalences. ψ ≡ ⊤S ψ. ψ ≡ ¬¬ψ. ψ ≡ ⊤Uψ. ψ ≡ ¬¬ψ. φ1↔ φ2 ≡

(φ1→ φ2)∧ (φ2→ φ1).

The logic CTL*lp can be extended to FO-CTL*lp in the same way how first order logic gener-

alizes propositional logic.

2.2 Safety and Liveness Properties

The information systems we consider can record and transmit individuals’ private data. They can

be modeled as reactive systems [58]. The system’s behavior can in turn be characterized in terms

of sets of infinite sequences of events and/or states. Such a sequence is called a trace. Sets of

traces are called temporal properties [24]. Every temporal property is given by the intersection of

two properties, one of which is called a safety property, the other a liveness property [5, 6]. We

now briefly summarize these properties (safety and liveness).

2.2.1 Safety Properties.

Safety properties [80] are temporal properties that say some bad thing never happens. When the

safety property is violated, the violation can be detected within a finite number steps of when

the actual violation occurs. As a result, safety properties are amenable to efficient enforcement

through classical techniques like monitoring [60, 85, 115]. An example of a safety property can be

the following requirement, which mentions that a clinic can disclose a patient’s medical records to

a third party provided that the patient has authorized this disclosure. When the clinic attempts to

disclose a patient’s medical records to a third party and it has not received any authorization from

33

the patient in this regard, then the disclosure action would violate this safety property. We can

thus efficiently enforce this policy by denying the disclosure action of the clinic when it has not

received an authorization from the patient.

Definition 12 (Safety Property Definition by Alpern and Schneider [6]). A property P is a safety

property if the following holds: ∀σ : σ∈ Sω : (σ |=P⇐⇒ (∀i : i≥ 0 : (∃β : β∈ Sω : σ[. . . i] ·β |=P))).

Here, Sω represents the set of infinite sequences, each element of which, is an element of the state

set S. Moreover, σ[. . . i] represents the finite prefix of length i+1 of σ.

2.2.2 Liveness Properties.

Liveness properties [80] are temporal properties that say something good will eventually happen.

The violation of the liveness properties cannot be detected within a finite number of steps. Thus,

it is not amenable to enforcement through classical monitoring. All LTL representable liveness

properties can be expressed as an LTL formula of the form p in which p is a pure past LTL

formula. The formulap signifies that p happens infinitely often. However, policies of our form

do not allow arbitrary liveness properties of the form p. We allow response properties in our

policies which are restricted variations of general liveness properties. They have the form (a→

b) and specify that whenever a is true then b will become true eventually. The proposition b can

be viewed as an obligatory requirement (obligation) [109] when the triggering condition a becomes

true. Note that in the general response properties a and b are arbitrary past formula. However, in

our policies a and b are of specific form which we discuss later. We want to emphasize that in

the response property ((a→b)) when a is logical true then the response property reduces

to the general liveness property of form b. An example of a response property can be the

following which specifies that when a patient requests a copy of her medical records, the clinic

will provide them to the patient. The patient requesting can be viewed as a becoming true and the

clinic responding can be viewed as b becoming true.

Definition 13 (Liveness Property Definition by Alpern and Schneider [6]). A property P is a live-

ness property if the following holds: ∀α : α ∈ S∗ : (∃β : β ∈ Sω : α ·β |= P). Here, S∗ represents the

34

set of finite sequences, each element of which, is an element of the state set S.

Violations of liveness properties, and hence also response properties cannot be detected within

a finite number of steps. To mitigate this problem and for making enforcement feasible, sometimes

bounded liveness is used. Bounded liveness is actually a safety property and it requires that the

obligatory requirement be fulfilled within a certain number of steps or certain period of time,

making detection of violation feasible. If we rewrite the privacy rule (1) (discussed above) to

require that the clinic responds to the patient’s request within 30 days, it would be an example of a

bounded liveness property.

2.3 Model Checking

Model checking [29, 123] is used to automatically and formally verify finite concurrent system. It

takes an input a finite concurrent system and a desired property. It then checks to see whether the

finite concurrent system satisfies the given property. The finite system is generally modeled as finite

state machines (FSM). As the specification language of the property, different temporal logics can

be used (e.g., LTL, CTL, CTL*). Generally, the (explicit) model checking algorithms exhaustively

explore the reachable state space of the finite concurrent system based on the transition relation

to determine if a given property holds. In the case, the finite concurrent system does not adhere

to the desired property, the model checking generates an example trace as a counter example that

demonstrates how the finite concurrent system falsifies the desired property. This counter example

can then be used to enhance and refine the model so that it satisfies the desired property.

Table 2.1: Complexity of Model Checking For Different Property Specification Logic
Logic Model Checking Complexity

(with respect to formula size)
LTL PSPACE-complete
CTL PTIME-complete
CTL* PSPACE-complete
CTL∗l p EXPSPACE

One of the disadvantages of using model checking to verify a certain finite state system is its

35

high time complexity. It is inherent to model checking as it explores all possible runs of the system

to find example of the property falsification. In the most of the cases, the reachable state space is too

big to be explored causing “state explosion”. There are several techniques, including abstraction,

partial order reductions, bisimulation, that have been proposed to deal with this state explosion

problem possibly sacrificing soundness or completeness. When successful, model checking gives

static assurances that whenever the model-checked finite state system is executed it will not violate

the desired properties. As a result of which, there is no need for any dynamic checking to see

whether the system is violating the desired properties. Model checking can be used to verify both

safety and liveness properties. In the table 2.1, we show the complexity of performing model

checking for various specification language.

2.4 Runtime Monitoring

Recall that, model checking is an automated algorithmic verification technique that statically

checks to see whether a concurrent finite system specified as finite state machines satisfies a given

property, typically specified as a temporal logic formula. The specification it can verify can be ei-

ther a safety property, a liveness property, or a combination of the two. Model checking algorithms

checks all possible runs of the system by constructing the reachable state space and inspects it.

The reachable state space can be large causing the state explosion problem.

One possible alternative that has got a lot of attention from both industry and academia is

“runtime monitoring” [60,85,115]. Model checking gives static guarantee that whenever the finite

concurrent system is executed it will not violate the desired properties whereas in the runtime

monitoring approach there is a separate component called a “monitor” that inspects the behavior

of the finite concurrent system. It suppresses or prohibits those actions/events requested by the

finite concurrent system that violates the desired property. In that sense, it is one possibility of

guaranteeing that the finite concurrent system does not violate the desired property. However,

there are several disadvantages of this approach. The first is the overhead of instrumenting the

finite concurrent system to emit necessary events that can be monitored by the runtime component,

36

the monitor. The next disadvantage is that a runtime monitor can typically enforce only safety

properties. Thus, the runtime monitoring technique does not give any guarantees about liveness

properties.

Havelund and Rośu [60, 61] propose a dynamic programming based algorithm for monitoring

pure past, propositional linear temporal logic formula. Note that, a pure past propositional LTL

formula can only specify safety properties. They try to verify whether a pure past, propositional

LTL formula satisfies a given observed history (finite run of the system). More formally, for a

given pure past, propositional LTL formula φ they check to see whether a given finite history h

and a position in it i ∈ N satisfies φ written as h,m |= φ. They use the intuition that pure past LTL

formula has a recursive semantics. More precisely, deciding h,m |= φ can be done easily if one

knows: (1) the truth value of h,m−1 |= φ j for all proper subformulas φ j of φ and (2) the truth value

of h,m |= φi for all proper subformulas φi of φ. As a result of which, they use two bit arrays, old

and new, each of size |φ|where φ is the formula they are monitoring. Each entry of the bit array old

contains the truth value of a proper subformula of φ in the previous step (1 means true and 0 means

false). Each entry of the bit array new contains the truth value of a proper subformula of φ in the

current step. Given the value of the old bit array, the new bit array can be constructed inductively

in the following way. Let us consider that we use AP to denote the set of atomic propositions in

the formula φ and υ represents the set of propositions true in the current state.

37

new[p] = (p ∈ υ) when p ∈ AP

new[φ1∧φ2] = new[φ1]∧new[φ2]

new[¬φ] = ¬new[φ]

new[φ] = old[φ]

new[φ] = old[φ]∧new[φ]

new[φ] = old[φ]∨new[φ]

new[φ1 S φ2] = new[φ2]∨ (old[φ1 S φ2]∧new[φ1])

There are other automata based runtime monitoring techniques (e.g., security automata [14,48,

66, 92, 115], edit automata [88], etc.) but they have a large overhead.

2.5 Overview of HIPAA

We now briefly overview the Health Insurance Portability and Accountability Act (HIPAA) of 1996

also referred to as Public Law 104-191. The Department of Health and Human Services (HHS)

is the responsible organization for enforcing HIPAA. According to the Department of Health and

Human Services (HHS) the goal of the HIPAA privacy regulation is to ensure that consumers can

access their health information and also to protect their information from unauthorized disclosure.

More specifically, Part 164 of HIPAA deals with the security and privacy aspect of the reg-

ulation. In this work, we primarily analyze subpart E of Part 164, which deals with protecting

individually identifiable health information, covering §164.502 to §164.528. These rules precisely

specify the security and privacy requirements that is applicable to “covered entities” with respect to

protected health information (PHI). As defined by HIPAA and the HHS, covered entities include

health plans, health care clearinghouses, such as billing services and community health informa-

tion systems, and health care providers that transmit health care data in a way that is regulated by

HIPAA. Protected health information (PHI) refers to individually identifiable health information

38

except a few cases where such information falls under the jurisdiction of other federal regulations

such as the Family Educational Rights and Privacy Act (FERPA).

The privacy rules regulate the following kinds of actions: (1) Usage of the PHI within the

covered entity itself. (2) Disclosure of PHI to some other entity.

Furthermore, the purposes for which the covered entity (or, any other entity) is using or dis-

closing the PHI is also referred in the privacy rules. The following is an incomplete list of purposes

that are used: treatment; payment; health care operations; creating de-identified PHI; communi-

cate; marketing; reporting to public health authority; health oversight.

When disclosing PHI, the role of the entity to which the disclosure is made is also important.

An incomplete list of the different roles that are referred in the HIPAA rules include: individual

(i.e., the person whose PHI is about); representative of an individual; business associates of a cov-

ered entity; healthcare provider; an attorney representing whistleblower; group health plan; Health

Maintenance Organization (HMO); public health care authority; public health or government au-

thority authorized by law to receive child abuse report; a person who may have been exposed to

a communicable disease; employer of an individual; a family member, other relative, or a close

personal friend of an individual, or any other person identified by the individual; a person subject

to Food and Drug Administration (FDA) regulated activity.

The HIPAA rules also often refer to other documents and contracts among the entities involved

with the applicable disclosure. We briefly summarize these documents and contracts in the follow-

ing discussion.

Privacy notice. According to the privacy rules, when a privacy notice is required, an access

must be consistent with the privacy notice, in addition to following privacy rule (§164.502(i)). “A

covered entity that is required by §164.520 to have a notice may not use or disclose protected

health information in a manner inconsistent with such notice. A covered entity that is required

by §164.520(b)(1)(iii) to include a specific statement in its notice if it intends to engage in an

activity listed in §164.520(b)(1)(iii)(A)-(C), may not use or disclose protected health information

39

for such activities, unless the required statement is included in the notice.” According to the above

clause, an organization must check each access against the privacy notice. Therefore, privacy

notices should be encoded as policies that must also authorize a request for it to be allowed. When

an organization has multiple privacy notices (for example, Google had over 70 different privacy

policies before consolidating them), then it is necessary to remember for each patient which policy

encodes the privacy notice for that patient and checks with that policy.

Authorizations. Accesses (use or disclose) to PHI not explicitly authorized by the privacy rules

can still be allowed when a valid authorization from the individual is obtained for the specified

purpose. This is explicitly mentioned in the privacy rule §164.508 which specifies that: “Except as

otherwise permitted or required by this subchapter, a covered entity may not use or disclose pro-

tected health information without an authorization that is valid under this section. When a covered

entity obtains or receives a valid authorization for its use or disclosure of protected health infor-

mation, such use or disclosure must be consistent with such authorization.” To enforce this clause,

authorizations signed by individuals also need to be encoded as policies and checked against.

Contracts and Restrictions. The HIPAA privacy rules in §164.522 requires that a covered entity

must permit an individual to request that the covered entity restrict: (A) Uses or disclosures of

protected health information about the individual to carry out treatment, payment, or health care

operations; and (B) Disclosures permitted under §164.510(b). A covered entity is not required to

agree to a restriction, but if it agrees to it, it must respect the restriction.

Furthermore, the HIPAA privacy rules in §164.510 allows a covered entity to use or disclose

protected health information without the written consent or authorization of the individual as de-

scribed by §164.506 and §164.508, respectively, provided that the individual is informed in ad-

vance of the use or disclosure and has the opportunity to agree to or prohibit or restrict the disclo-

sure in accordance with the applicable requirements of this section. The covered entity may orally

inform the individual and obtain the individual’s oral agreement or objection to a use or disclosure

permitted by this section.

40

2.6 XACML

Architecture. The main components of the XACML architecture include a Policy Enforcement

Point (PEP), a Policy Decision Point (PDP), a Policy Information Point (PIP), a Policy Admin-

istration Point (PAP), and obligations service. The PEP performs access control, by receiving

decision requests, consulting the PDP for authorization decision, and enforcing the decisions. The

PDP evaluates applicable policies and yields authorization decisions, together with obligations

and advice, if any. The PIP acts as a source of attribute values, such as subject, resource, action,

environment attributes. The PAP administrates policies and policy sets and makes them available

to the PDP. The obligations service handles obligations forwarded by the PEP. However, XACML

does not specify how PIP, PAP and obligations service should behave and how they should be

implemented.

Rules, Policies, and Policy-sets. Both XACML 2.0 and 3.0 [127] define three levels of policy

elements: rules, policies, and policy-sets. A rule is the most basic policy element; it has three main

components: a target, a condition, and an effect. The target defines a set of subjects, resources,

and actions that the rule applies to; the condition specifies restrictions on the attributes in the

target and refines the applicability of the rule; the effect is either Permit, in which case we call

the rule a permit rule, or Deny, in which case we call it a deny rule. If a request satisfies both

the rule target and rule condition, the rule is applicable to the request and yields the decision

specified by the effect element; otherwise, the rule is not applicable to the request and yields the

decision NotApplicable. Note that when an error occurs while evaluating a rule, then the decision

Indeterminate is returned as a decision. There are other situations when Indeterminate is

returned as a decision. They are discussed below.

Unlike XACML 2.0, XACML 3.0 allows one to specify obligations and advice in a rule, so the

rule would return a decision together with a set of (possibly empty) obligations and advice if it is

applicable to a request. Each obligation represents functions to be executed in conjunction with

the enforcement of an authorization decision. Advice is newly added in XACML 3.0, which is a

41

<PolicySet> := <Target><Policy>+[Obligations]

Attributes: PolicySetId, PolicyCombiningAlgId

<Policy> := <Target><Rule>+[Obligations]

Attributes: PolicyId, RuleCombiningAlgId

<Rule> := [Target][Condition]

Attributes: RuleId, Effect

Figure 2.1: XACML schema of policy set, policy and rule in BNF form

supplementary piece of information provided together with a decision, and it is like an optional

obligation, which can be safely ignored by the PEP.

A policy consists of four main components: a target, a rule-combining algorithm (RCA), a set

of rules, and obligations/advice. The policy target decides whether a request is applicable to the

policy and it has a similar structure as the rule target. The RCA specifies how the decisions from

the rules are combined to yield one decision. A policy-set also has four main components: a target,

a policy-combining algorithm (PCA), a set of sub-policies, and obligations/advice. A sub-policy

can be either be a policy or a policy-set. The PCA specifies how the results of evaluating the sub-

policies are combined to yield a decision. Figure 2.1 shows the schema of policy set, policy and

rule in BNF form of the base XACML specification language.

Policy Combining Algorithms. XACML 2.0 and 3.0 have a number of standard RCAs and

PCAs. They are “Deny-overrides”, “Ordered-deny-overrides”, “Permit-overrides”, “Ordered-

permit-overrides”, “First-applicable”, and “Only-one-applicable” (“Only-one-applicable” is only

defined as a PCA. Ordered-deny-overrides and ordered-permit-overrides are the same as deny-

overrides and permit-overrides, respectively, except that rules and policies have to be evaluated

in the order they appear. XACML 3.0 redefines “Deny-overrides”, “Permit-overrides” and their

ordered versions, considering uncertainty when handling errors. Also, XACML 3.0 introduces two

42

new PCAs: “deny-unless- permit” and “Permit-unless-deny”. As a result, XACML 3.0 has eleven

RCAs and twelve PCAs. Among the RCAs and PCAs, “Permit-overrides”, “Deny-overrides”, and

“First-applicable” are helpful and sufficient for combining HIPAA policies/rules.

XACML “Permit-overrides” PCA has the preference Permit>Deny>Indeterminate>

NotApplicable. That is, when any sub-policy permits the request, the policy as a whole per-

mits it. When no sub-policy permits the request, and at least one denies it, the policy as a

whole denies it. Otherwise, when there is an error somewhere, the policy reports error on the

request. Otherwise, the policy is non-applicable. The “Deny-overrides” PCA uses the preference

Deny>Permit>NotApplicable; in addition, it treats Indeterminate as always equivalent to

Deny. That is, whenever a sub-policy returns Indeterminate, the policy would return Deny. The

“First-applicable” PCA returns the effect of the first applicable sub-policy as the result if no errors

occur. Whenever an error occurs, the policy returns Indeterminate. The “Only-one-applicable”

PCA returns the effect of the unique policy in the policy-set that applies to the request. If there are

more than one applicable policies, the PCA reports the conflict by returning Indeterminate. Fur-

thermore, if an error occurs during evaluation of any policy, the PCA also returns Indeterminate.

43

Chapter 3: PRIVACY POLICY SPECIFICATION LANGUAGE

Privacy regulations like HIPAA [62], GLBA [2], and SOX [116] are specified in natural language.

To develop an efficient compliance checking algorithm that can automatically check whether a

certain action is compliant with the applicable privacy policies or to give a formal guarantee that

a policy permits any incurred obligation, it is first necessary to express the privacy requirements

imposed by the regulation in some policy specification language. Several frameworks have been

proposed for specifying and analyzing privacy policies [3, 11–13, 20, 31, 35, 37, 55, 73, 79, 94]. To

this end, we consider two possible policy specification languages. One candidate privacy policy

specification language we consider is a generic, off-the-shelf access control policy specification

language, XACML [127]. OASIS’s eXtensible Access Control Markup Language (XACML) [127]

is one of the most popular access control specification languages. Along with the rich specification

language, XACML [127] also has a robust enforcement engine that can enforce policies specified in

the language. Although XACML is an expressive specification language, it lacks features needed to

specify HIPAA-like privacy policies. This is natural as XACML is designed for specifying access

control policies instead of privacy policies like HIPAA. We thus assess XACML’s adequacy for

expressing HIPAA. More precisely, we investigate what features a specification language requires

to sufficiently specify HIPAA. We discuss which of these necessary features XACML possesses

and also propose extensions of XACML to support the missing features.

One of the apparent advantages of extending XACML to support privacy policies like HIPAA

is that one uniform specification language and enforcement mechanism can be used to specify and

enforce the access control policies and the privacy policies of the system. Managing the access

control policies and the privacy policies differently is cumbersome as an action can be mandated

by both policies. However, if we use XACML for expressing both policies, then XACML’s en-

forcement mechanism will combine the separate permissibility decisions of an action by using

The content of this chapter is based on the joint work with Ninghui Li, Haining Chen, Elisa Bertino, Andreas
Gampe, Jianwei Niu, Jeffery von Ronne, Jared Bennatt, Anupam Datta, Limin Jia, and William H. Winsborough [26],
[27].

44

policy combination algorithms (PCAs). Furthermore, organizations can have their own business

privacy policy on top of the federal privacy regulations. In this case, the organization’s privacy pol-

icy would be the composition of their business privacy policy and the federal privacy regulations.

This composition of privacy policies can be very easily achieved by XACML.

Our evaluation of XACML as a candidate specification language is based on a set of features

required for expressing HIPAA, proposed by DeYoung et al. [35]. In our evaluation of XACML, we

found out that XACML has some of the features (e.g., attributes, policy/policy rule combination)

needed to support HIPAA. However, it lacks some other necessary features (e.g., event history,

obligations, subjective belief, reference to other rules) to adequately capture the HIPAA privacy

rules. We thus propose necessary extensions for XACML to specify HIPAA.

In our analysis of XACML’s candidacy as a possible specification language, we found that

features like temporal conditions, quantification, which are necessary to specify HIPAA, cannot

be expressed in XACML in a flexible and extensible way. To mitigate this, the next candidate

specification language we consider is specialized for expressing privacy policies like HIPAA and

is a hybrid of the specification languages proposed by Barth et al. [11] and DeYoung et al. [35].

We represent this privacy policy specification language with FOPSL. FOPSL is based on a re-

stricted fragment of first-order temporal logic (FOTL). We have shown the efficacy of FOPSL by

expressing all 84 disclosure-related HIPAA clauses in it (see Appendix A). Due to its well-defined

formal semantics and its expressive power, we use FOPSL as the language of our choice for our

static policy analysis technique which gives formal assurance that incurred obligations can be met

in a privacy policy conforming way. As we shall show, in general the problem of policy analysis is

undecidable. Thus, we impose some restrictions, some of which are on the specification language,

to make the problem decidable. The language FOPSL was thus developed taking into account the

restrictions required for policy analysis.

45

3.1 Features for HIPAA Specification

In this section, we inventory and briefly summarize the features proposed by DeYoung et al. [35,36]

that a policy specification language requires to sufficiently capture the HIPAA privacy rules.

Attributes. Each HIPAA privacy rule mandating a disclosure or usage can restrict the sender’s,

receiver’s, the subject’s, and the message’s current attributes. For instance, the HIPAA privacy

rule §164.502(a)(1)(i) specifies that: “A covered entity is permitted to use or disclose protected

health information as follows: To the individual”. According to this regulation (when considering a

disclosure action), the sender’s role attribute must be covered entity, the receiver’s and the subject’s

role attribute must be individual, and the information in question is the subject’s PHI attribute.

Attribute Inference Policy. Attribute inference policies specify whether a certain individual

has a specific attribute based on conditions on his current attributes. Consider the HIPAA privacy

policy rule in §164.502(a)(1) that allows a covered entity to send a patient’s PHI to the patient’s

personal representative. While evaluating this policy rule, one might need to check whether a

certain individual p1 is the personal representative of the patient p2. Attribute inference policies

can specify under what circumstances p1 can be considered a personal representative of p2. An

example of such an attribute inference policy can be found in §164.502(g)(2) of HIPAA. It specifies

that p1 can be considered the personal representative of p2 when p1 has the authority to make health

care decisions for p2 where p1 is either an adult or an emancipated minor.

Past Events. The HIPAA privacy rule restricts a request for disclosure or usage of a patient’s

protected health information (PHI) based on some events on the past. Consider the regulation

§164.502(e)(1)(i) which mentions that: “A covered entity may disclose protected health informa-

tion to a business associate and may allow a business associate to create or receive protected

health information on its behalf, if the covered entity obtains satisfactory assurance that the busi-

ness associate will appropriately safeguard the information.” According to this regulation, the

covered entity can disclose a patient’s PHI to its business associate when it has already received

satisfactory assurance from its business associate regarding the safeguarding of the PHI.

46

Obligations with Deadlines. The HIPAA privacy rules also impose obligatory restrictions on the

covered entity. Furthermore, the obligations have specific deadlines within which the obligation

needs to be carried out. Consider the §164.524(b)(2)(i) of HIPAA, which mentions: “the covered

entity must act on a request for access no later than 30 days after the receipt of the request”. Here,

the covered entity is obligated to act within 30 days after it has received a request for access from

an individual.

Purpose of Usage or Disclosure. The HIPAA privacy rules restrict certain usage or disclosure re-

quests based on the purpose of that action. For instance, the HIPAA privacy rule in §164.506(c)(1)

specifies that: “A covered entity may use or disclose protected health information for its own treat-

ment, payment, or health care operations.”. This HIPAA privacy rule allows a covered entity to

use or disclose PHI of patient for the purpose of either its own treatment, payment, or health care.

Subjective Beliefs. The HIPAA privacy rules allows a certain disclosure or usage of a patient’s

PHI based on the covered entity’s subjective belief or professional judgement. An example of such

a HIPAA privacy rule can be found in §164.512(f)(5) of the regulation. It states that: “A covered

entity may disclose to a law enforcement official protected health information that the covered

entity believes in good faith constitutes evidence of criminal conduct that occurred on the premises

of the covered entity”. This rule allows a covered entity to disclose PHI of a patient to the police

for reporting a crime on premise and additional believes the PHI can be used as evidence.

Reference to Other Laws/Rules. The HIPAA privacy rules also restrict a certain disclosure or

usage of a patient’s PHI based on other laws and also others rules (sections and paragraphs)

of HIPAA. One example of the HIPAA privacy rule referring to another law can be found in

§164.512(a)(1) which specifies that: “ A covered entity may use or disclose protected health in-

formation to the extent that such use or disclosure is required by law and the use or disclosure

complies with and is limited to the relevant requirements of such law”. The HIPAA privacy rule

§164.502(a)(1)(ii) can serve as an example where one rule of HIPAA refers to another HIPAA

privacy rule. It specifies that: “A covered entity is permitted to use or disclose protected health

information as follows: For treatment, payment, or health care operations, as permitted by and in

47

compliance with §164.506;”.

Policy/Policy Rule Combination. HIPAA has different types of privacy rules based on the restric-

tions they impose. More precisely, (i) some of the HIPAA privacy rules allow certain disclosure,

(ii) some of the HIPAA privacy rules prohibit certain disclosure to take place, (iii) some of the

rules allow certain disclosure when certain condition is satisfied, and (iv) some of the rules require

certain disclosure to take place. To check whether certain disclosure or usage is in compliant with

the HIPAA privacy rules, one should be able to consult all the above types of privacy rules to get

decisions and combine them to get one consistent decision. An example of type (i) rules can be

found in §164.506(c)(2) of HIPAA, which specifies that: “A covered entity may disclose protected

health information for treatment activities of a health care provider”. The HIPAA privacy rule

§164.502(g)(3)(ii)(B) demonstrates the type (ii) rules. It specifies that: “If, and to the extent, pro-

hibited by an applicable provision of State or other law, including applicable case law, a covered

entity may not disclose, or provide access in accordance with §164.524 to, protected health in-

formation about an unemancipated minor to a parent, guardian, or other person acting in loco

parentis; and...”. An example of type (iii) privacy rules can be found in §164.508(a)(1) of HIPAA

which specifies that: “Notwithstanding any provision of this subpart, other than the transition

provisions in §164.532, a covered entity must obtain an authorization for any use or disclosure

of psychotherapy notes,...”. Example of type (iv) rule can be found in the HIPAA privacy rule

§164.502(a)(2)(ii) which specifies that, “A covered entity is required to disclose protected health

information: When required by the Secretary under subpart C of part 160 of this subchapter to

investigate or determine the covered entity’s compliance with this subpart.”.

3.2 Evaluating XACML for HIPAA

We identify the mismatches that occur when expressing HIPAA in XACML. These serve as the

motivation for future research and development of access control specification languages. We use

XACML as an example of state-of-the-art access control language with enforcement support.

48

3.2.1 Stateful Policies vs. Stateless Mechanism

XACML policies are largely stateless. Essentially XACML provides a component that takes a

request as input, and returns a decision. The XACML architecture puts forward keywords such as

PEP (Policy Enforcement Point), PDP (Policy Decision Point), PAP (Policy Adminstration Point),

and PIP (Policy Information Point). However, it does not suggest how to implement each of PAP

and PIP, let alone modeling their interactions.

When using XACML to encode a set of complicated policies, all one can do is to create a

stateless policy that takes requests as inputs and give decisions as outputs. Anything else is beyond

the actual XACML standard. The HIPAA privacy rules, however, goes beyond a simple policy

providing answers to requests.

Obligations. Although XACML seems to integrate obligations as part of it, it treats obligations

largely as black boxes, without specifying what an obligation should include and how to handle

them. In short, XACML does not assign any semantics to obligations, which we believe is neces-

sary.

Event History. XACML is stateless and assumes any stateful information (e.g, history) is kept

outside the policy engine. One possibility is to use Condition semantics of XACML 3.0 to handle

history. However, one has to assume that there exists a sophisticated component outside the policy

engine that maintains relevant history information and knows exactly which part of the history

information is needed for a given request to put such information in the request context. In a sense,

one has to assume a policy engine beyond XACML to handle these things. We believe that the

decisions about how history information are maintained and used are largely policy driven, and

should be handled together with access control policies, inside the XACML framework.

Policy-Directed Attribute Retrieval. In HIPAA, different attributes need to be provided for dif-

ferent requests. Deciding which attributes to retrieve, is often dictated by the policy itself. XACML

currently does not contain support for this operation.

Policy-Directed Policy Retrieval. As we have discussed before, the HIPAA privacy rules can refer

49

to other documents or contracts (e.g., privacy notices, authorizations) between the covered entity

and the subject in question. If such a document or contract exists, it can dominate the response

from the regular privacy rules. In that sense, we can consider these documents or contracts as

separate policies and retrieve them when necessary. Currently, XACML does not support such

interactions.

3.2.2 Interactive vs. Non-interactive Policy Evaluation

Reading HIPAA, one gets the sense that policy evaluation needs to be more interactive. For a

disclosure request, depending on which justification one plans to use for the disclosure, a different

set of conditions need to be checked. One cannot simply send a request and get back a decision.

Purpose of Disclosure or Usage and Subject Beliefs. The HIPAA regulation sometimes permits

a disclosure or usage of a patient’s PHI based on the purpose or based on the subject’s belief.

However, deciding whether certain disclosure or usage is requested for certain purposes, is difficult.

It is impossible to decide from the static context of the request arguments. The same is true for

subjective beliefs. It is often difficult to decide subjective beliefs without interacting with the

requester.

Reference to Other Laws/Rules. As we have seen before, HIPAA privacy rules can refer to other

HIPAA privacy rules and also other laws. As a result of which, while evaluating a privacy rule

we might have to evaluate a different rule (referred in the original privacy rule) first before mak-

ing decision about the first rule. Currently, XACML does not support such interactions between

policy/policy rules.

3.2.3 Attribute Inference vs. Authorization Decisions

In XACML, all rules assign some kind of truth value to a particular request, and one cannot write

a rule/policy assigning truth value to a query that is not an access request. For example, in HIPAA

one condition for accessing PHI is that the requester is a personal representative of the patient.

However, HIPAA has guidelines that dictate whether someone should be considered to be a per-

50

sonal representative. Ideally these conditions for deciding personal representative should also be

specified as XACML policies and rules. However, these policies and rules are not about deciding

the request, but about the inference of some attribute relevant to the current decision. Therefore,

they cannot be expressed in current XACML.

3.2.4 Quantification Over Infinite Domains

As pointed out by existing work [11, 35, 36, 55], concise specification of the HIPAA privacy rules

require quantifications over the infinite domains of the involved principals, message attributes,

messages, etc. XACML supports implicit universal quantification (outer-most) of the sender, re-

ceiver, subject, message, message attributes, etc., of the use or disclosure action which the rule

mandates. However, while specifying HIPAA privacy rules, the condition associated with a pri-

vacy rule can also have quantifications. Currently, XACML does not support the specification of

the explicit quantifications appearing in the condition of a rule.

3.3 Extensions of XACML to Support HIPAA Policies

Inspired by Barth et al. [11], we divide the HIPAA privacy regulation regarding disclosure or usage

of a patient’s PHI into two types of privacy rules, allowing policy rules and prohibitive policy

rules. An allowing policy rule (e.g., §164.502(a)(1)(i)) enables a disclosure or usage whereas a

prohibitive policy rule (e.g., §164.508(a)(2)) permits a disclosure only when its associate condition

is satisfied. We describe how these rules are combined in section 3.3.6. Each HIPAA policy rule

regulating a disclosure or usage contains the following restrictions: (1) sender’s attributes, (2)

recipient’s attribute, (3) subject’s attribute (the individual whose PHI is considered), (4) purpose

of the disclosure, (5) the information that is being disclosed (e.g., age, name, ssn), (6) obligations,

(7) history, and (8) other conditions. In this section, we summarize how each of these are specified

in the extended XACML. Our proposed extensions are based on the investigation of the HIPAA

privacy rules in §164.502-§164.514, §164.522, and §164.524. Note that, the goal of this work is

not completely specifying and enforcing the HIPAA privacy rules rather evaluating XACML as a

51

candidate for specifying and enforcing HIPAA privacy rules.

Assumptions. We now discuss the assumptions we make while considering XACML as a spec-

ification language for HIPAA. In our system, the actions of the system that are regulated by the

privacy policy are disclose (e.g., send a message, send postal mail), use (e.g., read, write), request

(e.g., request from patient), and access (e.g., patient accessing her own PHI). More precisely, we

only regulate disclosure or usage regarding to the PHI of a patient. We also assume that it is the

responsibility of the sending user to tag the message with the appropriate attributes (e.g., address,

ssn, age) based on the content of the message. Additionally, current work makes the assumption

that when an obligation is incurred, the user incurring the obligation (obligatee) will be permitted

according to the privacy and access control policy. However, this might not be the case. Relaxing

this assumption and designing a static analysis of the policy to check whether it has this desired

property is a subject of future work.

In the current work, we have abstracted away some portions of HIPAA. Consider the regulation

in §164.502(g)(3)(ii)(A), that allows a covered entity to disclose the PHI to the guardian provided

that other laws allow it. It is not feasible to encode all possible applicable laws in our language.

As a result, we use an oracle (possibly a company attorney) to decide whether the disclosure is

allowed by other laws. We additionally assume that the patient policies that the covered entity

agrees to comply with, is consistent with the HIPAA privacy rules.

3.3.1 Obligations

Sometimes HIPAA policies specify obligations required to be performed by covered entities. For

example, the HIPAA regulation §164.524(b)(2)(i) says that the covered entity is obligated to act

within 30 days after it has received a request from an individual. As mentioned before, XACML’s

support for obligations is not rich enough to capture the obligatory requirements of HIPAA. As a

result, in the current work, we adopt the obligation model by Li et al. [86] to support specification

and enforcement of obligations in XACML. Note that, there are other approaches to manage obli-

gations [13, 55, 109], but the model by Li et al. [86] is a natural fit as it can readily be used with

52

XACML without any significant modifications. The key ideas of the state-machine-based approach

proposed in [86] are as follows. An obligation is modeled as a state machine that communicates

with the PEP using events. The PEP manages the life-cycle of obligations. An obligation includes

rulesets to specify its responses to input events. These responses include changing its state in re-

sponse to events, which informs the PEP about what course of actions it should take regarding the

request, and generating events, which inform the environment about what actions must be taken to

fulfill the obligation. Some of these actions are deployment specific. These deployment specific

actions are implemented by obligation modules. Multiple obligation modules can be attached to

the PEP, each implementing some actions. These obligation modules communicate with the PEP

and the obligations through an event interface. The details of this approach can be referred to [86].

3.3.2 History Management

The HIPAA privacy regulation sometimes allows a certain disclosure or usage of a patient’s PHI

when certain condition/event in the past (temporal condition) is true. To facilitate this, we propose

a history manager that keeps track of important past events that might influence the permissibility

of a certain disclosure or usage. A history manager is a relational database that saves important

events and can be queried efficiently. In the example above, whenever we receive a court order

requesting the PHI of a certain patient, we would save this event on the history manager. Now,

in response to the court order, if the covered entity attempts to send the required information to

the court, we check whether the covered entity actually received a court order. We achieve this by

checking history table for an entry which is a court order that the covered entity received. Note

that, design of such history manager has been proposed in the literature [55, 73] but we design it

specifically for XACML and discuss its interactions with the PDP to make an access decision.

Recall that, the history condition of a policy rule can contain quantifications over the domains

of principal, message, and message attribute. XACML cannot express such quantifications. We

overcome this by expressing the history conditions as stored database procedures which take ar-

guments. In the rule specification, we refer to the appropriate database procedure. We use events

53

to pass the proper arguments of the database procedure. We follow the same approach for quan-

tification in other elements of the conditions (e.g., attribute inference, etc.). Now, to support event

history in the condition of the privacy rules, we have to extend the <Policy> element of XACML

which we discuss just below.

3.3.3 Interactions with Users

The HIPAA regulation sometimes permits a disclosure or usage of a patient’s PHI based on the

purpose or based on the subject’s belief. However, deciding whether certain disclosure or usage is

requested for certain purposes, is difficult. It is impossible to decide from the static context of the

request arguments. We follow the approach of Lam et al. [79] and require that the user provides

the purpose as an argument of the request. We present a list of possible purposes to the user and

she chooses the appropriate one. Automatically determining whether a certain action is for some

certain purpose [121] is out of the scope.

It is also not trivial how to model subjective belief of a principal in a computer information

system. Thus, whenever we try to evaluate a policy rule that allows a usage or disclosure based on

a subject’s belief, we require additional information from the principal requesting the action. The

additional information in this case is the information about the subjective belief.

Extension of the <Policy> element. In order to support interactions with users during policy

evaluations, the <Policy> element in XACML needs to be extended. As aforementioned, some

attribute values like subjective beliefs might be missing when checking whether a condition is sat-

isfied, and thus user inputs might be required. In this case, the policy evaluation has to be stopped,

and events should be sent out to inform users to provide the missing information. And then user

inputs, if provided, will be sent back also by events. One possible extension is that attributes that

will be required during the policy evaluation are specified in an optional <RequiredAttributeList>

element. Hence we extend the <Policy> element in XACML, as shown below.

The Source of a <RequiredAttributeSelector> element can be User, Database, or Oracle,

which indicates where the required attribute comes from. If the attribute is from the database,

54

<Policy> := [RequiredAttributeList]<Target><Rule>+[Obligations]

Attributes: PolicyId, RuleCombiningAlgId

<RequiredAttributeList> := <RequiredAttributeSelector>+

<RequiredAttributeSelector> := [Keys]

Attributes: AttributeId, DataType, Source, DatabaseId
(optional), TableId (optional)

<Source> := ‘‘User”|‘‘Database”|‘‘Oracle”

<Keys> := <Key>+

<Key> := <KeyValue>

Attributes: KeyId

theDatabaseId, the TableId, and the Keys of the table should be specified for the query.

According to the <RequiredAttributeList> element, the system will send events to the user

(i.e., requester) informing what missing attribute values are required, query the database to retrieve

the attribute values, or query the oracle for additional information (e.g., whether a disclosure is

allowed by other laws). (Note that, for the condition of rules containing history restrictions, we

have to query the history database.) Once responses are obtained from the user or the database,

events carrying information about the required attributes will be sent back to the policy enforce-

ment mechanism. Therefore, there should exist a way to get the attribute values from the incoming

events when checking <Condition> in policy rules. One possibility would be to encode the at-

tribute values as arguments to the event. Once an event is received, it can then be parsed to obtain

the attribute values. Hence an <EventSelector> element is added into the <Expression> element

substitution group so that the return values of the query can be obtained from the event.

55

<Condition> := <Expression>

The <Expression> element substitution group includes:

<AttributeSelector>, <AttributeValue>,
<VariableReference>, <ActionAttributeDesignator>,
<ResourceAttributeDesignator>, <Function>,
<SubjectAttributeDesignator>, <Apply>,
<EnvironmentAttributeDesignator>, <EventSelector>

<EventSelector> :=
Attributes: EventType, EventField, DataType

3.3.4 Attribute Inference Policies

Attribute inference policies specify whether a certain individual has a specific attribute based on

conditions on his current attributes. Thus, an attribute inference policy can be viewed as an Oracle

which responds with True or False to queries like “Does user p1 has attribute a1 based on p1’s

current attributes?". Note that, in the context of distributed authorization Li et al. [87] proposed

the RT language which achieves something similar to what we propose. However, we propose

attribute inference policies in context of HIPAA and XACML.

To facilitate attribute inference policies, <Condition> needs to be further extended in a way

that <AttributeInferencePolicyReference> is added into the substitution group of <Expression> to

support references to attribute inference policies.

The same schema for HIPAA privacy policies provided by the extended XACML can be reused

to specify this type of attribute inference policies. The only small difference is that the evaluation

results of these policies are True or False, instead of Permit or Deny.

3.3.5 Additional Policies

An organization that is interested in enforcing HIPAA will have some additional policies (i.e.,

organizational access control policies and patient policies). We present these here and show how

they fit the big picture of enforcing HIPAA. In section 3.3.6, we present how these policies are

56

<Condition> := <Expression>

The <Expression> element substitution group includes:

<AttributeSelector>, <AttributeValue>,
<VariableReference>, <ActionAttributeDesignator>,
<ResourceAttributeDesignator>, <Function>,
<SubjectAttributeDesignator>, <Apply>,
<EnvironmentAttributeDesignator>, <EventSelector>,
<AttributeInferencePolicyReference>

<AttributeInferencePolicyReference> := <Input>+

Attributes: AttributeInferencePolicyId

combined with the HIPAA policies.

Organizational Access Control Policies. The HIPAA privacy regulation mandates what infor-

mation about a patient that the covered entity can disclose or use and under what circumstances.

However, the covered entity (e.g., hospital, clinic, doctor’s office) might have some additional ac-

cess control requirements that further restricts which employees of the covered entity can access

the PHI of a certain patient. For instance, a covered entity might only allow the assigned doctors

and the assigned nurses to access the PHI of a certain patient. Thus, even in the case where HIPAA

allows doctors/nurses to use or disclose the PHI of a patient for allowed purposes, a doctor or nurse

might be still denied access if they are not the patient’s assigned doctor/nurse.

Patient Policies. Patient policies are those policies specified by the patients themselves. According

to §164.522 of HIPAA, a covered entity can agree or disagree to comply with the patient policy.

If the covered entity agrees to do so, the covered entity must comply with the patient policy along

with the HIPAA policies.

3.3.6 Policy Combination

HIPAA policy combination. The HIPAA policies can be organized in the following way. In the

top level, permit-overrides PCA is used to combine two types of policies: (1) required policies that

57

specify disclosures that are required and must be permitted, such as §164.502(a)(2)(i); and (2) per-

mitted policies that specify uses or disclosures that might be permitted, such as §164.502(a)(1)(i).

All required policies are combined using permit-overrides PCA, while the permitted policies are

combined using deny-overrides PCA. The permitted policies are further divided into allowed poli-

cies, which are combined with permit-overrides PCA, and prohibitive policies, which are com-

bined using deny-overrides PCA. Permit-overrides PCA and deny-overrides PCA are used in most

cases, and sometimes their ordered versions are utilized. Thus the existing PCAs in XACML are

sufficient to combine results of policy evaluations.

Combining additional policies. A disclosure or usage request of a covered entity is permitted,

when it is allowed by all the policies: the organizational access control policy, the patient policy (if

there is one), and the HIPAA policy. These policies are combined using the ordered-deny-overrides

PCA. Recall that, ordered-deny-overrides PCA is the same as deny-overrides PCA, except that

policies have to be evaluated exactly in the order they appear. Policies can be arranged in the fol-

lowing order: the access control policy, the patient policy, and the HIPAA policy. For performance

sake, once a policy denies a request we do not evaluate the policies ordered after it and simply

deny the request.

3.3.7 Architecture Design for Checking Compliance With XACML

Based on XACML’s architecture and the architecture presented in [86], we propose an architecture

which supports the enforcement of policies specified in our extended XACML language. Figure 3.1

shows our proposed architecture.

The overall system is divided into two parts: a HIPAA Compliance Checking Component

(HCCC), and an External Environment (EE). The EE is where applications are executed (e.g., a

web-based HIPAA information system), and the HCCC helps the EE decide whether a usage or

disclosure of PHI is permitted.

The main components in HCCC include a PEP, a PDP, a PIP, databases storing policies, at-

tributes, histories, and logs, respectively, an Oracle, and a Timer. The PEP receives requests,

58

HIPAA Compliance Checking Component External Environment

PDP
Response

Timer

Request

Events

Set

PEP

User

Interface

Decision

Request

Obligation

Module

…
..
.
Obligation

Module

Events

Events

Interfaces

O

U

T

S

I

D

E

Attributes

Events Events

PIP

Events

Events

Events

Events

Policies

Histories

Events

Events

Logs

Events Events

Events

Events

Events

Events
ORACLE

Figure 3.1: Proposed architecture

consults the PDP for a decision, handles any associated obligations, and makes the final decision

about the request. The PDP evaluates the attribute-based policy provided by the policy database,

and returns, to the PEP, a PDP decision, together with obligations, if any. The PIP serves as an

attribute query point for subjects, resource and environmental attributes, and an information query

point which obtains inputs from users, histories from the database and additional information from

the Oracle. The Attribute database acts as a storage of subject and object attributes needed in

policy evaluations. The History database stores history records such as authorizations or court

59

orders for covered entities. The Policy database stores HIPAA privacy policies, access control

policies, and patient policies. The Log database can be used to keep logs, which leaves a room

for auditing in the future work. The Oracle interacts with the PIP in a way that the PIP queries the

Oracle and gets back a “Yes/No" (boolean) response. This is necessary for capturing whether a use

or disclosure is allowed by other laws. The Timer informs the PEP that either a specific time point

(e.g., 11:59P.M. on January 27th, 2012; it is pre-set by the PEP) arrives or a time duration (e.g., 5

minutes; it is pre-set by the PEP) is up.

The EE interacts with the HCCC through an interface, which include a user interface and

zero or more Obligation Modules. The User interface is the component through which users can

submit their requests and learn whether the requests are allowed or denied according to HIPAA

privacy policies and other policies. In addition, it will interact with the PIP via events if user

inputs are required during policy evaluations. The Obligation modules implement obligation-

handling functionalities (such as notifying users, and writing to logs). More details can be referred

to [86]. For XACML to support attribute inference policies, extensions are necessary for the policy

engine so that the policy engine supports the following feature: while evaluating the original access

request, the policy generates another request (representing a question about some attribute) and

selects and evaluates other relevant policies for this new request (for attribute inference), and then

the attribute inference result will be integrated with other policy to make a decision about the

original request.

3.4 FOPSL

We now introduce our privacy policy specification language FOPSL. FOPSL is a restricted frag-

ment of first-order linear temporal logic (FOTL). It is inspired by the following specification lan-

guages: Contextual Integrity (CI) by Barth et al. [11] and PrivacyLFP by DeYoung et al. [35]. We

demonstrate the adequacy of FOPSL by expressing all disclosure-related clauses of the HIPAA

Privacy Rule [62] in it (see Appendix A). Note that we cannot express obligation deadlines in

FOPSL. Although enhancing FOPSL to express obligation deadlines [7, 72] is plausible, we do

60

℘::=(∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.

send(p1, p2,m)∧ contains(m,q, t)∧ for-purpose(m,u)−→ ((
∨

i

φ+i)
∧

(
∧

j

φ−j)))

Figure 3.2: Forms of our privacy policy (℘) specified in FOPSL

not take obligation deadlines into account in our policy analysis. This is further discussed in Chap-

ter 8.

3.4.1 Top-level Policy

The form of our privacy policies is shown in Figure 3.2. We use ℘ to denote policies which has

the form shown in Figure 3.2. FOPSL uses the sorts P,T,M,R, and U (denoting agents, attributes,

messages, roles, and purposes) with associated carriers P , T , M , R , and U , respectively. We use

the convention that the variables p1, p2, and q are of sort P, t is of sort T , m is of sort M, and u is

of sort U .

The privacy policies we consider (e.g., HIPAA) mandate transmission of messages between

different parties. A communication action is denoted by send(p1, p2,m), in which p1 is the sender,

p2 is the receiver, and m is the message being sent. Each message contains a set of agent, attribute

pairs, content(m) ⊆ P × T . The predicate contains(m,q, t) holds if message m contains attribute

t of subject q. A knowledge state κ is a subset of P ×P × T . If (p,q, t) ∈ κ, this means p knows

the value of attribute t of agent q. For example, Alice knows Bob’s height. A transition between

knowledge states occurs when a message is transmitted, as the attributes contained in the message

become known to the recipient. We use inrole(p, r̂) to specify that the principal p is in role r̂,

in which r̂ is a constant of sort R. For instance, inrole(p,psychiatrist) holds when the principal

p is in the role psychiatrist. We also allow role hierarchies and consider them as input to the

system. For instance, the role psychiatrist is a specialization of the role doctor. The predicate

for-purpose(m,u) holds true when the message m is sent for the purpose u (e.g., payment). We use

the predicate in(t, t̂) to specify that the attribute t can be calculated from the attribute t̂, in which t̂

61

is a constant (e.g., procedure) of sort T . For instance, the zip code can be calculated from a postal

address. Finally, the predicate purpose(u, û) holds when the purpose u has the value û, in which û

is a constant (e.g., payment) of sort U .

Our policies consist of two kinds of norms of transmission, positive norms and negative norms.

Positive norms can be thought of allowing policy rules whereas negative norms can be thought

of denying policy rules. A positive norm (φ+i) allows a message transmission if the condition

associated with it holds. On the contrary, a negative norm (φ−j) allows a message transmission only

if the condition associated with it is satisfied. An action is thus allowed by the policy if it satisfies

at least one of the positive norms and all the negative norms. Finally, the policy of Figure 3.2

has the following intuitive meaning. For all senders p1, for all receivers p2, for all subjects of the

information q, for all messages m, for all message attributes t, for all purposes u, p1 can send a

message to p2 about q’s attribute t for purpose u if it satisfies at least one of the positive norms and

all the negative norms.

3.4.2 Syntax of Norms in FOPSL

The form of the policy norms are shown in Figure 3.3. The formula meta-variables in the norms

(i.e., ψ, β, and χ) correspond to syntactic categories introduced below in Figure 3.4. Exception

formulas ψexception have the same form as ψ. In the norms (see Figure 3.3), the non-temporal

formulas Csender, Creceiver, and Csubject impose constraints on the role of the sender, receiver, and

subject, respectively. Formulas Csender, Creceiver, and Csubject are boolean combinations of atomic

formulas of the form inrole(p, r̂) with p being the variable used in the send/contains predicates for

the sender/receiver/subject, respectively. In the same vein, the non-temporal formulas Cattribute and

Cpurpose intuitively impose restrictions on the message attributes and the purposes of the message

transmission. Formulas Cattribute and Cpurpose are boolean combinations of atomic formulas of the

form in(t, t̂) and purpose(u, û), respectively, in which t and u are both constrained. The formula

C = Csender ∧Creceiver ∧Csubject ∧Cattribute ∧Cpurpose can be viewed as specifying the target send

event to which this norm applies to.

62

Positive Norm, φ+i : (C∧ψ∧β)∨ψexception

Negative Norm, φ−j : C∧ψ→ (χ∨ψexception)

where C= Csender∧Creceiver∧Csubject∧Cattribute∧Cpurpose

Figure 3.3: Norms of transmission in FOPSL

(Atomic Formulas) γ ::= R(~x) | true
(Non-temporal Formulas) µ ::= γ | µ∧µ | µ∨µ | ∃~x :τ.µ |

∀~x :τ.(µ1(~x)→ µ2(~x))
(Pure Past Formulas) ψ ::= µ | ψ∧ψ | ¬ψ | ψS ψ | ∃~x :τ.ψ

| ∀~x :τ.(µ1(~x)→ µ2(~x))
(Obligation Formulas) β ::= µ | β∧β

(Mixed Formulas) χ ::= β | ψ | ψ∧β | ψ→ β

Figure 3.4: Meta-variables and syntactic categories of the FOPSL

We have already discussed some pre-defined predicates of FOPSL (e.g., inrole). We allow addi-

tional predicates denoted by R(~x) (see Figure 3.4) in which~x denotes its arguments. Each element

of~x is a constant or a variable. We envision these predicates to be regulation-specific.

3.4.3 Restrictions

We now discuss the different constraints we impose on FOPSL and their implications. Note, in

particular, the limited way in which future temporal operators are used. Aside from the at the

outer-most level, the only future sub-formulas are of the form given by β and can be applied only

to positive, non-temporal formulas. This is the key to our ability to syntactically extract the past and

future requirements from the policy formula. It also enables us to define weak compliance (WC)

gracefully in Chapter 4. More precisely, we do not allow formulas expressing general liveness

properties (q). Instead we allow formulas expressing response properties [89]. Response

properties have the general form (p→q), in which p is a pure-past formula and q is a non-

temporal formula. The formula (p → q) intuitively requires every p to be followed by a

q. Among the past temporal operators, we do not allow the operator. As we shall show in

Chapter 5, a policy containing the operator can fail to satisfy the ∆-property. We also do not

allow function symbols in our specification language.

63

3.4.4 Differences between CI and FOPSL

We now discuss the differences between our specification language and that of Barth et al. [11]

(CI). Recall that, we allow future operators only in specific places. However, this is not the case for

CI. It allows arbitrary nesting of future and past temporal operators. In such a case, separating past

and future requirements from a FOTL formula is not trivial [52]. Although Gabbay [52] provides

a syntactic way of achieving it for pLTL, it is not trivial to extend the approach for FOTL due to

predicates sharing variables among each other.

Additionally, in CI, one cannot express the purpose of the transmission and other conditions

in HIPAA as they only have a fixed set of pre-defined predicates. CI also has a sort and predicate

to refer to the context of the policy (e.g., financial, health-care). In our case, we have only one

context: health-care. As a result, we do not refer to context in our policy.

3.4.5 Example norms from HIPAA Expressed in FOPSL

A positive norm (shown below) can be found in §164.502(d)(1) of HIPAA. It states that a covered

entity can send an individual’s protected health information (PHI) to its business associate for

creating de-identified (or, anonymized) information.

inrole(p1,covered-entity)∧ inrole(p2,business-associate)∧

inrole(q, individual)∧ in(t,PHI)∧

purpose(u,creating-deidentified-in)∧businessAssociateOf(p2, p1)

A negative norm (shown below) can be found in §164.508(a)(2) of HIPAA. It specifies that a

covered entity can disclose an individual’s psych-notes only if the covered entity received a valid

authorization from the individual regarding this disclosure.

64

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,psych-notes)−→

∃m2 : M.(send(q, p1,m2)) ∧ satisfiesAllValidAuthReqs(m2, p1, p2,q, t,u)

∧¬violatesValidAuthReqs(m2, p1, p2,q, t,u))

We use FOPSL as our choice of privacy policy specification language in the rest of the work in

regards to giving static assurance about permissibility of obligations in privacy policies.

65

Chapter 4: PRIVACY POLICY COMPLIANCE

We now formally specify what it means for an action to be compliant with a privacy policy.

Privacy policies ℘ can impose present requirements (which includes past requirements) and also

obligatory (future) requirements. An example of a present requirement can be found in clause

§164.502(e)(1)(i) of HIPAA. It states that a covered entity can disclose an individual’s PHI to

a business associate if the covered entity receives satisfactory assurance that the business asso-

ciate will safeguard the PHI. Obtaining the satisfactory assurance from the business associate is a

present requirement of that clause. An obligatory requirement can be found in §160.310 of HIPAA,

which requires the covered entity to provide PHI of an individual to the Secretary of Health and

Human Services for compliance investigation, if she has requested for the information. The cov-

ered entity’s action of providing access to the individual’s PHI to the Secretary of Health and

Human Services for compliance investigation is an obligatory requirement imposed by the clause

§160.310 of the HIPAA privacy rule.

To this end, for checking compliance with policies ℘ it is helpful to separate the concerns of

checking compliance with present and obligatory requirements. The syntactic restrictions in our

policy language allow us to extract a formula that expresses the present requirements imposed by

the policy. We can determine whether a contemplated action is in compliance with the present

requirements of a policy by looking only at the current history. We call a contemplated action

weakly compliant with respect to a policy when it is consistent with the present requirements of that

policy. However, the present requirements do not give any assurance about whether the obligatory

requirements can be met and can restrict an entity from performing its pending obligations. To this

end, we use strong compliance [11], which formalizes the notion that a contemplated action will

neither prevent pending obligatory requirements to be met nor incur any unsatisfiable obligatory

requirements. An action is compliant with a privacy policy if it is both weakly compliant and

strongly compliant. We will show that for our privacy policy language FOPSL, checking whether

Some of the contents of this chapter is based on the joint work with Andreas Gampe, Jianwei Niu, Jeffery von
Ronne, Jared Bennatt, Anupam Datta, Limin Jia, and William H. Winsborough [27].

66

σ
0

σ
1

σ
2

σ
3 a

Finite History (σf) Current action

Satisfies the present condition of ℘

Figure 4.1: Weak Compliance

an action is weakly compliant with a policy is feasible whereas checking whether that action is

strong compliant with the policy is undecidable.

4.1 Weak Compliance (WC)

For formally specifying what it means for an action to be weakly compliant with ℘, we use the

formula weak(℘).

The formula weak(℘). weak(℘) denotes the formula derived from ℘ by replacing the future

sub-formulas (sub-formulas of the form µ) with logical true and removing the outermost .

Due to the syntactic manipulation, the formula obtained only contains past temporal operators and

expresses the present requirements of ℘.

Definition 14 (Weak Compliance (WC)). Given a policy ℘, a finite trace σ, and a contemplated

action a, a is weakly compliant with respect to σ and ℘ if for all environments η, the following

holds σ · s, |σ|,η |=weak(℘) where state s |= a.

Although we have formally defined |= only in terms of infinite traces (see Chapter 2), the

usage of |= for finite σ here is well defined because weak(℘) is a pure-past formula: σ · s, |σ|,η |=

weak(℘) depends only on the states in σ and the state s.

67

Consider the HIPAA privacy rule in §164.508(a)(2) which states that a covered entity can dis-

close an individual’s psychotherapy notes if he has received the authorization from the individual.

Now, if the covered entity discloses an individual’s psych-notes without the authorization from

the individual, then the action will not be weakly compliant with respect to the policy rule in

§164.508(a)(2) as it violates the present requirement of obtaining an authorization.

Complexity of WC. For checking WC with respect to a policy ℘, we have to check whether

a finite trace (including the current contemplated action) satisfies the formula weak(℘) in every

point in that trace. Note that weak(℘) is a pure-past FOTL formula with quantifiers and carriers

of which can be potentially infinite. To achieve termination, Garg et al. [55, 56] present mode

restriction [9, 34, 96], which ensures that quantifiers can be expressed as finite conjunctions or

disjunctions. This enables an algorithm with the complexity PSPACE of the policy size that can

check whether a finite trace satisfies a first-order logic policy. Garg et al. [55] also show that

mode restriction is still practical as the HIPAA privacy rule satisfies it. Note that their language

is a proper superset of our language fragment used to express weak(℘). We can thus translate

weak(℘) into their language, and if it passes mode checking, use their algorithm to check WC for

℘. Basin et al. [13] also present an algorithm for checking WC for a language similar to ours.

Moreover, we also present an algorithm in Section 4.3 that check weak compliance of a privacy

policy in PSPACE of the policy size.

Theorem 15 (Complexity of Checking WC). Given a policy ℘, a finite execution history σ f , and

a contemplate action a, whether a is weakly compliant with respect to ℘and σ f can be checked in

PSPACE in the size of ℘ if the formula weak(℘) satisfies the mode restriction.

Proof. Please see the algorithm in Section 4.3.

4.2 Strong Compliance (SC)

When we check weak compliance, we ensure that the present requirements of the policy are met.

However, there can be a situation where the obligatory requirements are not consistent with the

68

σ
0

σ
1

σ
2

σ
3 a σ

5

Satisfies ℘

Finite History (σf) Current action Infinite extension (σi)

Figure 4.2: Strong Compliance

present requirements of the policy [33]. More precisely, it could be the case that an action that

respects the present requirements of the policy incurs an obligation. Performing that obligation

might not be allowed by the policy due to not being consistent with the present requirements.

Strong compliance (SC) [11] ensures that this is not the case.

More precisely, a contemplated action is strongly compliant with a policy ℘ if the current

history (including the current action) can be extended to an infinite trace such that the concatenation

of the finite trace and the infinite extension satisfies ℘. Intuitively, a strongly compliant action

neither incurs an obligation that cannot be met nor prevents any pending obligations to be met. We

can formally define strong compliance in the following way.

Definition 16 (Strong Compliance (SC)). Given a finite history σ′f and a contemplated action a

where state s |= a and σ f = σ′f · s, the action a is strongly compliant with the privacy policy ℘ if

there is an infinite extension σi of the current history σ f such that σ f ·σi |=℘.

Complexity of Checking SC. Checking SC requires deciding whether the incurred future re-

quirements (non-monadic FOTL formula) of an action are satisfiable. A monadic FOTL formula is

a formula in which every formula that starts with a S or U temporal operator has at most one free

variable [64]. Policies written in FOPSL do not satisfy this restriction and thus is not a fragment of

monadic FOTL. Given a privacy policy ℘, a finite execution history σ f , and a send event a (with

69

some positions ground), to check whether a is strongly compliant with ℘ with respect to σ f , we

have to check whether (ϕσ f ∧℘) is satisfiable in which ϕσ f is a formula that encodes the current

execution history up to the current contemplated action into a FOTL formula. We first show how

to encode the history into a FOTL formula of our form. Consider the finite execution history to

be of form σ f = s0s1s2 . . .sk in which sk contains the current contemplated action a. Each state si,

where 0≤ i≤ k, of the execution history maps a set of predicates to relations. Let us consider for

state si, each relation that is true in that state is represented by pi
j(~t) where j≤ T R(si) in which the

function T R takes as input a state and returns all the relations that are true in that state. Thus, one

can encode the execution history as a FOTL formula as follows:

ϕσ f =
∧

j≤T R(sk)

pk
j(~t)∧(

∧

j≤T R(s(k−1))

p(k−1)
j (~t)∧(. . .))

We then have to find out whether the FOTL (ϕσ f ∧℘) is satisfiable. However, policies ℘

written in FOPSL is the non-monadic fragment of FOTL, satisfiability of which is shown to be

undecidable in general [64]. If we follow this approach it is undecidable to check given a policy

℘ and finite execution history σ f whether a contemplated action is strongly compliant. To show

that generally to check whether an action is strongly compliant with policies written in FOPSL is

undecidable, we reduce the Turing machine halting problem [47] to checking strong compliance

of a policy written in FOPSL

Theorem 17 (Complexity of Checking SC). Given a policy ℘, a finite history σ, and a contem-

plated action a, to check whether action a is strongly compliant with respect to the policy ℘ is

undecidable.

Proof. We present here our reduction sketch and a similar detailed reduction is presented in Sec-

tion 5 (Theorem 53). We reduce the Turing machine halting problem [47] to checking strong

compliance of an action for policies written in FOPSL.

We use principals/agents in our system to represent Turing machine tape cell. States and sym-

bols of the Turing machine are represented as attributes in our system. We also use barred version

of the states and symbols as attributes of our system. If a symbol x is written in a Turing machine

70

cell, it is represented in our system by the agent, denoting the cell, sending a message with attribute

x. However, whenever we want to delete a symbol x from a cell, it is represented in our system as

the agent, denoting the cell, sending a message with an attribute x̄. Now, one can check whether a

symbol x appears in a cell y by checking whether the agent representing the cell y send a message

with attribute x before and since then the agent representing cell y did not send a message with

attribute x̄. The same goes for states of the Turing machine.

Once we have modeled the execution of a Turing machine in our system, we add two additional

negative norms : (1) The first negative norm incurs an obligation when the Turing machine is in

the initial state (the setting up the initial state is complete, details in the proof of Theorem 53). (2)

The second negative norm allows the obligation incurred according to the previous negative norm

only if the Turing machine has reached the designated halting state. Thus, if we can check whether

the initial action is strongly compliant (there exists an execution in which the incurred obligation

is fulfilled), then we can figure out whether the Turing machine will reach the designated halting

state.

4.3 Mode Driven Mechanism for Checking Weak Compliance

Recall that Cignet Health Center was fined a staggering $4.3 million for violating the HIPAA

privacy rule [112]. It is thus incumbent upon the organization, that collects, stores, and discloses

personal information, collected from individuals, for providing the individuals with some services,

to have the means to efficiently check compliance with applicable privacy regulations. Note that

we have two notions of compliance: weak and strong. We have already shown that checking strong

compliance with respect to policies written in FOPSL is undecidable in general. In this section,

we will present an algorithm for checking weak compliance with respect to a policy ℘and a given

finite execution history. In the next section, we will discuss how to overcome the undecidability

result of checking strong compliance by presenting techniques to check a property of the policy,

∆-property. We will show that checking weak compliance is sufficient in the case the policy in

question possesses the desired ∆-property.

71

Note that our policy language, FOPSL, is non-monadic fragment [64] of the first order tempo-

ral logic (FOTL). There are techniques [60, 61, 85, 115] in the literature which can decide whether

an action is weakly compliant with respect to a given finite execution history and the privacy pol-

icy where the privacy policy is specified in propositional LTL (pLTL). These techniques are not

applicable to policies written in FOPSL or in general FOTL due to presence of quantifiers, vari-

ables, and predicates in the language. However, there is one naive way to get around this. One can

just instantiate each variable with all the elements of the appropriate domain after which one can

rewrite universal quantifiers as finite conjunctions and existential quantifiers as finite disjunctions.

Finally, all the ground predicates can be replaced by propositional variables. The result is a pLTL

policy for which we can use the techniques available in the literature [60,61,85,115] for checking

weak compliance. Note that domains of our policies can be infinite and consequently the naive

approach will not terminate.

To achieve termination, researchers [13,15,16,55,73] have suggested different restrictions with

which it is sufficient to instantiate the variables with selective elements of the appropriate domains

rather than blindly instantiating the variables with all possible values in the domain. One such

restriction proposed by the researchers [16,73] is to only allow “event predicates” in the policy. As

the number of events that can happen at each point of time is finite, it is sufficient to consider only

finite number of substitutions1 for each of the predicates. Basin et al. [13,15] proposed a restriction

called “safe-range check”. One can check in static time whether a policy satisfies this safe-range

check. Once a policy passes this safe-range check, it ensures that the number of substitutions that

makes each predicate true is finite. Then they propose to build summary structures for all temporal

formulas which summarize the execution history and saves all substitutions for which the formulas

become true. Their approach has several advantages: (1) the whole execution history does not need

to be saved, (2) their approach can be used as a runtime-monitor. Note that their policy language

is however Metric first order temporal logic (MFOTL) which extends LTL by introducing time

intervals associated with each temporal operator. For instance consider the following formula:

1A substitution can be viewed as a list of variable, value pairs.

72

[c,d]p, where c,d ∈ N, which is a metric temporal logic (MTL) formula. The above formula is

true in the current state with time stamp τi when the propositional variable p held true in some

prior state with time stamp τ j and additionally τi− τ j ∈ [c,d].

Garg et al. [55] proposed a technique which they borrow from logic programming called “mode

checking” [9,34,96]. Given a n-ary relation symbol p, the mode of p is function mp that maps each

argument position of p to either ’+’ or ’-’ where ’+’ represents input position and ’-’ represents

output position. The implication of the mode of a predicate is that when all the arguments in

the input position are ground (concrete values), then the number of concrete values for the output

argument positions of the predicate that satisfy the relation will be finite. For instance, let us

consider a predicate mul(x,y,z), where x,y,z ∈ N, which holds for given x, y, and z if x× y = z. If

we are asked the number of satisfiable substitutions for variables x, y, and z such that mul(x,y,z)

holds, then the answer would be infinite. However, if we are given concrete values (e.g., 1, 2)

for variables x and z then the number of satisfiable substitutions for variable y will be finite. To

this end, one possible moding of this predicate mul is mul(x+,y−,z+). It suggests that provided

that we have concrete values for x and z, the number of concrete values for y which will make the

condition x× y = z true is finite. Their algorithm uses this technique to instantiate the variables

with selective values of the domain and achieve termination. Note that mode checking generalizes

safe range checking in the view that safe range only checks to see whether all the predicates in

the policy satisfies the following: all the arguments of the predicate is in the output mode. In this

sense, the algorithm proposed by Garg et al. can support more expressive policies than what was

known before. Note that their policy language is first order logic (FOL) and they can additionally

handle incompleteness in the finite history. However, they require that the whole execution history

(or, a log) to be around while they check for compliance.

To this end, our goal is to develop an algorithm which is a hybrid of the algorithm proposed

by Basin et al. [13] and by Garg et al. [55]. More precisely, we want to build summary-structures

for temporal sub-formulas which would summarize the execution history by keeping track of sat-

isfiable substitutions for the temporal sub-formulas. As a result, we would not require the whole

73

ϕ ::= p(t1, . . . , tn) | ⊤ | ⊥ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ1 S ϕ2 | ϕ1 Ŝ ϕ2 | ∀~x.(ϕ1(~x)→ ϕ2(~x)) | ∃~x.ϕ(~x)

Figure 4.3: Policy language for checking weak compliance (F̂OPSL)

execution history to be around when not needed. Additionally, we want to support policies as

expressive as the policies supported by the algorithm presented by Garg et al. [55]. In this sense,

our algorithm has the advantages of both algorithms [13, 55]. Moreover, we use a restricted frag-

ment of FOTL instead of FOL. However, we assume the execution history to be past-complete

and cannot handle incompleteness in the execution history as supported by Garg et al. [55] and

Basin et al. [15]. Techniques to extend our algorithm with the support of incompleteness is an

open problem.

We now briefly enumerate our technical contributions. We first extend the mode checking

approach proposed by Garg et al. [55] for a restricted fragment of FOTL. Note that the extension

is not trivial due to the fact that our mode checking takes into consideration temporal availability

of substitutions which Garg et al. did not consider. We also show that summary structures can be

build for a richer fragment of FOTL than previously considered [13, 16, 73]. We also prove that

when the policy satisfies the mode checking, while evaluating that policy, our algorithm is sound,

complete, and it terminates. We also propose a labeling algorithm which labels sub-formulas, for

which a summary structure can be build to keep track of all possible satisfiable substitutions. We

prove that when the formula representing the policy is labeled as B, our algorithm do not need to

access any other states of the execution history except the current state and the summary structures.

Given a finite history L and a policy ℘, the runtime complexity of our algorithm is O (|L |(|℘|)) and

the space requirement is polynomial to the ℘size.

4.3.1 Policy Language

In this section, we introduce the readers with our policy specification language, which we call

F̂OPSL. It is a fragment of first order temporal logic with restricted quantifiers and additionally

74

a more expressive fragment than the past fragment of FOPSL, hence the name F̂OPSL. Note

that, unlike FOPSL, F̂OPSL does not allow any future temporal operators due to the fact that

we just want weak(℘) (which is pure past FOTL formula) to be expressive in F̂OPSL. As we

have mentioned, the restrictions in FOPSL is necessary for the decidability of our policy analysis

discussed in the next section. We will use ϕ, α, and β (possibly with subscripts) to represent

policies written in F̂OPSL to differentiate policies written in FOPSL, for which we used ℘.

In our policy language, we use p(t1, . . . , tn) to represent relation between terms t1, . . . , tn where

terms are constants, variables, or terms applied to uninterpreted function symbols. We use ⊤ and

⊥ to represent logical true and false, respectively. Note that we do not allow negation in our

policy language directly. For instance consider a formula ¬p(x) where x ranges over the set of

natural numbers. If we have the moding restriction that p(x−), it signifies that at each state the

numbers of substitutions for x which makes p(x) is finite. However, due to negation, the number

of satisfiable substitution for x which makes ¬p(x) true is infinite. To mitigate this complication,

we follow Garg et al. [55] to assume every predicate p(t1, . . . , tn) has a dual which we represent by

p(t1, . . . , tn). Thus, when for some given t1, . . . , tn, p(t1, . . . , tn) is true then p̄(t1, . . . , tn) is false, and

vice versa. In the same vein, we can lift the duals to formulas. Thus, for a given formula ϕ, the

dual is represented as ϕ̄. The dual works in the same fashion as ¬ϕ. Thus, we have the following

equivalences:

75

p(t1, . . . , tn)≡ p(t1, . . . , tn)

⊤≡⊥

⊥≡⊤

ϕ1∧ϕ2 ≡ ϕ1∨ϕ2

ϕ1∨ϕ2 ≡ ϕ1∧ϕ2

∀~x.(ϕ1(~x)→ ϕ2(~x))≡ ∃~x.(ϕ1(~x)∧ϕ2(~x))

∃~x.ϕ(~x)≡ ∀~x(⊤→ ϕ(~x))

ϕ1 S ϕ2 ≡ ϕ1 Ŝ ϕ2

ϕ1 Ŝ ϕ2 ≡ ϕ1 S ϕ2

ϕ≡ ϕ

We can also derive other logical connectives and temporal operators from the ones we have

provided using the following equivalences.

ϕ≡⊤S ϕ

ϕ≡⊥ Ŝ ϕ

ϕ1→ ϕ2 ≡ ϕ1∨ϕ2

ϕ1↔ ϕ2 ≡ (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1)

Note that even though our language includes Ŝ (dual of the S operator), for brevity, we do not

show the cases corresponding to this operator in our algorithm and mode checking. The operator

Ŝ can be handled in the similar way S is handled in our algorithm and mode checking.

76

Semantics. Given an execution history L , a position in the history i ∈ N, an environment η, and

a formula ϕ, we use L , i,η |= ϕ to represent that ϕ is satisfied in the ith position of the execution

history L with respect to the environment η. This is defined inductively as below. The environment

η maps free variables to values in the appropriate carrier. We use L i to denote the ith position of

the history.

• L , i,η |=⊤

• L , i,η 6|=⊥

• L , i,η |= p(t1, . . . , tn) if and only if p(t1, . . . , tn)η ∈ L i.

• L , i,η |= ϕ1∧ϕ2 if and only if L , i,η |= ϕ1 and L , i,η |= ϕ2.

• L , i,η |= ϕ1∨ϕ2 if and only if L , i,η |= ϕ1 or L , i,η |= ϕ2.

• L , i,η |= ∃~x.ϕ(~x) if and only if there exists~t such that L , i,η[~x 7→~t] |= ϕ(~x).

• L , i,η |= ∀~x.(ϕ1(~x)→ ϕ2(~x)) if and only if for all ~t if L , i,η[~x 7→~t] |= ϕ1(~x) holds then

L , i,η[~x 7→~t] |= ϕ2(~x) holds.

• L , i,η |= ϕ1 S ϕ2 if and only if there exists k≤ i, where k ∈N, such that L ,k,η |= ϕ2 and for

all j, where j ∈ N and k < j ≤ i, it implies that L , j,η |= ϕ1 holds.

• L , i,η |= ϕ1 Ŝ ϕ2 if and only if for all k ≤ i, where k ∈ N, such that L ,k,η |= ϕ2 or there

exists j, where j ∈ N and k < j ≤ i, and L , j,η |= ϕ1 holds.

A variable x is free in a formula ϕ if it is not bound by any quantifiers in the formula ϕ. For

instance, given a formula ∀x,y.(p(x,y,z)→ q(x,y,z)), the variable z appears free in this formula as

it is not bound by any quantifiers. Given a formula ϕ, we assume the function f v(ϕ) returns the set

of all free variables in ϕ.

77

4.3.2 Substitution

The next notion necessary to understand our weak compliance checking algorithm is the notion of

substitution which is something similar to environments. A substitution can be viewed as a partial

mapping that maps free variables to concrete values in the appropriate domain. The only way

substitutions differ from environments is the way when a substitution is applied to a formula with

free variables. When a substitution is applied to a formula, then the formula is changed in a way

that all the free variables are replaced by their respective concrete value mappings provided by the

substitution. However, in the case of the environments, when applied to a formula, they do not

alter the formula itself. We use σ to denote substitutions. A substitution is defined in the following

way.

Definition 18 (Substitution). We define a substitution (denoted by σ, possibly with subscript or

superscript) to be a (partial) mapping from variables to values, where σ(v) is in the domain of the

variable v. Given a substitution σ, domain(σ) is defined as follows: domain(σ) = {x | σ(x) 6= x}.

If a substitution is finite, we may consider it as a list of pairs of form 〈var,val〉 where var

denotes a variable whereas val denotes the associated value which var is mapped to.

We use Σ (possibly with subscript or superscript) to denote a set of substitutions. We use {•} to

represent the identity substitution and empty to represent an invalid substitution. Note that, given

a substitution σ and a variable x, σ concretely maps x, if and only if σ(x) 6= x.

The next notion we introduce is extension of substitutions. Informally, given two substitutions

σ1 and σ2, σ2 extends σ1 if σ2 agrees with all the variable, value mappings with σ1 for all variables

which σ1 concretely maps. For instance, let σ1 be ([x 7→ Alice], [y 7→ Bob]) and σ2 be ([x 7→

Alice], [y 7→ Bob], [z 7→ Carol]). Then σ2 extends σ1 (denoted by σ2 ≥ σ1) as σ2 agrees with the

variable, value mappings for variables x and y (which σ1 concretely maps) with σ1. Let σ1 be

([x 7→ Alice], [y 7→ John]) and σ2 be ([x 7→ Alice], [y 7→ Bob], [z 7→Carol]). However, in this case,

σ2 6≥ σ1 as σ2 and σ1 does not agree with the variable, value mapping for variable y. We also

assume given any substitution σ, σ≥ σ. Moreover, for a given σ1 and σ2, if σ2 ≥ σ1, we say σ1 to

78

be the abbreviation of σ2. Extension of a substitution is defined formally in the following way.

Definition 19 (Extension of Substitution). Given two substitutions σ and σ′, we say σ′ extends σ,

denoted by σ′ ≥ σ, if the following holds: domain(σ′)⊇ domain(σ) and ∀x ∈ domain(σ).(σ(x) =

σ′(x)). if σ′ ≥ σ, we call σ the abbreviation of σ′.

Recall that, substitutions and environments only differ when they are applied to a formula. In

case a substitution is applied to a formula, it changes the formula by replacing free variables with

the concrete values of the appropriate domain, it maps to. We formally define what it means for a

substitution to be applied to a formula in the following way.

Definition 20 (Substitution Application). The application of a substitution σ to a formula ϕ, de-

noted ϕσ, is recursively defined by

ϕσ =

⊤ ϕ =⊤

⊥ ϕ =⊥

p(σ(t1), . . . ,σ(tn)) ϕ = p(t1, . . . , tn)

(ϕ1σ)∨ (ϕ2σ) ϕ = ϕ1 ∨ϕ2

(ϕ1σ)∧ (ϕ2σ) ϕ = ϕ1 ∧ϕ2

∃~x.ϕ1(~x)[σ\{~x}] ϕ = ∃~x.ϕ1(~x)

∀~x.(ϕ1(~x)[σ\{~x}]→ ϕ2(~x)[σ\{~x}]) ϕ = ∀~x.(ϕ1(~x)→ ϕ2(~x))

(ϕ1σ) S (ϕ2σ) ϕ = ϕ1 S ϕ2

where σ is extended such that σ(e) = e for any e not a variable or in the domain of σ.

Notations. We now introduce the readers with some notations we use. Given a substitution σ, we

use σ ↓ S to denote a new substitution which is same as σ except all the variable, value mappings for

variables not in set S are removed in the new substitution. Let σ′ = σ ↓ S, then the following holds:

domain(σ′)⊆ domain(σ), ∀x ∈ S.(σ(x) = σ′(x)), and ∀x ∈ domain(σ).(x 6∈ S→ (σ′(x) = x)). We

79

now generalize the above operation for a set of substitutions. Consider Σ′ is a set of substitutions

and Σ = Σ′ ↓ S. We define Σ = Σ′ ↓ S in the following way, ∀σ ∈ Σ′.(Σ← Σ∪{σ ↓ S}).

We use σ \ S to denote a new substitution which is same as σ except the variable, value map-

pings for variables in set S are removed. More precisely, consider σ′ = σ \ S, then domain(σ′) ⊆

domain(σ), ∀x∈ domain(σ).(x 6∈ S→ (σ(x) =σ′(x))), and ∀x∈ domain(σ).(x∈ S→ (σ′(x) = x))

holds. We now generalize the above operation for a set of substitutions. Consider Σ′ is a set of

substitutions and Σ = Σ′ \S. We define Σ = Σ′ \S in the following way, ∀σ ∈ Σ′.(Σ← Σ∪{σ\S}).

Given a substitution σ, we use σ[x 7→ t] to denote a new substitution which is same as σ except

the variable x is now mapped to the new value t according to the new substitution. We now

generalize the above operation for a set of substitutions. Consider Σ′ is a set of substitutions and

Σ = Σ′[x 7→ t]. We define Σ = Σ′[x 7→ t] in the following way, ∀σ ∈ Σ′.(Σ← Σ∪{σ[x 7→ t]}).

Given two substitutions σ1 and σ2 such that domain(σ1)∩ domain(σ2) = /0, we use σ1 +σ2

to denote the concatenation of the variable, value mappings of both σ1 and σ2. Consider σ =

σ1 +σ2, then the following holds: ∀x ∈ domain(σ).((x ∈ domain(σ1)→ σ(x) = σ1(x)))∧ (x ∈

domain(σ2)→ σ(x) = σ2(x)))). We also have: σ+{•}= σ and σ+ empty = empty.

Given two substitutions σ1 and σ2, we use σ1 1 σ2 to denote a new substitution which is the

natural join of the two substitutions σ1 and σ2. Let σ = σ1 1 σ2, σ is empty when the following

holds: ∃x ∈ (domain(σ1)∩domain(σ2)).(σ1(x) 6= σ2(x)). When σ 6= /0 then the following holds:

domain(σ) = domain(σ1) ∪ domain(σ2) and ∀x ∈ domain(σ).(((x ∈ domain(σ1) ∧ x 6∈ S) →

σ(x) = σ1(x))∧ ((x ∈ domain(σ2)∧x 6∈ S)→ σ(x) = σ2(x))∧ (x ∈ S→ (σ(x) = σ1(x) = σ2(x))))

where S = domain(σ1)∩ domain(σ2). We consider the 1 operation to be symmetric, that is

σ1 1 σ2 = σ2 1 σ1. We also assume it is possible to calculate the join operation of two fi-

nite substitutions in some finite amount of time. We also have the following: σ 1 {•} = σ and

σ 1 empty = empty.

We now generalize the above operation for two sets of substitutions. Consider Σ1,Σ2 are sets

of substitutions and Σ = Σ1 1 Σ2. We define Σ = Σ1 1 Σ2 in the following way, Σ = {σ | ∃σ1 ∈

Σ1.∃σ2 ∈ Σ2.(σ = σ1 1 σ2∧σ 6= empty)}.

80

We use ⊲⊳0≤k≤ j σk to represent σ0 1 σ1 1 . . .σ j−1 1 σ j. We also generalize this for sets of

substitutions. Thus, ⊲⊳0≤k≤ j Σk = Σ0 1 Σ1 1 . . .Σ j−1 1 Σ j. We sometimes use ⊲⊳ σ• where •

represents a sequence when the sequence is understood from the context.

As the necessary notations have been introduced, we now discuss some obvious properties of

substitutions which we use in proving the soundness and completeness of our algorithm.

Lemma 21 (Basic Substitution Properties). Let σ and σ′ be arbitrary substitutions such that

domain(σ)∩domain(σ′) = /0, and let ϕ be any formula. Then

1. if domain(σ)∩ f v(ϕ) = /0, then ϕσ = ϕ,

2. f v(ϕσ) = f v(ϕ)\domain(σ),

3. ϕ(σ+σ′) = (ϕσ)σ′ = (ϕσ′)σ,

4. if domain(σ)⊇ f v(σ), then f v(ϕσ) = /0,

5. if domain(σ)⊇ f v(σ), then ϕσ = ϕ(σ+σ′)

6. ϕσ = ϕ(σ ↓ f v(ϕ)).

Proof. The first three are by induction on the structure of ϕ. 4 follows from 2. 5 follows from 3, 4

and 1. 6 follows from 3 and 1.

In the above Lemma, (1) specifies that when a given substitution σ does not concretely map

any of the free variables of a formula ϕ then applying σ to ϕ has no effect. (2) formalizes the

notion that, given a substitution σ and a formula ϕ, the set of free variables of the formula ϕσ

(σ applied to ϕ) is the same as removing the set of concretely mapped variables of σ from the

free variables of ϕ. (3) specifies that given two substitutions σ and σ′ such that the sets of the

concretely mapped variables are disjoint, then applying the two substitutions to any formula ϕ is

commutative. (4) specifies that given a substitution σ and a formula ϕ such that σ concrete maps

all the free variables of ϕ, then the resulting formula ϕσ (where σ is applied to ϕ) has no free

variables. (5) specifies that given two substitutions σ, σ′ and a formula ϕ such that σ concretely

81

maps all the free variables of ϕ and the sets of the concretely mapped variables of σ and σ′ are

disjoint, ϕσ = ϕ(σ+σ′). (6) specifies that given any substitution σ and a formula ϕ, if we create

another substitution σ′ in a way that we remove from the set of concretely mapped variables of σ,

all the variables which is not a free variable in ϕ then ϕσ = ϕσ′.

The following Lemma and Corollary, depict the effect of a substitution on the satisfaction of a

formula with respect to a given execution history and a position on the history.

Lemma 22 (Substitution - f v Restriction and Extension). Let σ and σ′ be substitutions and ϕ a

formula such that domain(σ)∩domain(σ′) = /0 and domain(σ′)∩ f v(ϕ) = /0. Then for all L , j, η

it holds that L , j,η |= ϕ(σ ↓ f v(ϕ)) ⇐⇒ L , j,η |= ϕσ ⇐⇒ L , j,η |= ϕ(σ+σ′).

Proof. By Lemma 21, we have ϕ(σ ↓ f v(ϕ)) = ϕσ = ϕ(σ+σ′). Thus the statement is trivially

true.

Corollary 23 (f v Substitution). Let σ be a substitution and ϕ a formula, with domain(σ)⊇ f v(ϕ).

Then for all L , j, η and σ′ ≥ σ it holds that L , j,η |= ϕσ ⇐⇒ L , j,η |= ϕσ′.

Proof. Let σ′′ = σ ↓ f v(ϕ). Then L , j,η |= ϕσ′′ ⇐⇒ L , j,η |= ϕσ and L , j,η |= ϕσ′′ ⇐⇒

L , j,η |= ϕσ′ by previous lemma. Thus, L , j,η |= ϕσ ⇐⇒ L , j,η |= ϕσ′.

4.3.3 Modes to the Rescue

Consider the following policy written in F̂OPSL: ∀x.((∃y.(p(x,y))) → (q(x))) where x and y

ranges over the set of natural numbers N. In this case, if we want to check whether this policy

is satisfied in a naive way, we will check whether for all natural numbers x, the following holds:

(∃y.(p(x,y)))→ (q(x)). Now the set of natural numbers is countably infinite, as a result, this ap-

proach will not terminate. One possibility to get around this is to impose semantic restrictions

on the policy so that while evaluating the policy it is sufficient to instantiate the variables with

selective (finite) individuals of the appropriate domain. The majority of the existing work on com-

pliance checking [13, 15, 16, 73] achieves this by restricting the policy to contain only predicates,

which has a finite number of substitutions at each state. These algorithms [13,15,16,73] use FOTL

82

or some variant of it (e.g., Metric FOTL, one sort FOTL) as their choice of policy language. These

algorithms build summary structures for each temporal formula, where the summary structure for

a temporal formula keeps track of all the substitutions that make the formula in question true. As a

result, while evaluating whether the policy is satisfied if the satisfiable substitutions for a temporal

sub-formula is needed, it can be looked up from the summary structure rather than going back to

the execution history. It implies that the whole execution history does not need to be saved and it

consequently decreases the space requirements of the algorithm. Moreover, these summary struc-

tures can be updated incrementally so keeping track of the summary structures from the previous

state is sufficient. As one can update the summary structures of the previous state with the help of

the current state to get the new updated summary structure.

Garg et al. [55] relaxed this restriction of requiring each predicates of the policy to have finite

substitutions in each state by using “modes” [9,34,96] to achieve finite substitutions of the quanti-

fiers, which in turn gives their algorithm termination and completeness. We now define modes and

their implications.

Definition 24 (Definition of Modes by Apt and Marchiori [9]). Given a n-ary predicate symbol p,

mode of p is a function, denoted by mp, from {1, . . . ,n} to {+,−}. If mp(i) = “+”, then i an input

position of p with respect to mp. In the same vein, when mp(i) = “-”, then i an output position of

p with respect to mp.

We assume each predicate symbol used in the policy has a unique mode. In case, one need

one predicate to have multiple modes, then one can easily rename the predicate symbol to achieve

this. The implication of modes in the context of compliance checking is that, for a given predicate

symbol, if we are given concrete (or, ground) values for arguments in the input position, then the

number of substitutions for the variables in the output position that satisfy the relation is finite. For

instance, consider a predicate addLessEq(x,y,a) where x, y, and a are variables with iterate over

the set of natural numbers. Let us also assume that the predicate addLessEq(x,y,a) holds for given

x, y, and a if and only if x+ y ≤ a holds. Now without giving any concrete values for any of the

variables x, y, and a, if we are asked what is the number of satisfiable valuations for this predicate

83

addLessEq, then the answer is obviously infinite. However, if we are given concrete values (e.g.,

3, 5) for x and a, then the number of satisfiable substitutions for y for which addLessEq holds

will be finite. In the vein, one possible moding of the predicate addLessEq can be the following:

addLessEq(x+,y−,a+).

Note that, the policy specification language Garg et al. [55] is first order logic and their mode

checking techniques are not trivially extendable to our policy language, F̂OPSL. Moreover, they

require that the whole execution history to be around and they do not take advantage of building

summary structures to keep track of satisfiable valuations of the temporal sub-formulas of the for-

mula representing the policy. However, the policies their algorithm can handle is more expressive

than ones known before.

To this end, we first present a labeling algorithm, using modes of the predicates, that takes as

input a policy ϕ and tries to label all the temporal sub-formula of ϕ with either the label B or empty.

When a formula has the label B, it signifies that it is possible to incrementally build a summary

structure that can be used to keep track of all the substitutions which make the formula true. Thus,

while evaluating the formula, we can just get the satisfiable valuations directly by accessing the

structure. The advantage of the summary structures is that the summary structures only keep track

of necessary satisfiable substitutions and the memory necessary to store the summary structures

will likely be less than the memory needed for saving the whole execution trace. Our first con-

tribution is that, we show that it is possible to build summary structures for formulas, which are

much more expressive than any other fragments of FOTL known before.

We then extend the mode checking algorithm provided by Garg et al. [55] for F̂OPSL. We

finally provide an algorithm which for formulas labeled as B get the satisfiable substitutions from

the summary structure and calculates the satisfiable substitutions for formulas which are not la-

beled as B. In this sense, our algorithm extends the algorithm of Garg et al. with the support of

building temporal structures. Note that our algorithm assumes the execution history to be com-

plete, however, the algorithm by Garg et al. does not make this assumption. We now introduce

the readers with our labeling algorithm which takes as input a formula/policy ϕ and labels each

84

Table 4.1: Labeling rules for B labels

χC ⊢B ϕ : χO

χC ⊢B ⊤ : /0 [B-BASE-1] χC ⊢B ⊥ : /0 [B-BASE-2]

∀k ∈ I(p). f v(tk)⊆ χC χO =
⋃

j∈O(p)

f v(t j)

χC ⊢B p(t1, . . . , tn) : χO
[B-BASE-3]

/0 ⊢B ϕ2 : χ1 χ1 ⊢B ϕ1 : χ2 χO = χ1

χC ⊢B ϕ1 S ϕ2 : χO
[B-SINCE]

χC ⊢B ϕ1 : χ1 χC∪χ1 ⊢B ϕ2 : χ2 χO = χ1∪χ2

χC ⊢B ϕ1∧ϕ2 : χO
[B-CONJUNCTION]

χC ⊢B ϕ1 : χ1 χC ⊢B ϕ2 : χ2 χO = χ1∩χ2

χC ⊢B ϕ1∨ϕ2 : χO
[B-DISJUNCTION]

χC ⊢B ϕ1(~x) : χ1 χO = χ1 \{~x}
χC ⊢B ∃~x.ϕ1(~x) : χO

[B-EXISTENTIAL]

sub-formula of ϕ as either B or empty.

4.3.4 Labeling formulas for which summary structures can be built

We now present our labeling algorithm that labels a given formula ϕ as B or empty. Note that the

heart of the labeling algorithm is the modes of the predicates used in the formula ϕ. We present

our labeling algorithm as judgements where χC ⊢B ϕ : χO signifies that given the substitutions

for variables in the set χC when we evaluate the formula ϕ, we can get finite substitutions for

variables in set χO and additionally label the formula with the label B. In the judgment χC ⊢B ϕ : χO,

χC contains the substitutions which are available in the current point of time, this will be made

more precise just below. Please note that our labeling algorithm is sound but not complete. This

signifies that it does not recognize all formulas for which it is possible to build summary structures.

85

However, when a formula is labeled with B, it is then possible to build a summary structure for

that formula to keep track of all satisfiable valuations of that formula.

The judgements [B-BASE-1] and [B-BASE-2] basically says it is possible to built summary

structures for the following formula: ⊤ and⊥. This is trivial due to the fact that⊤ (logical true) and

⊥ (logical false), does not have any free variables in them and thus there are no substitutions to save

in the summary structures. The judgement [B-BASE-3] specifies that a predicate can be labeled

as B if we have ground substitutions (concrete values) for all the variables in the input positions

(∀k ∈ I(p). f v(tk) ⊆ χC) and after evaluating the predicate we will get ground substitutions for all

the free variables in the output positions of the predicate.

The judgement [B-CONJUNCTION] specifies that it is possible to build a structure for a for-

mula of form ϕ1 ∧ϕ2 with respect to a given set of ground variables χC and additionally obtain

ground variables in set χO after evaluating the formula: (1) if it is possible to build a structure for

the formula ϕ1 with respect to the given set of ground variables χC and additionally obtain ground

variables χ1 after evaluating ϕ1, (2) if it is possible to build a structure for the formula ϕ2 with re-

spect to the given set of ground variables χC∪χ1 and additionally obtain ground variables χ2 after

evaluating ϕ2, and (3) χO = χ1∪χ2. For instance, consider a formula p(x+,y−,z−)∧q(y+,z+,w−)

and we are given the set of ground variables to be χC = {x}. We want to know whether for the

given χC, it is possible to make a summary structure for this formula. From premise (1), we have

to first check whether {x} ⊢B p(p(x+,y−,z−) : χ1 holds for some χ1. This actually falls under the

judgement [B-BASE-3]. As required by the judgement [B-BASE-3], {x} ⊢B p(p(x+,y−,z−) : χ1

satisfy the first premise, that all variables in the input position (x) is ground. The next premise

gives us χ1 = {y,z}. Thus, premise (1) of judgement [B-CONJUNCTION] holds. Now we have to

check whether for the given χC ∪χ1 = {x}∪{y,z}, {x,y,z} ⊢B q(y+,z+,w−) : χ2 holds, for some

χ2. Again this fall under the judgement [B-BASE-3]. According to the first premise of [B-BASE-

3], {x,y,z} covers all the variables in the input argument position (y,z), we see this is the case.

Now according to the second premise of [B-BASE-3], we have χ2 = {w}. This satisfies the sec-

ond premise of [B-CONJUNCTION] and according to the third premise of [B-CONJUNCTION],

86

we have χO = χ1∪χ2 = {y,z}∪{w} = {w,y,z}. Thus, we can safely conclude that for the given

χC = {x}, it is possible to build a structure for the formula p(x+,y−,z−)∧q(y+,z+,w−) and eval-

uating the formula gives us ground values for variables {w,y,z}. We want to emphasize that ac-

cording to the prior work [13,15,16,73], it is not possible to build structure for the above formula.

Prior work can build summary structures for the above formula if it had the following moding re-

striction: p(x−,y−,z−)∧q(y−,z−,w−), which is more restricted than what we consider. The same

goes for judgements [B-DISJUNCTION] and [B-EXISTENTIAL]. However, note that according

to our judgements, a formula of form ∀~x.(ϕ1(~x)→ ϕ2(~x)) is never labeled with B. The reason be-

hind it is that the number of satisfiable valuations for this formula is never finite and thus it is not

possible to build a summary structure for it. There are two ways the formula containing the uni-

versal quantifier can be satisfied, (1) all substitutions for~x for which the antecedent is false, (2) all

substitutions for~x for which the antecedent is true, it is also the case the consequent is also true. A

summary structure should keep track of both kinds of substitutions. Now the number of valuations

for ~x which does not satisfy the antecedent can be potentially infinite and cannot be saved. Thus,

we never label a formula with the universal quantifier with B.

As we have mentioned before, χC represents the set of variables for which substitutions are

available in the current point of time, we will now make it more precise. Consider the for-

mula, p(x−)∧ (r(x+)S q(x+)) and we are given χC = /0. According to the judgement rule for

conjunction [B-CONJUNCTION], /0 ⊢B p(x−) : {x}. Then, according to the second premise of

[B-CONJUNCTION], we require {x} ⊢B (r(x+)S q(x+)) : χ2 for some χ2. If we analyze the se-

mantics of S we know that, r(x+)S q(x+)) is true in the current state if and only q(x+) holds in

a previous state (possibly in the current state) and from that state till the current state r(x+) holds.

Thus, q(x+) might hold in a state previous than the current state where p(x−) holds. If we were to

build a structure keeping track of all satisfiable valuations for the formula r(x+)S q(x+)), we can-

not depend on the ground valuations of x that p provides. In that sense, the grounded substitutions

for x can come from the future time point with respect to when q(x+) holds. The same is applicable

to when we are building summary structure for r(x+). Thus, in the judgement [B-SINCE], the first

87

premise require that it is possible to build a structure for ϕ2 without using any ground substitutions

coming from χC, as the substitutions in the set χC comes from the future time point with respect to

ϕ2, thus we have /0 ⊢B ϕ2 : χ1. Then, the second premise require that it is possible to build summary

structure for ϕ1 by using only the substitutions coming from ϕ2 which is supposed to occur before

the time point when ϕ1 has to hold. Moreover, note that ϕ1 S ϕ2 also holds in the current state, if

ϕ2 holds in the current state, so we are guaranteed to get ground substitutions from ϕ2. Thus, we

have χO = χ1.

As we have described our labeling judgements, we now present the following Lemma which

states that for a given χC, a given formula ϕ, if the following judgement can be derived: χC ⊢B ϕ :

χO, then χO ⊆ f v(ϕ). Intuitive, it basically says that the set of additional ground variables χO is a

subset of the free variables of the formula in question. This Lemma is used to prove correctness of

our algorithm, described later.

Lemma 25 (Upper Bound of ⊢B). For all ϕ, χC and χO, if χC ⊢B ϕ : χO, then χO ⊆ f v(ϕ).

Proof. Induction on the derivation of χC ⊢B ϕ : χO.

Cases [B-BASE-1], [B-BASE-2].

Then ϕ = [⊤] or ϕ = [⊥], χO = /0 and f v(ϕ) = /0. Trivially χO ⊆ f v(ϕ).

Case [B-BASE-3].

Then ϕ= [p(t1, . . . , tn)], χO =
⋃

j∈O(p) f v(t j) by [B-BASE-3] and f v([p(t1, . . . , tn)])=
⋃

j∈{1,...,n}

f v(t j) by definition. Thus trivially χO ⊆ f v(ϕ).

Case [B-SINCE].

Then ϕ = [ϕ1 S ϕ2] and [
/0 ⊢B ϕ2 : χ1 χ1 ⊢B ϕ1 : χ2 χO = χ1

χC ⊢B ϕ1 S ϕ2 : χO]. By inductive hypothe-

sis, χ1 ⊆ f v(ϕ2). Thus χO = χ1 ⊆ f v(ϕ2)⊆ f v(ϕ1)∪ f v(ϕ2) = f v(ϕ).

Case [B-CONJUNCTION].

Then ϕ= [ϕ1∧ϕ2] and [
χC ⊢B ϕ1 : χ1 χC∪χ1 ⊢B ϕ2 : χ2 χO = χ1∪χ2

χC ⊢B ϕ1∧ϕ2 : χO]. By inductive

hypothesis, χ1 ⊆ f v(ϕ1) and χ2 ⊆ f v(ϕ2). Thus χO = χ1∪χ2 ⊆ f v(ϕ1)∪ f v(ϕ2) = f v(ϕ).

88

Case [B-DISJUNCTION].

Then ϕ = [ϕ1∨ϕ2] and [
χC ⊢B ϕ1 : χ1 χC ⊢B ϕ2 : χ2 χO = χ1∩χ2

χC ⊢B ϕ1∨ϕ2 : χO]. By inductive hy-

pothesis, χ1 ⊆ f v(ϕ1) and χ2 ⊆ f v(ϕ2). Thus χO = χ1 ∩ χ2 ⊆ f v(ϕ1)∩ f v(ϕ2) ⊆ f v(ϕ1)∪

f v(ϕ2) = f v(ϕ).

Case [B-EXISTENTIAL].

Then ϕ = [∃~x.ϕ1(~x)] and [
χC ⊢B ϕ1(~x) : χ1 χO = χ1 \{~x}

χC ⊢B ∃~x.ϕ1(~x) : χO]. By inductive hypothesis, χ1 ⊆

f v(ϕ1(~x)). By set properties, χO = χ1 \{~x} ⊆ f v(ϕ1(~x))\{~x}= f v([∃~x.ϕ1(~x)]).

We now define what it means for a formula ϕ to have the label B with respect to a given χC.

Definition 26 (Labeling). Given substitutions for a set of ground variables χC, for all formulas ϕ

if the following judgement can be derived for ϕ: χC ⊢B ϕ : χO
′ where χO

′ ⊆ f v(ϕ). In the same

vein, if a formula ϕ does not satisfy the above, we write B 6∈ label(ϕ).

The following Lemma specifies a property of the labeling judgements. It basically specifies

that if a formula ϕ can be labeled B, then it implies that all the sub-formula of ϕ can also be

labeled B.

Lemma 27 (Subformulas of a temporal formula with label B). For a given χC and a formula ϕ, if

χC ⊢B ϕ : χO can be derived, where χO ⊆ f v(ϕ), then for all sub-formula ϕ̂ of ϕ, there exists a χ′C

for which the judgment χ′C ⊢B ϕ̂ : χ′O can be derived where χ′O ⊆ f v(ϕ̂).

Proof. The proof proceeds by doing an induction on the derivation of the ⊢B judgements.

The following Lemma specifies that whenever for a given formula ϕ and a given χC, the follow-

ing judgement can be derived: χC ⊢B ϕ : χO where χO ⊆ f v(ϕ), then for any χ′C where χ′C ⊇ χC,

the following judgement can be derived: χ′C ⊢B ϕ : χO. Intuitively, it specify that if we provide

more ground variables as input, the set of additional ground variables will be same. This Lemma

is used in proving the soundness and completeness of our algorithm described later.

89

Lemma 28 (Monotonicity of ⊢B judgement). For a given χC and a formula ϕ, if χC ⊢B ϕ : χO,

where χO ⊆ f v(ϕ), can be derived, then for any χ′C such that χ′C ⊇ χC, χ′C ⊢B ϕ : χO can be

derived.

Proof. We do induction on the derivation of the ⊢B judgements.

Cases [B-BASE-1], [B-BASE-2].

We can see from the derivation of [χC ⊢B ⊤ : /0] and [χC ⊢B ⊥ : /0] that the premise of the

judgements do not use χC, thus we can trivially write χ′C ⊢B ⊤ : /0 and χ′C ⊢B ⊥ : /0, without

changing the derivation.

Case [B-BASE-3].

From the first premise of the judgement, it is required that ∀k ∈ I(p). f v(tk) ⊆ χC. We know

χ′C ⊇ χC. Thus, we can write ∀k ∈ I(p). f v(tk) ⊆ χ′C. Then we get the judgement χ′C ⊢B

p(t1, . . . , tn) : χO.

Case [B-SINCE].

Then [
/0 ⊢B ϕ2 : χ1 χ1 ⊢B ϕ1 : χ2 χO = χ1

χC ⊢B ϕ1 S ϕ2 : χO]. We can see that the premises do not use

χC. Thus, we can replace χC with χ′C and can derive the judgement χ′C ⊢B ϕ1 S ϕ2 : χO.

Case [B-CONJUNCTION].

Then [
χC ⊢B ϕ1 : χ1 χC∪χ1 ⊢B ϕ2 : χ2 χO = χ1∪χ2

χC ⊢B ϕ1∧ϕ2 : χO]. We see that it is required that

χC ⊢B ϕ1 : χ1 and χC ∪χ1 ⊢B ϕ2 : χ2. From I.H., we can write χ′C ⊢B ϕ1 : χ1 and χ′C ∪χ1 ⊢B

ϕ2 : χ2 as (χ′C∪χ1)⊇ (χC∪χ1). Thus, enabling us to derive the judgement χ′C ⊢B ϕ1∧ϕ2 : χO.

Case [B-DISJUNCTION].

Then [
χC ⊢B ϕ1 : χ1 χC ⊢B ϕ2 : χ2 χO = χ1∩χ2

χC ⊢B ϕ1∨ϕ2 : χO]. We see that it is required that χC ⊢B

ϕ1 : χ1 and χC ⊢B ϕ2 : χ2. From I.H., we can write χ′C ⊢B ϕ1 : χ1 and χ′C ⊢B ϕ2 : χ2. Thus,

enabling us to derive the judgement χ′C ⊢B ϕ1∨ϕ2 : χO.

90

Case [B-EXISTENTIAL].

Then [
χC ⊢B ϕ1(~x) : χ1 χO = χ1 \{~x}

χC ⊢B ∃~x.ϕ1(~x) : χO]. We see that it is required that χC ⊢B ϕ1(~x) : χ1.

From I.H., we can write χ′C ⊢B ϕ1(~x) : χ1. Thus, enabling us to derive the judgment χ′C ⊢B:

∃~x.ϕ1(~x)χO.

The following Lemma states a property of the labeling judgements, specifically for the formulas

of form ϕ1 S ϕ2. It specifies that if a formula ϕ1 S ϕ2 has the B label with respect to a given χC,

then it will have the B label with respect to a given χ′C where χ′C = /0. This signifies that one can

only build summary structures for a formula of form ϕ1 S ϕ2, if it does not require any substitution

that comes from the future time point.

Lemma 29 (Invariance of ⊢B). Given χC and χF , for all formulas of form ϕ1 S ϕ2 such that χC,χF ⊢

ϕ1 S ϕ2 : χO, if χC ⊢B ϕ1 S ϕ2 : χ′O then /0 ⊢B ϕ1 S ϕ2 : χ′O where χ′O = f v(ϕ2).

Proof. The proof follows from the judgement [B-SINCE] in Table 4.1. None of the premises of

the judgement [B-SINCE] use χC. We can thus replace χC with /0 without changing the judgement

result.

4.3.5 Mode Checking

Recall that, to achieve termination, we have to ensure that when we instantiate variables with finite

number of individuals from appropriate domain. To achieve this, we extend the mode checking

approach introduced by Garg et al. [55] in context of privacy policy compliance checking. Given

substitutions for a set of variables Vg, a predicate p(t1, . . . , tn) will have finite number of satisfiable

valuations if all the free variable in the input argument positions are in the set Vg, then the number

of satisfiable substitutions for the free variables of the output argument position is finite and obtain-

able. We present this using the following judgement: χC,χF ⊢ p(t1, . . . , tn) : χO where Vg = χC∪χF

and χO represents the set of the free variables of the output argument position of p for which it

91

Table 4.2: Mode checking judgements for ϕ≡⊤ | ⊥ | p(t1, . . . , tn)

χC,χF ⊢ ϕ : χO

χC,χF ⊢ ⊤ : /0 [BASE-1] χC,χF ⊢ ⊥ : /0 [BASE-2]
χC ⊢B p(t1, . . . , tn) : χO

χC,χF ⊢ p(t1, . . . , tn) : χO
[BASE-3]

⋃

k∈I(p).

f v(tk)⊆ (χC∪χF) χO =
⋃

j∈O(p)

f v(t j)

χC,χF ⊢ p(t1, . . . , tn) : χO
[BASE-4]

is possible to get finite number of satisfiable substitutions. In Table 4.2 judgement [BASE-4], the

first premise requires that all the free variables in the input argument position should be an element

of the set χC ∪χF . The second premise of that judgement specifies that after evaluating the predi-

cate the set of additional ground variables will be the free variables of the output position position

and will be the element of set of χO. The next obvious question is why do we have two different

sets (χC and χF) to represent the set of variables for which substitutions are available. The set χC

represents variables for which the substitutions come from past or present point of time whereas

χF represents the set of variables for which the substitutions are available from some future point

of time. This is particularly useful for judgements such as [BASE-3] in Table 4.2. The premise of

the judgement requires that the predicate has the label B which is defined with respect to a set of

variables, for which substitutions are available currently.

According to the judgement of form χC ⊢B ϕ : χO, we know that χC represents the set of

variables for which substitutions are available currently (present or past point in time). If we

did not have the separation between χC and χF , we would not be able to check satisfiability of

judgement derivations like [BASE-3]. We would now describe how to lift the judgement χC,χF ⊢

p(t1, . . . , tn) : χO to arbitrary formulas ϕ. Thus, for given χC and χF , χC,χF ⊢ ϕ : χO holds, when

evaluating ϕ with respect to χC and χF , enables one to get finite substitutions for variables in set

χO. We will briefly explain select cases of the derivations of the judgements.

92

Table 4.3: Mode checking judgements for ϕ≡ ϕ1∨ϕ2

χC,χF ⊢ ϕ : χO

χC ⊢B ϕ1 : χ1 χC,χF ⊢ ϕ2 : χ2 χO = χ1∩χ2

χC,χF ⊢ ϕ1∨ϕ2 : χO
[DISJUNCTION-1]

χC,χF ⊢ ϕ1 : χ1 χC,χF ⊢ ϕ2 : χ2 χO = χ1∩χ2

χC,χF ⊢ ϕ1∨ϕ2 : χO
[DISJUNCTION-2]

χC,χF ⊢ ϕ1 : χ1 χC ⊢B ϕ2 : χ2 χO = χ1∩χ2

χC,χF ⊢ ϕ1∨ϕ2 : χO
[DISJUNCTION-3]

χC ⊢B ϕ1 : χ1 χC ⊢B ϕ2 : χ2 χO = χ1∩χ2

χC,χF ⊢ ϕ1∨ϕ2 : χO
[DISJUNCTION-4]

Table 4.4: Mode checking judgements for ϕ≡ ϕ1∧ϕ2

χC,χF ⊢ ϕ : χO

χC ⊢B ϕ1 : χ1 χC∪χ1,χF \χ1 ⊢ ϕ2 : χ2 χO = χ1∪χ2

χC,χF ⊢ ϕ1∧ϕ2 : χO
[CONJUNCTION-1]

χC,χF ⊢ ϕ1 : χ1 χC,χF ∪χ1 ⊢ ϕ2 : χ2 χO = χ1∪χ2

χC,χF ⊢ ϕ1∧ϕ2 : χO
[CONJUNCTION-2]

χC,χF ⊢ ϕ1 : χ1 χC ⊢B ϕ2 : χ2 χO = χ1∪χ2

χC,χF ⊢ ϕ1∧ϕ2 : χO
[CONJUNCTION-3]

χC ⊢B ϕ1 : χ1 χC∪χ1 ⊢B ϕ2 : χ2 χO = χ1∪χ2

χC,χF ⊢ ϕ1∧ϕ2 : χO
[CONJUNCTION-4]

93

Table 4.5: Mode checking judgements for ϕ≡ ϕ1 S ϕ2

χC,χF ⊢ ϕ : χO

/0 ⊢B ϕ2 : χ1 χ1,(χC∪χF)\χ1 ⊢ ϕ1 : χ2 χO = χ1

χC,χF ⊢ ϕ1 S ϕ2 : χO
[SINCE-1]

/0,χC∪χF ⊢ ϕ2 : χ1 /0,χC∪χF ∪χ1 ⊢ ϕ1 : χ2 χO = χ1

χC,χF ⊢ ϕ1 S ϕ2 : χO
[SINCE-2]

/0,χC∪χF ⊢ ϕ2 : χ1 /0 ⊢B ϕ1 : χ2 χO = χ1

χC,χF ⊢ ϕ1 S ϕ2 : χO
[SINCE-3]

/0 ⊢B ϕ2 : χ1 χ1 ⊢B ϕ1 : χ2 χO = χ1

χC,χF ⊢ ϕ1 S ϕ2 : χO
[SINCE-4]

Table 4.6: Mode checking judgements for ϕ≡ ∃~x.ϕ1(~x)

χC,χF ⊢ ϕ : χO

χC,χF ⊢ ϕ1(~x) : χ1 χO = χ1 \{~x}
χC,χF ⊢ ∃~x.ϕ1(~x) : χO

[EXISTENTIAL-1]

χC ⊢B ϕ1(~x) : χ1 χO = χ1 \{~x}
χC,χF ⊢ ∃~x.ϕ1(~x) : χO

[EXISTENTIAL-2]

Table 4.7: Mode checking judgements for ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x))

χC,χF ⊢ ϕ : χO

χC ⊢B ϕ1(~x) : χ1 {~x} ⊆ χ1 f v(ϕ1(~x))⊆ χC∪{~x} f v(ϕ2(~x))⊆ (χC∪χ1) χC∪χ1 ⊢B ϕ2(~x) : χ2

χC,χF ⊢ ∀~x.(ϕ1(~x)→ ϕ2(~x)) : /0
[UNIVERSAL-1]

χC ⊢B ϕ1(~x) : χ1 {~x} ⊆ χ1 f v(ϕ1(~x))⊆ χC∪{~x} f v(ϕ2(~x))⊆ (χC∪χ1∪χF) χC∪χ1,χF \χ1 ⊢ ϕ2(~x) : χ2

χC,χF ⊢ ∀~x.(ϕ1(~x)→ ϕ2(~x)) : /0
[UNIVERSAL-2]

χC,χF ⊢ ϕ1(~x) : χ1 {~x} ⊆ χ1 f v(ϕ1(~x))⊆ χC∪χF ∪{~x} f v(ϕ2(~x))⊆ (χC∪χ1∪χF) χC,χF ∪χ1 ⊢ ϕ2(~x) : χ2

χC,χF ⊢ ∀~x.(ϕ1(~x)→ ϕ2(~x)) : /0
[UNIVERSAL-3]

χC,χF ⊢ ϕ1(~x) : χ1 {~x} ⊆ χ1 f v(ϕ1(~x))⊆ χC∪χF ∪{~x} f v(ϕ2(~x))⊆ χC χC ⊢B ϕ2(~x) : χ2

χC,χF ⊢ ∀~x.(ϕ1(~x)→ ϕ2(~x)) : /0
[UNIVERSAL-4]

94

Let us consider a formula of form ϕ1 ∨ ϕ2. For formulas of this form, the mode check-

ing judgements are specified in Table 4.3. Let us specifically consider judgement derivation

[DISJUNCTION-2]. The mode checking judgement for above formula is of form χC,χF ⊢ϕ1∨ϕ2 :

χO for some given χC and χF . The first premise of the judgement derivation require that if we eval-

uate ϕ1 with respect to the given χC and χF , we will additionally get finite substitutions for the

variables in the set χ1. The second premise in the same vein require that when we evaluate ϕ2 with

respect to χC and χF , we will additionally get finite substitutions for variables in χ2. Then finally

the third premise require that if we evaluate the whole formula with respect to χC and χF , we will

additionally get finite substitutions for variables in the set χ1∩χ2. Let us now consider a concrete

formula p(x+,y−,z−)∨q(x+,y−,w−) and additionally χC be {x} and χF be /0. The first premise re-

quires that {x}, /0 ⊢ p(x+,y−,z−) : χ1. We see that the judgement derivation [BASE-4] on Table 4.2

is applicable and according to it we have χ1 = {y,z}. In the same vein, from the second premise,

we have {x}, /0 ⊢ q(x+,y−,w−) : {y,w}. Then finally we have χO = {y,z}∩{y,w}= {y}. Now, we

justify why do we take the intersection of the χ1 and χ2. The formula p(x+,y−,z−)∨q(x+,y−,w−)

is true when either (1) p(x+,y−,z−) is true or (2) q(x+,y−,w−) is true. In the case, (1) is true we

will get substitutions for variables {y,z} and similarly when (2) is true we will get substitutions

for variables {y,w}. Thus, after the evaluation of the whole formula we are guaranteed to have

substitutions for y and thus the intersection.

Now consider a formula of form ∀~x.(ϕ1(~x)→ ϕ2(~x)). For formulas of this form, the mode

checking judgements are specified in Table 4.7. Let us specifically consider the mode checking

judgement derivation [UNIVERSAL-2]. According to this mode checking rule, the first premise

require that it is possible to build a structure keeping track of all satisfiable substitutions for the

formula ϕ1(~x) where evaluating the formula additionally ground the variables in set χ1. The second

premise require that there are finite substitutions for all the variables~x after evaluating the formula

ϕ1(~x). The third premise require that there are finite substitutions for all the free variables of ϕ1(~x).

The fourth premise require that all the free variables there all finite substitutions for all variables in

ϕ2(~x) according to χC ∪χF ∪χ1. The final premise require that there are finite substitutions when

95

the formula ϕ2 is evaluated. Note that, when the formula ∀~x.(ϕ1(~x)→ ϕ2(~x)) is evaluated, we

assume no additional variables are ground due to the fact that the number of satisfiable valuations

for a formula with universal quantifier can possibly be infinite as discussed before. All the mode

checking judgement derivations are presented in Table 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7.

Now that we have introduced the readers with our mode checking procedure, we now put

forward some properties that can be derived from the mode checking judgements and which will

be later used to prove the soundness and completeness of our algorithm. The following Lemma

states that for any formula ϕ and for any given χC, χF , if the following judgement can be derived:

χC,χF ⊢ ϕ : χO, then χO will be a subset of the set of free variables of ϕ.

Lemma 30 (Upper Bound of ⊢). For all ϕ, χC, χF and χO, if χC,χF ⊢ ϕ : χO, then χO ⊆ f v(ϕ).

Proof. Induction on the derivation of χC,χF ⊢ ϕ : χO. Most cases are equivalent to Lemma 25. We

show select other cases.

Case [UNIVERSAL-1], [UNIVERSAL-2], [UNIVERSAL-3], [UNIVERSAL-4].

Then χO = /0, which is trivially a subset of the free variables of any formula.

As we have introduced the necessary notions, we now introduce the readers with what it means

for a formula ϕ to be well-moded with respect to some χC and χF .

Definition 31 (Well-moded formulas). A formula ϕ is well-moded with respect to a given χC and

χF if we can derive the following judgement for ϕ: χC,χF ⊢ ϕ : χO where χO ⊆ f v(ϕ).

The following two Lemmas depict the relationship between our two judgements (⊢B and ⊢).

The first Lemma (Lemma 32) specify that for a given χC and a given formula ϕ if one can derive

the judgement χC ⊢B ϕ : χO where χO ⊆ f v(ϕ) then it is possible to derive the judgement χC, /0 ⊢

ϕ : χO. Then the next Lemma (Lemma 33) states that for the above case, we can actually derive

χC,χF ⊢ ϕ : χO for any given χF .

96

Lemma 32 (Invariance of ⊢). For all formula ϕ and for some given χC, if χC ⊢B ϕ : χO holds then

χC, /0 ⊢ ϕ : χO holds.

Proof. Induction on the derivation of the ⊢B and ⊢ judgements.

Lemma 33 (Switching to ⊢ judgements from ⊢B judgements). For a given χC and a formula ϕ, if

χC ⊢B ϕ : χO, where χO ⊆ f v(ϕ), can be derived then for any χF , χC,χF ⊢ ϕ : χO can be derived.

Proof. The proof follows from Lemma 32 and 34. According to Lemma 32, if we have χC ⊢B

ϕ : χO, we can write χC, /0 ⊢ ϕ : χO. By Lemma 34, if we have χC, /0 ⊢ ϕ : χO, we can write

χC,χF ⊢ ϕ : χO for any χF as χF ⊇ /0.

Finally, we have the following Lemma which depicts the monotonicity property of the ⊢ judge-

ment. It states that for a given χC, χF and a given formula ϕ, if one can derive the judgement:

χC,χF ⊢ ϕ : χO, then it is possible to derive the judgement χ′C,χ
′
F ⊢ ϕ : χO for any χ′C, χ′F such that

χC ⊆ χ′C and χF ⊆ χ′F . As mentioned above, this is an helping Lemma for proving the correctness

of our algorithm.

Lemma 34 (Monotonicity of ⊢). Given χC, χF , and a formula ϕ, if χC,χF ⊢ ϕ : χO, where χO ⊆

f v(ϕ), can be derived, then for any χ′C,χ
′
F such that χC ⊆ χ′C and χF ⊆ χ′F , the judgement χ′C,χ

′
F ⊢

ϕ : χO can be derived.

Proof. By induction on the derivation of the ⊢ judgements. We show select cases.

Case [BASE-1]/[BASE-2].

The premise of the judgement neither uses χC nor χF . Thus, we can write χ′C,χ
′
F ⊢ ⊤ : /0 and

χ′C,χ
′
F ⊢ ⊥ : /0.

Case [BASE-3].

From the derivation of the judgement, we see that it is required that χC ⊢B p(t1, . . . , tn) : χO.

In this premise of the judgement, χF is not used. So, we can easily replace χF with χ′F . By

Lemma 28, if we have χC ⊢B p(t1, . . . , tn) : χO, we can write χ′C ⊢B p(t1, . . . , tn) : χO. Thus, we

can derive the judgement χ′C,χ
′
F ⊢ p(t1, . . . , tn) : χO.

97

Case [BASE-4].

From the derivation of the judgement, we see that it is required to satisfy
⋃

k∈I(p) . f v(tk) ⊆

(χC∪χF). As χC ⊆ χ′C and χF ⊆ χ′F , we have (χC∪χF)⊆ (χ′C∪χ′F). Thus, we have χ′C,χ
′
F ⊢

p(t1, . . . , tn) : χO.

Case [SINCE-1]

From the derivation of the judgement, we see that it is required to satisfy /0 ⊢B ϕ : χ1 and

χ1,(χC∪χF)\χ1 ⊢ ϕ1 : χ2. The first premise of the derivation of the judgement neither uses χC

nor χF . However, this is not the case for the second premise. We can write ((χC∪χF)\χ1)⊆

((χ′C∪χ′F)\χ1) as χC ⊆ χ′C and χF ⊆ χ′F . From I.H., we have χ1,(χ′C∪χ′F)\χ1 ⊢ ϕ1 : χ2. We

can thus derive the judgement χ′C,χ
′
F ⊢ ϕ1 S ϕ2 : χO.

The other cases are similar.

4.3.6 Weak Compliance Checking Algorithm

The building block of our algorithm is a function sat that takes as input an execution history L , a

position in the history i, a predicate p, and an input substitution σin (which contains substitutions

for free variables in the input positions of p), and returns all the substitutions for the variables in

the output positions of p for which p holds. The number of substitutions that sat returns is also

finite. This is formalized in the following Axiom. We assume that we have a function I that takes

as input a predicate p and returns all the input argument positions of the predicate. Additionally,

we also assume that we have another function O that takes as input a predicate p and returns all

the output argument positions of the predicate. Note that sat is not well-defined when the input

substitution does not contain values for all the variables in the input position.

Axiom 35 (sat function). Given a history L , a position j ∈ N, an input substitution σin, and a

predicate p(t1, . . . , tn) such that for all k ∈ I(p) the following holds: ∀x ∈ f v(tk).x ∈ domain(σin),

then sat(L , j, p(t1, . . . , tn),σin) terminates and returns the finite set of all substitutions Σout for

98

variables in
⋃

k∈I(p) f v(tk)∪
⋃

i∈O(p) f v(ti)∪ domain(σin), where for all σ ∈ Σout, σ ≥ σin and

L , j |= p(t1, . . . , tn)σ hold.

We now show how to extend sat function for arbitrary formulas allowed by our language

F̂OPSL. To achieve this, we have a function ips which takes as input an execution history L ,

a position in the execution history i ∈ N, a well-moded formula ϕ, a state π (see Section 4.3.6.1),

and an input substitution for free variables in ϕ, and it returns a set of substitutions for the subset

of the free variables of ϕ for which the formula ϕ holds true. For all well-moded formulas, the

function ips inspects the execution history and tries to obtains all possible substitutions for which

the formula holds true. Recall that, from Lemma 29, when a formula is labeled B, we can build

summary structure that keeps track of all satisfiable substitutions for a formula ϕ of form αS β

without using any substitution which comes from the future point of time. Using this result, we

build summary structures for all temporal formulas of form αS β which has the label B. We will

show that the summary structures can be updated incrementally by inspecting the current state and

the current position of the execution history only. Note that we do not build any summary struc-

tures for formula whose top level connective is not a S . To incrementally update the summary

structure we use the function bts which recursively calls the function ips. Whenever ips encounters

a formula of form αS β with label B, it actually accesses the corresponding summary structure

and obtains all the satisfiable substitutions for the formula from which it calculates the appropriate

substitutions based on the input substitution σin.

We now explain how to build a summary structure for temporal formulas of form αS β which

has the label B. In this explanation, we will use the function ips as a black box and will assume

that whenever ips is called for a formula with respect to an input substitution σin then it returns

all the satisfiable substitutions which is an extension of σin and satisfies the formula. For each

temporal formula of form αS β with label B, we have three persistent structures which we denote

respectively by Sβ, Sα, and SR. The structure Sβ contains a set of pairs of form 〈σ,k〉 in which

σ represents a substitution and k ∈ N is a position in the execution history. Each pair of form

〈σ,k〉 ∈ Sβ represents that the formula β was true with substitution, most recently in the execution

99

history position k. In the same vein, the structure Sα contains a set of pairs of form 〈σ,k〉, each

of which represents that the formula α has been true with substitution σ from execution history

position k till the current position in the execution history. The structure SR contains a set of

substitutions each of which, σ, represents that the formula αS β is true with the substitution σ in

the current position of the execution history. We will now show (just below) how to calculate the

structures Si
β, Si

α, Si
R for execution history position i, if we are given the structures S(i−1)

β , S(i−1)
α ,

S(i−1)
R of the execution history position i−1.

Σβ← ips(L , i,π,{•},β)

Sβ
update←{〈σ 1 σ1, i〉 | ∃k.〈σ,k〉 ∈ S(i−1)

β ∧∃σ1 ∈ Σβ.σ 1 σ1 6= empty}

Sβ
remove←{〈σ,k〉 | 〈σ,k〉 ∈ S(i−1)

β ∧∃σ1 ∈ Σβ.σ 1 σ1 6= empty}

Sβ
new←{〈σ, i〉 | σ ∈ Σβ∧ 6 ∃〈σ1,k〉 ∈ S(i−1)

β .σ 1 σ1 6= empty}

Si
β← (S(i−1)

β \Sβ
remove)

⋃
Sβ

new
⋃

Sβ
update

We first describe how to update the structure Sβ at execution history position i if we are given

the structure Sβ at execution position i−1. We first calculate the set of substitutions Σβ by calling

ips for β in the current execution history position (i). This set contains all the substitutions with

which β holds true in the current execution history position. Recall that each pair of 〈σ,k〉 ∈ Sβ

requires that β be true with substitution σ most recently in the kth position of the execution history.

We first calculate whether we can update this position k with the current execution history position

i. The set Sβ
update contains all the substitutions for which we can update this position k with the

current execution history position i. The next thing we have to is remove all the old pairs of form

〈σ,k〉 for which we have an updated position. All such pairs are stored in the set Sβ
remove. The

next thing we check is whether there is any new substitution with which β holds true in the current

execution history position. These substitutions along with the current position are saved in the set

Sβ
new. Finally, from the old structure S(i−1)

β we remove all the pairs in the set Sβ
remove, then add the

100

updated pairs in the set Sβ
update, and finally add the new pairs in the set Sβ

new.

Σα←
⋃

〈σ,k〉∈Si
β∧k 6=i

ips(L , i,π,σ,α)

Sα
new←{〈σ, i〉 | σ ∈ Σα∧ 6 ∃〈σ1,k〉 ∈ S(i−1)

α .σ 1 σ1 6= empty}

Sα
update←{〈σ 1 σ1,k〉 | 〈σ,k〉 ∈ S(i−1)

α ∧∃σ1 ∈ Σα.σ 1 σ1 6= empty}

Sα
remove1

←{〈σ,k〉 | 〈σ,k〉 ∈ S(i−1)
α ∧∃σ1 ∈ Σα.σ 1 σ1 6= empty}

Sα
remove2

←{〈σ,k〉 | 〈σ,k〉 ∈ S(i−1)
α ∧ 6 ∃σ ∈ Σα.σ 1 σ1 6= empty}

Si
α← ((S(i−1)

α \Sα
remove1

)\Sα
remove2

)
⋃

Sα
update

⋃
Sα

new

We now describe how to update the structure Sα at the current execution history position i if

we are given the structure Sα at execution position i−1. We first calculate the set of substitutions

Σα by calling ips for α with each substitution σ as the input substitution where 〈σ,k〉 ∈ Si
β such

that k 6= i, in the current execution history position (i). We use the substitution σ due to the fact

that we are interested only on those substitutions of α with which we have seen a β hold true. This

is due to the fact that αS β does not hold if β never holds. The set Σα contains all the substitutions

with which α holds true in the current execution history position i. Recall that, each pair of form

〈σ,k〉 ∈ Sα requires that α holds true with substitution σ from the execution history position k to

the current execution history position i. The first thing we do is to get all substitutions for which

α starts holding true from the current execution history position i. Thus, these pairs of form 〈σ, i〉

are stored in the set Sα
new, denoting that we have to add these new pairs. The next thing we see is

whether we can extend some of the existing substitution, position pairs with updated substitutions

with which α holds true in the current state, which are in turn stored in the set Sα
update. We then

have to throw out pairs whose substitution component has been updated with new substitutions and

they are in turn stored in the set Sα
remove1

. Then we have to throw out all pairs of form 〈σ,k〉 if α

does not hold true in the current state with substitution σ. This pairs are stored in the set Sα
remove2

.

101

Finally, to obtain Si
α, we remove the pairs in the sets Sα

remove1
and Sα

remove2
from S(i−1)

α , and add the

pairs in the sets Sα
new and Sα

update.

SR1 ←{σ | 〈σ, i〉 ∈ Si
β}

SR2 ←{σ 1 σ1 | ∃k, j.〈σ,k〉 ∈ Si
β∧〈σ1, j〉 ∈ Si

α∧ (j ≤ (k+1))∧σ 1 σ1 6= empty}

Si
R← SR1

⋃
SR2

Finally, we show how to obtain the structure SR at the current execution history position i when

we have already calculated the structure Sβ and Sα for the current execution history position i.

Recall that SR is a set of substitutions, each element σ of which represents that the formula αS β is

true with the substitution σ in the current execution history position. Note that from the semantics

of S we know that, αS β holds in the current execution history position i if the formula β holds

true in the current execution history position i. Thus, we calculate the set SR1 which contains all the

substitutions with which the formula β holds true in the current state. We then calculate the set of

substitutions for some abbreviations of which β held true in some prior execution history position

k and α has held from execution history position k+ 1 till the current execution history position

with some abbreviation of that substitution. We finally union the two sets to obtain the structure

SR for the current execution history position.

Algorithm 4.1 contains the pseudo-code for updating the structures appropriately. Note that the

structures are stored in persistent store as part of our state. Next we discuss the form of our state

and how to access the different structures of different execution history point.

4.3.6.1 States Storing Summary Structures

Recall that, we build summary structures for all temporal formulas of form αS β which have the

label B. The substitutions are stored in the state of the system. The state contains for each position

of the execution history, a list of structures corresponding to each temporal formula of form αS β

102

Algorithm 4.1 The definition of the bts function.
Input: A prefix of a history L , a position in the history i, a state π = (A, i), and a formula ϕ of form αS β.
Output: Returns a state π′ that is strongly consistent at i with respect to L and ϕ.

1: Allocate space for structures in π.A(i)(ϕ)
2: if (i = 0) then /* Initial state */
3: π.A(i)(ϕ).Sβ← /0; π.A(i)(ϕ).Sα← /0; π.A(i)(ϕ).SR← /0;
4: else
5: π.A(i)(ϕ).Sβ← π.A(i−1)(ϕ).Sβ; π.A(i)(ϕ).Sα← π.A(i−1)(ϕ).Sβ; π.A(i)(ϕ).SR← /0
6: Σβ← ips(L , i,π,{•},β)
7: for all (σ ∈ Σβ) do
8: f ound← f alse
9: for all (〈σ1,k〉 ∈ π.A(i)(ϕ).Sβ) do

10: if (σ 1 σ1 6= empty) then
11: π.A(i)(ϕ).Sβ← π.A(i)(ϕ).Sβ \ 〈σ1,k〉
12: π.A(i)(ϕ).Sβ← π.A(i)(ϕ).Sβ∪〈σ 1 σ1,k〉
13: f ound← true
14: if (f ound = f alse) then
15: π.A(i)(ϕ).Sβ← π.A(i)(ϕ).Sβ∪〈σ, i〉
16: Σα← /0
17: for all (〈σ,k〉 ∈ π.A(i)(ϕ).Sβ) do
18: if (k 6= i) then
19: Σt ← ips(L , i,π,σ,α); Σα← Σα∪Σt

20: marked← /0
21: for all (σ ∈ Σα) do
22: f ound← f alse
23: for all (〈σ1,k〉 ∈ π.A(i)(ϕ).Sα) do
24: if (σ 1 σ1 6= empty) then
25: π.A(i)(ϕ).Sα← π.A(i)(ϕ).Sα \ 〈σ1,k〉
26: π.A(i)(ϕ).Sα← π.A(i)(ϕ).Sα∪〈σ 1 σ1,k〉
27: f ound← true
28: marked← marked∪{σ 1 σ1}
29: if (f ound = f alse) then
30: π.A(i)(ϕ).Sα← π.A(i)(ϕ).Sα∪〈σ, i〉
31: marked← marked∪{σ}
32: for all (〈σ,k〉 ∈ π.A(i)(ϕ).Sα) do
33: if (σ 6∈ marked) then
34: π.A(i)(ϕ).Sα← π.A(i)(ϕ).Sα \ 〈σ,k〉
35: SR1 ← /0; SR2 ← /0
36: for all (〈σ,k〉 ∈ π.A(i)(ϕ).Sβ) do
37: if (k = i) then
38: SR1 ← SR1 ∪{σ}
39: else
40: for all (〈σ1, j〉 ∈ π.A(i)(ϕ).Sα) do
41: if (σ 1 σ1 6= empty∧ j ≤ (k+1)) then
42: SR2 ← SR2 ∪{σ 1 σ1}
43: π.A(i)(ϕ).SR← SR1 ∪SR2

44: return π

103

b-tsub(ϕ) =

/0 if ϕ≡⊤|⊥|p(t1, . . . , pn)

b-tsub(ϕ)∪b-tsub(ϕ2) if ϕ≡ ϕ1∨ϕ2|ϕ1∧ϕ2

{ϕ}∪b-tsub(ϕ)∪b-tsub(ϕ2) if ϕ≡ αS β and B ∈ label(ϕ)
b-tsub(ϕ)∪b-tsub(ϕ2) if ϕ≡ αS β and B 6∈ label(ϕ)
b-tsub(ϕ1(~x))∪b-tsub(ϕ2(~x)) if ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x))

b-tsub(ϕ(~x)) if ϕ≡ ∃~x.ϕ(~x)

Figure 4.4: Function definition: b-tsub(ϕ)

with label B. If we want to access the satisfiable substitutions for a specific temporal formula in a

specific position j in the execution history, we just access the corresponding structure specific to

that position and formula. The state also keeps track of the maximum position of the execution

history we have seen so far. A state that store all the summary structures is formally defined as

follows.

Definition 36 (State). A state, denoted by π, has the type (N→ (Formula→ Structure))×N. Each

element of Structure has the type (Sα×Sβ×SR). Both Sα and Sβ have the type (Substitution→N).

SR has the type (List of Substitution).

Given a state π = 〈A, i〉 (where i ∈ N) and a specific formula ϕ, and a j ≤ i and j ∈ N, we

can access the Sα element of the structure of formula ϕ at position j as π.A(j)(ϕ).Sα. In the

same vein, for a given state π = 〈A, i〉 (where i ∈ N) and a specific formula ϕ, and a j ≤ i and

j ∈ N, we can access the structure of formula ϕ at position j as π.A(j)(ϕ). Thus, π.A(j)(ϕ) will

return a triple of the structures of form 〈π.A(j)(ϕ).Sα,π.A(j)(ϕ).Sβ,π.A(j)(ϕ).SR〉. For concise

representation, when we write 〈σ,k〉 ∈ π.A(j)(ϕ).Sβ, we mean σ ∈ domain(π.A(j)(ϕ).Sβ) and

k = π.A(j)(ϕ).Sβ(σ). Similarly, we use ∀〈σ,k〉 ∈ π.A(j)(ϕ).Sβ to iterate over all 〈σ,k〉 pairs such

that σ ∈ domain(π.A(j)(ϕ).Sβ) and k = π.A(j)(ϕ).Sβ(σ).

In Figure 4.4, we present a function b-tsub which takes as input a formula ϕ and it returns all

the sub-formula of ϕ which is of form αS β and additionally has the label B. Using the definition

of b-tsub, we define another function b-s-tsub which takes as input a formula ϕ and returns all

the strict sub-formula (not including ϕ) which is of form αS β and additionally has the label B.

104

Note that, b-s-tsub(ϕ) = b-tsub(ϕ) \ {ϕ}. We use the definitions of b-tsub and b-s-tsub to define

“strongly” and “weakly” consistent states.

Definition 37 (Buildable Strict Temporal Sub-formula). Given a formula ϕ, the set of build-

able strict temporal sub-formulas of ϕ is denoted by b-s-tsub(ϕ) and is defined as b-s-tsub(ϕ) =

b-tsub(ϕ)\{ϕ}.

We now define what it means for a given state π to be well-formed with respect to a given

execution history L , a position in the history j, and a formula of form αS β.

Definition 38 (Well-formed State, Ψ). Given a state π = 〈A, i〉 (where i ∈ N), we say π is well-

formed at j ∈ N (where j ≤ i) with respect to a history L and a formula ϕ of form αS β, where

/0 ⊢B ϕ : χO, χO ⊆ f v(ϕ) and consequently /0 ⊢B β : χ1 and χ1 ⊢B α : χ2, denoted by Ψ(L ,π,ϕ, j),

if all of the following hold:

1. (SOUNDNESS-π.A(j)(ϕ).Sα)

∀〈σ,k〉 ∈ π.A(j)(ϕ).Sα.(domain(σ)= (χ1∪χ2)∧∀l ∈N.((k≤ l≤ j)∧∀σ′.(σ′≥σ→ L , l |=

ασ′))

2. (COMPLETENESS-π.A(j)(ϕ).Sα)

∀σ.∀l ∈ N.(((l < j) ∧ ∃σβ.((domain(σ) = χ1∪χ2) ∧ (σ≥ σβ)∧

(∃σ′.σ′ ≥ σ∧∀k ∈ [l +1, . . . , j].L ,k |= ασ′)))→ 〈σ, l +1〉 ∈ π.A(j)(ϕ).Sα)

3. (SOUNDNESS-π.A(j)(ϕ).Sβ)

∀〈σ,k〉 ∈ π.A(j)(ϕ).Sβ.

(domain(σ) = χO∧∀σ′.(σ′ ≥ σ→ L ,k |= βσ′∧ 6 ∃l ∈N. 6 ∃σ′′.(σ′′ ≥ σ∧ (k < l ≤ j)∧L , l |=

βσ′′)))

4. (COMPLETENESS-π.A(j)(ϕ).Sβ)

∀σ.∀l ∈ N.(domain(σ) = χO ∧∃σ′.σ′ ≥ σ∧ L , l |= βσ′∧ 6 ∃k. 6 ∃σ′′.(σ′′ ≥ σ∧ l < k ≤ j∧

L ,k |= βσ′′)→ 〈σ, j〉 ∈ π.A(j)(ϕ).Sβ)

105

5. (SOUNDNESS-π.A(j)(ϕ).SR)

∀σ ∈ π.A(j)(ϕ).SR.(domain(σ) = χO∧∀σ′.(σ′ ≥ σ→ L , j |= (αS β)σ′))

6. (COMPLETENESS-π.A(j)(ϕ).SR)

∀σ.((domain(σ) = χO∧∃σ′.(σ′ ≥ σ∧L , j |= (αS β)σ′))→ σ ∈ π.A(j)(ϕ).SR)

Based on the definition of well-formed states we now introduce the readers with the notion

of what it means for a state to be “consistent” with respect to a given formula of form αS β, an

execution history L , and position in the history j ∈ Z.

Definition 39 (Strong Consistency). A state π = 〈A, i〉 (where i ∈N) is strongly consistent at j ∈ Z

(where j ≤ i) with respect to a history L and a formula ϕ if: (1) j < 0 or (2) for all ϕ̂ ∈ b-tsub(ϕ)

and for all 0≤ k ≤ j, Ψ(L ,π, ϕ̂,k) holds.

Definition 40 (Weak Consistency). A state π = 〈A, i〉 (where i ∈ N) is weakly consistent at j ∈ Z

(where j≤ i) with respect to a history L and a formula ϕ if: (1) j < 0 or (2) π is a strongly consis-

tent state at j− 1 with respect to L and ϕ, and additionally for all ϕ̂ ∈ b-s-tsub(ϕ), Ψ(L ,π, ϕ̂, j)

holds.

We now introduce how to calculate the size of a given state π with respect to a formula ϕ of

form ϕ1 S ϕ2 where B ∈ label(ϕ). According to this definition, we later show that when bts is

called for a ϕ with the above constraints, the size of the state remains finite (Lemma 44).

Definition 41 (Size of a state with respect to a buildable temporal formula). Given a history L , a

formula ϕ of form ϕ1 S ϕ2 such that /0 ⊢B ϕ1 S ϕ2 : χO where χO ⊆ f v(ϕ2), a state π = 〈A, i〉 where

i ∈ N, a position j ∈ Z such that j ≤ i and π is strongly consistent at j with respect to L and ϕ,

then the size of π at j with respect to ϕ, denoted by ϒ(π, j,ϕ), is defined as follows:

• 0 when j < 0

• ∑
0≤k≤ j

(|domain(π.A(k)(ϕ).Sα)|+ |domain(π.A(k)(ϕ).Sβ)|+ |π.A(k)(ϕ).SR|)

106

4.3.7 The Algorithm

The top level function of our algorithm is the checkPolicyCompliance function. Initially, it cal-

culates all the temporal sub-formula of the original policy ϕ for which it is necessary to build

summary structures. The set of all such formulas are stored in the set denoted by S. It then runs

an infinite loop which waits for states to be available. When a state is available, it analyzes it and

when a violation of the policy is encountered it reports a violation.

Algorithm 4.2 The definition of the checkPolicyCompliance function.
Input: A history L and a formula ϕ representing the policy.

1: S← b-tsub(ϕ);
2: i← 0;
3: State π← /0;
4: while (true) do
5: for (φ ∈ S in ascending formula size) do
6: π← bts(L , i,π,φ)
7: tVal← cc(L , i,π,ϕ)
8: if tVal = f alse then
9: REPORT VIOLATION

10: i← i+1

cc(L , i,π,ϕ) = return

{
true if ips(L , i,π,{•},ϕ2(~x)) 6= /0
f alse otherwise

Figure 4.5: The definition of the cc function

In each iteration of the infinite loop, the checkCompliance function first updates all the nec-

essary summary structures for all temporal formula with label B by calling the function bts. The

checkCompliance function loops through all the formulas in the set S in the ascending formula

size guaranteeing that for two formulas ϕ1 and ϕ2 where ϕ2 is a subformula of ϕ1, summary struc-

tures for ϕ2 be updated before summary structures for ϕ1 as updating the summary structure for

ϕ1 the ips function might require to access the summary structure for formula ϕ2. When the loop

terminates, it means all the summary structures for all temporal formulas of form αS β with label

107

B, has been updated. Then it calls the function cc which returns true when the current execution

history position satisfies the policy and returns false, otherwise. The body of the cc function calls

the ips function with the execution history L , the current position in the execution history i ∈ N,

the policy ϕ, the current state containing all the updated summary structures, and the identity input

substitution ({•}). When ips returns /0 it denotes that the policy is violated and the cc function in

turn returns false.

We now briefly discuss select cases of the ips function based on the structure of the input

formula ϕ. As mentioned before, when ϕ≡ p(t1, . . . , tn), we just call the sat function and the mode

checking guarantees that the precondition of sat is satisfied. When ϕ ≡ ⊤, the ips function return

/0 denoting there are no substitutions for which ⊥ holds true. Consider ϕ ≡ ϕ1∨ϕ2, in that case,

we call ips for ϕ1 and ϕ2 respectively and take union of both the results. In the case, ϕ ≡ αS β

and it has the label B, then ips access the associated summary structure and join it with the input

substitution σin, to get the substitutions which is consistent with σin. Finally, let us consider ϕ ≡

∀~x.(ϕ1(~x)→ ϕ2(~x)) for which ips is called first for ϕ1(~x) and using each of substitution returned by

ips as input substitution ips is called for ϕ2(~x). If one of the ips calls return /0, it signifies that there

exists one substitution which satisfy the antecedent but does not satisfy the consequent, which is

a violation according to the semantics and thus ips returns /0. However, if this is not the case that

means all substitutions that satisfy the antecedent also satisfy the consequent, then ips returns σin.

Now consider a very simple example policy ϕ ≡ send(p−1 , p−2 ,m
−)∧ contains(m+,q−, t−).

Let us assume according to the current execution we know that the following relations are true:

send(H1,Doc1,m1), send(H1,Doc2,m2), contains(m1,Alice,psych-notes), contains(m2,Alice,

X-Ray-report), contains(m3,Bob,PHI), contains(m4,John,blood-test), contains(m5,Eve,PHI).

Let us consider we make the following call to ips: ips(L , i,π,{•},send(p−1 , p−2 ,m
−)∧contains(m+,

q−, t−)). According to the definition of ips, ips is first called for send(p−1 , p−2 ,m
−) in the follow-

ing way: ips(L , i,π,{•},send(p−1 , p−2 ,m
−). This call to ips actually falls into the base case (for

predicates) and sat is in turn called in the following way: sat(L , i,send(p−1 , p−2 ,m
−),{•}). As the

precondition of sat is satisfied, it returns the following set of substitutions: Σ = {{p1 7→ H1, p2 7→

108

ips(L , i,π,σin,⊤) = {σin}
ips(L , i,π,σin,⊥) = /0
ips(L , i,π,σin, p(t1, . . . , tn)) = sat(L , i, p(t1, . . . , tn),σin)
ips(L , i,π,σin,ϕ1∨ϕ2) = ips(L , i,π,σin,ϕ1)

⋃
ips(L , i,π,σin,ϕ2)

ips(L , i,π,σin,ϕ1∧ϕ2) =
⋃

σc∈ips(L ,i,π,σin,ϕ1) ips(L , i,π,σc,ϕ2)

ips(L , i,π,σin,∃~x.ϕ(~x)) = ips(L , i,π,σin \{~x},ϕ(~x))[~x 7→ σin(~x)]

ips(L , i,π,σin,∀~x.(ϕ1(~x)→ ϕ2(~x))) =

let Σ1← ips(L , i,π,σin \{~x},ϕ1(~x))

return

{
/0 if ∃σc ∈ Σ1.(ips(L , i,π,σc,ϕ2(~x)) = /0)
{σin} otherwise

ips(L , i,π,σin,αS β) = σin 1 π.A(i)(αS β).SR if B ∈ label(αS β)

ips(L , i,π,σin,αS β) =

If B 6∈ label(αS β)
let
Sβ←{〈σ,k〉|k = max l.((0≤ l ≤ i)∧σ ∈ ips(L ,
l,π,σin,β))}
SR1 ←{σ|〈σ, i〉 ∈ Sβ}
SR2 ←{⊲⊳σα

• 6= empty|∃〈σβ,k〉 ∈ Sβ.k < i∧
∀l.(k < l ≤ i→ σα

l ∈ ips(L , l,π,σβ,ϕ1))}
return SR1 ∪SR2

Figure 4.6: The definition of the ips function.

Doc1,m 7→ m1},{p1 7→ H2, p2 7→ Doc2,m 7→ m2}}. According to definition of ips, for each σ ∈

Σ, ips is called in the following way: ips(L , i,π,σ,contains(m+,q−, t−)). We have two such

calls: ips(L , i,π,{p1 7→ H1, p2 7→ Doc1,m 7→ m1},contains(m+,q−, t−)) and ips(L , i,π,{p1 7→

H2, p2 7→ Doc2,m 7→ m2},contains(m+,q−, t−)). For each of the calls, the base case is applica-

ble. The first call to ips returns the following set of substitution: {{p1 7→ H1, p2 7→ Doc1,m 7→

m1,q 7→ Alice, t 7→ psych-notes}}. The second call to ips returns the following set of substitution:

{{p1 7→H2, p2 7→Doc2,m 7→m2,q 7→ Alice, t 7→ X-Ray-report}}. Thus, the set of substitutions re-

turned by the original call to ips, ips(L , i,π,{•},send(p−1 , p−2 ,m
−)∧contains(m+,q−, t−)), returns

{{p1 7→ H1, p2 7→ Doc1,m 7→ m1,q 7→ Alice, t 7→ psych-notes}}
⋃
{{p1 7→ H2, p2 7→ Doc2,m 7→

m2,q 7→ Alice, t 7→ X-Ray-report}}.

109

Complexity of the algorithm. We now show the runtime complexity of each iteration of the

checkPolicyCompliance function. In each iteration of the checkPolicyCompliance function, it first

calls bts for each temporal sub-formula with label B. Then the function checkPolicyCompliance

calls the cc function which in turn calls the ips function. Thus, the runtime complexity of one

iteration of the checkPolicyCompliance for a given policy ϕ is | ϕ | × complexity of bts function

+ complexity of ips function where | ϕ | represents the size of the policy which is the number of

sub-formulas. We first analyze the runtime complexity of the ips function. At each iteration of

ips, the number of satisfiable substitution for each predicate can be approximated by the number

of satisfiable substitution that appear in the execution history which we denote as | L |. Thus, the

worst case runtime complexity of ips occurs when all of the formulas are of form αS β in which

case the complexity is O (| L |O (|ϕ|)). Similarly, the complexity of the bts function is also O (|

L |O (|ϕ|)). Thus, the runtime complexity of each iteration of the checkPolicyCompliance function

is O (| L |O (|ϕ|)).

We now discuss the space complexity of our algorithm. We keep 3 structures for each temporal

subformula which has the label B. The number of such temporal subformula is bound by | ϕ |.

We also keep such structure for each position of the execution history which can be viewed as a

constant. For each structure the number of substitutions is a polynomial of | L |. Thus, we need

space polynomial to | ϕ | and | L |. Thus the complexity of the algorithm lies somewhere between

O (| L |O (|ϕ|)) and PSPACE of | ϕ | and | L |.

4.3.8 Correctness and Properties of the Algorithm

Now that we have described our algorithm and all the necessary notions, in this Section we first

show that our algorithm is sound and complete. Additionally, we also present other properties of

our algorithm.

The following Lemma states that each of the substitutions σ returned by the ips function is an

extension of the substitution σin, which ips takes as input. In short, σ ≥ σin for all σ returned by

ips. This Lemma is used by the next Lemma to show the soundness and correctness of both ips

110

and bts function.

Lemma 42 (ips is Extension). For all formulas ϕ, for all j ∈ N, for all histories L , for all states

π = (A, i) where i ∈ N, for all substitutions σin, for any χC and χF , such that: (1) χC,χF ⊢ ϕ : χO

where χO ⊆ f v(ϕ), (2) i ≥ j, (3) domain(σin) ⊇ χC ∪ χF , (4) π is strongly consistent at i with

respect to ϕ and L , if ips(L , j,π,σin,ϕ) = Σout, then for all σ ∈ Σout it holds that σ≥ σin.

Proof. Induction on the structure of ϕ.

Case ϕ≡⊤.

Then Σout = {σin}, and σin ≤ σin.

Case ϕ≡⊥.

Since Σout = /0, the statement is vacuously true.

Case ϕ≡ p(t1, . . . , tn).

Then Σout = sat(L , j, p(t1, . . . , tn),σin), and by Axiom 35, ∀σ ∈ sat(L , j, p(t1, . . . , tn),σin).σ≥

σin.

Case ϕ≡ ϕ1∨ϕ2.

Then Σout = ips(L , j,π,σin,ϕ1)∪ ips(L , j,π,σin,ϕ2). W.l.o.g., σ ∈ ips(L , j,π,σin,ϕ1). In-

spection of the applicable mode checking judgements verifies that the inductive hypothesis is

applicable, which yields that σ≥ σin.

Case ϕ≡ ϕ1∧ϕ2.

Then Σout =
⋃

σc∈ips(L ,i,π,σin,ϕ1) ips(L , i,π,σc,ϕ2). If σ∈Σout, then there exists σc ∈ ips(L , i,π,σin,ϕ1)

such that σ ∈ ips(L , i,π,σc,ϕ2) such inspection of the applicable mode checking judgements

verifies that the inductive hypothesis is applicable, which first yields that σc ≥ σin, and then

σ≥ σc. By transitivity of ≥, σ≥ σin.

Case ϕ≡ ∃~x.ϕ1(~x).

Then Σout = ips(L , i,π,σin \ {~x},ϕ(~x))[~x 7→ σin(~x)]. Then there exists σ′ ∈ ips(L , i,π,σin \

{~x},ϕ(~x)) such that σ = σ′[~x 7→ σin(~x)]. By inductive hypothesis, σ′≥ σin\{~x}. Then σ≥ σin.

111

Case ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x)).

Then Σout = {σin}, and σin ≤ σin.

Case ϕ≡ ϕ1 S ϕ2.

Then B ∈ label(ϕ) or B 6∈ label(ϕ).

Sub-Case B ∈ label(ϕ).

Then Σout = σin 1 π.A(i)(ϕ1 S ϕ2).SR, so by 1 properties ∀σ ∈ Σout.σ≥ σin.

Sub-Case B 6∈ label(ϕ).

Then σ ∈ SR1 or σ ∈ SR2 .

Sub-Sub-Case σ ∈ SR1 .

Then 〈σ, j〉 ∈ Sϕ2 , so σ ∈ ips(L , j,π,σin,ϕ2). By inductive hypothesis, σ≥ σin.

Sub-Sub-Case σ ∈ SR2 .

Then σ∈ Sϕ1 = {⊲⊳σ′• 6= empty|∃〈σβ,k〉 ∈ Sϕ2 .k< j∧∀l.(k< l≤ j→σ′l ∈ ips(L , l,π,

σβ,ϕ1))}. Then σ = ⊲⊳σ′• for some σ′• with a certain k, so ∀l.k < l ≤ j→ σ ≥ σ′l

by 1 properties. By inductive hypothesis, ∀l.k < l ≤ j → σ′l ≥ σβ, thus σ ≥ σβ.

Since 〈σβ,k〉 ∈ Sϕ2 , σβ ∈ ips(L ,k,π,σin,ϕ2). By inductive hypothesis, σβ ≥ σin. By

transitivity, σ≥ σin.

The following Lemma specifies that both bts and ips is sound and complete for well-moded

policies.

Lemma 43 (Correctness of bts and ips function). The functions bts : Log×N×State×Formula→

State and ips : Log×N× State× Substitution×Formula→ SubstitutionList, are correct if both

the following hold:

1. For all formula ϕ, for all histories L , for a specific i ∈ N, for all state π = 〈A, i〉 where ϕ is

of form αS β, /0 ⊢B ϕ : χO where χO ⊆ f v(ϕ), and π is weakly consistent at i with respect to

112

L and ϕ, if bts(L , i,π,ϕ) = π̂ then π̂ = 〈A′, i〉 is strongly consistent at i with respect to ϕ and

L .

2. For all formula ϕ, for all j ∈N, for all histories L , for all state π = 〈A, i〉 where i∈N, for all

substitution σin, for some given χC and χF , such that: (1) χC,χF ⊢ ϕ : χO where χO ⊆ f v(ϕ),

(2) i ≥ j, (3) domain(σin) ⊇ χC ∪χF , (4) π is strongly consistent at i with respect to ϕ and

L , if ips(L , j,π,σin,ϕ) = Σout then the following holds:

(a) (SOUNDNESS)

∀σ ∈ Σout.(domain(σ)⊇ (χO∪χC∪χF)∧∀σ′.(σ′ ≥ σ→ L , j |= ϕσ′))

(b) (COMPLETENESS)

∀σ.((σ≥ σin∧domain(σ)⊇ f v(ϕ)∧L , j |= ϕ.σ)→ (∃σo ∈ Σout.(σ≥ σo)))

Proof. Mutual induction on the structure of ϕ

Case ϕ≡⊤.

(Soundness)

(I) From definition of ips, ips(L , j,π,σin,⊤) = Σout = {σin}

(II) From premise 1 and [BASE-1], χC,χF ⊢ ⊤ : /0

(III) From premise 3, domain(σ)⊇ χC∪χF

From I, II, and III, for all σ ∈ Σout, domain(σ)⊇ χC∪χF ∪χO [χO = /0]

TS: ∀σ′.σ′ ≥ σ∧L , j |=⊤σ′

From the semantics, any σ′ ≥ σ trivially satisfy L , j |=⊤σ′.

(Completeness)

Let σo = σin. Then by premise σo ≤ σ, and by definition of ips σo ∈ Σout.

Case ϕ≡⊥.

(Soundness)

From definition of ips, ips(L , j,π,σin,⊥) = Σout = /0. Thus the statement is vacuously true.

113

(Completeness)

For any σ, ⊥σ =⊥. Since there are no L , j such that L , j |=⊥, the statement is vacuously

true.

Case ϕ≡ p(t1, . . . , tn).

(Soundness)

From definition of ips, ips(L , j,π,σin, p(t1, . . . , tn))=Σout = sat(L , j, p(t1, . . . , tn),σin). From

premise 1 and 3, pre-condition of the sat function is satisfied (Axiom 35). From Axiom 35,

for all σ∈ sat(L , j, p(t1, . . . , tn),σin), domain(σ) = χC∪χF ∪χO. Thus, we can write, for all

σ∈Σout, domain(σ)⊇ χC∪χF∪χO. It remains to show ∀σ′.σ′≥σ→ L , j |= p(t1, . . . , tn)σ′.

From Axiom 35, for all σ ∈ sat(L , j, p(t1, . . . , tn),σin), L , j |= p(t1, . . . , tn)σ. Note that, the

function sat returns grounding substitutions2 for p(t1, . . . , tn). Thus, by Corollary 23 for all

σ′ ≥ σ where σ ∈ sat(L , j, p(t1, . . . , tn),σin), L , j |= p(t1, . . . , tn)σ′ holds.

(Completeness)

Let V = f v(p(t1, . . . , tn)). By the semantics of predicates, it must be that domain(σ) ⊇ V .

Then by premise and Lemma 22, L , j |= p(t1, . . . , tn)[σ ↓V]. Let σo =σ ↓ (V ∪domain(σin)).

Since σin ≤ σ by premise, σ ↓ V ≤ σo ≤ σ. By Corollary 23, it follows that L , j |=

p(t1, . . . , tn)σo.

Case ϕ≡ ϕ1∨ϕ2.

(Soundness)

Let Σ1← ips(L , j,π,σin,ϕ1) and Σ2← ips(L , j,π,σin,ϕ2). From definition of ips, ips(L , j,π,

σin,ϕ1 ∨ϕ2) = Σout = Σ1 ∪Σ2. Then σ ∈ Σ1 or σ ∈ Σ2. W.l.o.g., σ ∈ Σ1. By inspection

of disjunction judgment judgements (and Lemmas 28, 32, and 34), χC,χF ⊢ ϕ1 : χ1. By

I.H., domain(σ) ⊇ (χC ∪χF ∪χ1) and ∀σ′.σ′ ≥ σ =⇒ L , j |= ϕ1σ′. Since χO = χ1∩χ2,

domain(σ) ⊇ (χC ∪ χF ∪ χ1) ⊇ (χC ∪ χF ∪ χO). Further, by semantics of ∨, ∀σ′′.L, j |=

2Substitutions for all free variables

114

ϕ1σ′′ =⇒ L, j |= (ϕ1∨ϕ2)σ′′. Thus, ∀σ′.σ′ ≥ σ =⇒ L , j |= (ϕ1∨ϕ2)σ′, which concludes

soundness.

(Completeness)

If L , j |= (ϕ1∨ϕ2)σ, then L , j |= ϕ1σ or L , j |= ϕ2σ. W.l.o.g., L , j |= ϕ1σ. Since f v(ϕ1)⊆

f v(ϕ1∨ϕ2), by I.H. there exists σo ∈ ips(L , j,η,σin,ϕ1) such that σo ≤ σ. By definition of

ips, σo ∈ Σout.

Case ϕ≡ ϕ1∧ϕ2.

(Soundness)

From the definition of ips, ips(L , j,π,σin,ϕ1 ∧ ϕ2) =
⋃

σc∈ips(L , j,π,σin,ϕ1)

ips(L , j,π,σc,ϕ1).

Take an arbitrary σ∈ Σout. Then there exists σc ∈ ips(L , j,π,σin,ϕ1) such that σ∈ ips(L , j,

π,σc,ϕ2). By inspection of the applicable mode checking judgements (and Lemmas 32, 28),

the inductive hypothesis is applicable and yields domain(σc)⊇ χC∪χF ∪χ1. Now, with the

additional help of Lemma 34 the inductive hypothesis yields domain(σ)⊇ χC∪χF∪χ1∪χ2.

Since χO = χ1∪χ2, domain(σ)⊇ χC∪χF ∪χO.

To Show: ∀σ′.(σ′ ≥ σ→ (L , j |= (ϕ1∧ϕ2)σ′)). Take any arbitrary σ′ such that σ′ ≥ σ. By

inductive hypothesis on ϕ2 we have L , j |= ϕ2σ′. Further σ′ ≥ σc, since σ≥ σc by Lemma

42. Then we can apply the inductive hypothesis and get L , j |= ϕ1σ′. From the semantics of

∧, we have L , j |= (ϕ1∧ϕ2)σ′.

(Completeness)

If L , j |= (ϕ1∧ϕ2)σ, then L , j |= ϕ1σ and L , j |= ϕ2σ. Since f v(ϕi)⊆ f v(ϕ1∧ϕ2), the I.H.

is applicable and guarantees ∃σi ∈ ips(L , j,π,σin,ϕi).σi ≤ σ. By Lemma 42, also σi ≥ σin,

so domain(σi) ⊇ χC ∪ χF . Let σ′2 = σ ↓ domain(σ1)∪ domain(σ2)∪ f v(ϕ2), which is a

prefix of σ and domain(σ′2) = domain(σ1)∪ domain(σ2)∪ f v(ϕ2), since domain(σi) ⊆

domain(σ) and domain(σ) ⊇ f v(ϕ) ⊇ f v(ϕ2). So σi ≤ σ′2 ≤ σ. By inductive hypothesis

for soundness, since σ′2 ≥ σ2, L , j |= ϕ2σ′2. Thus we can apply the inductive hypothesis

115

with σin = σ1 and get ∃σo ∈ ips(L , j,π,σ1,ϕ2).σo ≤ σ′2. By definition of ips σo ∈ Σout, and

by transitivity σo ≤ σ.

Case ϕ≡ ∃~x.ϕ1(~x).

(Soundness)

Let σ∈Σout. By definition, ips(L , j,π,σin,∃~x.ϕ(~x))= ips(L , j,π,σin\{~x},ϕ(~x))[~x 7→σin(~x)].

Thus there exists σ1 ∈ ips(L , j,π,σin \{~x},ϕ(~x)) such that σ = σ1[~x 7→ σin(~x)]. By inspec-

tion of the mode checking judgements, we can apply the inductive hypothesis, which yields

domain(σ1)⊇ χI ∪χF ∪χ1 and ∀σ′′ ≥ σ1.L , j |= ϕ1(~x)σ′′.

Let X = domain(σin)∩{~x} and X ′= {~x}\X = {~x}\domain(σin). Then we get domain(σ)=

domain(σ1[~x 7→ σin(~x)]) = (domain(σ1)∪X)\X ′ ⊇ (χC∪χF ∪χ1∪X)\X ′. Since domain

(σin)⊇ χC∪χF , χC \X ′= χC and χF \X ′= χF . Thus domain(σ)⊇ χC∪χF∪X∪(χ1\X ′)⊇

χC∪χF ∪ (χ1 \{~x}) = χC∪χF ∪χO.

Now take an arbitrary σ′ ≥ σ. Then σ′ = σ+σ+ for some σ+, so σ′ = σ1[~x 7→ σin(~x)]+σ+.

Then σ′′=σ′[~x 7→σ1(~x)] =σ1+σ+[~x 7→σ1(~x)]≥σ1. Thus, L , j |=ϕ1(~x)σ′′, or equivalently

L , j |= ϕ1(~x)σ′[~x 7→~t]. Thus, L , j |= ∃~x.ϕ1(~x)σ′.

(Completeness)

L , j |= (∃~x.ϕ1(~x))σ if and only if L , j |= ∃~x.(ϕ1(~x)(σ\~x)) if and only if there exists~t such

that L , j |= ϕ1(~t)(σ \~x), which is equivalent to L , j |= ϕ1(~x)(σ[~x 7→~t]). By σin ≤ σ and

judgment judgements f v(ϕ1(~x))⊆ domain(σin)∪{~x}⊆ domain(σ[~x 7→~t]). Also σin\{~x}≤

σ[~x 7→~t]. Thus, by inductive hypothesis, ∃σ′ ∈ ips(L , j,π,σin \ {~x},ϕ1(~x)).σ′ ≤ σ[~x 7→~t].

Let σo = σ′[~x 7→ σin(~x)]. This is a prefix of σ (if σin maps~x, then σ maps to the same values

since σin ≤ σ) and by definition σo ∈ Σout.

Case ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x)).

(Soundness)

Consider, ips(L , j,π,σin,∀~x.(ϕ1(~x)→ϕ2(~x))) 6= /0. In which case, ips(L , j,π,σin,∀~x.(ϕ1(~x)→

116

ϕ2(~x))) = {σin}. Consider any σ1 such that σ1 ∈ ips(L , j,π,σin,ϕ1(~x)) and σ2 such that

σ2 ∈ ips(L , j,π,σ1,ϕ1(~x)). Here, σ1 6= /0 and σ2 6= /0. From premise 3, we know domain(σin)⊇

χC ∪ χF . We also know σin ∈ ips(L , j,π,σin,∀~x.(ϕ1(~x) → ϕ2(~x))). From mode check-

ing judgements we know, χO = /0. Thus, for σ ∈ ips(L , j,π,σin,∀~x.(ϕ1(~x) → ϕ2(~x))),

domain(σ)⊇ χC∪χF ∪χO.

To Show: ∀σ′.(σ′ ≥ σ→ (L , j |= (∀~x.(ϕ1(~x)→ ϕ2(~x)))σ′)). We know from the definition

σ = σin as ips(L , j,π,σin,∀~x.(ϕ1(~x)→ ϕ2(~x))) 6= /0. Take any arbitrary σ′ such that σ′ ≥

σ = σin.

Inspection of the applicable mode checking judgements reveals that in all cases f v(φ2(~x))⊆

χC ∪ χF ∪ χ1 (with transitivity and additivity of ⊆). From premise (1) and Lemma 25

or Lemma 30, χ1 ⊆ f v(φ1(~x)). Thus f v(φ2(~x)) ⊆ χC ∪ χF ∪ f v(φ1(~x)). Then always

f v(φ1(~x)) ⊆ χC ∪ χF ∪{~x}, so that f v(φ2(~x)) ⊆ χC ∪ χF ∪{~x}. Finally, by premise 3 we

know domain(σin)⊇ (χC∪χF), which means: (C-i) f v(φ2(~x))⊆ domain(σin)∪{~x}.

L , j |= (∀~x.(ϕ1(~x)→ ϕ2(~x)))σ′ is equivalent to ∀~t.(L , j |= (ϕ1(~x))(σ′[~x 7→~t])→ L , j |=

(ϕ2(~x))(σ′[~x 7→~t])). Take any arbitrary~t such that L , j |= (ϕ1(~x))(σ′[~x 7→~t]).

[Z] We then have to show that: L , j |= (ϕ2(~x))(σ′[~x 7→~t]). By I.H. (Completeness), ∃σ1 ∈

ips(L , j,π,σin\{~x},ϕ1(~x)).σ1≤ σ′[~x 7→~t]. By inspection of the mode checking judgements

and I.H. (Soundness), domain(σ1)⊇ domain(σin)∪{~x}. From construction, ips(L , j,π,σ1,

ϕ2(~x)) 6= /0. Take an arbitrary σ2 from this set. By I.H. (Soundness), (C-ii) σ2 ≥ σ1∧L , j |=

ϕ2(~x)σ2.

Now, we will show that: ∃σm
2 ∈ ips(L , j,π,σ1,ϕ2(~x)).(σ2≥σm

2 ∧domain(σm
2)⊆ domain(σin)

∪{~x}∧L , j |=ϕ2(~x)σm
2) [T S]. (A-II) L , j |=ϕ2(~x)σ2 [From (C-ii)]. (A-III) L , j |=ϕ2(~x)(σ2 ↓

f v(ϕ2(~x))) [From Lemma 22 + A-II]. (A-IV) ∀σ,σ′,ϕ.((domain(σ)= f v(ϕ)∧domain(σ)∩

domain(σ′) = /0∧L , j |= ϕσ)→ (L , j |= ϕ[σ+σ′])) [From Lemma 22]. (A-V) f v(ϕ2(~x))⊆

domain(σin)∪{~x} [From (C-i)]. It follows that: ∃Y.(f v(ϕ2(~x))∪Y) = domain(σin)∪{~x}.

(A-VI) L , j |= ϕ2(~x)(σ2 ↓ (domain(σin)∪ {~x})). [From (A-III), (A-IV), (A-V)] (X) By

117

I.H. (Completeness), ∃σm
2 ≤ (σ2 ↓ (domain(σin)∪{~x})).σm

2 ∈ ips(L , j,π,σ1,ϕ2(~x)) By I.H.

(Soundness), L , j |= ϕ2(~x)σm
2 [As σm

2 ≥ σm
2] Thus, we have shown the third conjunct of

T S to be true. (Y) We know σm
2 ≤ σ2 ↓ (domain(σin)∪{~x}) [From (X)] It implies that

σm
2 ≤σ2. Thus, we have shown the first conjunct of T S to be true. From (Y), domain(σm

2)⊆

domain(σ2 ↓ (domain(σin) ∪ {~x})) = domain(σin) ∪ {~x} [From (A-V)]. Thus, we have

shown the second conjunct of T S to be true. This implies that we have shown T S to

be true.

Now, if we can show that σ′[~x 7→~t] ≥ σm
2 then from the third conjunct of T S and I.H.

(Soundness), we can show L , j |= (ϕ2(~x))(σ′[~x 7→~t]) to hold. σ′ ≥ σm
2 [~x 7→~t] is equivalent

to the following:

[U] ∀v ∈ domain(σm
2).σ

m
2 (v) = σ′[~x 7→~t](v).

From second conjunct of T S , domain(σm
2)⊆ domain(σin)∪{~x}. From this and U, we can

say that for all v ∈ domain(σm
2), either (E-1) v ∈ ((domain(σin) \ {~x})∩ domain(σm

2)) or

(E-2) v ∈ ({~x}∩domain(σm
2)) holds.

(E-1) v ∈ ((domain(σin)\{~x})∩domain(σm
2)). We know σ′ ≥ σin. It implies that σ′(v) =

σin(v). We also have domain(σ′)⊇ domain(σin).

Consider v 6∈ {~x}, so [R-1] σ′[~x 7→~t](v) = σin(v). We know σ2 ≥ σ1 ≥ σin \ {~x}. We

can write σ2 ≥ σin \ {~x}. This is equivalent to ∀v1 ∈ domain(σin) \ {~x}.σ2(v1) = σin \

{~x}(v1). We also know from the first conjunct of T S that σ2 ≥ σm
2 . It is equivalent to

∀v2 ∈ domain(σm
2).σ2(v2) = σm

2 (v2). As v ∈ ((domain(σin) \ {~x})∩ domain(σm
2)), v ∈

domain(σin) \ {~x} and v ∈ domain(σm
2). It implies that σm

2 (v) = σ2(v) = σin \ {~x}(v). As

v 6∈ {~x}, it implies that σm
2 (v) = σin(v). From above and R-1, we have σm

2 (v) = σ′[~x 7→~t](v).

(E-2) v ∈ ({~x}∩domain(σm
2)) We have to show that σm

2 (v) = σ′[~x 7→~t](v). We know σ2 ≥

σm
2 which implies that ∀v1 ∈ domain(σm

2).σ2(v1) = σm
2 (v1). As σm

2 ∈ ips(L , j,π,σ1,ϕ2(~x)),

we have σm
2 ≥ σ1. It implies that ∀v2 ∈ domain(σ1).σm

2 (v2) = σ1(v2). We also know σ′[~x 7→

~t] ≥ σ1 which implies that ∀v3 ∈ domain(σ1).σ1(v3) = σ′[~x 7→~t](v3). By inspecting the

118

mode checking judgements we know {~x} ⊆ χ1. Thus, we know domain(σ1) ⊆ χC ∪χF ∪

{~x}. As v ∈ {~x}, it implies that v ∈ domain(σ1). Thus, we have ∀v ∈ {~x}.σm
2 (v) = σ1(v) =

σ′[~x 7→~t](v).

(Completeness)

Trivially σo = σin.

Case ϕ≡ ϕ1 S ϕ2.

To show (1):

To show that the current state π̂ is strongly consistent with respect to i and ϕ, we have to

show according to the Definition 38 that all the substitutions in the structures satisfies the

corresponding formula and the structures contains all the possible substitutions. This can be

shown similarly as the soundness and completeness argument of ips for formulas of form αS β

where B 6∈ label(αS β) as the structure updating operations are similar to the calculation of

the substitutions by ips.

(Soundness)

Sub-Case B ∈ label(ϕ)

From the definition of ips, we get ips(L , j,π,σin,ϕ1 S ϕ2) = σin 1 π.A(j)(αS β).SR.

We can say that for all σ ∈ ips(L , j,π,σin,ϕ1 S ϕ2) where σ 6= /0, there exists a σ1 ∈

π.A(j)(αS β).SR such that σ=σin 1σ1. We have to first show that for all σ∈ ips(L , j,π,

σin,ϕ1 S ϕ2), domain(σ) ⊇ χC ∪χF ∪χO. From premise 3, Lemma 43 (1), and Defini-

tion 39, domain(σin)⊇ χC∪χF and domain(σ1)⊇ χO. As σ = σin 1 σ1 and σ 6= /0, we

can see that domain(σ)⊇ χC∪χF ∪χO.

To Show: ∀σ′.(σ′ ≥ σ→ (L , j |= (ϕ1 S ϕ2)σ′))

Take any arbitrary, σ′ such that σ′≥σ. As σ=σin 1σ1 and σ 6= /0, we can write σ′≥σ1.

From Lemma 43 (1) and Definition 39, we know that ∀σ′1.σ
′
1≥σ1→ L , j |=(ϕ1 S ϕ2)σ′1.

It follows that L , j |= (ϕ1 S ϕ2)σ′, completing the proof.

119

Sub-Case B 6∈ label(ϕ)

Take an arbitrary σ ∈ Σout. By definition, Σout = ips(L , j,π,σin,ϕ1 S ϕ2) = SR1 ∪ SR2 .

Thus, σ ∈ SR1 or σ ∈ SR2 .

Sub-Sub-Case σ ∈ SR1

From definition of SR1 , we know SR1 = ips(L , j,π,σin,ϕ2), so σ∈ ips(L , j,π,σin,ϕ2).

We first show that domain(σ) ⊇ (χC ∪ χF ∪ χO). From premise 3, we know that

domain(σin) ⊇ (χC ∪ χF). From the mode checking judgements for S and I.H.,

domain(σ)⊇ (χC∪χF∪χ1). Since χO = χ1 by the applicable judgements, domain(

σ)⊇ (χC∪χF ∪χO).

To Show: ∀σ′.(σ′ ≥ σ→ (L , j |= (ϕ1 S ϕ2)σ′)). Take an arbitrary σ′ such that σ′ ≥

σ. From the semantics of S we know that, L , j |= (ϕ1 S ϕ2)σ′ if and only if there

exists k ∈ N and k ≤ j such that L ,k |= ϕ2σ′ and for all l ∈ N such that k < l ≤ j,

it implies that L , l |= ϕ1σ′ holds. So if L , j |= ϕ2σ′ holds, then L , j |= (ϕ1 S ϕ2)σ′

holds. Now since σ ∈ ips(L , j,π,σin,ϕ2) and σ′ ≥ σ, by inductive hypothesis it

follows that L , j |= (ϕ2)σ′. From this, it follows that L , j |= (ϕ1 S ϕ2)σ′.

Sub-Sub-Case σ ∈ SR2

Then there exist 〈σβ,k〉 ∈ Sϕ2 and σα
• , such that ⊲⊳σα

• = σ and k < j and for all

l with k < l ≤ j we have σα
l ∈ ips(L , l,π,σβ,ϕ1). For brevity, from here on we

assume l is sufficiently restricted to the domain of σα
• . By construction, σβ ∈

ips(L ,k,π,σin,ϕ2). By inductive hypothesis, domain(σβ)⊇ χC∪χF ∪χ1, and since

χO = χ1, domain(σβ) ⊇ χC ∪ χF ∪ χO. Now by Lemma 42, ∀l.σα
l ≥ σβ. Thus,

∀l.domain(σα
l)⊇ χC∪χF ∪χO, and so domain(σ)⊇ χC∪χF ∪χO.

To Show: ∀σ′.(σ′ ≥ σ→ (L , j |= (ϕ1 S ϕ2)σ′)). Take any arbitrary, σ′ such that

σ′ ≥ σ. Then σ′ ≥ σβ, so by inductive hypothesis L ,k |= ϕ2σ′. Also ∀l.σ′ ≥ σα
l ,

so that again by inductive hypothesis L , l |= ϕ1σ′. The semantics of S is L , i |=

(αS β)σ′ ⇔ ∃m ∈ N.(m ≤ i∧ L ,m |= βσ′ ∧∀l ∈ N.((m < l ≤ i)→ L , i |= ασ′)).

Instantiation of m with k and i with j lets us conclude.

120

(Completeness)

L , j |= (ϕ1 S ϕ2)σ if and only if L , j |= (ϕ1σ)S (ϕ2σ) if and only if there exists k ≤ j such

that L ,k |= ϕ2σ and for all l, where k < l ≤ j, L , l |= ϕ1σ. Let k be maximal.

Sub-Case B ∈ label(ϕ1 S ϕ2)

Since B ∈ label(ϕ1 S ϕ2), there exist χB
C , χB

O with domain(χB
O)⊆ f v(ϕ1 S ϕ2), χB

1 = χB
O

and χB
2 , such that /0 ⊢B ϕ1 : χB

1 , χB
1 ⊢B ϕ2 : χB

2 and thus χB
C ⊢B ϕ1 S ϕ2 : χB

O. Let σ′ = σ ↓

χB
O. Note that dom(σ′) = χB

O, since domain(σ)⊇ f v(ϕ1 S ϕ2). Since π is strongly con-

sistent at i and j ≤ i, π is well-formed at j with respect to ϕ1 S ϕ2 (Ψ(L ,π,ϕ1 S ϕ2, j)).

So, by Definition 38(6) σ′ ∈ π.A(j)(ϕ1 S ϕ2).SR. Let σo = σin 1 σ′. Note that σo 6= /0,

because σ′ is a prefix of σ, which itself is an extension of σin. Thus σo ∈ Σout. By the

same arguments also σo ≤ σ.

Sub-Case B 6∈ label(ϕ1 S ϕ2)

Sub-Sub-Case k = j.

Since f v(ϕ2)⊆ f v(ϕ1 S ϕ2), by inductive hypothesis ∃σo ∈ ips(L , j,π,σin,ϕ2).σo≤

σ. By construction, 〈σo, j〉 in Sϕ2 , thus σo ∈ SR1 and so σo ∈ Σout.

Sub-Sub-Case k < j.

Then analogous to the previous case ∃σ2 ∈ ips(L ,k,π,σin,ϕ2).σ2 ≤ σ. Also, for all

l > k σ2 6∈ ips(L , l,π,σin,ϕ2), or k would not be maximal for σ. Thus, 〈σ2,k〉 ∈ Sϕ2 .

By inspection of the mode checking judgements (and lemmas) and soundness,

domain(σ2)⊇ χC∪χO∪χ1. Thus, by I.H. for all l with k< l≤ j, ∃σα
l ∈ ips(L , l,π,σ2,

ϕ1).σα
l ≤ σ.

Since all σα
l are ≤ σ, the join σo = ⊲⊳σα

• exists and σo ≤ σ. Furthermore, by

construction σo ∈ SR2 and so σo ∈ Σout.

The part (1) of the following Lemma specifies that when we call the bts function for a well-

moded formula ϕ where B ∈ label(ϕ), for a specific execution history L , a position in the history

121

i, and for a state π which is weakly consistent at position i with respect to ϕ and L , then the state

size p̂i returned by bts is finite with respect to all temporal sub-formulas of ϕ. The part (2) of the

following Lemma specifies that when we call the ips function for a well-moded formula ϕ, for a

specific execution history L , a position in the history i, and for a state π which is strongly consistent

at position i with respect to ϕ and L , then the number of substitutions returned by ips is finite. The

following Lemma is used by the Lemma 45 to show that both call to ips and bts terminates.

Lemma 44 (Finite substitutions). 1. For all i ∈ N, for all formula ϕ of form ϕ1 S ϕ2 such that

B∈ label(ϕ1 S ϕ2), for all state π = 〈A, i〉 such that π is weakly consistent at i with respect to

L and ϕ, if

(
∑

ϕ̂∈b-s-tsub(ϕ)
ϒ(π, i, ϕ̂)

)
+ϒ(π, i−1,ϕ) is finite then ∑

ϕ̂∈b-tsub(ϕ)
ϒ(π̂, i, ϕ̂) is finite where

π̂ = bts(L , i,π,ϕ1 S ϕ2).

2. For all formula ϕ, for all j ∈N, for all histories L , for all state π = (A, i) where i∈N, for all

substitution σin, for some given χC and χF , such that: (1) χC,χF ⊢ ϕ : χO where χO ⊆ f v(ϕ),

(2) i ≥ j, (3) domain(σin) ⊇ χC ∪χF , (4) π is strongly consistent at i with respect to ϕ and

L , if ips(L , j,π,σin,ϕ) = Σout then |Σout| is finite.

Proof. Mutual induction on the structure of ϕ.

Case ϕ≡⊤.

According to the definition of ips, ips(L , j,π,σin,⊤) = Σout = {σin}. Thus, |Σout| = 1 and is

thus finite.

Case ϕ≡⊥.

According to the definition of ips, ips(L , j,π,σin,⊥) = Σout = /0. Thus, |Σout| = 0 and is thus

finite.

Case ϕ≡ p(t1, . . . , tn).

According to the definition of ips, ips(L , j,π,σin, p(t1, . . . , tn))=Σout = sat(L , j, p(t1, . . . , tn),σin).

From premise (1) we can say the pre-condition of the sat function (Axiom 35) is satisfied.

From Axiom 35, we can say that |Σout| is finite.

122

Case ϕ≡ ϕ1∨ϕ2.

Let Σ1← ips(L , j,π,σin,ϕ1) and Σ2← ips(L , j,π,σin,ϕ2). According to the definition of ips,

ips(L , j,π,ϕ1 ∨ ϕ2) = Σout = Σ1 ∪ Σ2. From premise 1 and inspecting the Mode checking

judgements, we can say the inductive hypothesis is applicable. By inductive hypothesis, |Σ1|

and |Σ2| are both finite. Thus, |Σout| is finite.

Case ϕ≡ ϕ1∧ϕ2.

From the definition of ips, ips(L , i,π,σin,ϕ1∧ϕ2)=Σout =
⋃

σc∈ips(L ,i,π,σin,ϕ1) ips(L , i,π,σc,ϕ2).

From premise 1 and inspecting the mode checking judgements, we see that the inductive hy-

pothesis is applicable to ips(L , i,π,σin,ϕ1). Let Σ1 ← ips(L , i,π,σin,ϕ1). By inductive hy-

pothesis, |Σ1| is finite. For all σc ∈ Σ1, ips(L , j,π,σc,ϕ2) is called. We also see that from

premise 1 and inspecting the mode checking judgements, the inductive hypothesis is applica-

ble to ips(L , j,π,σc,ϕ2) = Σ2 for some σc ∈ Σ1. By inductive hypothesis, each such |Σ2| is

finite from which it follows that |Σout| is finite.

Case ϕ≡ ∃~x.ϕ(~x).

Let Σ1← ips(L , j,π,σin\{~x},∃~x.ϕ(~x)) According to the definition of ips, ips(L , j,π,σin,∃~x.ϕ

(~x)) = Σout = Σ1[~x 7→ σin(~x)]. From premise 1 and inspecting mode checking judgements, we

see the induction hypothesis is applicable. By inductive hypothesis, |Σ1| is finite from which

it follows that |Σout| is finite.

Case ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x)).

Let Σout← ips(L , j,π,σin,∀~x.(ϕ1(~x)→ ϕ2(~x))). Σout can be either /0 or {σin} according to the

definition of ips. In both cases, |Σout| is finite.

Case ϕ≡ ϕ1 S ϕ2 and B ∈ label(ϕ)

Sub-Case To show (1):

123

Given

(
∑

ϕ̂∈b-s-tsub(ϕ)
ϒ(π, i, ϕ̂)

)
+ ϒ(π, i− 1,ϕ) is finite to show that ∑

ϕ̂∈b-tsub(ϕ)
ϒ(π̂, i, ϕ̂) is fi-

nite, it is sufficient to show that ∑
ϕ̂∈b-tsub(ϕ)

ϒ(π̂, i, ϕ̂)−
(

∑
ϕ̂∈b-s-tsub(ϕ)

ϒ(π, i, ϕ̂)
)
−ϒ(π, i− 1,ϕ)

is finite. From the definition of ϒ (Definition 41), we know that: ∑
ϕ̂∈b-tsub(ϕ)

ϒ(π̂, i, ϕ̂)−
(

∑
ϕ̂∈b-s-tsub(ϕ)

ϒ(π, i, ϕ̂)
)
−ϒ(π, i−1,ϕ)= (|domain(π.A(i)(ϕ).Sα)|+ |domain(π.A(i)(ϕ).Sβ)|+

|π.A(i)(ϕ).SR|). Thus, it is sufficient to show that (|domain(π.A(i)(ϕ).Sα)|+ |domain(π.A(i)

(ϕ).Sβ)|+ |π.A(i)(ϕ).SR|) is finite. We will show that the following are all finite: |domain(π.

A(i)(ϕ).Sα)|, |domain(π.A(i)(ϕ).Sβ)|, and |π.A(i)(ϕ).SR|.

By construction, |domain(π.A(i)(ϕ).Sβ)| ≤ |domain(π.A(i−1)(ϕ).Sβ)|× |Σβ|. From def-

inition of Σβ, we know that Σβ ← ips(L , i,π,{•},ϕ2). From premise and consulting the

applicable mode checking judgements (and Lemma 28, 34), we see that the inductive hy-

pothesis of (2) is applicable. By inductive hypothesis, |Σβ| is finite and let us assume it

is m1. From the premise, we know that |domain(π.A(i− 1)(ϕ).Sβ)| is finite and let us

assume it is m2. Thus, |domain(π.A(i)(ϕ).Sβ)| ≤ m1×m2, which is also finite.

Again by construction, |domain(π.A(i)(ϕ).Sα)| ≤ |Σα|×|domain(π.A(i−1)(ϕ).Sα)|. From

premise, we know that |domain(π.A(i−1)(ϕ).Sα)| is finite and thus to show |domain(π.A(i)

(ϕ).Sα)| is finite it is sufficient to show that |Σα| is finite.

We will now show that |Σα| is finite. To construct Σα, in the worst case, for all 〈σ,k〉 pairs

in π.A(i)(ϕ).Sβ, ips(L , i,π,σ,ϕ1) is called. From the premise and consulting the applica-

ble mode checking judgements, we see that the inductive hypothesis of (2) is applicable.

By inductive hypothesis of (2), each call to ips(L , i,π,σ,ϕ1) returns a finite set of substi-

tutions. Let us assume the maximum cardinality of, all the sets of substitutions returned

by the calls to ips, is m3. Thus by construction, |Σα| ≤ m1×m2×m3, which is finite. It

follows that |domain(π.A(i)(ϕ).Sα)| is finite.

From construction of π.A(i)(ϕ).SR, we know that π.A(i)(ϕ).SR = SR1∪SR2 . Thus, |π.A(i)(

ϕ).SR| ≤ |SR1|+ |SR2|. We will show that |SR1| and |SR2| are both finite, concluding our

124

proof.

From construction, |SR1| ≤ |domain(π.A(i)(ϕ).Sβ)|. As |domain(π.A(i)(ϕ).Sβ)| is finite

(shown above) and |domain(π.A(i)(ϕ).Sβ)| ≤ m1×m2, we can write |SR1| ≤ m1×m2,

which is finite.

From construction, |SR2| ≤ |domain(π.A(i)(ϕ).Sβ)|× |domain(π.A(i)(ϕ).Sα)|. As shown

above, |domain(π.A(i)(ϕ).Sβ)| and |domain(π.A(i)(ϕ).Sβ)| are both finite. This con-

cludes our proof that |SR2| is finite and in turn |π.A(i)(ϕ).SR| is finite.

Sub-Case To show (2):

Let Σ1← π.A(i)(ϕ1 S ϕ2).SR. From the definition of ips, ips(L , i,π,σin,ϕ1 S ϕ2) = Σout =

σin 1 π.A(i)(ϕ1 S ϕ2).SR. By inductive hypothesis of (1), |Σ1| is finite. It follows that |Σout|

is finite.

Case ϕ≡ ϕ1 S ϕ2 and B 6∈ label(ϕ)

According to the definition of ips, ips(L , j,π,ϕ1 S ϕ2) = Σout = SR1 ∪ SR2 . It is sufficient to

show that |SR1| and |SR2| are both finite.

We will first show that by inductive hypothesis, |Sβ| is finite. Let us consider, for all l where

0≤ l ≤ j, m= max|Σ1|.Σ1← ips(L , l,π,σin,ϕ2). The maximum size of |Sβ| can be (j+1)×m

by construction. By the inductive hypothesis, m is finite. As j ∈ N is finite, it follows that |Sβ|

is finite.

By construction, as SR1 ⊆ Sβ, |SR1| ≤ |Sβ| and it follows that |SR1| is finite.

By construction of SR2 , for each 〈σβ,k〉 ∈ Sβ where k 6= j, ips(L ,q,π,σβ,ϕ1) is called for all

q such that k < q≤ j. By inductive hypothesis, |ips(L ,q,π,σβ,ϕ1)| is finite and let us say for

all q such that k < q ≤ j, m1 = max|Σ2|.Σ2← ips(L ,q,π,σβ,ϕ1). By construction (⊲⊳ of all

substitutions for all positions q), the maximum size of |SR2| will be less than (j + 1)×m×

m(j+1)
1 , which is finite.

Thus, it follows that |Σout| is finite.

125

The following Lemma specifies that calls to ips and bts terminates.

Lemma 45 (Termination). For all formula ϕ, the following holds:

1. For all L , for all j ∈ N, for all substitution σin, for all state π = 〈A, i〉 where i ∈ N, for some

given χC,χF such that: (1) χC,χF ⊢ ϕ : χO where χO ⊆ f v(ϕ), (2) domain(σin) ⊇ χC ∪χF ,

(3) π is strongly consistent at i with respect to ϕ and L , then ips(L , j,π,σin,ϕ) terminates.

2. For all L , for all i ∈ N, for all state π = 〈A, i〉 such that ϕ ≡ ϕ1 S ϕ2, /0 ⊢B ϕ : χO, and π is

weakly consistent at i with respect to ϕ and L , then bts(L , i,π,ϕ) terminates.

Proof. Mutual induction on the structure of ϕ.

Case ϕ≡⊤.

ips(L , j,π,σin,⊤) terminates trivially.

Case ϕ≡⊥.

ips(L , j,π,σin,⊥) terminates trivially.

Case ϕ≡ p(t1, . . . , tn).

According to the definition of ips, ips(L , j,π,σin, p(t1, . . . , tn))=Σout = sat(L , j, p(t1, . . . , tn),σin).

From premise (1) we can say the pre-condition of the sat function (Axiom 35) is satisfied.

From Axiom 35, we can say that sat terminates and from it follows that ips(L , j,π,σin, p(t1, . . . , tn))

terminates.

Case ϕ≡ ϕ1∨ϕ2.

According to the definition of, ips(L , j,π,σin,ϕ1∨ϕ2)= ips(L , j,π,σin,ϕ1)∪ ips(L , j,π,σin,ϕ2).

From premise 1 and inspecting the mode checking judgements, we can say the inductive hy-

pothesis is applicable. By inductive hypothesis, ips(L , j,π,σin,ϕ1) and ips(L , j,π,σin,ϕ2)

both terminate. It follows that ips(L , j,π,σin,ϕ1∨ϕ2) terminates.

126

Case ϕ≡ ϕ1∧ϕ2.

From the definition of ips, ips(L , i,π,σin,ϕ1∧ϕ2)=Σout =
⋃

σc∈ips(L ,i,π,σin,ϕ1) ips(L , i,π,σc,ϕ2).

From premise 1 and inspecting the mode checking judgements, we see that the inductive hy-

pothesis is applicable to ips(L , i,π,σin,ϕ1). By inductive hypothesis, ips(L , i,π,σin,ϕ1) ter-

minates. Let Σ1← ips(L , i,π,σin,ϕ1). From Lemma 44, we have |Σ1| is finite. For all σc ∈ Σ1,

ips(L , j,π,σc,ϕ2) is called. We also see that from premise 1 and inspecting the mode checking

judgements, the inductive hypothesis is applicable to ips(L , j,π,σc,ϕ2). By inductive hypoth-

esis, each call to ips(L , j,π,σc,ϕ2) terminates and there are finite number of such calls.

It follows that ips(L , i,π,σin,ϕ1∧ϕ2) terminates.

Case ϕ≡ ∃~x.ϕ(~x).

According to the definition of ips, ips(L , j,π,σin,∃~x.ϕ(~x))= ips(L , j,π,σin\{~x},∃~x.ϕ(~x))[~x 7→

σin(~x)]. From premise 1 and inspecting mode checking judgements, we see the induction hy-

pothesis is applicable. By inductive hypothesis, ips(L , j,π,σin \{~x},∃~x.ϕ(~x)) terminates from

which it follows that ips(L , j,π,σin,∃~x.ϕ(~x)) terminates.

Case ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x)).

According to the definition of ips, to calculate ips(L , j,π,σin,∀~x.(ϕ1(~x)→ ϕ2(~x))) we first

make a call to ips(L , j,π,σin,ϕ1(~x)). Let Σ1← ips(L , j,π,σin,ϕ1(~x)). From premise 1 and in-

specting the mode checking judgements, we see that the inductive hypothesis is applicable. By

inductive hypothesis, ips(L , j,π,σin,ϕ1(~x)) terminates. From Lemma 44, we know that |Σ1| is

finite. For all σc ∈ Σ1, a call to ips(L , j,π,σc,ϕ2(~x)) is made. From premise 1 and inspecting

the mode checking judgements, we can again see that the inductive hypothesis is applicable to

ips(L , j,π,σc,ϕ2(~x)). By inductive hypothesis, each such call to ips(L , j,π,σc,ϕ2(~x)) termi-

nates and there are finite number of such calls.

It follows that ips(L , j,π,σin,∀~x.(ϕ1(~x)→ ϕ2(~x))) terminates.

Case ϕ≡ ϕS ϕ2 and B ∈ label(ϕ)

127

Sub-Case To show (1):

Let Σ1← π.A(i)(ϕ1 S ϕ2).SR. From the definition of ips, ips(L , i,π,σin,ϕ1 S ϕ2) = Σout =

σin 1 π.A(i)(ϕ1 S ϕ2).SR. From premise (1) and inspecting the mode checking judge-

ments, we see that the inductive hypothesis of Lemma 44 (1) is applicable. By induc-

tive hypothesis, |Σ1| is finite. Thus, the join operation terminates and it follows that

ips(L , i,π,σin,ϕ1 S ϕ2) terminates.

Sub-Case To show (2):

From definition of bts, to calculate Σβ, ips(L , i,π,{•},ϕ2) is called once. From premise

and inspecting applicable mode checking judgements, we see that inductive hypothesis

of (1) is applicable. From inductive hypothesis (1), we can say that ips(L , i,π,{•},ϕ2)

terminates.

According to the proof of Lemma 44 (1), we know that |Σβ| is finite. In the worst case, each

σ ∈ Σβ is joined with all substitutions of π.A(i−1)(ϕ).Sβ. This join operation terminates

as both |Σβ| and |domain(π.A(i−1)(ϕ).Sβ)| is finite. We assume it is possible to calculate

the join operation of two finite substitutions in some finite amount of time.

Then for each 〈σ,k〉 pair in π.A(i)(ϕ).Sβ, ips is called once. From premise and inspecting

applicable mode checking judgements, we see that inductive hypothesis of (1) is applica-

ble. By inductive hypothesis (1), each such call to ips terminates. There are finite such

calls to ips as there are finite 〈σ,k〉 pairs in π.A(i)(ϕ).Sβ.

Finally, in the worst case, while calculating π.A(i)(ϕ).SR, each 〈σ,k〉 pairs in π.A(i)(ϕ).Sβ

is joined with each 〈σ1, j〉 pairs in π.A(i)(ϕ).Sα. As |domain(π.A(i)(ϕ).Sβ)| and |domain(π

.A(i)(ϕ).Sα)| are finite, the join operations terminate from which it follows that bts termi-

nates concluding our proof.

Case ϕ≡ ϕ1 S ϕ2 and B 6∈ label(ϕ)

According to the definition of ips, ips(L , j,π,ϕ1 S ϕ2) = Σout = SR1 ∪ SR2 . It is sufficient to

show that the construction of sets SR1 and SR2 terminates. We will then show that |SR1| and

128

|SR2| are both finite and thus the set union operation terminates.

We will first show that the construction of Sβ terminates. By construction of Sβ, a call to

ips(L , l,π,σin,ϕ2) is made for all l where 0≤ l ≤ j. From premise 1 and inspecting the mode

checking judgements, we see that the inductive hypothesis is applicable to ips(L , l,π,σin,ϕ2).

By inductive hypothesis, each call to ips(L , l,π,σin,ϕ2) terminates and there are finite (j+1)

number of such calls. It follows that the construction of Sβ terminates.

By Lemma 44, |Sβ| is finite. By construction, each σ is added in SR1 where 〈σ, j〉 ∈ Sβ. As there

are finite number of such σ, the construction of SR1 terminates. By construction, |SR1| ≤ |Sβ|

and it follows that |SR1| is finite.

By construction of SR2 , for each 〈σβ,k〉 ∈ Sβ where k 6= j, ips(L ,q,π,σβ,ϕ1) is called for all

q such that k < q≤ j. By inductive hypothesis, each call to ips(L ,q,π,σβ,ϕ1) terminates and

there are finite number of such calls. Thus, the construction of the set SR2 terminates.

As both |SR1| and |SR2| are finite, the set union operation terminates.

Thus, it follows that ips(L , j,π,ϕ1 S ϕ2) terminates.

We now introduce the notion of history equivalence. Given two execution histories L1 and L2,

L1 is equivalent to L2 with respect to a specific position in the history i∈N such that i≤| L1 |, | L2 |,

then the ith entry of both the history are same.

Definition 46 (History Equivalence). For all histories L1 and L2, L1 is equivalent to L2 with

respect to a specific i∈N such that i≤| L1 |, | L2 |, denoted by L1≈i L2, if and only if L1 ↓ i= L2 ↓ i

where ↓ represents the projection operator.

The following Lemma specifies that when the ips or bts function is called for a formula ϕ,

such that B ∈ label(ϕ), then both the functions do not need to access any other positions in the

execution history except the current one. This signifies that it is possible to check weak compliance

of a policy ϕ without needing to store all the whole execution history instead just by incrementally

129

updating the structures in the state appropriately. Moreover, it also shows that for updating the

structures for a given formula, it just requires to access the structures of the current entry and

structures of the previous entry. Thus, it possible to check compliance for policy ϕ where B ∈

label(ϕ) just by storing the current state of the history and previous entry of the structures.

Lemma 47 (Not Looking Back in the Execution History). For all formula ϕ such that χC ⊢B ϕ : χO

holds for some given χC where χO ⊆ f v(ϕ) then

1. For all histories L1 and L2, for all i ∈N, for all substitutions σin, for all state π = 〈A, i〉 such

that domain(σin)⊇ χC and L1 ≈i L2, ips(L1, i,π,σin,ϕ) = ips(L2, i,π,σin,ϕ).

2. For all histories L1 and L2, for all i ∈ N, for all state π1 = 〈A1, i〉 and π2 = 〈A2, i〉 such that

ϕ≡ αS β, π1.A1(i−1) = π2.A2(i−1), π1.A1(i) = π2.A2(i), and L1 ≈i L2, bts(L1, i,π,ϕ) =

bts(L2, i,π,ϕ).

Proof. We do an induction on the structure of ϕ. To show the above, it is enough to show that

when the functions ips and bts are called with a specific i for a formula ϕ where B ∈ label(ϕ), it

does not recursively call ips or bts with a j where j < i.

Case ϕ≡⊤|⊥|p(t1, . . . , tn).

(1) is true as ips is not called at all. (2) is vacuously true as ϕ is not of form ϕ1 S ϕ2.

Case ϕ≡ ϕ1∨ϕ|ϕ1∧ϕ2.

We can see from the definition of ips that ips is called for ϕ1 and ϕ2 with the same i. From

I.H., we get that (1) is true for both the calls. We can thus conclude (1) is true. (2) is vacuously

true as ϕ is not of form ϕ1 S ϕ2.

Case ϕ≡ ∃~x.ϕ(~x).

We can see from the definition of ips that ips is called for ϕ(~x) with the same i. From I.H., we

get that (1) is true for the call to ips for ϕ(~x). We can thus conclude (1) is true. (2) is vacuously

true as ϕ is not of form ϕ1 S ϕ2.

130

Case ϕ≡ ∀~x.(ϕ1(~x)→ ϕ2(~x))|ϕ1U [c,d]ϕ2.

From the derivation of ⊢B, if a formula ϕ is of form either ∀~x.(ϕ1(~x)→ ϕ2(~x)) or ϕ1U [c,d]ϕ2,

then B 6∈ label(ϕ). Thus, (1) is vacuously true. (2) is vacuously true as ϕ is not of form ϕ1 S ϕ2.

Case ϕ≡ ϕ1 S ϕ2 and B ∈ label(ϕ)

(1) is true as from the definition of ips we can see that for a ϕ of the above form, ips not called

at all. From the definition of bts, we can see that ips is called for ϕ2 and ϕ1 with the same

i. From I.H., we can say that these call to ips satisfy (1). Moreover, during the initialization

phase for history position i, the structures are initialized with the values of the structures from

the immediate previous state (history position i− 1). Thus, no other entries of the structures

which are required to be accessed by bts. Thus, we can safely conclude that (2) is satisfied.

The following Lemma specifies that the cc function is correct.

Lemma 48 (Correctness of cc function). The function cc : Log×N×State×Formula→ Boolean

is correct if the following holds:

For all formula ϕ, for all j ∈N, for all histories L , for all state π = (A, i), for some χC and χF ,

such that: (1) π is strongly consistent at i∈N with respect to L and ϕ, (2) i≥ j, (3) χC,χF ⊢ ϕ : χO

where χO ⊆ f v(ϕ), if cc(L , j,π,ϕ) = truthValue, then

(truthValue = true)↔∃σ.(L , j |= ϕσ).

Proof. The proof follows from the soundness argument of ips correctness, Lemma 43.

The following Lemma specifies that each call to the cc function terminates.

Lemma 49 (Termination of cc function). For all formula ϕ, for all j ∈ N, for all histories L , for

all state π = (A, i), for some χC and χF , such that: (1) π is strongly consistent at i ∈N with respect

to L and ϕ, (2) i≥ j, (3) χC,χF ⊢ ϕ : χO where χO ⊆ f v(ϕ), the function cc(L , j,π,ϕ) terminates.

131

Proof. The proof follows from the termination argument of the ips function (Lemma 45 (1)), as

according to the definition of cc function, only the ips function is called from the cc function.

Theorem 50 (Correctness of the Algorithm). Each iteration of the checkPolicyCompliance func-

tion terminates and it is sound and complete.

Proof. The termination of the checkPolicyCompliance function follows from the termination argu-

ment of bts and the cc function. The soundness and completeness of the checkPolicyCompliance

functions follows from the soundness and completeness argument of bts and cc function.

132

Chapter 5: PRIVACY POLICY ANALYSIS

An action is compliant with a privacy policy if it is both weakly compliant and strongly compliant.

Although checking weak compliance is feasible [13,55], checking strong compliance with respect

to policies written in FOPSL is undecidable. Thus, to facilitate efficient compliance checking we

now formally specify the property weak compliance entails strong compliance (denoted by ∆) [11].

A FOPSL policy has the ∆-property if every weakly compliant action is also strongly compliant.

To check whether an action is compliant with such a policy, it suffices to just check whether the

action is weakly compliant with that policy. We believe well-written policies should have this

property. We also show that when a policy ℘ has the ∆-property, the present conditions of ℘,

denoted by weak(℘), express the safety property imposed by ℘. Such a policy guarantees that no

obligation will need to be left unfulfilled because the policy is badly written and does not allow the

obligation to be fulfilled in that situation.

For a given privacy policy ℘, we syntactically construct a first order CTL* with linear past

(denoted by FO-CTL*lp) [77] formula δ(℘) from ℘. We prove that the most permissible model

(denoted by M℘) of a policy ℘satisfies δ(℘) if and only if ℘has the ∆-property (section 5.1). The

most permissive model M℘ of a policy ℘ is the model in which at each step any action referred

to by ℘ can be non-deterministically chosen to be performed. Considering M℘ of a policy ℘

is reasonable: if ℘ can incur obligations that cannot be met even in the most permissive model,

then it is not possible that those obligations can be met in other more restricted models. Also, more

restrictive models cannot reach any policy “states” that are not reachable with the most permissible

model, so other models would not be able to incur any obligations that would not be able to be

incurred by the most permissive model. Other models exhibit a subset of behaviors which are of

interest to the analysis of the ∆-property. Model checking an arbitrary FO-CTL*lp specification

with respect to an arbitrary given model is undecidable. Thus, in section 5.3, based on some

The content of this chapter is based on the joint work with Andreas Gampe, Jianwei Niu, Jeffery von Ronne, Jared
Bennatt, Anupam Datta, Limin Jia, and William H.

Winsborough [27].

133

reasonable assumptions, we develop a sound, semi-automated technique that can feasibly decide

in many practical cases whether a policy has the ∆-property.

5.1 The WC Entails SC Property (∆-property)

As the ∆-property is a statically analyzable property of the policy, it enables offloading all com-

plexity of checking this property to before the policy is actually deployed. We can then use more

expensive decision methods that would not be feasible if we were to check it at runtime.

A policy satisfies the ∆-property if for any weakly compliant finite trace (history), there exists

an infinite extension of the finite trace such that the concatenation of the finite trace and the infinite

extension satisfies the policy. We call a finite trace a weakly compliant finite trace if each action of

that finite trace is weakly compliant with the policy. Formally, for a given environment η, a finite

trace (σ f) is weakly compliant with respect to the policy℘if the following holds: σ f , |σ f |−1,η |=

weak(℘). We now formally specify what it means for a privacy policy ℘ to have the ∆-property.

Definition 51 (∆-property). A policy ℘has the ∆-property if and only if for any environment η and

for any history (finite trace) σ f that satisfies σ f , |σ f |− 1,η |=weak(℘), there exists an infinite

trace (extension) σi such that σ f ·σi |=℘.

We now construct from a policy ℘a formula δ(℘) in the logic FO-CTL*lp [77] that is satisfied

by the most permissible model (M℘) of the policy (denoted by M℘ |= δ(℘)) if and only if℘has the

∆-property. To the best of our knowledge, we are the first to give a specification of the ∆-property

within a formal logic. This formalization is an important first step toward being able to identify

policies which have the ∆-property. We first discuss why using the logic FO-CTL*lp [77] is natural.

First, the logic is expressive enough to capture the ∆-property. Second, we chose the first-order

variation of the CTL*lp logic, as our policy is written in FOTL and we want our policy formula

to be a sub-formula of the logic. Finally, our policy allows past temporal operators, unlike typical

branching-time logic CTL∗ [45]. We could rewrite the policy to contain only future temporal

operators, but this might cause exponential blowup of the formula length [77, 83]. As shown by

134

Kupferman et al. [77], adding linear past to CTL∗ [45] does not increase the expressive power but

is more succinct. They showed that CTL*lp and CTL∗ have the same expressive power.

A policy ℘ has the ∆-property if and only if M℘ satisfies the FO-CTL*lp formula δ(℘).The

formula δ(℘) is defined in Figure 5.1. The formula states that, given a finite weakly compliant his-

tory, it is possible to extend the finite history to an infinite one in which all the pending obligations

are discharged while maintaining weak compliance.

A ((weak(℘))−→

E(
∧

〈λ,γ〉∈α(℘)

∀p1, p2,q :P.∀m :M.∀t :T.∀u :U.
(
(¬γS λ)→γ

)
∧weak(℘)))

Figure 5.1: FO-CTL*lp formulation of the ∆-property

α function: The function α in the formula δ(℘) takes as input a privacy policy ℘and returns all

possible 〈λ,γ〉 pairs in ℘. In a 〈λ,γ〉 pair, λ characterizes a condition, which, when true, incurs the

obligation γ according to the policy ℘. The function α works on the norm level of the policy ℘and

syntactically extracts all the 〈λ,γ〉 pairs. The definition of α is as follows.

Our positive norms have the form: (C∧ψ∧β)∨ψexception. For such a positive norm where β is

not trivially true, the α function would return the 〈λ,γ〉 pair 〈(C∧ψ∧¬(ψexception)∧
∧

j φ̂−j ,β〉 in

which
∧

j φ̂−j is the conjunction of all the modified negative norms. The modified negative norms

are the same as the original negative norms except that they do not contain have any future temporal

operators (modified ones).

The form of our negative norms is as follows: C∧ψ→ χ∨ψexception. In the negative norms,

χ can have one of the following forms: (1) β, (2) ψ1, (3) ψ1 ∧ β, and (4) ψ1 → β. When χ has

form (2) then there are no obligations in that norm. In all other cases let us consider that β is

not trivially true. For a negative norm φ−j whose χ is of form (1), α will return the 〈λ,γ〉 pair

〈C∧ψ∧¬(ψexception)∧
∧

k 6= j φ̂−k ∧
∨

i φ̂+i ,β〉 in which φ̂−k and φ̂+i respectively, represent modified

negative and positive norms. When χ has the form (3) or (4), the function α will return the 〈λ,γ〉

135

pair 〈C∧ψ∧¬(ψexception)∧ψ1∧
∧

k 6= j φ̂−k ∧
∨

i φ̂+i ,β〉.

The following theorem states that a policy ℘has the ∆-property if and only if M℘ |= δ(℘).

Theorem 52. Given a policy ℘, M℘ |= δ(℘) if and only if ℘has the ∆-property.

Proof. According to the definition of the ∆-property (Definition 51), a policy ℘has the ∆-property

if and only if the following holds:

L : ∀σ f .∀η1.(σ f , |σ f |−1,η1 |=weak(℘)→∃σi.σ f ·σi |=℘)

We have to show that M℘ |= δ(℘) if and only if the logical sentence L holds, or more precisely,

M℘ |= δ(℘)↔ L. We will show the only if direction (→); the if part (←) is similar. So let us

consider that M℘ |= δ(℘) holds and we have to show that L holds. In the logical sentence L, take

an arbitrary σ f , η1 such that σ f , |σ f |−1,η1 |= weak(℘).

From the semantics of FO-CTL*lp and δ(℘), M℘ |= δ(℘) if and only if for all infinite paths ρ

in M℘, for all positions i ∈ N in ρ, and for all environments η,weak(℘)→ E(∀p1, p2,q : P.∀m :

M.∀t : T.((¬γS λ)→γ)∧weak(℘)) holds. Now consider an environment η, an infinite path

ρ, a position i ∈ N in it such that η = η1 and ρ[..i] = σ f , where we use ρ[..i] to denote a prefix

of an infinite path with i+ 1 elements. As we consider the most permissive model of ℘, which

contains all possible infinite traces in which all the behaviors of the policy are captured, such an

infinite ρ and a position i such that ρ[..i] = σ f exists. As σ f , |σ f |−1,η1 |=weak(℘), ρ[..i] = σ f ,

η = η1, and the semantics of FOTL formula are preserved in a FO-CTL*lp formula, it follows that

ρ[..i], i,η |=weak(℘). We know that M℘ |= δ(℘) and ρ[..i], i,η |=weak(℘) hold. It follows

that E(∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ)∧weak(℘)) holds.

According to the semantics of FO-CTL*lp, ρ[..i], i,η |= weak(℘)→ E(∀p1, p2,q : P.∀m :

M.∀t : T.((¬γS λ)→γ)∧weak(℘)) holds, if there exists an infinite path ρ̂ and η̂ such that

ρ[..i] = ρ̂[..i], η̂ = η and ρ̂, i, η̂ |= ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ)∧weak(℘). From

the semantics of FO-CTL*lp, ρ̂, i, η̂ |= ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ)∧weak(℘)

holds if and only if ρ̂, i, η̂ |= ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ) and ρ̂, i, η̂ |=weak(℘)

136

hold.

According to the semantics of FO-CTL*lp, ρ̂, i, η̂ |= ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→

γ) holds if and only if ρ̂, i, η̂′ |=((¬γS λ)→γ)1, which states that all the pending obligations in

ρ[..i] are fulfilled in some finite position from i in ρ̂. On the other hand, according to the semantics

of FO-CTL*lp, ρ̂, i, η̂ |=weak(℘) if and only if the infinite extension is weakly compliant at each

position in the path ρ̂.

Due to the syntactic requirement that past and future can be separated syntactically and from the

semantics of FOPSL, by structural induction on the formulas it can be shown that a FOPSL formula

(similarly FO-CTL*lp path formula) is satisfied if there is an infinite trace (similarly path) in which

all the past requirements are maintained and all the future requirements are satisfied. Both the

conjuncts above ensure this is the case, specifically weak(℘) ensuring satisfiability of the past

requirements and ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ) ensuring that all the pending future

requirements can be discharged. From this it follows that if an infinite extension that satisfies both

the conjuncts can be found, that infinite extension will satisfy℘. The infinite extension ρ̂ fulfills all

the pending obligations in ρ[..i] while maintaining weak compliance. Furthermore, by induction

on the length of the finite path i ∈ N, we can show that the formula ((¬γS λ)→γ)∧weak(℘)

also guarantees that all the obligations incurred in ρ̂ are fulfilled in some finite steps from the

position they are incurred. Thus, it follows that ρ[..i] · ρ̂[(i+ 1)..] |=℘.2 In the logical sentence

L, the consequent require an infinite extension such that σ f ·σi |=℘. Note that, by construction,

σ f = ρ[..i]. Now let σi = ρ̂[i+1..]. From ρ[..i] · ρ̂[(i+1)..] |=℘ it follows that σ f ·σi |=℘, which

completes our proof.

Theorem 53. Given a privacy policy℘specified in FOPSL, to check whether℘has the ∆-property

is undecidable in general.

Proof. We reduce the Turing machine halting problem [47] to checking whether a policy℘written

in FOPSL does not have the ∆-property. To be more precise, according to our reduction, we will

1for all p̂1, p̂2, q̂ ∈ P, for all m̂ ∈M and for all t̂ ∈ T , η̂′ = η̂[p1 7→ p̂1][p2 7→ p̂2][q 7→ q̂][m 7→ m̂][t 7→ t̂]
2We use ρ[i..] to denote the suffix starting at the position i of the infinite sequence ρ.

137

show that a given Turning machine will halt after reaching the pre-defined final state if and only if

the encoded policy can incur an unsatisfiable obligation. Our reduction is inspired by the reduction

of the Turing machine halting problem to the HRU safety problem [59].

Let us consider a Turing machine T = (A,S,q0,δ). Associated with a Turing machine is an

infinite tape which is divided into cells3, and a tape head which resides on one of the cells of the

tape, can read from and write to the current tape cell, and can move the left-adjacent or right-

adjacent cell. A denotes the machine’s alphabet of symbols with a distinguished “blank” symbol

represented by b. Each cell of the tape contains one symbol. S denotes the set of states the Turing

machine may be in. At the beginning, T is in state q0 ∈ S.

The operation of T is guided by the total transition function δ : A×S :→ A×S×{L,R}4. δ

controls the movement of the tape head of T and accompanying state changes. Consider that the

tape head of T is in a cell where the symbol is A and the state of T is p and we have the following

δ(A, p) = (B,q,R). This denotes that the tape head will write the symbol B into the current cell,

replacing A. The tape head will then move to the cell right of the current cell. Last but not least,

T will change its state from p to q. Similarly, if the valuation of the transition function were

δ(A, p) = (B,q,L), then tape head would move to the left instead of the right.

Given a Turing machine T= (A,S,q0,δ), the halting problem asks whether the machine T will,

started on an empty tape5, enter a predefined state q f . The halting problem has been shown to be

undecidable [47].

On a high level, we model the halting problem as follows. Execution of T for i steps corre-

sponds to a finite trace σi such that (1) σi models the current state and tape of T after i steps, (2)

σi is weakly compliant with respect to the policy ℘T created from T, (3) σi can only be extended

with actions modeling the execution of step i+ 1 (and ultimately lead to σi+1, and (4) if T ever

entered state q f , then some action in σi incurred an obligation that is not fulfillable under℘T. With

3Tapes can be formalized as total functions Z 7→ A.
4Recall that we used δ to represent the FO-CTL*lp formulation of the ∆-property of a given policy ℘. For consis-

tency with prior work, only here we use δ to represent the transition relation of T. In all other contexts we use δ to
mean the FO-CTL*lp formulation of the ∆-property for a given policy ℘.

5A tape is empty if all cells contain the blank symbol b.

138

this setup, for any weakly compliant finite trace σ f , there exists an infinite extension σ∞ such that

σ f ·σ∞ satisfies ℘T if and only if T did not or will not enter q f .

For this encoding we assume that the following predicates have a fixed interpretation: send,

contains, in. We do not need any other predicates and thus leave interpretation of all other predi-

cates open. We use send events to model whether a cell in the tape has been visited, whether a tape

cell is the right most cell visited, whether a tape cell is the left most cell visited, and whether two

cells are neighboring cells. We also use the most recent send event to model the current state and

also the current head position of T. We encode the transition function of T into negative norms

of our policy. We model tape cells with principals in our domain. To model an infinite tape, we

assume the carrier of principals to be infinite. States in S and presence or absence of symbols in A

are modeled as attributes of our domain. The carrier of attributes is assumed to be large enough to

contain all constants we require. We will also use attributes endRight and endLeft to respectively

represent the right most cell and left most cell that have been visited by the T’s head. We will

also use attribute neighbour to check whether two cells are neighboring cells of the tape. Let us

consider that we want to know whether two cells (represented as principals in the domain) p1 and

p2 are neighboring cells where p1 is the left cell and p2 is the right cell. In that case, we just need

to check whether we have seen a message from p1 to p2 containing the attribute neighbour. If we

want to model that we want to write symbol A in the tape cell represented by p1, we just need to

send a message where the sender is p1 and the attribute is A. Now, to delete a symbol A from a tape

cell p1 we just need to send a message whose sender is p1 and the message contains the attribute

Ā.

Note that our reduction creates a policy that allows stuttering of send events. This means that

the (deterministic) execution of T is potentially mapped to many traces that are weakly com-

pliant. For instance, consider an execution abcde . . . of T, which is equivalent to both traces

aabbbbcdeee . . . and aaaaabcccccddddddee . . . for our policy. This does not have an impact on the

result, though, since for any equivalent prefix the existence of an infinite extension is preserved.

For simplicity we will only consider the canonical non-stuttering trace in this development.

139

msg(p̂1, p̂2, t̂) ≡ ∃q′ : P.∃m′ : M.send(p̂1, p̂2,m′)∧ contains(m′,q′, t̂)

msg-s(p̂1, t̂) ≡ ∃p′2,q
′ : P.∃m′ : M.send(p̂1, p′2,m

′)∧ contains(m′,q′, t̂)

msg-t(t̂) ≡ ∃p′1, p′2,q
′ : P.∃m′ : M.send(p′1, p′2,m

′)∧ contains(m′,q′, t̂)

in-transition(Z,a) ≡ ¬msg-t(end-transition)S msg-t(start-transition(Z,a))

Figure 5.2: Macros used in the reduction

Our reduction has the following four steps:

1. Write intermediate negative policy norms which will enable setting up the initial configura-

tion of T

2. Encode each transition relation element of T as a set of intermediate negative policy norms

3. Translate the intermediate negative norms to actual negative norms of the encoded policy ℘

4. Add an additional policy norm that incurs an unsatisfiable obligation if the T reaches the

state q f .

For the ease of presentation we use the macros msg(p1, p2, t), msg-s(p1, t), and msg-t(t) defined

in Figure 5.2.

Step 1. T is initially in the state q0 ∈ S. We assume that T’s tape head is in cell 0, which contains

the b symbol. During execution, the amount of tape T has seen is finite. At each point in time

there is a left-most visited and right-most visited cell. In the beginning, cell 0 is both the left-most

and right-most visited cell.

Step 1 models the initial setup of the Halting problem. It ensures that the initialization phase is

the only thing that is allowed in the beginning in a weakly compliant (finite) trace. Only when the

initial setup has been performed can any transition of T take place. Templates for the intermediate

negative norms guiding the initialization are given in Figure 5.3.

140

in(t,setup-start)→¬msg-t(create-cell)

in(t,create-cell)→(¬msg-t(q0)S msg-t(setup-start))

∧ (msg(p1, p2,create-cell)S msg-t(setup-start))

in(t,q0)→(¬msg-t(endLeft)S msg-t(create-cell))

∧ (msg(p1, p2,q0)S msg(p1, p2,create-cell))

in(t,endLeft)→(¬msg-t(endRight)S msg-t(q0))

∧ (msg(p1, p2,endLeft)S msg(p1, p2,q0))

in(t,endRight)→(¬msg-t(b)S msg-t(endLeft))

∧ (msg(p1, p2,endRight)S msg(p1, p2,endLeft))

in(t,b)→(¬msg-t(setup-end)S msg-t(endRight))

∧ (msg(p1, p2,b)S msg(p1, p2,endRight))

in(t,setup-end)→msg-t(setup-start)∧msg-t(create-cell)∧msg-t(q0)

∧msg-t(endLeft)∧msg-t(endRight)∧msg-t(b)∧
∧

(W,u)∈δ
¬msg-t(start-transitionW,u)

Figure 5.3: Step 1: Intermediate negative norm template to setup the initial configuration of T

Step 2. In this step, we encode the transition relation of T as intermediate negative norms of our

policy. We consider each element of the transition relation and convert it to a set of intermediate

negative norms. Without loss of generality we consider a left-moving element of the transition

relation: δ(A, p) = (B,q,L); right-moving cases are symmetric. There are two separate sub-cases

to consider. The first case is the one where the left cell of the current cell has been previously

visited. Obviously the other case is when the left cell of the current cell has not been previously

visited. In the first case, we will just delete the symbol A and state p from the current cell. To

achieve this we have to allow sending two messages from the principal representing the current

cell of T. The two messages should contain the attributes Ā and p̄, respectively, denoting the

deletion. The next thing we have to do is to write the symbol B into the current cell. To achieve

141

in(t,start-transition(A,p))→¬msg(p1, p2, p̄)S

(
msg-t(end-transition)∨msg-t(setup-end)

)

∧

(
(msg(p1, p2,start-transition(A,p))S msg-t(end-transition))∨

(msg(p1, p2,start-transition(A,p))S msg-t(setup-end))

)
∧

msg(p2, p1,neighbour)∧ (¬msg-s(p1, p̄)S msg-s(p1, p))

∧ (¬msg-s(p1, Ā)S msg-s(p1,A))

in(t, p̄)→(msg(p1, p2, p̄)S msg(p1, p2,start-transition(A,p)))
∧

(¬msg(p1, p2, Ā)S msg(p1, p2,start-transition(A,p)))

in(t, Ā)→(msg(p1, p2, Ā)S msg(p1, p2, p̄))∧ in-transition(A,p)

(¬msg(p1, p2,B)S msg(p1, p2, p̄))

in(t,B)→(msg(p1, p2,B)S msg(p1, p2, Ā))∧ in-transition(A,p)

(¬msg(p2, p1,q)S msg(p1, p2, Ā))

in(t,q)→(msg(p1, p2,q)S msg(p2, p1,B))∧ in-transition(A,p)

(¬msg(p2, p1,end-transition)S msg(p2, p1,B))

in(t,end-transition)→

¬

∨

(Z,a)∈δ
msg-t(start-transition(Z,a))

 S msg-t(q)

Figure 5.4: Step 2: Intermediate negative norm template for transition of form δ(A, p) = (B,q,L)
where T’s tape head is not on the left-most seen cell

this, the principal representing the current tape cell should send a message containing the attribute

B. The next thing would be to change the state of T to q. To achieve this and to show that the tape

head head has moved left, we would send a message from the principal representing the left cell

of the current cell containing the attribute q. Note that to check whether the cell is actually the left

cell of the current cell, we see whether the cell representing the left cell has actually sent a message

to the principal representing the current cell containing the attribute neighbour. Once this is done,

we allow a message containing the attribute end-transition representing that the transition has been

142

completed. Note that, to ensure consistency and atomicity of the changes required for a transition to

happen, we use a locking mechanism that ensures that until all operations of the current transition

have been completed, no other transitions are enabled. The template for generating the negative

norms for this case is shown in Figure 5.4.

The next case is the one where we are required to go left according to the transition function

and we have not previously visited the left cell of the current cell in the tape. The first thing we

do is to send a message from the principal, representing the current cell, containing the attribute

¯endLeft. It signifies that the current cell is no longer the left-most cell T has visited. We then send

a message from the principal representing the left cell that contains the attribute create-cell, which

binds that principal to this cell. A principal can only represent one cell, so we can only allow this

if that principal has not sent such a message before. We then allow the principal representing the

left cell to send a message to the the principal representing the current cell containing the attribute

neighbour. This sets the neighboring relation and allows us in the future to check whether the cells

are connected. Next we mark the new cell as the new left-most cell by allowing a send from the

left principal containing the attribute endLeft. Once this has been established, we allow sending the

same messages discussed above, simulating the normal operation of T. Note that we also use the

locking mechanism to enable the consistency and atomicity of the transition relation. The template

of the intermediate negative norms for this case is shown in Figure 5.5.

The templates of intermediate negative norms for the right-moving cases are shown in Fig-

ures 5.6 and 5.7.

Step 3. According to the previous step (Step 2), once we have intermediate negative norms, we

have to convert these intermediate negative norms into actual negative norms of the encoded policy.

These negative norms will force the Turing machine simulation to only take enabled transitions.

The intermediate negative norms obtained from the previous step have the form Ant →Con. For

each unique antecedent, for instance A0, we collect all the intermediate negative norms Ci which

have the same antecedent A0, and create a negative norm A0→
∨

iCi. For example, consider that

143

in(t,start-transition(A,p))→

(
¬msg(p1, p2,endLeft)S (msg-t(end-transition)∨

msg-t(setup-end))

)
∧

(
(msg(p1, p2,start-transition(A,p))S msg-t(end-transition))

∨ (msg(p1, p2,start-transition(A,p))S msg-t(setup-end))

)

∧ (¬msg-s(p1,endLeft)S msg-s(p1,endLeft))

∧ (¬msg-s(p1, p̄)S msg-s(p1, p))∧ (¬msg-s(p2,create-cell))

∧ (¬msg-s(p1, Ā)S msg-s(p1,A))

in(t,endLeft)→(msg(p1, p2,endLeft)S msg(p1, p2,start-transition(A,p)))

∧ (¬msg(p2, p1,create-cell)S msg(p1, p2,start-transition(A,p)))

in(t,create-cell)→(msg(p1, p2,create-cell)S msg(p2, p1,endLeft))

∧ (¬msg(p1, p2,neighbour)S msg(p2, p1,endLeft))

in(t,neighbour)→(msg(p1, p2,neighbour)S msg(p2, p1,create-cell))∧

in-transition(A,p)∧(¬msg(p2, p1,endRight)S msg(p1, p2,create-cell))

in(t,endLeft)→(msg(p1, p2,endLeft)S msg(p1, p2,neighbour))∧

in-transition(A,p)∧ (¬msg(p2, p1, p̄)S msg(p1, p2,neighbour))

in(t, p̄)→(msg(p1, p2, p̄)S msg(p2, p1,endLeft))∧ in-transition(A,p)

∧ (¬msg(p1, p2, Ā)S msg(p2, p1,endLeft))

in(t, Ā)→(msg(p1, p2, Ā)S msg(p1, p2, p̄))∧ in-transition(A,p)∧

(¬msg(p1, p2,B)S msg(p1, p2, p̄))

in(t,B)→(msg(p1, p2,B)S msg(p1, p2, Ā))∧ in-transition(A,p)∧

(¬msg(p2, p1,q)S msg(p1, p2, Ā))

in(t,q)→(msg(p1, p2,q)S msg(p2, p1,B))∧ in-transition(A,p)∧

(¬msg-t(end-transition)S msg(p2, p1,B))

in(t,end-transition)→

(
¬

∨

(Z,a)∈δ
msg-t(start-transition(Z,a))

)
S msg-t(q)

Figure 5.5: Step 2: Intermediate negative norm template for transition of form δ(A, p) = (B,q,L)
where T’s tape head is in the left-most seen cell

144

in(t,start-transition(A,p))→

(
¬msg(p1, p2, p̄)S (msg-t(end-transition)∨msg-t(setup-end))

)

∧

(
(msg(p1, p2,start-transition(A,p))S msg-t(end-transition))

∨ (msg(p1, p2,start-transition(A,p))S msg-t(setup-end))

)

∧msg(p1, p2,neighbour)∧(¬msg-s(p1, p̄)S msg-s(p1, p))∧ (¬msg-s(p1, Ā)S msg-s(p1,A))

in(t, p̄)→(msg(p1, p2, p̄)S msg(p1, p2,start-transition(A,p)))
∧

(¬msg(p1, p2, Ā)S msg(p1, p2,start-transition(A,p)))

in(t, Ā)→(msg(p1, p2, Ā)S msg(p1, p2, p̄))∧ in-transition(A,p)

(¬msg(p1, p2,B)S msg(p1, p2, p̄))

in(t,B)→(msg(p1, p2,B)S msg(p1, p2, Ā))∧ in-transition(A,p)

(¬msg(p2, p1,q)S msg(p1, p2, Ā))

in(t,q)→(msg(p1, p2,q)S msg(p2, p1,B))∧ in-transition(A,p)

(¬msg(p2, p1,end-transition)S msg(p2, p1,B))

in(t,end-transition)→

¬

∨

(Z,a)∈δ
msg-t(start-transition(Z,a))

 S msg-t(q)

Figure 5.6: Step 2: Intermediate negative norm template for transition of form δ(A, p) = (B,q,R)
where T’s tape head is not on the right most seen cell

these intermediate norms are the following: A0→ C1, A0→ C2, . . ., A0→ Cn. Then we create a

new negative norm A0 → C1 ∨C2 ∨ . . .∨Cn. As mentioned before, we do this process for each

unique antecedent in the set of intermediate negative norms.

Step 4. Let us consider that T reaches the state q f after i steps. We want to ensure that a corre-

sponding σi is weakly compliant, but that there exists no infinite extension such that the concatena-

tion satisfies ℘T. For this we add two negative norms as shown in Figure 5.8. The first one incurs

an unsatisfiable obligation when T reaches q f . The second negative norm disallows the obligation.

145

in(t,start-transition(A,p))→

(
¬msg(p1, p2,endRight)S (msg-t(end-transition)∨

msg-t(setup-end))

)
∧

(
(msg(p1, p2,start-transition(A,p))S msg-t(end-transition))

∨ (msg(p1, p2,start-transition(A,p))S msg-t(setup-end))

)

∧ (¬msg-s(p1,endRight)S msg-s(p1,endRight))

∧ (¬msg-s(p1, p̄)S msg-s(p1, p))∧ (¬msg-s(p2,create-cell))

∧ (¬msg-s(p1, Ā)S msg-s(p1,A))

in(t,endRight)→(msg(p1, p2,endRight)S msg(p1, p2,start-transition(A,p)))

∧ (¬msg(p2, p1,create-cell)S msg(p1, p2,start-transition(A,p)))

in(t,create-cell)→(msg(p1, p2,create-cell)S msg(p2, p1,endRight))

∧ (¬msg(p2, p1,neighbour)S msg(p2, p1,endRight))

in(t,neighbour)→(msg(p1, p2,neighbour)S msg(p2, p1,create-cell))∧

in-transition(A,p)∧(¬msg(p2, p1,endRight)S msg(p2, p1,create-cell))

in(t,endRight)→(msg(p1, p2,endRight)S msg(p2, p1,neighbour))∧

in-transition(A,p)∧ (¬msg(p2, p1, p̄)S msg(p2, p1,neighbour))

in(t, p̄)→(msg(p1, p2, p̄)S msg(p2, p1,endRight))∧ in-transition(A,p)

∧ (¬msg(p1, p2, Ā)S msg(p2, p1,endRight))

in(t, Ā)→(msg(p1, p2, Ā)S msg(p1, p2, p̄))∧ in-transition(A,p)∧

(¬msg(p1, p2,B)S msg(p1, p2, p̄))

in(t,B)→(msg(p1, p2,B)S msg(p1, p2, Ā))∧ in-transition(A,p)∧

(¬msg(p2, p1,q)S msg(p1, p2, Ā))

in(t,q)→(msg(p1, p2,q)S msg(p2, p1,B))∧ in-transition(A,p)∧

(¬msg-t(end-transition)S msg(p2, p1,B))

in(t,end-transition)→

(
¬

∨

(Z,a)∈δ
msg-t(start-transition(Z,a))

)
S msg-t(q)

Figure 5.7: Step 2: Intermediate negative norm template for transition of form δ(A, p) = (B,q,R)
where T’s tape head is in the right most seen cell

146

in(t,q f) → (∃p′1, p′2,q
′ : P.∃m′ : M.send(p′1, p′2,m

′)∧ contains(m′,q′,arbitrary))
in(t,arbitrary) → ⊥

Figure 5.8: Step 4: Template of two additional negative norms, one of which incurs an unsatisfi-
able obligation when T reaches state q f and the other one disallows the obligation.

From the setup of steps 1 through 3, it follows that a finite trace is weakly compliant if and only

if it corresponds to some steps of execution of the Turing machine T (or is in the middle of the

initialization phase or a transition), and furthermore that such traces exist for the execution. Thus,

if T can reach q f , there exists a weakly compliant finite trace σ that corresponds to the execution.

By the fourth step, this trace incurs an unsatisfiable obligation an can thus not be extended to be

compliant with the policy. Thus, T will reach state q f if and only if the resulting policy does not

have the ∆-property.

5.2 Sufficient and Necessary Condition for ∆-property

There are two cases in which an action that is weakly compliant with a policy ℘ is not strongly

compliant with ℘. The first case occurs when taking a weakly compliant action can lead to a

state from which it is not possible to take an unbounded number of weakly-compliant valid tran-

sitions (no infinite weakly compliant extension). We call a policy which does not allow this case

anincrementally satisfiable policy.

Definition 54 (Incrementally Satisfiable). A pure past FOTL formula φ is incrementally satisfiable

iff for any given finite trace σ and for any logical environment η, σ, |σ|− 1,η |=φ implies that

there exists an infinite trace σ̂ such that σ · σ̂ |=φ.

The second case in which a weakly compliant action for ℘ is not strongly compliant for ℘ is

when that action incurs a future obligation which cannot be met. Theorem 55 states that these two

cases are necessary and sufficient.

Theorem 55. A policy℘has the ∆-property if and only if weak(℘) is incrementally satisfiable and

147

no weakly compliant action of ℘ incurs any unsatisfiable future obligations.

Proof. The proof follows from Theorem 52 which shows that M℘ |= δ(℘) if and only if ℘has the

∆-property. If we inspect the consequent of the formula δ(℘), we have for all finite weak compliant

histories that E(∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ)∧weak(℘)) holds. The above for-

mula holds if and only if there exists an infinite path where ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→

γ) and weak(℘) holds. Now, for all finite weakly compliant histories and for each such finite

history the existence of an infinite trace that satisfies the conjunct weak(℘) of the δ(℘) conse-

quent gives us the requirements of weak(℘) to be incrementally satisfiable. Moreover, for all finite

weakly compliant histories and for each such finite history the existence of an infinite trace that

satisfies the conjunct ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ) ensures that all obligations in-

curred by any weakly compliant action can be discharged properly. Thus, for a policy℘to have the

∆-property, for all weakly compliant finite traces, we need an infinite weakly compliant extension

in which all the pending obligations must be discharged. Now, the only ways to violate the ∆-

property of a policy ℘is to fail to satisfyweak(℘), ∀p1, p2,q : P.∀m : M.∀t : T.((¬γS λ)→γ),

or both. From this it follows that if we satisfy both the conjuncts we satisfy the ∆-property.

Negative Norms :

a→¬(h)

b→¬(h)

h→(¬(h))

Positive Norms :

a∧b

b

h

Figure 5.9: Violation (1)

Positive Norms :

a∧b∧c

b∧c∧d

c∧d

d

f ∧ (¬(c))

Negative Norms :

a→ f

Figure 5.10: Violation (2)

We will now give an example for each violation case. First, consider the simple example

policy in Figure 5.9, denoted by ℘1. For brevity, we consider a pLTL policy in which a, b, and h

are LTL formulas that are consistent with dynamic send events (actions) A, B, and H, respectively.

148

We also assume that at each step only one dynamic send event (action) can happen. A dynamic

send event (action) is allowed by ℘1 if it satisfies one of the positive norms and all the negative

norms. Consider the finite trace BAH. Here, B is allowed as it satisfies the second positive norm

and also satisfies all the negative norms (satisfies second negative norm as we have not seen any

dynamic send event before that is consistent with h, and satisfies the rest of the negative norms by

falsifying the antecedents). The same is true for A as it satisfies the first positive norm requiring

that there is a dynamic send event (B) that is consistent with formula b before an A and additionally

it satisfies all the negative norms. Finally, the same applies to action H. However, after H no more

actions are allowed to take place. A cannot take place as it would violate the first negative norm

requiring no dynamic events (H) consistent with h have not happened before. Similarly for B, the

second negative norm would be violated. Finally, H cannot happen as an H has happened already

which is consistent with the formula h, which would in turn violate the third negative norm. The

action H leads to a bad state from which it is not possible to take an unbounded number of weakly

compliant transitions. Thus, ℘1 is not incrementally satisfiable. The action that leads to a bad state

is H, which, although weakly compliant for ℘1, is not strongly compliant with respect to ℘1.

We use the policy in Figure 5.10 (denoted by ℘2) to demonstrate the second violation case.

We assume that at each step only one action can happen. For brevity, we consider a pLTL policy

in which a, b, c, d, and f are LTL formulas that are respectively consistent with dynamic send

events (actions) A, B, C, D, and F . Let us consider the finite trace where the following actions are

taken in order: DCBA. Each action of the trace is weakly compliant with respect to ℘2. The action

A, however, incurs the obligation (future requirement) to perform an action (F) that is consistent

with formula f . Note that the last positive norm allows F (F is consistent with formula f) under

the condition that there is no action (C) consistent with c that has happened before. However, for

the above finite trace this is not the case. As a result, the obligation of taking action F cannot be

discharged in a compliant fashion. Thus, the action A, although weakly compliant for ℘2, is not

strongly compliant with respect to ℘2.

Note that there are policies without future temporal operators that allow violation case 1 (not

149

incrementally verifiable). However, for violation case 2 (unsatisfiable future obligation) to occur,

the policy needs to have future temporal operators.

We now prove that the first violation cannot happen for our forms of policies ℘when they are

satisfiable. A satisfiable policy ℘ that does not have the operator is incrementally verifiable.

This is stated in the following Theorem 57. Before showing the theorem we have the following

auxliary lemma which we use to proof Theorem 57.

Lemma 56 (Stuttering). For all closed, pure-past, and satisfiable policy℘without the temporal

operator, for all environment η, for all finite trace σ f , and for all state s, the following holds:

σ f · s, |σ f |,η |=℘↔ σ f · s · s, |σ f |+1,η |=℘.

Proof. We know for all 0≤ i≤ |σ f |, σ f · s, i,η |=℘. To complete the proof, we have to show that

σ f · s · s, |σ f |+ 1,η |=℘. It can be shown by induction on the structure of ℘ that the truth value

assumed by each subformula of ℘ is identical in two adjacent states if the action parts of the labels

of those two states are identical. The base cases are trivial. In the step, the logical connectives and

quantifier cases are straightforward. Recall that ℘ is pure-past and does not have the temporal

operator and thus the only temporal operator we have to consider is the non-strict version of S .

The semantics of the strict version of S does not take the current state into consideration while

evaluating whether a formula of form ℘1 S℘2 holds in the current state. According to the seman-

tics of non-strict S , the formula ℘1 S℘2 is true in state k when ℘2 is true in the current state k.

Otherwise it is false when℘1 is false in the current state k. In the remaining case, in both of the two

adjacent states (k and (k−1)) under consideration it takes on the same value as it did in the state im-

mediately prior to them. This can be written as: [[℘1 S℘2]]
k = [[℘2]]

k∨
(
[[℘1 S℘2]]

(k−1)∧ [[℘1]]
k
)

where [[ψ]]k denotes the truth value of the formula ψ at state k.

Theorem 57. All closed, pure-past, and satisfiable policy ℘ without the temporal operator, is

incrementally satisfiable.

Proof. To complete the proof, we have to show that (according the definition of incremental sat-

isfiability), for all σ f , for all η, for all closed, pure-past, and satisfiable policy ℘ without the

150

temporal operator, σ f , |σ f |− 1,η |=℘→ ∃σi.σ f ·σi |=℘. Let us consider any σ f and any η

such that σ f = σp · s and σp · s, |σp|,η |=℘. Now we have to show that there exists an infinite

extension σi such that σ f ·σi |= ℘. For this it is sufficient to show, for all k, σ f ·σi,k,η |=℘.

We can construct the σi to be sω. An induction on k, using Lemma Lemma 56 shows, we can now

show that σ f ·σi,k,η |=℘, where σi = sω.

Privacy policies of our form (℘) do not allow the temporal operator, which yields the fol-

lowing two corollaries.

Corollary 58. For a given privacy policy ℘, weak(℘) is incrementally satisfiable if weak(℘) is

satisfiable.

Proof. This follows by Theorem 57, as weak(℘) is closed, has no future operators, and does not

allow the temporal operator.

Corollary 59. A satisfiable privacy policy℘satisfies ∆-property if and only if no weakly compliant

action of ℘ incurs any unsatisfiable future obligations.

Proof. Follows from Theorem 55 and Corollary 58.

Given a policy℘, weak(℘) denotes the present conditions imposed by℘. Note that when℘has

the ∆-property, weak(℘) denotes the safety property imposed by ℘. The proof uses the definition

of the safety property. Weak compliance ensures thatweak(℘) is true in the current state, which

includes the current contemplated action. This signifies that we have a finite prefix (history) which

has satisfied the safety property of ℘. The ∆ property ensures that we have an infinite extension of

this finite prefix (that satisfies weak(℘)) such that the concatenation of the finite prefix and the

infinite extension satisfies ℘.

Theorem 60. For a given privacy policy ℘ with the ∆-property, weak(℘) expresses the strongest

safety property that contains the property expressed by ℘.

151

Proof. The proof uses the definition of the safety property by Alpern and Schneider [6] (cf. Sec-

tion 2.2). Weak compliance ensures thatweak(℘) is true in the current state, which includes the

current contemplated action. This signifies that we have a finite prefix (history) which has satisfied

the safety property of ℘. The definition of the safety property requires that for any finite prefix of a

trace which is in the set of traces accepted by the safety property there exists an infinite extension

of the finite prefix such that the concatenation of finite prefix and the infinite extension is also in

the set of the safety property in question. Note that weak compliance (containing only past tem-

poral operators) just ensures that the finite prefix does not violate the safety property imposed by

℘. However, it does not provide any guarantee about the existence of the infinite extension. The

∆ property on the other hand ensures we have an infinite extension of this finite prefix (that satis-

fies weak(℘)) such that the concatenation of the finite prefix and the infinite extension satisfies

℘. Thus, from this we can say that when a policy ℘ has the ∆-property, weak(℘) expresses the

strongest safety property that contains the property expressed by ℘.

The satisfiability of the privacy policy is weaker than the ∆-property. The satisfiability of the

privacy policy can neither capture the incrementally unsatisfiable policies nor the unsatisfiable

future obligations. For a privacy policy to be satisfiable, it requires the existence of just one trace

which satisfies the policy. Consider the privacy policy in Figure 5.9. Although the policy does

not have the ∆-property, it has a satisfiable trace where the event H never happens. Such a trace

would look like: BA · · · . The same argument applies to the privacy policy in Figure 5.10. It also

has a satisfiable trace where the event A never occurs and in turn does not incur the unsatisfiable

obligation F . Such a trace could look like DCB · · · , for example. Note that when a policy has the

∆-property, then it is satisfiable. However, the converse is not true.

We have proved that a privacy policy ℘ has the ∆-property if and only if M℘ |= δ(℘). How-

ever, model checking an arbitrary specification written in FO-CTL*lp with respect to a model is

undecidable in general. The complexity of model checking a propositional CTL*lp formula with

respect to a model is in EXPSPACE [77] in the formula length. Thus, for a pLTL policy we can

check whether the policy has the ∆-property in exponential space in the policy size. As our privacy

152

Privacy Policy (℘)

Slicing Slicing Slicing SlicingSlicing

SM SM SM SMSM

PPA PPA PPA PPAPPA Propositional LTL Policy Analysis

Proves analyzing small, finite carriers is sufficient

Returns a sub-policy which is sufficient for analysis

Final Result of checking ∆-property of ℘

O1 O2 On−1 On
. . .

℘1 ℘2 ℘n−1 ℘n
. . .

℘̂1 ℘̂2 ˆ℘n−1 ℘̂n
. . .

Res1 Res2 Resn−1Resn
. . .

Figure 5.11: Overview of the policy analysis technique

policy is in FOTL, we cannot directly use this technique to check the ∆-property. The following

subsection details our sound, semi-automated approach to the problem.

5.3 Analysis Technique for Checking the ∆-property

Recall that deciding whether a policy℘has the ∆-property is in general undecidable. However, this

result is not discouraging as we can develop a sound, semi-automated technique which can decide

whether ℘has the ∆-property in many practical cases. We now present our sound, semi-automated

analysis technique to check whether a policy℘has the ∆-property. Our analysis technique consists

of the following three steps (see Figure 5.11).

1. Privacy policy slicing.

2. Developing a small model theorem [46].

3. pLTL policy analysis.

153

By Corollary 59, a policy ℘ can violate the ∆-property only if ℘ allows a weakly compliant

action to incur an unsatisfiable obligation. When obligations do not interact with each other, we

can analyze permissibility of each of the obligations independently. To this end, we introduce

privacy policy slicing which decomposes the policy to a sub-policy which only contains the norms

that can potentially influence the permissibility of the obligation in question (step 1). In practice,

the sliced policy is significantly smaller but deciding whether the sliced policy has the ∆-property

might still be undecidable due to the fact that the policy language of the slice is still a restricted

non-monadic fragment of FOTL which has been shown to be highly undecidable [64].

The next step (step 2) of our analysis addresses the undecidability of the sub-policies obtained

from the previous step. Step 2 requires developing a small model theorem [46]. It proves that finite

elements of the carriers of the policy are sufficient to simulate all possible behaviors necessary to

prove the ∆-property of the policy. Then we can rewrite the universal and the existential quantifiers

as finite conjunctions and disjunctions, obtaining a pLTL policy which can be analyzed. We show

a template of the small model theorem which must be instantiated for a specific policy analysis

problem instance and whose proof is necessary to check whether a policy has the ∆-property. We

want to emphasize that step 2 will be specific for each policy analysis instance and relies heavily

on human assistance and domain knowledge of the assisting human.

Finally, we analyze the pLTL policy ℘ (step 3). We obtain a CTL*lp formula from ℘ (see

Figure 5.1). We then model check M℘ with respect to the CTL*lp specification. If M℘ satisfies the

CTL*lp specification, then we can say that ℘has the ∆-property. Note that while there are known

algorithms for CTL*lp model checking, e.g., Kupferman et al. [77], there exists no tool support for

this. Currently, we rely on the approach proposed by Barth et al. [11]. Their algorithm begins by

building a tableau [91] (with Büchi accepting condition [22]) from the pLTL formula representing

the privacy policy. Then it checks to see whether all the reachable states from the initial states can

reach a strongly connected component containing at least an accepting state. If this is the case,

then the privacy policy specified in pLTL has the ∆-property. Note that the size of the tableau

is exponential in the pLTL policy formula length. Thus, their algorithm has the complexity of

154

EXPSPACE in the policy formula length.

5.3.1 Assumptions and Limitations

Recall that to check whether a policy ℘ specified in FOPSL has the ∆-property is undecidable

in general. To mitigate this undecidability, we make some assumptions based on which we de-

velop a sound, semi-automatic technique to check whether ℘ has the ∆-property. We discuss the

assumptions and limitations of our approach just below.

The first assumption we make is that obligations specified in the policy ℘cannot interact with

each other. To be more precise, we assume that one obligation cannot incur another obligation

(no cascading obligations). Moreover, we also assume that obligations are not mutually exclusive.

Consider a policy according to which two obligations o1 and o2 are incurred. However, the policy

has the restriction that if one performs obligation o1, then o2 is not permitted and vice versa. We

assume such case does not occur in the context of our policy analysis. We have verified that our

interpretation of the HIPAA privacy rule satisfies this constraint. The implication of this constraint

is that to check the permissibility of obligations, we can consider each obligation separately. More-

over, this enables us to reduce the original problem of checking whether a policy has the ∆-property

into multiple smaller problems each of which can be analyzed in isolation and in parallel.

We only assume positive obligations and also assume that formulas under a temporal opera-

tor are non-temporal positive formulas. This enables us to syntactically replace all the sub-formulas

whose outer most operator is with logical true to extract the present requirements of the policy.

Moreover, negative obligations can be expressed with past temporal formulas. For instance, con-

sider the policy rule which requires that whenever the action a is performed then in the future the

action b cannot be performed. This can be intuitively written as a→(¬b)). We can then rewrite

this policy rule to b→(¬a)) specifying the same requirement. This rewritten policy states that

action b can be performed if action a has not been performed in the past. As we can see both

policies accept the same sets of traces. We also do not allow the U temporal operator in FOPSL.

We also disallow the temporal operators in FOPSL. Recall that we have two cases in which

155

the policy ℘ might not possess the ∆-property. The first case occurs when taking a weakly com-

pliant action can lead to a state from which it is not possible to take an unbounded number of

weakly-compliant valid transitions (no infinite weakly compliant extension). The second case in

which a weakly compliant action for ℘ is not strongly compliant for ℘ is when that action incurs

a future obligation which cannot be met. The implication of the restriction of disallowing the

operator is that for policies of our form violation case 1 cannot happen. Thus, we can just consider

violation case 2, which occurs when a weakly compliant action incurs an unsatisfiable obligation.

We also consider the non-strict version of the temporal operators. The semantics of the strict ver-

sion of the temporal operators do not take the current state into account when reasoning about

whether a trace satisfies a formula. If we allow the strict version of the temporal operators our

policies can demonstrate the first violation case.

Obligations in privacy policies may have a deadline associated with them. For instance, §164.524

requires that when an individual requests to access her own PHI, the covered entity is obligated

to provide the individual with access within 30 days (but not more than 60 days). One cannot

express obligation deadlines in FOPSL. However, extending FOPSL to express obligation dead-

lines is feasible [13]. However, even then we cannot take obligation deadlines into account, as this

would require to extend FO-CTL*lp with support of deadlines. No such logic and associated model

checking algorithms exist in the literature. That being said, it is possible to extend our policy anal-

ysis result for a policy without obligation deadlines to the policy analysis result for a policy which

has only deadlines in obligations. Consider a policy with the following two rules. (1) When a pa-

tient’s parents request to access the patient’s PHI, then the doctor is obligated to give the patient’s

parents access to the PHI. (2) The doctor can disclose a patient’s PHI to anybody if the patient

gave an authorization to do so. Now according to our analysis this policy has the ∆-property as

the incurred obligation of the doctor (from rule 1) can be fulfilled if the doctor received a patient’s

authorization (rule 2). Now let us add a deadline of 10 days for the doctor’s obligation. Even with

the deadline, it is possible for the doctor to discharge the obligation in 10 days if the patient sends

the authorization in 10 days.

156

In our model, we assume the role state of the users is an input to the model. In our model, we

assume that roles of individuals do not change over time. Consider a situation where an obligation

o1 is incurred by a user u1, and to fulfill that obligation, u1 requires the role r1 which he currently

possesses. Now, if the role r1 is revoked from u1 (e.g., u1 is fired from the job), he cannot fulfill

the obligation. From an operational point view of the system, one possibility of handling the

revocation of privileges is that the obligation can be reassigned to a new user with appropriate

privileges. However, modeling this in a formal verification setting is not trivial and this might

cause the small model theorem to not exist as considering a finite number of users might not

suffice. Moreover, we assume all the different carrier sets can be unbounded but fixed over time.

If we allow the carrier to change over time and also allow the roles of the users to change then we

can have a situation where users keep getting fired and new users are added to replace them. In that

case, we cannot show the existence of a small model theorem in a straightforward fashion. Note

that if we have the situation that whenever a user’s role is revoked, there always exists another user

who has the appropriate authorization to whom the obligation can be reassigned, then our analysis

result considering roles to be fixed can be generalized for a system where roles can change over

time. We also assume an individual cannot have conflicting roles. For instance, a user cannot be

both patient and doctor at the same time. We also assume that the role hierarchy is an input to the

model.

We also assume in each point of time, there is only one transmission event or send event. In

a distributed system setting, there could be a situation where multiple send events have the same

time stamp but we assume the clock granularity is fine enough to totally order them based on the

time stamp.

We do not have any general result for developing small model theorems for policies written in

FOPSL. To be more precise, it is not clear whether all policies written in FOPSL have a small

model theorem. Currently we have an ad-hoc approach for which we use domain specific knowl-

edge and abstractions.

We disallow the 6= operator or any predicate simulating it. More precisely, the policy in ques-

157

tion might have the 6= operator as long as the policy slices we have to consider do not have it. In

our case study, we see that the policy slices of the HIPAA privacy policy satisfy this constraint.

The implication of this constraint is that when a policy does not have the 6= operator, then it cannot

differentiate between two elements of the carrier. As a result of this, we are able to develop a small

model theorem. This is explained in more details later.

As mentioned before, there are two approaches of checking whether a policy specified in pLTL

has the ∆-property. The first approach is based on infinite word automata called “tableaus” and is

proposed by Barth et al. [11]. The other approach is proposed by us and it is based on CTL*lp

model checking [77]. We do not have access to a CTL*lp model checker and to show efficacy we

currently use the tableau-based approach.

We assume that users are diligent and they will attempt to fulfill their obligations when incurred.

We also assume that the environmental agents will collaborate with the users in the system to fulfill

the obligation of the users. To relax this assumption, we have to strengthen the definition of strong

compliance. We discuss this further in Chapter 8.

We also assume messages that do not contain any individually identifiable information are not

mandated by the privacy policy. We also assume that privacy notices do not contain any indi-

vidually identifiable information and thus sending privacy notices is not mandated by the privacy

regulations in question.

We also assume in FOPSL that the following predefined predicates inrole, send, contains,

for-purpose, purpose, and in have a fixed interpretation. Other regulation-specific predicates do

not have a fixed interpretation. We also assume that the policy is cycle-free. More precisely,

whether a send event is allowed does not depend on whether the same event is allowed. Moreover,

we also assume that we do not have any predicates, excluding the predefined predicate send, whose

semantics depend on the permissibility of a send event containing PHI of an individual. Without

these assumptions it is difficult to develop a sound slicing algorithm.

158

5.3.2 Privacy Policy Slicing

For our policy analysis, the privacy policy size is a bottleneck. As it turns out, FOPSL allows us

to use a divide-and-conquer approach for verification. The benefit of decomposition is that for a

single obligation, potentially not all norms of the policy are necessary for analysis, reducing the

policy size to be analyzed.

Based on this intuition, we now introduce the notion of adequate policy. A policy ℘A is an

adequate policy with respect to a policy℘and an obligation Ok in℘, where the norm set of℘A is a

subset of the norm set of℘, if it is sufficient to check whether all pending occurrences of obligation

Ok can be fulfilled in ℘A to make a decision about whether all pending occurrences of obligation

Ok can be fulfilled according to ℘. Thus, it is sound to decide that all pending occurrences of

obligation Ok can be fulfilled by conforming to ℘ if we know that all pending occurrences of

obligation Ok can be fulfilled in a conforming fashion with respect to℘A. Moreover, the advantage

is that the size of an adequate policy ℘A with respect to a policy ℘ and an obligation Ok in ℘ is

expected to be smaller than the original policy ℘.

Definition 61 (Adequate Policy). Given a privacy policy ℘and an obligation Ok mentioned in it,

we call another policy ℘A an adequate policy with respect to ℘and Ok, if the set of norms of ℘A

is a subset of the set of norms of policy ℘, and the following property holds:

For any possible finite trace σ f , any state s, environment η, such that s,η |= T , where T is an

action which incurs the obligation Ok with respect to both ℘and ℘A, if σ f · s, |σ f |,η |=weak(℘)

and σ f · s, |σ f |,η |=weak(℘s), then there exists an infinite extension σi such that σ f · s ·σi |=℘A,

only if there exists an infinite extension σ j such that σ f · s ·σ j |=℘.

The following theorem (Theorem 62) precisely states that the policy analysis results of check-

ing the ∆-property of the adequate policies with respect to a privacy policy ℘ and obligations in

℘ can be composed together to get the policy analysis results of checking the ∆-property of the

original policy.

159

Theorem 62. For a policy ℘, if for all obligations Ok in ℘, M℘s(Ok)
|= δ(℘s(Ok)) where ℘s(Ok) is

an adequate policy with respect to Ok and ℘, then M℘ |= δ(℘).

Proof. From the definition of ∆-property, a policy ℘has the ∆-property, if the following holds:

∀σ f .∀η.σ f , |σ f |−1,η |=weak(℘)→∃σi.σ f ·σi |=℘

Using this definition of ∆-property, it is sufficient to show that the following holds:

∀k.
(
∀σk

f .∀η
′.σk

f , |σ
k
f |−1,η′ |=weak(℘s(Ok))→∃σ

k
i .σ

k
f ·σ

k
i |=℘s(Ok)

)
=⇒

∀σ f .∀η.σ f , |σ f |−1,η |=weak(℘)→∃σi.σ ·σi |=℘

Now let us consider that for each obligation Ok we have a specific send event (non-temporal for-

mula) Tk which incurs the obligation Ok according to the policy ℘. Now take any arbitrary σ f

and η such that σ f , |σ f |− 1,η |=weak(℘) and without loss of generality additionally consider

that σ f contains the triggering action Tk for all obligations Ok. From σ f we will construct each

σk
f and η′ such that σk

f · stk , |σk
f |,η

′ |=weak(℘s(Ok)) where stk |= Tk. We will show how to con-

struct this for a specific k. Find the state in σ f in which Tk happens. We discard all the remaining

states including that state where TK happens (but save all the predicate valuations of the state in

which Tk occurred as it will be necessary later to construct η′ for the state stk just below). The

resulting trace σk
f is a strict prefix of σ f . We then replace all the send events in σk

f that are not

consistent with any send events in ℘s(Ok) by a send event that does not have any attribute in it and

thus trivially being allowed by ℘s(Ok). We then change η to η′ by removing all predicates and their

associated valuations that do not appear in ℘s(Ok) and copying the consistent predicate valuations

for the original state of σ f in which Tk occurred. The resulting finite trace σk
f · stk and η′ satisfy

the following: σk
f · stk , |σk

f |,η
′ |=weak(℘s(Ok)). This is intuitively due to the fact that we retain

all the necessary predicate valuations, we retain all the actions that can influence the satisfiability

ofweak(℘s(Ok)), and the sends not containing any attribute of an individual are trivially allowed

160

by the policy (see the proof of Theorem 70 for a similar argument).

Now from the fact that for all obligations Ok in ℘, M℘s(Ok)
|= δ(℘s(Ok)) holds, we get for each

σk
f · stk an infinite extension σk

i such that σk
f · stk ·σk

i |=℘s(Ok). Now by Theorem 70, we have that

σk
f ·stk ·σk

i |=℘. We will now show how to construct the σi from all the σk
i s such that σ f ·σi |=℘. To

construct σi from all the σk
i by interleaving the states of each of the σk

i and replicating the predicate

valuations in a way that in each state a predicate valuation and its negation are not true at the same

time. Based on the constraint that obligations do not interact with each other, the semantics of

predicates (excluding the predefined predicate send) do not depend on the permissibility of a send

event containing an attribute of an individual, and predicate valuations are maintained similarly,

gives us that the interleaved σi satisfies σ f ·σi |=℘completing our proof.

The notion of adequate policy enables us to run our policy analysis of checking the ∆-property

on smaller policies, the results of which can be composed to get the policy analysis results of

checking the ∆-property of the original policy. Due to the syntactic restrictions of FOPSL, we can

syntactically over-approximate adequate policies with respect to a privacy policy℘and obligations

Ok in ℘. To this end, we introduce privacy policy slicing analogous to program slicing [125].

Slicing decomposes the privacy policy with respect to an obligation. We show that the resulting

sliced policy is also an adequate policy.

The requirements of privacy policy slicing, which make it interesting for our analysis, are the

following.

(I) The slicing preserves the ∆-property of the original policy with respect to the slicing crite-

rion.

(II) The analysis results on the sliced policies can be composed to verify that the ∆-property

holds for the original policy.

Slicing a privacy policy with respect to a slicing criterion collects all the norms of a policy which

the said criterion depends on. The slicing criterion (P) is a non-temporal formula and it represents a

set of send events. P has the following form: send(p1, p2,m)∧contains(m,q, t)∧ for-purpose(m,u)

161

℘::=(∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.

send(p1, p2,m)∧ contains(m,q, t)∧ for-purpose(m,u)−→
∨

i

(
(Csender∧Creceiver∧Csubject∧Cattribute∧Cpurpose∧ψ∧β)∨ψexception

)

∧

j

(
Csender∧Creceiver∧Csubject∧Cattribute∧Cpurpose∧ψ→

(
χ ∨ψexception

))

)

Figure 5.12: Different kinds of send events and their position in the policy, Blue=regulatory,
Green=conditional, Red=obligatory

∧Csender∧Creceiver∧Csubject∧Cattribute∧Cpurpose. Note that one or more conjuncts can be missing

in P when they are trivially true. Before precisely defining privacy policy slicing, we introduce

some key notions first.

5.3.2.1 Types of send Events

The first notion necessary for specifying policy slicing are the types of send events. We distin-

guish between three types of send actions: regulatory, conditional, and obligatory. We base our

distinction on where they appear in the policy.

Definition 63 (Conditional Send). A send event, which has the form of a slicing criterion P, is

called conditional with respect to a norm if it appears as a sub-formula in one of the following

places: (1) In ψ or ψexception portion of the positive norms. (2) In ψ portion of the negative norms’

antecedent. (3) In ψ portion of χ in the negative norms’ consequent. (4) In ψexception portion of χ

in the negative norms’ consequent.

Definition 64 (Obligatory Send). A send event is called obligatory with respect to a norm if it

appears as a sub-formula in one of the following places: (1) In β portion of the positive norms. (2)

In β portion of χ in the negative norm’s consequent.

Definition 65 (Regulatory Send). A send event is called regulatory or the target send event with

respect to a norm if it is the target send event that the norms refers to (or, applies to).

162

An example of the regulatory/target send event is given just below. Consider the following very

simple policy with only one negative norm:

(∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.

send(p1, p2,m)∧ contains(m,q, t)∧ for-purpose(m,u)−→

(inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)→

believesMinimumNecessaryForPurpose(p1, p2,q, t,u)))

The only regulated/target send of the above policy is as following.

send(p1, p2,m)∧ contains(m,q, t)∧ for-purpose(m,u)∧ inrole(p1,covered-entity)

∧ inrole(q, individual)∧ in(t,PHI)

In Figure 5.12, we show the different kinds of send events we consider and their position in the

policy. Any send event that appears in the formula marked green is conditional send event. On

the contrary, any send event that appears in the formula marked red is obligatory send event. Any

send event that appears in the boxed formula (χ) can be either conditional or obligatory send event

depending on the outer most temporal connective. If the temporal connective is, then the send

event in question is an obligatory send event. If the top level temporal connective is a past temporal

operator or a logical operator, then the send event that appears in χ is a conditional send event. The

send event in head of the rule, marked in blue, is the regulatory or target send event.

5.3.2.2 Consistency

The goal of the notion of consistency is to statically decide given a send, which of the norms

will be applicable (restricts or allows) for that send. Note that as we define consistency statically

and to preserve soundness, we actually over-approximate the most precise consistency relation.

According to our definition of consistency and in turn using it to check whether a norm applies

163

(restricts or allows) to the send in question, it can be the case that, our definition decide that a

norm is applicable to a send event but at runtime (with more information) it might not actually be

applicable. However, the converse case where the norm is applicable to a send in runtime and our

definition decides it is not applicable, cannot happen for our formalization of consistency. This

is what we mean by over-approximating the most precise consistency relation. We say a send Q1

is consistent with another send Q2 if all constraints (e.g., Csender, etc.) in Q1 are consistent with

the constraints in Q2. Q1 and Q2 have the same form as P and can contain free variables. One

way to differentiate between the different sends are the constraints (i.e., constraints on the sender

role, etc.) on their free variables. Consistency is necessary for two reasons: first, Q1 and Q2 can

contain free variables, which might not match the naming convention of each other, and second,

it is admissible that one constraint subsumes another. For addressing the first issue, we rename

the constraints to follow the same naming convention. We now formalize consistency (denoted by

!) in the following way.

• inrole(p, r̂)! inrole(p, r̄) if and only if r̂ = r̄, r̂ is a specialization of r̄, or r̄ is a specializa-

tion of r̂. For instance, inrole(p,doctor)! inrole(p,psychiatrist).

• ¬inrole(p, r̂)! inrole(p, r̄) if and only if inrole(p, r̂) 6! inrole(p, r̄).

• in(t, t̂)! in(t, t̄) if and only if t̂ = t̄ or there exists an attribute t1 such that t1 can be calcu-

lated from both t̂ and t̄. For instance, in(t,PHI)! in(t,psych-notes) as the attribute “diag-

nosis” can be calculated from both PHI (protected health information) and psych-notes.

• ¬in(t, t̂)! in(t, t̄) if and only if in(t, t̂) 6! in(t, t̄).

• for-purpose(m,u1)! for-purpose(m,u2) if and only if (1) u1 and u2 are both constants then

u1 = u2 and (2) either u1 or u2 are variables. We handle negation in the similar way similarly

as other predicates above.

• contains(m,q, t1)! contains(m,q, t2) if and only if (1) t1 and t2 are both constants and one

of the following holds: (a) t1 = t2 or (b) there exists an attribute t̂ such that t̂ can be calculated

164

from both t1 and t2, and (2) either t1 or t2 are variables. We handle negation in the similar

way similarly as other predicates above.

• Two send predicates (negated or not) are always consistent with each other.

• purpose(u, û)! purpose(u, ū) if and only if û = ū.

• ¬purpose(u, û)! purpose(u, ū) if and only if purpose(u, û) 6! purpose(u, ū).

• Cx
i ! C

y
i if and only if there exists an atomic formula ax of Cx

i that is consistent with any

atomic formula ay of C
y
i , where i ∈ {sender, receiver,subject,attribute, purpose}. For in-

stance, (inrole(p1,doctor)∧ inrole(p1, resident)) is consistent with (inrole(p1,psychiatrist)∨

inrole(p1, secretary)) as inrole(p1,doctor)! inrole(p1, psychiatrist). Note that we are con-

servatively over approximating consistency by only looking at atomic predicates

individually while ignoring their logical connections.

We assume that an empty constraint is consistent with any constraint. We can now inductively

check whether two send events are consistent.

5.3.2.3 Dependency

The next notion we need for defining privacy policy slicing is called the norm dependencies.

Definition 66 (Positive Dependency). A norm φ1 positively depends on norm φ2, if one of the

conditional sends of φ1 is consistent with the regulatory send of φ2. Intuitively, this represents that

the permissibility of a send regulated by φ1 can be influenced by the occurrence of sends influenced

by sends regulated by φ2.

Definition 67 (Negative Dependency). A norm φ1 negatively depends on norm φ2, if one of the

obligatory sends of φ1 is consistent with the regulatory send of φ2. Roughly, this represents that

the permissibility of sends that might be obligated by φ1 might be regulated by φ2.

165

Definition 68 (Prospect-Dependency). A norm φ1 has an prospect-dependency on norm φ2, if the

regulating send of φ1 is consistent with the regulatory send of φ2. This signifies that both norms φ1

and φ2 allow the same send based on possibly different conditions.

We say norm φ1 depends on norm φ2 if φ1 has a positive-, a negative-, or a prospect-dependency

on φ2. Note that as the definition of dependency uses the notion of consistency, our definition of

norm dependency, to preserve soundness, over-approximates the most precise dependence relation

between norms.

Recall that we use the notion of privacy policy slice to syntactically over-approximate the ade-

quate policy of a given privacy policy ℘and an obligation Ok. This is possible due to restrictions

on FOPSL. We use the obligation Ok as a slicing criterion of our privacy policy slicing. As we

have introduced all the necessary notions, we can now precisely define privacy policy slicing.

Definition 69 (Slice of a Privacy Policy). Given a privacy policy ℘with the norm set φ, a slicing

criterion P, ℘s(P) is a slice of ℘with respect to P if it satisfies the following.

1. φs(P) ⊆ φ where φs(P) denotes the norm set of ℘s(P).

2. φP ⊆ φs(P) where φP represents the set of all norms where P appears as an obligatory send.

3. φ∗ ⊆ φs(P) where φ∗ is the transitive closure of the dependence relation on φP.

These definitions of slicing, dependency, and consistency were carefully chosen so that the

privacy policy slicing satisfies the requirements (I) and (II) mentioned above. To show that the

slicing procedure satisfies both the requirements (I) and (II), we have the following theorems. The

first (Theorem 70) formalizes the requirement that the slicing procedure preserves the ∆-property

of the original policy with respect to the slicing criterion. Note that from the following theorem

it follows that a policy slice ℘s with respect to a policy ℘ and obligation Ok (slicing criterion), is

also an adequate policy with respect to ℘and obligation Ok.

Theorem 70. For a policy℘and a slicing criterion P, the resulting sliced policy℘s(P) satisfies the

following. For any possible finite trace σ f , any state s, environment η, such that s,η |= T , where

166

T is an action which incurs the obligation P with respect to both ℘ and ℘s(P), if σ f · s, |σ f |,η |=

weak(℘) and σ f · s, |σ f |,η |= weak(℘s), then there exists an infinite extension σi such that

σ f · s ·σi |=℘s(P), if and only if there exists an infinite extension σ j such that σ f · s ·σ j |=℘.

Proof. Assume ℘, P, σ f , s and η such that the requirements above are satisfied. We start with the

forward direction⇒.

By assumption there exists an infinite extension σi such that σ f · s · σi |= ℘s(P). By defi-

nition, this means that ∀k.σ f · s · σi,k,η |= ∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.send(p1, p2,m)∧

contains(m,q, t)∧ for-purpose(m,u)→ (
∨

i

φs+
i ∧

∧

j

φs−
j). Now let σ j = σi. We have to show

that ∀k.σ f · s · σi,k,η |= ∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.send(p1, p2,m)∧ contains(m,q, t)∧

for-purpose(m,u)→ (
∨

i

φ+i ∧
∧

j

φ−j). Take an arbitrary k. Assume p1, p2, q, m, t and u such

that the antecedent is satisfied. We have to show that at least one positive norm φ+ and all negative

norms φ− are satisfied. If the set of principals, attribute and purpose satisfy the antecedent for the

original policy, trace and index k, the same holds for the sliced policy. Thus, there is at least one

positive norm φs+ that is satisfied. Since all sliced norms are in the original policy, this positive

norm is part of the positive norms of the original policy. Thus with φ+ = φs+ we have found our

allowing norm. Similarly, all norms φs− are negative norms of the original policy and satisfied. It

remains to show that the remaining negative norms are trivially satisfied. We proceed with a proof

by contradiction.

Assume a negative norm C∧ψ→ (χ∨ψexc), not part of the sliced policy, that is false, that

is, its antecedent is satisfied, but the consequent is not. If the antecedent is satisfied, then the

restriction C applies to the send event at index k. Now compare C to C+, the restriction of the

regulatory send of the positive norm φs+. For each restriction category c, either Cc is empty, C+
c

is empty, or both are satisfied by the send. In the first two cases the restrictions are immediately

consistent. In the last case we inspect the category. The following explains the simplified case

of single predicates. More complex formulas follow immediately by inspection of the simple

conjunctive and disjunctive nature of restrictions. For restrictions of role, for both to apply they

either have to be equivalent or one has to be a descendant of the other in the role hierarchy. Then

167

they are consistent. For restrictions of attributes, for both to apply they either have to be equivalent

or computationally related. Then they are consistent. For restrictions of purposes, they must be the

same purpose. Then they are consistent.

In summary we have shown that the restrictions of the negative norm and the positive norm are

consistent. Thus, the norms are dependent. By Definition 69(3) the negative norm must be part of

the slice, which is a contradiction.

We now turn to the backward direction⇐. Let σi = ⌈σ j⌉℘s be the erasure of σ j. The erasure

is defined as follows:

⌈σ⌉℘s(i) =

σ(i) if the send at σ(i) is applicable to any restriction in ℘s

sendde f else

In this definition, sendde f is a send event that is trivially allowed, e.g., one without attributes.

First we prove an auxiliary result. For all indices k and all pure-past and non-temporal formulas

ϕ that contain at most sends contained in ℘s, it holds that for all free-variable valuations ρ, σ f · s ·

σ j,k,η |= ϕ ρ ⇐⇒ σ f ·s ·σi,k,η |= ϕ ρ. The proof proceeds by induction on k and the structure of

ϕ. We start with non-temporal formulas. The result holds since ϕ cannot contain send predicates

that apply to erased send events. Conjunction and disjunction follow immediately by inductive

hypothesis. Existential quantification is satisfied iff there is a valuation for the parameters such

that the contained sub-formula with those parameters substituted is true. By inductive hypothesis,

this is the case if and only if the contained sub-formula with the same parameters is satisfied in the

erased trace, if and only if the existential holds in the erased trace. A similar argument applies to

universal quantification.

For pure-past formulas, proving an iff statement allows us to invoke the inductive hypothesis

on a non-satisfied subformula, as needed by the case of negation. The quantifier cases are analo-

gous to the non-temporal case, and conjunction, disjunction and Since follow by inspection of the

semantics and inductive hypothesis.

168

We now return to showing that the erasure satisfies the sliced policy. Analogous to the forward

direction, let k be arbitrary and p1, p2, q, m, t and u such that the antecedent is satisfied. We

can immediately discharge all cases of k where σi(k) = sendde f , because it is trivially satisfied.

So σi(k) = σ j(k) = send(p1, p2,m) and some restriction of ℘s applies to this send. This send is

allowed by a positive norm φ+ in ℘. Since this norm applies, its restriction must be consistent

with the restriction in ℘s (see the forward direction). Thus, φs+ = φ+ is also a positive norm of the

sliced policy. We to show that the norm is satisfied in the erased trace.

A positive norm has the form (C∧ψ∧β)∨ψexc. First assume the norm was satisfied in σ j by

its first disjunct. Then trivially C is satisfied at index k in σi. By our auxiliary result, ψ is satisfied

in the erased trace. Last, β is a conjunction ofµ. By inspection of the semantics, this holds if

for each µ there exists k′ ≥ k such that µ holds at k′ in σ j. Then by the auxiliary result, µ holds at

k′ in σi. The case that the norm was satisfied by ψexc follows similarly by the auxiliary result. In

summary, the positive norm is satisfied in the erased trace σi.

Similarly we can establish that all negative norms of the sliced policy hold. Assume a negative

norm C∧ψ→ (χ∨ψexc), where the antecedent is true in σi. Then trivially C is true in σ j. Further-

more, ψ holds in σ j by the auxiliary. Thus, the antecedent is true in σ j. Since every negative norm

of the sliced policy is a negative norm of the original policy, the consequent must be satisfied in σ j.

Thus either χ or ψexc in σ j. The exception case immediately induces ψexc in σi by auxiliary. The

other case follows by induction on the construction of mixed formulas, using the auxiliary after

unfolding the definition of obligation formulas similar to the case of positive norms.

In summary, we have shown that at least one positive norm and all negative norms of the sliced

policy are satisfied in the erased trace, for any index k. It follows that the extension satisfies the

sliced policy.

The next corollary states that if we are given a privacy policy ℘, an obligation Ok in ℘, and a

privacy policy ℘s in which ℘s is a slice of ℘with respect to obligation Ok, then ℘s is an adequate

policy with respect to ℘and Ok.

169

Corollary 71. Given a privacy policy ℘, an obligation Ok in ℘, and a privacy policy ℘s in which

℘s is a slice of ℘ with respect to obligation Ok, then ℘s is an adequate policy with respect to ℘

and Ok.

Proof. The proof follows from the Theorem 70 and the definition of adequate policy (Defini-

tion 61).

The next corollary states that the Theorem 62 also holds if we replaced the adequate policy of

a given policy ℘ and an obligation Ok, with privacy policy slice of ℘ w.r.t slicing criterion Ok. It

basically says all the result of the sliced policies can be merged together to get the policy analysis

result of the original policy ℘. The proof follows from Theorem 62 and Corollary 71.

Corollary 72. For a policy ℘, if for all obligations Ok in ℘, M℘s(Ok)
|= δ(℘s(Ok)) where ℘s(Ok) is

a privacy policy slice with respect to Ok and ℘, then M℘ |= δ(℘).

The slicing procedure generates the transitive closure by computing dependency in a lazy, by-

need fashion. This algorithm is trivially correct, since it follows our theoretical development above.

The algorithm is presented just below.

5.3.2.4 Slicing Algorithm

We now present the algorithm for calculating the slice of a privacy policy ℘ based on a slicing

criterion P. It additionally takes as input the role hierarchy and the attribute computation rules

necessary for determining consistency. The slicing procedure calculates the transitive closure of

the dependence relation in a lazy, by-need fashion.

Algorithm 5.1 is the main procedure. It takes as input a privacy policy (represented by the set

of norms) and an obligatory send event which is used as the slicing criterion, the role hierarchy, the

attribute computation rules and returns another sub-policy which influences the obligatory send P.

Algorithm 5.2 is a utility procedure used by algorithm 5.1. The procedure AddSend takes as input

a send event of form P and checks to see whether the send event has been processed before. If the

170

send has not been processed before, the procedure adds it to the queue UnderprocessingSends and

also to the map ProcessedSends so that it is not processed again.

Algorithm 5.1 Slice(Φ,P)
Input: A privacy policy represented as a set of norms Φ and a slicing criterion P.
Output: returns a sub-policy of the input policy represented as a set of norms Φr.

1: /* We assume the following variables to be global */
2: Φr = empty
3: Queue UnderprocessingSends = empty
4: Map ProcessedSends = ProcessedNorms =empty
5: Initialize(P)
6: while UnderprocessingSends 6=empty do
7: Send Q = UnderprocessingSends.dequeue() ;
8: for all φ ∈Φ do
9: if φ /∈ProcessedNorms then

10: if φ is of form (R∧ψ∧β)∨ψexception and R ! Q then
11: Φr = Φr ∪φ /* add φ to the result */
12: Insert φ to the map processedNorms
13: for all Send x ∈ ψ∨ x ∈ ψexception∨ x ∈ β do
14: AddSend(x)
15: if φ is of form R∧ψ→ χ∨ψexception and R ! Q then
16: Φr = Φr ∪φ /* add φ to the result */
17: Insert φ to the map processedNorms
18: for all Send x ∈ ψ∨ x ∈ ψexception∨ x ∈ χ do
19: AddSend(x)

5.3.3 Small Model Theorem (SMT)

Our policies are specified in FOPSL, which is a restricted fragment of FOTL. FOTL is not decid-

able and the additional restrictions imposed on FOPSL are not enough to make FOPSL decidable.

Specifically, FOPSL is a non-monadic fragment of FOTL, satisfiability of which is known to be

undecidable [64]. The fragment we consider can have more than one free variable for subformulas

of the form ψ1 S ψ2 (non-monadic) [64]. On the other hand, pLTL is decidable. A small model

theorem (or, a finite model theorem) [46] will establish that any behavior of interest of a policy

specified in FOPSL with infinite carriers can be captured with a small, finite amount of elements

from each carrier. The behavior of interest in our case is the behavior necessary to prove the ∆-

property of a policy. For example, it might be possible that the full infinite carrier P of principals

171

Algorithm 5.2 Initialize(Q)
Input: A send event Q (non-temporal formula)

1: for all φ ∈Φ do
2: if φ /∈ProcessedNorms then
3: if φ is of form (R∧ψ∧β)∨ψexception and Q appears as an obligatory send in β then
4: Φr = Φr∪φ, Insert φ to the map processedNorms
5: AddSend(R)
6: for all Send x ∈ ψ∨ x ∈ ψexception∨ x ∈ β do
7: AddSend(x)
8: if φ is of form R∧ψ→ χ∨ψexception and Q appears as an obligatory send in χ then
9: Φr = Φr∪φ, Insert φ to the map processedNorms

10: AddSend(R)
11: for all Send x ∈ ψ∨ x ∈ ψexception∨ x ∈ χ do
12: AddSend(x)

can be simulated with a finite amount of representatives, e.g., just one person for each role. In

that case, we can rewrite the FOTL policy to a pLTL policy by replacing universal quantifiers with

finite conjunctions and existential quantifiers with finite disjunctions, where the quantified vari-

ables are instantiated with all carrier elements. Such a theorem would guarantee that the traces that

model the resulting propositional policy are sufficiently related to those of the original first-order

policy, such that the property we are interested in is preserved by the conversion to a propositional

formula.

It is not clear whether there exists a small model theorem for all privacy policies specified in

FOPSL. This is what results in the incompleteness in our technique. In the absence of an affirma-

tive finding in this regard, small model theorems must be derived for specific policy instances and

specific properties of it (e.g., consistency, ∆-property). Moreover, developing such a small model

theorem requires domain specific knowledge, invariants, and abstractions. For instance in HIPAA,

whether a covered entity (hospital) can share a patient’s (pa) PHI is not dependent on covered

entity’s interactions with another patient (pb) where pa 6= pb. As we will show in section 5.4, it

is possible to develop small model theorems for the sliced HIPAA policies we are interested in.

The small model theorem necessary for proving the ∆-property of a policy ℘ written in FOPSL

will have the following general form. The Theorem 74 in section 5.4 is a concrete example of the

following small model theorem template.

172

Template of Small Model Theorem. A given policy ℘ has the ∆-property for every carrier set
−→
C = 〈C1,C2, . . .〉 if and only if there exists a small, finite carrier set

−→
CS = 〈Cs1,Cs2, . . .〉 for which

℘has the ∆-property.

5.4 HIPAA: A Case Study

In this section, we demonstrate the adequacy of our policy analysis techniques by using HIPAA as

a case study.

5.4.1 Specification of HIPAA.

We have specified all 84 disclosure related clauses in FOPSL (see Appendix A). We considered the

HIPAA privacy rule in Subpart E of CFR §164. We have 68 positive norms and 8 negative norms.

We cannot fully express access related rules found in §164.524 which ensure that an individual gets

access to its own PHI. However, this clause is not related to disclosure of individually identifiable

information (PHI). We consider the following sections of HIPAA: §164.502, §164.506, §164.508,

§164.510, §164.512, §164.514, and simplified versions of §164.524 and §160.310.

5.4.2 Satisfiability of HIPAA.

Any message that does not contain any individually identifiable information or is initiated by the

patient or the environment (except business associates of the covered entity), is not regulated by

the HIPAA privacy policy (denoted by ℘H). Thus, messages not containing any PHI are trivially

allowed by ℘H . This kind of send events would falsify the contains predicate in the antecedent

of ℘H making the implication trivially true. We can thus create an infinite trace, in each step of

which, a message of the above kind is transmitted. Such a trace would trivially satisfy ℘H .

5.4.3 Incremental satisfiability of HIPAA.

In FOPSL, we do not allow the operator. Moreover, ℘H is trivially satisfiable as discussed just

above. By Corollary 58, it follows that weak(℘H) is incrementally satisfiable.

173

5.4.4 Policy slicing algorithm implementation.

Note that obligations do not interact with each other in HIPAA and also HIPAA is trivially satis-

fiable. Thus, the only way ℘H can violate the ∆-property is through a weakly compliant action

incurring unsatisfiable obligations. We have implemented our slicing algorithm using C++. The

complexity of the algorithm is linear in the size of the policy norms and the number of send

events that appear in the norms. We have sliced ℘H with respect to real obligations from HIPAA

(§160.310, §164.524). The sliced policy contains 68 norms out of total 76 norms. The slicing

of the policy on each of these obligations required less than 480 milliseconds on an Intel Core i7

1.73 GHz machine with 4GB of RAM running Ubuntu 12.04. There are two more obligations in

HIPAA that require sending privacy notices. We assume that privacy notices do not contain any

individually identifiable information (PHI) and thus is not regulated by HIPAA. In such case, we

do not take them into account in our policy analysis.

5.4.5 Making the slicing procedure more precise.

To preserve soundness, the privacy policy slicing we define over-approximates the minimal ade-

quate policy. This is due to the fact that our definition of dependence relation does not take into

account the condition of the norms (when the condition is not a send event) or any other context

information (e.g., textual description of the regulations). However, it is not apparent how to incor-

porate conditions and other contextual information while defining our dependence relation. One

way to get around it is human intervention while checking whether a norm is consistent to a send

event. Note that for a send event to be allowed, we need that the send event satisfies one positive

and all the applicable negative norms. Based on this intuition, we developed a heuristics in which

a human assists our privacy policy slicing algorithm to select couple of applicable positive norms

from a list of all applicable positive norms while checking which norms are applicable to a spe-

cific send in question. We have implemented our policy slicing algorithm with human intervention

support and sliced ℘H with the obligations in §160.310 and §164.524 of HIPAA. The policy rule

174

in §164.524 states: when an individual requests for access to her own PHI, the covered entity is

obligated to give access to the individual. Our sliced policies obtained by using this heuristic for

obligation in §160.310 and obligation in §164.524 has 5 norms (2 positive and 3 negative norm) out

of total 76 norms (see Figure 5.13 and Figure 5.14). This is a significant reduction in the size of the

norms. We also used this heuristic to slice ℘H with respect to a synthetic obligation (Synthetic-1).

To this end, we add an additional negative norm to ℘H that obligates a covered entity to provide

access to an individual’s parents to the individual’s PHI when the parents request for it and also

add an additional positive norms to ℘H that allows a parent to send a request to the covered entity

to provide access to her child’s PHI. The sliced policy has 2 positive norm and 6 negative norms

out of total 78 norms (see Figure 5.15). However, to preserve soundness of our policy analysis

technique, we have to prove that each of these sliced policies, obtained by using our heuristic, are

also adequate policies with respect to the policy ℘H and the respective obligations. The following

theorem states that ℘HP1
, obtained by using the heuristic to the slicing algorithm, is also an ade-

quate policies with respect to ℘H and the obligation in §160.310. We show the theorem and its

proof for ℘HP1
and all the other two theorems and arguments for their proofs are similar.

Theorem 73 (℘HP1
is an adequate policy with respect to ℘H and obligation in §160.310). For any

possible finite trace σ f , any state s, environment η, such that s,η |= send(p1, p2,m)∧contains(m,q, t)∧

for-purpose(m,u)∧ inrole(p1,secretary)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)∧

purpose(u,compliance-investigation), where send(p1, p2,m)∧contains(m,q, t)∧for-purpose(m,u)∧

inrole(p1,secretary)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)∧purpose(u,

compliance-investigation) incurs the obligation in §160.310 with respect to both ℘ and ℘s(P),

if σ f · s, |σ f |,η |= weak(℘H) and σ f · s, |σ f |,η |= weak(℘HP1
), then there exists an infinite

extension σi such that σ f · s · σi |= ℘HP1
, only if there exists an infinite extension σ j such that

σ f · s ·σ j |=℘H .

Proof. For ease of presentation, let us denote the send that triggers the obligation in §160.310

with T where T = send(p1, p2,m)∧ contains(m,q, t)∧ for-purpose(m,u)∧ inrole(p1,secretary)∧

inrole(p2,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)∧purpose(u,compliance-investigation).

175

Let us take any arbitrary σ f , η such that σ f · s, |σ f |,η |= weak(℘H) where s |= T . From the

premise we also know that σ f · s, |σ f |,η |=weak(℘HP1
).

By assumption there exists an infinite extension σi such that σ f · s · σi |= ℘HP1
. By defi-

nition, this means that ∀k.σ f · s · σi,k,η |= ∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.send(p1, p2,m)∧

contains(m,q, t)∧ for-purpose(m,u)→ (
∨

i

φ
+℘HP1
i ∧

∧

j

φ
−℘HP1
j). Here we use φ

+℘HP1
i and φ

−℘HP1
j

to respectively denote a positive norm and a negative norm of ℘HP1
. Now let σ j = σi. We have to

show that ∀k.σ f ·s ·σi,k,η |= ∀p1, p2,q : P.∀m : M.∀t : T.∀u : U.send(p1, p2,m)∧contains(m,q, t)∧

for-purpose(m,u)→ (
∨

i

φ+i ∧
∧

j

φ−j). Here we use φ+i and φ−j to respectively denote a positive

norm and a negative norm of ℘H . Take an arbitrary k. Assume p1, p2, q, m, t and u such that

the antecedent is satisfied. We have to show that at least one positive norm φ+ and all negative

norms φ− are satisfied. If the set of principals, attribute and purpose satisfy the antecedent for the

original policy, trace and index k, the same holds for the ℘HP1
. Thus, there is at least one positive

norm φ+℘HP1 that is satisfied. Since all the positive norms of ℘HP1
are in the original policy ℘H ,

this positive norm is part of the positive norms of the original policy ℘H . Thus with φ+ = φ+℘HP1

we have found our allowing positive norm for ℘H . Similarly, all norms φ℘HP1
−

are negative norms

of the original policy and satisfied. It remains to show that the remaining negative norms, that are

included in ℘H but not in ℘HP1
, are trivially satisfied. For this, we use the manual inspection of the

policy ℘H . For all the different possible actions allowed by ℘HP1
, we will show that each of them

trivially satisfies all the negative norms that are in ℘H but not in ℘HP1
. Consider the action where

a principal in the role of the secretary sends a request to a principal in the role covered entity to

access the PHI of a principal in role individual. By manual inspection of ℘H we see that this send

event does not satisfy the antecedent of any of the negative norms and thus trivially satisfies all the

remaining negative norms that are in ℘H but not in ℘HP1
. The remaining action allowed by ℘HP1

is

an action where a principal in the role of the covered entity responds to the request of a principal

in the role secretary, by sending the PHI of a predefined principal in the role of individual. Again

by manual inspection of ℘H , we see that this action does not satisfy the antecedent of any negative

norm that is included in ℘H but not included in ℘HP1
and and thus trivially satisfies all the remain-

176

(Synthetic Policy Rule)

inrole(p1,secretary)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)∧

purpose(u,compliance-investigation)∧ request(p1, p2,q,PHI)

(§160.310)

inrole(p1,secretary)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧

purpose(u,compliance-investigation)∧ in(t,PHI)∧ request(p1, p2,q,PHI)−→

(∃m1 : M.(send(p2, p1,m1)∧ inrole(p1,secretary)∧ inrole(p2,covered-entity)∧

inrole(q, individual)∧ contains(m1,q,PHI)

∧ for-purpose(m1,compliance-investigation)))

(§164.502(a)(2)(ii))

inrole(p1,covered-entity)∧ inrole(p2,secretary)∧

inrole(q, individual)∧ in(t,PHI)∧purpose(u,compliance-investigation)

(§164.502(b))

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)−→

believesMinimumNecessaryForPurpose(p1, p2,q, t,u)∨

(inrole(p1,covered-entity)∧ inrole(p2,secretary)

∧ inrole(q, individual)∧ in(t,PHI)∧purpose(u,compliance-investigation))

(§164.508(a)(2))

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,psych-notes)−→

obtainedAuthorization(p1, p2,q, t,u)

Figure 5.13: Sliced HIPAA policy (℘HP1
) norms w.r.t the obligation in §160.310 of HIPAA.

ing negative norms that are in ℘H but not in ℘HP1
. This completes our proof of showing that ℘HP1

is an adequate policy with respect to ℘H and the obligation in §160.310.

5.4.6 Small Model Theorem.

In the previous section, we have shown the general template of the small model theorem necessary

for verifying whether a policy has the ∆-property. We now show a concrete small model theorem.

To this end, we first impose some restrictions which enable us to develop a concrete small model

theorem of a sliced HIPAA policy.

The first restriction we impose is to disallow the 6= operator or any predicate simulating it.

177

(Synthetic Policy Rule)

inrole(p1, individual)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧

purpose(u,access-request)∧ samePerson(p1,q)∧ request(p1, p2,q,PHI)

(§164.524)

inrole(p1, individual)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧

purpose(u,access-request)∧ samePerson(p1,q)∧ request(p1, p2,q,PHI)−→

(∃m1 : M.(send(p2, p1,m1)∧ contains(m1, p1,PHI)

∧ for-purpose(m1,access-request)))

(§164.502(a)(2)(ii))

inrole(p1,covered-entity)∧ inrole(p2, individual)∧

inrole(q, individual)∧ in(t,PHI)∧ samePerson(p2,q)

(§164.502(b))

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)−→

believesMinimumNecessaryForPurpose(p1, p2,q, t,u)∨

(inrole(p1,covered-entity)∧ inrole(p2, individual)

∧ inrole(q, individual)∧ in(t,PHI)∧ samePerson(p2,q))

(§164.508(a)(2))

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,psych-notes)−→

obtainedAuthorization(p1, p2,q, t,u)

Figure 5.14: Sliced HIPAA policy (℘HP2
) norms w.r.t the obligation in §164.524 of HIPAA.

178

(Synthetic Policy Rule 1)

inrole(p1,parent)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧

purpose(u,access-request)∧parentOf (p1,q)∧ request(p1, p2,q,PHI)

(Synthetic Policy Rule 2)

inrole(p1,parent)∧ inrole(p2,covered-entity)∧ inrole(q, individual)∧

purpose(u,access-request)∧parentOf (p1,q)∧ request(p1, p2,q,PHI)→

(∃m1 : M.(send(p2, p1,m1)∧ contains(m1,q,PHI)∧

for-purpose(m1,access-request)))

(§164.502(b))

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,PHI)→

(believesMinimumNecessaryForPurpose(p1, p2,q, t,u)∨

obtainedAuthorization(p1, p2,q, t,u))

(§164.508(a)(2))

inrole(p1,covered-entity)∧ inrole(q, individual)∧ in(t,psych-notes)→

obtainedAuthorization(p1, p2,q, t,u)

(§164.502(g)(3)(ii)(A))

inrole(p1,covered-entity)∧ inrole(p2,parent)∧ inrole(q, individual)∧ in(t,PHI)

∧permittedByOtherLaw(p1, p2,q, t,u)∧parentOf (p2,q)

(§164.502(g)(3)(ii)(B))

inrole(p1,covered-entity)∧ inrole(p2,parent)∧ inrole(q, individual)∧ in(t,PHI)

∧prohibitedByOtherLaw(p1, p2,q, t,u)∧parentOf (p2,q)→ false

(§164.510(b)(2))

inrole(p1,covered-entity)∧ inrole(p2,parent)∧ inrole(q, individual)∧ in(t,PHI)∧

parentOf(p2,q)∧ ((available(p1,q)∧hasCapabilityToMakeHealthDecisions(q)))→ (

(∃m1 : M.((send(q, p1,m1)∧ isAgreement164510b2(m1, p1, p2,q, t,u))))∨

((¬(∃m2 : M.(send(q, p1,m2)∧ isObjection164510b2(m2, p1, p2,q, t,u))))S

(∃m3 : M.(send(p1,q,m3)∧ isOpportunityToObject(m3, p1, p2,q, t,u))))

∨ (professionalJudgementIndividualDoesNotObject(p1, p2,q, t,u)))

(§164.510(b)(2))

inrole(p1,covered-entity)∧ inrole(p2,parent)∧ inrole(q, individual)∧ in(t,PHI)∧

parentOf (p2,q)∧ (¬((available(p1,q)∧hasCapabilityToMakeHealthDecisions(q))))→

(professionalJudgementIsInBestInterestof164510b3(p1, p2,q, t,u)∧

relevantToInvolvement(p1, p2,q, t,u))

Figure 5.15: Sliced HIPAA policy (℘HP3
) norms w.r.t the synthetic obligation.

179

Thus, the policy cannot distinguish between two elements of the carrier. Consequently, we cannot

specify in the policy that two individuals are different. The sliced HIPAA policies we consider

satisfy this restriction. Moreover, we remove the message sort (M) and also remove the predicates

contains and for-purpose. We enhance the send predicate to have the signature P × P × P ×

T ×U . Now, the predicate send(p1, p2,q, t,u) holds when p1 sends a message to p2 about q’s

attribute t for purpose u. Removing the message sort prevents us from specifying that a message

contains multiple attributes of multiple individuals or is sent for multiple purposes. This is not as

restricting as it sounds, at least for the slices of HIPAA we consider. Assume a set of send events,

each for a message with a single attribute and for a single purpose. If all events are allowed,

then the send of a single message that combines all the other messages’ contents is allowed by

the sliced policies. Now, we provide intuitions behind developing a small model theorem for the

HIPAA policy sliced with respect to the obligation in §160.310 (Figure 5.13), denoted by ℘HP1
.

The number of attributes in the℘HP1
is finite and they are PHI and psych-notes (in short, PSN).

Each of PHI and PSN can be viewed as a set of attributes where PHI,PSN ⊆ T , PSN ⊂ PHI

and T is the carrier of attributes. Thus, if we consider any attribute t ∈ T , one of the following

would hold: t ∈ T \ (PHI ∪PSN), t ∈ (PHI \PSN), or t ∈ (PHI ∩PSN) (see Figure 5.16). Thus,

we consider three attributes, t1, t2, and t3 such that t1 ∈ (PHI ∩ PSN), t2 ∈ (PHI \ PSN), and

t3 ∈ T \ (PHI ∪PSN). These three attributes can simulate all possible attributes referred to by

℘HP1
. The only purpose present in the ℘HP1

is compliance-investigation. We thus consider two

purposes in the system u1 and u2 where u1 is the purpose compliance-investigation and u2 refers

to a purpose which is something other than compliance-investigation. These two purposes capture

all the possible purposes referred by ℘HP1
. For the principal sort, we consider one principal for

each role in ℘HP1
and one additional principal not having any roles. The roles in ℘HP1

are: covered

entity, secretary, and individual. Considering one individual from each role is sound as℘HP1
cannot

differentiate between two principals. We actually could have considered only two principals, one

acting in all the roles and another not in any role. For clarity, we consider principals of different

roles are different. Having multiple principals in each role does not change the result of the ∆-

180

psychotherapy-notes

PHI

Attribute Universe

�1

�2

�3

Figure 5.16: Small model property for Attribute domain

property holding, as these 4 principals can simulate all possible behaviors. We have the following

small model theorem for ℘HP1
.

Theorem 74. The policy ℘HP1
has the ∆-property for any arbitrary carriers P , T , and U if and

only if ℘HP1
has the ∆-property for finite carriers P̂ , T̂ , and Û in which |P̂ | = 4, |T̂ | = 3, and

|Û |= 2.

Proof. The only if (→) direction is trivial. When the ℘HP1
has the ∆-property for any arbitrary

carriers P , T , and U , then it should be case that, ℘HP1
has the ∆-property for specific carriers

P̂ , T̂ , and Û , where |P̂ |= 4, |T̂ |= 3, and |Û |= 2.

We will now show the if (←) direction. According to the definition of ∆-property, a policy

℘ has the ∆-property if and only if for all finite history σ f and for all environment η such that

181

σ f , |σ f |− 1,η |=weak(℘), there exists an infinite extension σi such that σ f ·σi |=℘. Take any

arbitrary finite trace σ f and any arbitrary environment η with carriers P , T , and U such that

σ f , |σ f | − 1,η |=weak(℘HP1
). We will show that we can convert (1) σ f to another finite trace

σ∗f where |σ f | = |σ∗f , (2) η to another environment η′ such that σ∗f , |σ
∗
f | − 1,η′ |=weak(℘HP1

)

with carriers P̂ , T̂ , and Û , where |P̂ | = 4, |T̂ | = 3, and |Û | = 2. For this we will first show how

to convert each carrier element appearing in the finite trace σ f to carrier elements in our smaller

carriers. We will show this for each carrier. Note that, we refer carrier elements of arbitrary carriers

P , T , and U as concrete carrier elements whereas we refer carrier elements of the carriers P̂ , T̂ ,

and Û as abstract carrier elements.

The number of attributes explicitly mentioned in the ℘HP1
is finite and they are PHI and

psych-notes (in short, PSN). From the domain knowledge of HIPAA, we know that each of

PHI and PSN can be viewed as a set of attributes where PHI,PSN ⊆ T , PSN ⊂ PHI and T is

the carrier of attributes. Thus, if we consider any attribute t ∈ T , one of the following would

hold: t ∈ T \ (PHI ∪PSN), t ∈ (PHI \PSN), or t ∈ (PHI ∩PSN) (see Figure 5.16). Thus, we

consider three abstract attributes, t1, t2, and t3 such that t1 ∈ (PHI ∩ PSN), t2 ∈ (PHI \ PSN),

and t3 ∈ T \ (PHI ∪ PSN). Any concrete attribute that can be calculated from both PHI and

psych-notes, can be abstractly represented as the abstract attribute t1. Now for any concrete at-

tribute that can only be calculated from PHI but not from psych-notes can be abstractly denoted by

abstract attribute t2. Finally for any concrete attribute which cannot be calculated from either PHI

or psych-notes, can be represented as abstract attribute t3. Thus, these three abstract attributes can

represent all concrete attributes in any arbitrary carrier T .

The only purpose present in the ℘HP1
is compliance-investigation. We thus consider two pur-

poses in the system u1 and u2 where u1 is the purpose compliance-investigation and u2 refers to a

purpose which is something other than compliance-investigation. These two purposes is sufficient

to represent all the possible purposes according to any arbitrary carrier U with respect to ℘HP1
.

Now, we can replace any concrete purpose which is not compliance-investigation with u2 and any

purpose which is compliance-investigation can be replaced with u1.

182

Recall that we make the assumption that each principal can have at most one critical role. In

℘HP1
, the critical roles are: secretary, covered-entity, and individual. We now consider one prin-

cipal from each role and an additional principal which does not belong to any role. Thus, these

4 principals pc, ps, pi, and pn, where pc belongs to the role covered-entity, ps belongs to the role

secretary, pi belongs to the role individual, and pn belongs to none of the critical roles, is suffi-

cient to represent any concrete individuals of any arbitrary carrier P with respect to ℘HP1
under the

assumption that the concrete principals do not possess two conflicting roles (e.g., covered-entity,

individual). Now we can replace any principal possessing the role secretary with the abstract car-

rier element ps, replace any principal possessing the role covered-entity with the abstract carrier

element pc, and replace any principal possessing the role individual with the abstract carrier ele-

ment pi.

Once we have setup the abstract individuals, we can translate σ f and η with σ∗f and η′ such that

all the concrete individuals are replaced by the corresponding abstract individuals in the carriers

P̂ , T̂ , and Û . We do this for all the predicate valuations too. Inspecting the policy we see that the

any principal possessing the role of secretary can send a request to a principal with role covered

entity to have access to the PHI of a principal with role individual for the purpose of compliance-

investigation. This actions is allowed by the first positive norm (Synthetic Policy Rule) and accord-

ing to the negative norm §160.310, this incurs an obligation for the principal in the covered-entity

role to provide the principal with the secretary role access to the PHI of the principal in the role

individual. The positive norm §164.502(a)(2)(ii) enables this action. Moreover, there are two

negative norms in §164.502(b) and §164.508(a)(2) that restricts the fulfillment of the obligation.

The negative norm §164.502(b) allows the principal in covered-entity role to fulfill the obligation

provided that the predicates holds true believesMinimumNecessaryForPurpose or this action is ful-

fillment of the obligation. The negative norm §164.508(a)(2) requires that if the attribute intended

to be sent is psych-notes, the predicate obtained Authorization should hold. From the inspection

of the policy ℘HP1
, we can see that σ∗f , |σ

∗
f |−1,η′ |=weak(℘HP1

) with carriers P̂ , T̂ , and Û . As

we do not have the 6= operator, it follows that replacing the concrete carrier elements with abstract

183

carrier elements will not change the result of the satisfaction ofweak(℘HP1
).

Now from the fact that M℘ |=℘HP1
w.r.t carriers P̂ , T̂ , and Û , gives us that there is an infinite

extension of σ∗f , σ∗i , such that σ∗f ·σ
∗
i |=℘HP1

w.r.t to P̂ , T̂ , and Û . From σ∗i we will show how to

construct an extension σi such that σ f ·σi |=℘HP1
w.r.t P , T , and U .

Now consider the finite trace σ f with carriers P , T , and U where principals s1,s2,s3, . . . are in

role secretary, principals c1,c2,c3, . . . are in role covered-entity, and finally principals i1, i2, i3, . . .

are in the role individuals. Let us assume in σ f in the first state s1 sends a request to c1 to access

the PHI of i1, in the second state s2 sends a request to c2 to access the PHI of i2, and so on. Let

us also assume |σ f | = k. We construct σ∗f where |σ∗f | = k with carriers P̂ , T̂ , and Û in way that

all s j are replaced by ps, all c j replaced by pc, and all i j replaced by pi. Thus, for a trace σ f ,

when converted to σ∗f , each element of σ∗f is a request from ps to pc to access PHI of pi. As

M℘ |=℘HP1
w.r.t carriers P̂ , T̂ , and Û , gives us that there is an infinite extension of σ∗f , σ∗i , such

that σ∗f ·σ
∗
i |=℘HP1

w.r.t to P̂ , T̂ , and Û . It follows that there was a state in σ∗i in which pc sent a

message to ps giving access to PHI of pi. Note that, for all the k requests in σ∗f , one response is

sufficient according to the semantics of. We will now show that we can translate σ∗i to σi such

that σ f ·σi |=℘w.r.t P , T , and U . We first find all the request in σ∗i , we make them requests in σi

by translating pc to a specific c j, translating ps to a specific s j, and translating p j to a specific i j.

We then find states where pc responded to ps’s request to access the PHI of pi. We then check σ f

and partially constructed σi till the position of the response and find out all the request from s j to

c j to access PHI of i j from which we have not seen a response from c j to s j. We then instantiate

the response from pc to ps for giving access to PHI of pi to these open requests, for all these

principals in which pc is replaced by c j (for all j), ps is replaced by s j (for all j), and pi is replaced

by i j (for all j). We also change the valuations of the predicates accordingly. Now σ f ·σi |=℘,

due to the case that after inspecting the policy ℘HP1
, we can see that as there is no 6= operator, if

one particular instance of a send is allowed than arbitrary instance of the send is allowed provided

that all the conditions (predicates) are also instantiated for that arbitrary instance. Based on this, it

follows that σ f ·σi |=℘HP1
, which completes our proof.

184

In the same vein, we can also prove a small model theorem for the policy slice ℘HP2
and the

policy ℘HP3
. As a result, we have the following small model theorems for policy slices ℘HP2

and

℘HP3
.

Theorem 75. The policy ℘HP2
has the ∆-property for any arbitrary carriers P , T , and U if and

only if ℘HP2
has the ∆-property for finite carriers P̂ , T̂ , and Û in which |P̂ | = 3, |T̂ | = 3, and

|Û |= 2.

Theorem 76. The policy ℘HP3
has the ∆-property for any arbitrary carriers P , T , and U if and

only if ℘HP3
has the ∆-property for finite carriers P̂ , T̂ , and Û in which |P̂ | = 4, |T̂ | = 3, and

|Û |= 2.

Table 5.1: Policy analysis result: HIPAA case study
Obligations Number

of
norms
in the
slice

Number
of
states
in
tableau

Number
of
transi-
tions
in the
tableau

Number
of ini-
tial
states

Number
of ac-
cept-
ing
states

Number
of
strongly
con-
nected
compo-
nent

Automata
genera-
tion time
(s)

Graph
analy-
sis time
(ms)

Analysis
results

160.310 5/76 28 162 8 12 10 3 2 Passed
Synthetic-1 8/78 957 71563 126 274 131 98 16 Passed
Synthetic-2 8/78 2422 129538 204 702 516 324 31 Failed
164.524 5/76 533 12331 48 173 147 22 5 Passed

5.4.7 Policy Analysis Results.

We sliced ℘H with respect to 2 obligations in HIPAA (§160.310, §164.524) and 1 synthetic obli-

gation (Synthetic-1). After developing the small model theorems, we converted the slices of the

FOTL policy into pLTL formulas. Once we have the pLTL policies/formulas, we follow the ap-

proach proposed by Barth et al. [11], as discussed before. We convert each of the sliced pLTL poli-

cies to a tableau (with Büchi accepting condition) using the GOAL automata generation tool [120],

then check whether all the reachable states can reach a strongly connected component with an ac-

cepting state in it. The experimental results are presented in Table 5.1. We verify that for the two

obligations in HIPAA, the ∆-property holds for the sliced policies.

185

5.4.8 Observation.

While verifying the sliced policy with respect to the synthetic obligation, we observed something

interesting. Investigating the regulations manually had led us to believe that the policy sliced with

respect to the synthetic obligation (Synthetic-1) should not satisfy the ∆-property. However, our

experimental result seemed to differ. Upon close inspection, we determined that the result is due

to how HIPAA is specified. Specifically, rule §164.502(g)(3)(ii)(b) states that a covered entity

cannot share an individual’s PHI if it is forbidden by some law. In our specification of HIPAA, we

keep the room that even though an action is now forbidden by some law, the law might change,

and allow the forbidden action later. When we changed our specification in such a way that laws

cannot change (Synthetic-2), then we got the desired result of the ∆-property not holding.

5.4.9 Discussion.

There are two more occurrences of obligations in HIPAA (§164.512(c)(2) and §164.502(b)) which

require sending privacy notices to the patient. We assumed that privacy notices do not contain any

PHI of the patient, and thus, we considered those obligations to be trivially allowed. Alternatively,

however, if one allows privacy notices to contain PHI, then the corresponding slice will be similar

to the slice of the obligation in §164.524.

5.4.10 Counter Example.

When a policy violates the ∆-property, we can traverse the tableau to find a path to the violating

node. To achieve this, we can run a depth first search from all the initial states (nodes) of the

tableau and try to find the states (nodes) from which it is not possible to reach a strongly connected

component with at least one accepting state. This path corresponds to a finite trace showing the

violation of the ∆-property. This counter example (expressed as a finite trace) can help the policy

author to rewrite the policy to satisfy the ∆-property.

186

Chapter 6: FORMALLY ENSURING PERMISSIBILITY OF

OBLIGATIONS IN SECURITY POLICIES

6.1 Introduction

Many access control and privacy policies contain some notion of actions that are required to

be performed by a system or its users in some future time. Such required actions can be natu-

rally modeled as obligations. Consider the following paraphrased regulation excerpt from section

§164.524 of the Health Insurance Privacy and Accountability Act (HIPAA) [62]. A covered entity

must respond to a request for access no later than 30 days after receipt of the request of the patient.

As we can see from the regulation, the action of the covered entity is required when he receives a

request from the patient. When we use obligations to capture this notion of required actions, we

need a proper framework and mechanisms by which obligations can be managed efficiently.

The notion of obligations is not new. Several researchers [3, 11, 18, 31, 69, 94, 95, 97, 101, 122,

127] have proposed frameworks for modeling and managing obligations. The majority of the exist-

ing work [3, 11, 18, 31, 94, 101, 122, 127] focuses on policy specification languages for obligations

rather than efficient management of obligations [11, 39, 54, 67, 86, 100, 110]. Even for works on

the management of obligations, they mainly consider system obligations. Our goal is to address

technical issues for efficient management of user obligations. A user (resp., system) obligation is

an action that is to be carried out by a user (resp., the system) in some future time. In this current

work, we only consider post-obligations. Modeling and analyzing pre-obligations and refrainments

are subjects of future work. Managing user obligations is challenging as system obligations can be

assumed to be always fulfilled whereas this is often not the case for user obligations. The behavior

of human users unlike mechanical users cannot be enforced. More generally, we consider user

obligations that can require authorization and can also alter the authorization state of the system.

As a user obligation is an action, it is subjected to the authorization requirements imposed by the

The contents of this chapter is based on the joint work with Murillo Pontual, Jianwei Niu, Ting Yu, Keith Irwin,
and William H. Winsborough [28].

187

security policy of the system. We also consider that each of the user obligations has a time interval

(e.g., 30 days, etc.) which represents the alloted time window at which the obligation should be

performed. Such intervals help detect obligation violation.

When managing user obligations depend on and affect authorization, we have to consider the

case in which users can incur obligations that they are not authorized to perform. Otherwise, when

an obligation goes unfulfilled, it is difficult to know if it is due to insufficient authorization or

lack of diligence from the user. When it is ensured that all the obligatory actions are authorized,

any obligation violation will only be caused due to user negligence. Irwin et al. [67] introduce

a property of the authorization state and the current obligation pool, accountability, that tries to

ensure that all the obligatory actions are authorized in some part of their stipulated time interval.

They consider two variations of the accountability property (i.e., strong accountability and weak

accountability) based on when in the time intervals the obligatory actions should be authorized.

Strong accountability requires that no matter when all the previous obligations are performed in

their associated time intervals, each obligation in the current obligation pool is authorized during

its whole time interval. Weak accountability on the other hand requires that each obligation is at

least authorized just before its deadline.

Irwin et al. [67] propose to maintain the accountability property as an invariant of the system.

They propose to use the reference monitor of the system for maintaining accountability by denying

actions that violate accountability. Extending the work of Irwin et al. [67], Pontual et al. [109]

show that for an obligation system using mini-RBAC [114, 119] and mini-ARBAC [114, 119] as

its authorization model, strong accountability can be decided in polynomial time whereas deciding

weak accountability is co-NP complete. They also provide empirical evaluations for showing that

a reference monitor can maintain the strong accountability property efficiently. They partition

possible actions into two disjoint sets, discretionary and obligatory and only allow discretionary

actions to incur further obligations. By doing this, they disallow cascading obligations.

The assumption of disallowing cascading obligations is restrictive. It significantly reduces the

expressive power of the obligation model they use. For instance, consider the following scenario.

188

When a sales assistant submits a purchase order, the clerk incurs an obligation to issue a check in

the amount identified in the purchase order. As soon as the clerk issues the check, the manager in-

curs an obligation that requires him to check the consistency of the purchase order. If the purchase

order is consistent and the manager approves it, then the accountant incurs another obligation to

approve the check. Now, this situation can be easily modeled with cascading obligations, but it

cannot be modeled by the obligation model of Pontual et al. [109]. Thus, one of the principal goals

of this work is to provide a concrete model in which the policy writers can specify cascading obli-

gations easily. Furthermore, we also present a decision procedure which can be used to decide the

strong accountability property efficiently for special but practical cases of cascading obligations in

the model. We only consider strong accountability in this work due to the complexity results of

weak accountability.

Contributions The abstract obligation model that Irwin et al. [67] and Pontual et al. [109] use,

allows specification of cascading obligations. However, their concrete model does not support

the specification of cascading obligations. We adopt the concrete model of Pontual et al. [109]

that uses mini-RBAC and mini-ARBAC as its authorization model and augment it in a way that

cascading obligations can be specified. Furthermore, existing work [67, 109] does not discuss

how to specify the user (obligatee) who incurs the new obligation when a user takes an action

(obligatory or discretionary). We present several proposals for specifying the obligatee in a policy.

The enhancement to the obligation model and proposals for obligatee selection comprise our first

contribution.

The specification for strong accountability presented by Pontual et al. [109] also takes advan-

tage of the assumption that cascading obligations are not allowed. Our second contribution is to

precisely specify the strong accountability property in presence of cascading obligations. There

are two possible interpretations of strong accountability when considering cascading obligations.

We define both interpretations, existential and universal, and give motivations for choosing the

existential interpretation.

189

Our third contribution is to present a theorem which states that deciding accountability in

presence of cascading obligations is in general NP-hard. We then consider several special cases

which makes the problem tractable. We then provide a polynomial time algorithm (polynomial

in the size of the policy, the size of the current obligation pool, and the new obligations to be

considered) that can decide strong accountability for special cases of cascading obligations. This

is our fourth contribution.

We then present empirical evaluations of the accountability decision procedure allowing special

cases of cascading obligations. Our empirical evaluations show that strong accountability can be

efficiently decided for these special cases of cascading obligations. This is our final contribution.

6.2 Background

In this section, we review some of the background materials necessary to understand our contribu-

tions. We then discuss the obligation model presented by Pontual et al. [109] that uses mini-RBAC

and mini-ARBAC as its authorization model.

6.2.1 Obligation Model

We now summarize the obligation model proposed by Pontual et al. [109]. Note that, we augment

this model for supporting cascading obligations in section 6.3. We use U ⊆ U to denote the

finite set of users in the system at any given point of time. We use u possibly with subscripts

to represents users. The finite set of objects in the system is denoted by O ⊆ O . We use o with

possibly subscripts to range over the elements of O. Note that, the universesU and O are countably

infinite as we want to model systems of finite but unbounded sizes. For supporting administrative

actions, we have U ⊆ O. The set of possible actions in the system is given by A . The formal type

of A is given below.

We denote a system state with s = 〈U,O, t,γ,B〉 where t ∈ T denotes the current system time,

γ ∈ Γ represents the mini-RBAC authorization state, and B ⊆ B represents the current pool of

obligations. Γ here denotes the set of abstract authorization states. Obligations in the system has

190

the form b = 〈u,a,~o, ts, te〉, the universe of which, B has the formal type U ×A ×O ∗× T × T .

Note O ∗ is the Cartesian product of zero or more copies of O . For an obligation b = 〈u,a,~o, ts, te〉,

[ts, te] denotes the interval in which the obligation should be performed. Moreover, we require that

ts < te. We use b.u, b.a, and b.o∗, respectively, to denote the user, the actions, and the object(s) of

the obligation b.

We consider two types of actions, namely, discretionary and obligatory. The system views

them uniformly as events. The universe of discretionary action D has the formal type U ×A ×O ∗.

Thus, the universe of all possible events is E = D ∪ B . Each action a ∈ A has the formal type

(U ×O ∗)→ (F P (U)×F P (O)×Γ)→ (F P (U)×F P (O)×Γ). F P (X) = {X ⊂ X |X is finite}

denotes the set of finite subsets of the given set X . Actions can add or remove users and objects

and can also alter the authorization state. Thus, for a given a user u and object(s) ~o, the action

a(u,~o) is a mapping that that maps the current set of users, objects, and the current authorization

state to a new set of users, objects, and authorization state.

Each action in our system is regulated by a fixed set of positive, policy rules P . Each policy

rule p ∈ P has the form p = a(u,~o)← cond(u,~o,a) : Fobl(s,u,~o). This represents that a user u is

authorized to perform an action a that is applied to object(s) ~o, when the predicate cond(u,~o,a) is

satisfied in the current authorization state γ (denoted by γ |= cond(u,~o,a)) and this in turn incurs

a set of obligations (possibly empty) for u or some other users. The predicate cond represents the

authorization requirements imposed by the policy rule. Fobl(s,u,~o) is a function that takes as input

s,u, and~o and returns a set of obligations (possibly empty) when the policy rule p is used to autho-

rize the action a. For a policy rule p ∈ P of form p = a(u,~o)← cond(u,~o,a) : Fobl(s,u,~o), when

a ∈ B and the Fobl(s,u,~o) is not empty, we call the obligatory action a, a cascading obligation. We

also require that for each action, there is at least one policy rule that governs that action.

Recall that, we consider actions that can alter the authorization state of the system. Based

on whether an action alters the authorization, we classify the actions in two possible categories,

namely, administrative and non-administrative. An action a is called administrative (denoted by

a ∈ administrative) when it has the form grant(u,~o) or revoke(u,~o) and called non-administrative,

191

otherwise.

Now, we turn our attention to how state transition occurs in the obligation system. We use s
〈e,p〉
−→

s′ to denote the transition from state s to state s′ when event e takes place and is authorized using

the policy rule p. When e is of form 〈u,a,~o〉, we require that u ∈ s.U and ~o ∈ s.O∗. Furthermore,

for each state s of the form 〈U,O, t,γ,B〉, the transition relation ensures that ∀b ∈ s.B · (b.u ∈

s.U)∧ (b.~o ∈ s.O∗) and s.U = s.γ.U holds. We first formalize what it means that the current

authorization state γ satisfies the cond(u,~o,a) predicate of a policy rule p (definition 77). We then

formally specify the transition relation of the system.

Definition 77. For all u ∈ U and~o ∈ O ∗, γ |= cond(u,~o,a) if and only if the following holds.

(∃r).(((u,r) ∈ γ.UA)∧

(i) [a /∈ administrative→ (〈r,〈a,~o〉〉 ∈ γ.PA)]∧

(ii) (∀ut ,rt).[a = grant ∧~o = 〈ut ,rt〉 →

(∃c).((〈r,c,rt〉 ∈Φ.CA)∧ (ut |=γ c))]∧

(iii) (∀ut ,rt).[a = revoke∧~o = 〈ut ,rt〉 →

(∃c).((〈r,c,rt〉 ∈Φ.CR)∧ (ut |=γ c))])

Definition 78 (Transition relation). We use s0.. j to denote the sequence s0,s1, . . . ,s j where j ∈ N,

and for ℓ ∈ N, ℓ ≤ j, s0..ℓ denotes the prefix of s0.. j and when ℓ < j the prefix is proper. Sim-

ilarly, 〈e, p〉0.. j denotes 〈e0, p0〉,〈e1, p1〉, . . . ,〈e j, p j〉. Given any sequence of event/policy-rule

pairs, 〈e, p〉0..k, and any sequence of system states s0..k+1, the relation −→⊆ S × (E ×P)+× S is

defined inductively on k ∈ N as follows:

(1) sk
〈e,p〉k
−→ sk+1 holds if and only if, letting pk = a(u,~o) ← cond(u,~o,a) : Fobl(s,u,~o), we

have sk.γ |= cond(ek.u, ek.~o, ek.a), and sk+1 = 〈U ′′,O′′, t ′′,γ′′,B′′〉, in which 〈U ′′,O′′,γ′′〉 =

a(u,~o)(sk.U,sk.O,sk.γ), B′′ = (sk.B− {e}) ∪ Fobl(sk,ek.u,ek.~o) when ek ∈ B , and B′′ = sk.B∪

Fobl(sk,ek.u,ek.~o) otherwise. t ′′ denotes the system time when a is completed.

(2) s0
〈e,p〉0..k
−→ sk+1 if and only if there exists sk ∈ S such that s0

〈e,p〉0..k−1
−→ sk and sk

〈e,p〉k
−→ sk+1.

192

6.3 Enhancement of the Model

In this section, we extend the obligation model of Pontual et al. [109] to facilitate the specification

and analysis of accountability in presence of cascading obligations.

6.3.1 Time Interval of the Incurred Obligation

In the previous obligation model [109], when a discretionary action a is taken at time t and it causes

an obligation b to be incurred, the time interval of b depends on the time t. Thus, the time interval of

b is calculated using a fixed offset from t and the interval size of b. Let us assume the fixed offset is

δ∈N. As we have mentioned in section 6.1, in the current work we only consider post-obligations.

Let us assume, if a user takes action a according to policy rule p then she incurs the obligation b. If

we allow δ to be negative we can model pre-obligations where b’s interval will be before the time

when a is attempted. Handling pre-obligations is a subject of future work. and the interval size of b

is w. So, the time interval of b will be [t+δ, t+δ+w]. Now, consider the case where an obligation

b1 with time interval [s,e] incurs another obligation b2. The time t at which b1 can possibly be

performed can be any value between s and e, inclusive. Thus, we have several possible intervals

for b2 considering each possible values of t (see figure 6.1(a)). For deciding strong accountability,

we have to check whether b2 is authorized in each of the possible time intervals. One possibility

is to consider the interval [s+ δ,e+ δ+w] to be the time interval of b2, as all the possible time

intervals are inside this interval. However, when b1 is performed (we know t) we get b2’s original

time interval and have to shrink the large time interval [s+δ,e+δ+w] appropriately with respect

to t. When we use this approach, it will yield runtime overhead for managing obligations and

accountability will be less likely to hold due to increasingly large obligation time intervals.

To mitigate this problem, we assume that b2’s time interval will be at a fixed distance δ from

the time interval of b1 (see figure 6.1(b)). We assume δ is measured from the end time of b1’s

interval. Thus, b2’s stipulated time interval in our approach will be [e+ δ,e+ δ+w]. This ap-

proach will ensure that the cascading obligation’s time interval is fixed. For a discretionary action

193

s e

t+δ t+δ+W

t+δ t+δ+W

t t

s+δ e+δ+W

s≤ t≤ e

W ∈ N (parameter)

δ ∈ N (parameter)

B1

B2

B2

δ

δ

Interval that needs to be considered

s e e+δ e+δ+W
B1 B2δ

W

Figure 6.1: Time Interval of the Incurred Obligation. (A) Previous Approach (top). (B) Our
Approach (bottom)

incurring an obligation, we replace e with t, the time at which the action is performed. Thus, in our

model obligations have the form b = 〈u,a,~o, ts, te,δ,w〉. In section 6.4.4.2, we further augment our

obligations to contain one additional field (repetition). We also extend the notion of the transition

relation to allow cascading obligations.

6.3.2 Selection of Obligatee

We now present some strategies by which a user who incurs obligations, can be specified in the

policy. When a user executes an action, this can generate other obligations to the user who initiated

the action, or for other users. The user who incurs an obligation is called an obligatee. Existing

work [67,109] does not discuss how obligatees are specified in the policy. To allow the specification

of obligatees, we extend the policy rules to include an extra field called “obligatee”. Thus, policies

194

now have the following form: p = a(u,~o)← cond(u,~o,a) : Fobl(obligatee,s,u,~o,δ,w). Note that,

Fobl function returns a set of obligations and is guaranteed to terminate in a constant time.

Explicit User: In this strategy, the obligatee is hard-coded in the policy rule.

Example 79 (Explicit User). Let us consider the following policy rule, p0 : check(u,

log)← (u ∈ manager) : Fobl(Bob,s,u, log,δ = 10,w = 5). This rule authorizes a user in the role

of manager to check the log and it will incur an obligation for Bob. The action associated with the

obligation will be specified in the body of the Fobl function. For clarity, we do not show the body

of the Fobl function.

Self, Target, and Explicit User: In this strategy, the obligatee field can contain “Self”, “Target”,

or an explicit user. When a policy rule’s obligatee field contains “Self”, it represents that the user

who initiates the action, authorized by the current policy, will incur the associated obligations.

Example 80 (Self). Let us consider a policy rule, p1 : grant(u,〈ut , programmer〉)← ((u∈manager)∧

(ut ∈ employee)) : Fobl(Sel f ,s,u,〈ut , programmer〉,δ = 10,w = 5). This rule authorizes a user u

in the role of manager to grant a new role programmer to a target user ut in the role of employee

and this will incur an obligation for u. Let us consider that manager Bob grants the employee

Alice the role programmer. This will generate a new obligation for Bob.

On the other hand, whenever the policy rule is authorizing an administrative action and the

obligatee field of that policy rule contains “Target”, it signifies that the target of the original ad-

ministrative action authorized by this policy would incur the obligations specified by it.

Example 81 (Target). Let us consider a policy rule, p2 : grant(u,〈ut , programmer〉) ← ((u ∈

manager)∧ (ut ∈ employee)) : Fobl(Target,s,u,〈ut , programmer〉,δ = 10,w = 5). The policy rule

p2 is similar to p1 except it incurs an obligation for the target. As in the previous example, when

Bob grants the role programmer to Alice, Alice will incur an obligation as she is the target of the

action.

195

Role Expression: In this approach, the obligatee field can contain a boolean role expression.

Each literal in the boolean expression is either a positive or a negative role assignment. The system

can select a user to be the obligatee provided that the user satisfies the role expression when the

original action is performed.

Example of Role Expression. Let us assume the following policy rules in figure 6.2. Policy

rule p1 allows a registered user to submit a paper and this in turn creates an obligation for a

user (obligatee) in role reviewer to submit the review of the paper. Rule p2 authorizes a user

in role reviewer to submit a review of a paper and it incurs an obligation for a user in the role

PC_chair that requires him to make a decision on the paper. Rule p3 authorizes a user in role

PC_chair to submit a decision for a paper and it incurs an obligation for the same user sub-

mitting the decision to notify the corresponding author. Rule p4 authorizes a user in the role

PC_chair to notify the author of a paper. Now, consider the following situation. The set of current

users of the system is γ.U = {Alice,Bob,Carol} and their current role assignments are γ.UA =

{〈Alice,registeredUser〉,〈Bob,reviewer〉,〈Carol,PC_Chair〉}. Let us assume Alice submits a pa-

per on 07/01/2012 and according to p1 Bob (in role reviewer) will get the following obligation

〈Bob,submit −Review,〈Alice, paper〉,07/03/2012,07/10/2012〉. According to p2, this obliga-

tion in turn will incur the obligation 〈Carol,submitDecision,〈Alice, paper〉,07/11/2012,07/12/2012〉

for Carol (in role PC_chair). According to p3 when Carol submits the decision, she incurs the obli-

gation 〈Carol,noti f y,〈Alice, paper〉,07/13/2012,07/14/2012〉.

In the current work, we use the “Self, Target, and Explicit User” scheme to specify the obliga-

tee. Although this approach is not the most general strategy to specify an obligatee, our account-

ability decision procedure requires every obligation to have an individual user statically associated

with it. However, in the “Role expression” scheme multiple users can satisfy the role expression

specified in the obligation policy rule. Thus, we have two possible interpretations of strong ac-

countability. One of which says that the newly incurred obligation will maintain accountability if

196

p1 : submit(u, paper)← (u ∈ registeredUser) :

Fobl(reviewer,s,u, paper,2 days,1 week)

{

(Chooseu1 suchthat u1 ∈ reviewer)

submitReview(u1,〈u, paper〉)

}

p2 : submitReview(u,〈author, paper〉)← (u ∈ reviewer) :

Fobl(PC_Chair,s,u,〈author, paper〉,1 day,1 day)

{

(Chooseu1 suchthat u1 ∈ PC_Chair){

submitDecision(u1,〈author, paper〉);

}

}

p3 : submitDecision(u,〈author, paper〉)← (u ∈ PC_Chair) :

Fobl(Sel f ,s,u,〈author, paper〉,1 day,1 day)

{

noti f y(u,〈author, paper〉)

}

p4 : noti f y(u,〈author, paper〉)← (u ∈ PC_Chair) : ∅

Figure 6.2: Example Policy Rules with Role Expressions

at least one of the users satisfying the role expression is authorized to perform the obligation dur-

ing its whole time interval. The other interpretation requires that every user who satisfies the role

expression must be authorized to perform the obligation during its whole time interval. Although

both of the interpretations have practical utility, the choice of interpretation will influence the time

complexity of the accountability decision procedure. We leave the adoption of the role expression

scheme for specifying the obligatee as a future work.

6.4 Strong Accountability

When considering user obligations that depend on and affect authorization, we can have a situation

where a user can incur obligations which she is not authorized to fulfill. However, without any

197

preemptive approach, the obligatee will realize the absence of proper authorization in the time she

attempts the obligation. This can hinder the proper functioning of the system. To mitigate this,

Irwin et al. [67] introduced a property of the authorization state and the current obligation pool,

accountability, that ensures that all the obligatory actions are authorized in some part of their time

interval. Based on when they are supposed to be authorized in their respective time intervals, they

introduced two variations of the accountability property, weak and strong. Pontual et al. [109] have

shown that deciding weak accountability is co-NP complete for an obligation model using mini-

RBAC and mini-ARBAC whereas, deciding strong accountability is polynomial. Due to its high

complexity, we do not consider weak accountability in this work. Roughly, strong accountability

requires that as long as prior obligations has been performed in their stipulated time interval, each

obligatory action needs to be authorized no matter what policy rules are used to authorize the other

obligations and no matter when they are performed in their time interval.

In this section, we first present the definition of strong accountability presented by Pontual et

al. [109]. As mentioned before, their definition of strong accountability does not take into account

cascading obligations. We call their notion of the property restricted strong accountability. We

then refine their notion of the property and give a recursive definition of it considering the pres-

ence of cascading obligations. We go on to show that deciding strong accountability in presence

of cascading obligations in general is NP-hard. We then consider some special cases of cascad-

ing obligations and give a tractable decision procedure for deciding strong accountability in their

presence.

6.4.1 Restricted Strong Accountability

Roughly stated, under the assumption that all previous obligations have been fulfilled in their time

interval, strong accountability property requires that each obligation be authorized throughout its

entire time interval, no matter when during that interval the other obligations are scheduled, and

no matter which policy rules are used to authorize them.

Given a pool of obligations B, a schedule of B is a sequence b0..n that enumerates B, for n =

198

|B| − 1 (including the possibility that B may be countably infinite). A schedule of B is valid if

for all i and j, if 0 ≤ i < j ≤ n, then bi.start ≤ b j.end. This prevents scheduling bi before b j if

b j.end < bi.start. Given a system state s0, and a policy P , a proper prefix b0.. j of a schedule b0..n

for B is authorized by policy-rule sequence p0.. j ⊆ P
∗ if there exists s j+1 such that s0

〈b,p〉0.. j
−→ s j+1.

Definition 82 (Restricted Strong accountability). Given a state s0 ∈ S and a policy P , we say

that s0 is strongly accountable (denoted by RStrongAccountable(s0,P)) if for every valid schedule,

b0..n, every proper prefix of it, b0..k, for every policy-rule sequence p0..k ⊆ P
∗ and every state sk+1

such that s0
〈b,p〉0..k
−→ sk+1, there exists a policy rule pk+1 and a state sk+2 such that sk+1

〈b,p〉k+1
−→ sk+2.

6.4.2 Unrestricted Strong Accountability

In this section, we provide a formal specification of the strongly accountability property under

the cascading obligation assumption. The strong accountability definition presented by Pontual et

al. [109] disallowed cascading obligation. We refine their notion of strong accountability that

takes into consideration cascading obligations. We start by defining three auxiliary functions that

are going to be used in the definition of strong accountability.

Definition 83 (Ψ function). Ψ is a function that takes as input an obligation b̂ and a fixed set of

policy rules P and returns a set of sets of obligations B̂ in which each element represents a set

of obligations that b̂ can incur according to the Fobl function of a policy rule authorizing it. The

formal specification and the type of Ψ are precisely shown below.

Ψ : B×F P (P)→ F P (F P (B)) (6.1)

Ψ(b = (u,a,~o, ts, te,δ,w),P) = (6.2)
{

Fobl(obligatee,s,u,~o,δ,w) p = (a(u,~o)← cond(u,~o,a) : (6.3)

Fobl(obligatee,s,u,~o,δ,w))∧ (p ∈ P)

}
(6.4)

Definition 84 (Π function). Π is a function that takes as input a set of obligations B̄ and a fixed set

199

of policy rules P and returns a set of sets of obligations B̃ in which each element is a possible set

of obligations that all the obligations of B̄ can incur. In short, B̃ is the set containing all possible

combination of obligations that B̄ can incur. The formal specification of Π and its type are shown

below.

Π : F P (B)×F P (P)→ F P (F P (B))

Π(b1...n = (u1...n,a1...n,~o1...n, ts1...n , te1...n ,δ1...n,w1...n),P)

= {B ⊆ B |∀i ∈ 1 . . .n.Ψ(bi,P) 6= /0→∃ f ∈Ψ(bi,P). f ⊆ BB}

Definition 85 (Ξ function). Ξ is a function that takes as input a set of sets of obligations and a

set of policy rules and applies Π to each of set of obligations and then combines the results. This

allows us to find the set of all possible sets of obligations generated by a given set of possible

obligations. For simplicity in later definitions, we also include in the output sets, the original sets

which generated those obligations.

Ξ : F P (F P (B))×F P (P)→ F P (F P (B))

Ξ(B̃,P) = {∀B̄ ∈ B̃,
⋃

B∈Π(B̄)

B∪ B̄}

Note that, each action a in our system can be authorized by multiple policy rules. Each of

the policy rules authorizing a can incur different obligations. Furthermore, it can be the case

that among different possible obligations incurred due to a, some of them maintain accountability

and some of them do not. Provided that the policy allows infinite cascading obligations and a is

authorized by multiple policy rules, each of which incurs different obligations, then all possible

obligations incurred due to a can be modeled as a tree (possibly infinite). Based on this, we

can have two interpretations of strong accountability, existential and universal. The existential

interpretation requires that there exists a single path in the tree in which all the obligatory actions

maintain accountability when added to the current pool of obligations. The universal interpretation

200

Action

a

Incurred Obligations

{b3}

Incurred Obligations

{b8, b9, b10}

p
5

Incurred Obligations

{b11, b12}p6

p
2

Incurred Obligations

{b1, b2}

Incurred Obligations

{b4, b5, b6, b13}

p
3 , p

7

Incurred Obligations

{b4, b5, b6, b7}
p3
, p4

p 1

Figure 6.3: Possible obligations incurred by action a

is the dual and requires that all the paths in the tree maintain strong accountability. We think the

universal interpretation is too strong. As a result of which, we use the existential interpretation of

the strong accountability property and define it just below. However, the following definition can

be extended to express the universal interpretation of strong accountability.

In the example (in figure 6.3), let us consider the current accountable pool of obligations is

B. We want to know whether performing a would maintain accountability. Let us consider that

a can be authorized by policy rule p1 or p2. When a is authorized using p1, it incurs obligations

b1 and b2. However, when p2 is used to authorize a, it incurs obligation b3. Then, b1 can be

authorized by p3 and b2 can be authorized by either p4 or p7 and so on. In the existential inter-

pretation, if one of the following sets is accountable then adding a would maintain accountability:

B∪{b1,b2,b4,b5,b6,b7}, B∪ {b1,b2,b4,b5,b6,b13}, B∪ {b3,b8,b9,b10}, and B∪{b3,b11,b12}.

The universal interpretation requires all the above sets to be accountable.

201

In order to formalize this, we need to first define the set of possible future sets of obligations

using the Ξ function. In particular, we wish to define a series of sets of sets of obligations. We

will define Ξ0(B̃) = B̃ and for all integers i > 0, we define Ξi(B̃) = Ξ(Ξi−1(B̃)). Further, we define

Ξ∞ = limi→∞ Ξi. Thus, given a starting set of obligations B, we can define the set of all sets of

possible obligations which can arise from B as Ξ∞({B}). Note that this is a countable, but possibly

infinite, set of countable, but possibly infinite, sets of obligations. Because we are allowing for

potentially infinitely cascading obligations, this is necessary.

Definition 86 (Strong accountability). Given a state s1 ∈ S , in which s1.B is a strongly accountable

pool of obligations, a policy P , a set of new obligations Bc that can generate cascading obligations,

we say that the state s (where s.B := s1.B∪Bc) is existentially strongly accountable (denoted by

StrongAccountable(s,P)) if and only if

∃B′c ∈ Ξ∞(s.B,P).RStrongAccountable(s[B := B′c∪ s.B],P)

6.4.3 Computational Complexity

This section discusses the computational complexity of deciding strong accountability in presence

of cascading obligations. Prior work [67, 109] disallowed cascading obligations while deciding

strong accountability. They give intuitive discussions about why deciding strong accountability in

presence of cascading obligation is difficult. However, they did not present any theoretical results

regarding this.

We now discuss the computational complexity of deciding strong accountability in presence of

cascading obligations. We have the following theorem which states that the strong accountability

decision problem is NP-hard. We reduced the Hamiltonian path problem for graphs to the decision

of unrestricted strong accountability property.

Theorem 87. Given a strongly accountable pool of obligations B, a new obligation b, an initial

authorization state γ, and a mini-ARBAC policy Φ that allows cascading obligations and also

202

allows each action to be authorized by multiple policy rules, deciding whether B∪Bc ∪ {b} is

strongly accountable (either in existential or universal interpretation) is NP-hard in the size of B,

γ, and Φ, where Bc is the set of cascading obligations incurred by b.

Proof. To show that deciding accountability is NP-hard when the input mini-ARBAC policy al-

lows cascading of obligations and also allows each action to be authorized by multiple policy rules,

we reduce the Hamiltonian path problem for directed graphs to it. Given a directed graph G(V,E)

where V is the set of vertices and E is the set of edges, the Hamiltonian path problem asks whether

there is a simple path in the graph G(V,E), such that it contains all the vertices and each of the

vertices in V are visited only once in that path. To this end, we present a polynomial time algorithm

which reduces a Hamiltonian path problem instance to the problem instance of deciding account-

ability in presence of cascading obligations. Thus, the graph will have a Hamiltonian path when

the reduced problem instance of deciding accountability (when we say deciding accountability, we

actually mean deciding the stronger version of the accountability) yields true.

Let us consider a Hamiltonian path problem instance where the directed graph G(V,E) is given.

Let us also assume that the total number of vertices in the graph is n (i.e., |V |= n). We also consider

the vertices in V are uniquely labeled using a number from 1...n. Each edge e ∈ E has the form

(vi,v j) where 1≤ vi,v j ≤ n.

Now, we will try to construct a problem instance of deciding accountability that corresponds to

the Hamiltonian path problem instance. In the accountability decision problem instance, consider

that we have only two users, namely u0 and u1. Furthermore, let us also consider we have the

following roles, ar1,r0, r̂,r1...n,v1...n. Each of the role v1...n corresponds to the vertex of the graph.

At each point of time, the roles (in v1...n) that the user u1 currently possesses, denote the vertices

that we have already visited in the current path in the graph. Additionally, each of the role r1...n

also corresponds to the vertices of the graph. This is used to determine the current vertex being

inspected and will be explained later.

203

The current role assignment of users in the system is as following.

user_assignment{〈u0,{ar1}〉,〈u1,{ /0}〉}

Now, we turn our attention to the input mini-ARBAC policy of the problem instance. The

policy for the corresponding problem instance would be like following:

For each vertex i in the graph G(V,E), we have a can_assign rule, each of which has the

following form where 1≤ i≤ n.

can_assign(ar1, true,r0) :

{

〈u0,Grant,u1,ri,1,1〉,

〈u0,Grant,u1, r̂,5∗n,10〉

} (6.5)

Furthermore, for each vertex i in the graph G(V,E), we have another can_assign rule, each of

which has the following form where 1≤ i≤ n.

can_assign(ar1, true,vi) : { /0},1≤ i≤ n (6.6)

204

For each edge e = (x,y) ∈ E, we have one policy rule like the following,

can_assign(ar1,¬vx∧¬vy∧¬ry,rx) :

{

〈u0,Grant,u1,vx,1,1〉,

〈u0,Grant,u1,ry,1,1〉

} (6.7)

We also have the following policy rules for each of the vertices. The policy specifies that if ri

is the last role among the roles r1...n that is being granted to u1 then there is no need to incur any

further obligations and it could be the end of the simple path where each vertex is representing

granting of a role to u1.

can_assign(ar1,
∧

(1≤ j≤n)∧(i 6= j)

r j,ri) : { /0},1≤ i≤ n (6.8)

The following policy rule allows a user in role ar1 to grant the user who has all the roles in

r1...n to be assigned the role r̂.

can_assign(ar1,
∧

1≤i≤n

ri, r̂) : { /0} (6.9)

In the problem instance, consider B= /0 and the obligation we want to add is b= 〈u0,Grant,u1,

r0, [1,2]〉. Furthermore, we consider that when an action is authorized by multiple policy rules, then

we select the one to use non-deterministically. We also consider that adding an obligation b in the

accountable pool of obligations B will not violate the accountability property as long as there is a

cascading pool of obligations Bc incurred by b, in which all the obligations in B∪Bc are authorized.

However, in our instance, as B is empty, we just need to check whether there exists a Bc in which

all the obligations are authorized.

205

Now when we consider the new obligation b = 〈u0,Grant,u1,r0, [1,2]〉, no matter what policy

rules of the form (1) we use, it will incur an obligation b̂ = 〈u0,Grant,u1, r̂, [5 ∗ n+ 2,5 ∗ n+

12]〉. Thus, one of the pre-condition of b not violating accountability is that the obligation b̂ be

authorized. We can see from the policy rule (5) that it is the only policy rule that can possibly

authorize it. It however requires that the user u1 possesses all the roles in r1...n. Now u1 to get all

the roles the policy rules that can be used are either of form (1), (3), or (4). These policy rules

make sure that the only way a user can get all the roles in r1...n if there is a simple path in the

corresponding graph containing all the vertices only once. The policy rules of form (1) ensure that

one can start looking for such a path in any of the vertices of the graph. The policy rules of form (3)

on the other hand encodes the edge relationship and also impose a constraint that the only way to

get a role ri through an obligation incurred due to granting a predecessor role (predecessor vertex)

and if she did not have the role before (not visiting a vertex twice). The policy rules of form (4)

precisely specifies that whenever u1 possesses the last role of the roles in r1...n, there is no need

to search anymore as we have already found a simple path containing all the roles. Thus, G(V,E)

will have a Hamiltonian Path if the accountability decision procedure yields true.

6.4.4 Special Cases of Cascading Obligation

As in section 6.4.3, deciding accountability in presence of cascading obligations is NP-hard. Our

goal is to find certain special cases of cascading obligations for which the accountability decision

is tractable. This section introduces two such special cases.

6.4.4.1 Finite Cascading Obligation

In this special case of cascading obligation, we consider that the policy is written in a way that

the maximum number of new obligations incurred by a single obligation is bounded by a constant.

Furthermore, we also consider that each action, object pair is authorized by only one policy rule.

We also assume that the policy rules are free of cycles prohibiting infinite cascading. This can be

achieved by the following static policy analysis.

206

Static Policy Analysis to Check for Cycles. We now present an algorithm that can statically

verify the absence of cycles among policy rules. An absence of any cycles in the policy guarantees

that there is no provisions for discretionary actions to incur infinite cascading obligations. The

following algorithm (cf. algorithm 6.1) proceeds in a depth first search manner inspecting all

possible action, object pair. Considering they are authorized with respect to a specific policy rule,

it then gathers the obligations incurred due to that action, object pair according to the policy rule.

It then calls the procedure findCycles (cf. algorithm 6.2) to check whether we can reach an action,

object pair we have already seen before. If this is the case then it terminates and reports that there

is a cycle in the policy.

Algorithm 6.1 InfiniteCascading(〈γ,ψ〉)
Input: A policy 〈γ,ψ〉
Output: Returns true if 〈γ,ψ〉 allows infinite cascading obligations

1: map〈pair〈action, object〉, boolean〉 obligationSeen
2: obligationSeen.clear()
3: for each possible action, object pair 〈a,o〉 in the system do
4: obligationSeen.insert(〈〈a,o〉, true〉)
5: if findCycles(a,o,obligationSeen) == true then
6: return true
7: obligationSeen.delete(〈〈a,o〉, true〉)
8: return false

Algorithm 6.2 findCycles(action a, object o, map obligationSeen)
Input: An action a, object o, and a map data structure which represents the obligations/action,

object pairs we have already seen.
Output: Returns true if 〈a,o〉 can generate an infinite cascading of obligations

1: for each possible policy rule p ∈ P do
2: if p.a = a∧ p.~o[0] = o then
3: obligations B = p.Fobl()
4: for each obligation b ∈ B do
5: if obligationSeen.find(〈b.a,b.~o[0]〉) = true then
6: return true/* cycle found */
7: else
8: obligationSeen.insert(〈〈b.a,b.~o[0]〉, true〉)
9: if findCycles(b.a,b.~o[0],obligationSeen) = true then

10: return true/* cycle found */
11: obligationSeen.delete(〈〈b.a,b.~o[0]〉, true〉)
12: return false

207

6.4.4.2 Repetitive Obligation

Repetitive obligations occur recurrently after a fixed amount of time. A real life example of repet-

itive obligation can be found in the chapter 6803(a) of Gramm-Leach-Bliley Act (GLBA) [2].

According to the regulation, a financial institution must send a customer an annual privacy notice

as long as the individual is a customer. Note that, we cannot specify repetitive obligations in our

model directly. For this, we follow Ni et al. [100] to augment our obligations with an extra field

that specifies the number of repetition (denoted by ρ). We allow both finite and infinite repetitive

obligation. Now, let us consider an obligation b = {u,a,~o, ts, te,δ,ρ,w〉}. This obligation is con-

sidered to be infinite repetitive when ρ = I or finite repetitive when ρ ∈ N and ρ > 1. For finite

and infinite repetition of the obligation the possible time intervals of the recurring obligation are

the following.

• Finite Repetitive: [ts, te], [te +δ, te +δ+w], · · · [ts +(ρ−1)(w+δ), te +(ρ−1)(w+δ)].

• Infinite Repetitive: [ts, te], [te+δ, te+δ+w], · · · [ts+(n−1)(w+δ), te+(n−1)(w+δ)], · · ·

where n ∈ N.

Finite Repetitive Obligations. This kind of obligation recurs finitely after a fixed amount of

time. For instance, b = {Bob,check, log, ts = 5, te = 8,δ = 2,ρ = 3,w = 3} will generate 3 obliga-

tions {Bob,check, log,5,8}, {Bob,check, log,10,13}, and {Bob,check, log,15,18}.

Infinite Repetitive Obligations. This kind of obligations on the other hand recurs indefinitely.

For example, b = {Bob,check, log, ts = 5, te = 8,δ = 2,ρ = I,w = 3} will generate the following

infinite number of obligations: {Bob,check, log,5,8}, {Bob,check, log,10,13}, · · · .

6.4.5 Algorithm

As deciding accountability in presence of cascading obligations is NP-hard, we simplify our ac-

countability decision problem by imposing several restrictions on the problem. The restrictions

208

are: (1) We consider each action, object pair is authorized by one policy rule, prohibiting disjunc-

tive choices. (2) We require that the policy is free of cycles which prohibits obligations to incur

infinite number of new obligations. (3) We disallow role expressions to specify the obligatee of the

new obligation. (4) We also disallow finite cascading obligations to incur repetitive obligations.

(5) We also disallow repetitive obligations to incur non-repetitive cascading obligations.

Considering these restrictions, strong accountability can be decided in polynomial time of the

policy size, number of obligations, and the number of new obligations that needs to be considered.

The algorithm (algorithm 6.3) decides whether adding an obligation to an accountable pool of obli-

gations, maintains accountability. The algorithm takes as input the accountable pool of obligations

B (containing the finite cascading, finite repetitive, and infinite repetitive obligations), the current

authorization state γ of the system, a mini-ARBAC policy Φ, and the new obligation b. It returns

true when adding B∪{b}∪Bc is strongly accountable where Bc is the new set of obligations in-

curred by b. Note that, the time complexity of the algorithm additionally depends on the type of

the new obligation to be added and also the number of infinite repetitive obligations that needs to

be unrolled. The complexity of the algorithm is precisely described later.

In the algorithm 6.3, the new obligation b can either incur no new obligations, finite cascading

obligations, finite repetitive obligations, or infinite repetitive obligations. Based on what kind of

new obligation(s) b incurs, we have to take different course of actions. The main idea behind the

algorithm is to unroll a finite amount of new obligations and use the non-incremental algorithm

presented by Pontual et al. [109] to decide whether the original pool of obligation in addition with

the new obligation and finitely unrolled obligation is strongly accountable. The way in which each

type of obligation is unrolled is presented in the following discussion.

Unrolling Finite Cascading Obligations To unroll the chain of cascading obligations incurred

by b, Algorithm 6.3 uses procedure UnrollCascading described in Algorithm 6.4. This procedure

is an adaptation of the breadth-first search algorithm. Recall that, we disallow infinite cascading

obligations which guarantees that the procedure UnrollCascading will terminate. Furthermore, we

209

Algorithm 6.3 StrongAccountableCascading (γ,Φ,B,b)
Input: A policy 〈γ,Φ〉, a strongly accountable obligation set B, and a new obligation b that generates

cascading obligations.
Output: returns true if addition of b to the system preserves strong accountability.

1: if b.ρ = 1 then
2: B f inal := B∪UnrollCascading(γ,Φ,b);
3: else if b.ρ = I then
4: B f inal := B∪{b};
5: else
6: B f inal := B∪UnrollFiniteRepetitive(γ,Φ,b);
7: m := MaxEndTime(B f inal);
8: B f inal := B f inal ∪UnrollInfiniteRepetitive(γ,Φ,B f inal,m);
9: for each obligation b∗ ∈ B f inal do

10: if b∗.a = grant or revoke then
11: InsertIntoDataStructure(b∗);
12: for each obligation b∗ ∈ B f inal do
13: if Authorized (γ,Φ, B f inal , b∗)= false then
14: return false
15: return true

also impose the restriction that each action, object pair can be authorized by only one policy rule.

As a result of which, the new obligations incurred by a fixed obligation will be finite and fixed.

For this, we use the function Ψ (discussed in section 6.4.2) that takes an obligation b and set of

policy rules and returns a set of set of obligations which can be possibly incurred by b. Due to the

restriction above, the result of Ψ will be a single set of obligations B f that can be incurred by b.

The different fields of each obligation b̂ ∈ B f will depend of the fields of b and the policy rule that

authorizes b.

Algorithm 6.4 UnrollCascading (γ,Φ,b)
Input: A policy 〈γ,Φ〉 and a new obligation b.
Output: returns a set of cascading obligations B that is generated by b.

1: B = /0;
2: queue < obligation > q;
3: q.push(b);
4: while !q.empty() do
5: b = q. f ront(); B := B∪{b};
6: q.pop(); B′ := Ψ(b,Φ);
7: for each obligation b∗ ∈ B′ do
8: q.push(b∗);
9: return B

210

Figure 6.4: Computing Period of Infinite Repetitive

Unrolling Finite Repetitive Obligations When the new obligation we want to add (b) is a finite

repetitive obligation (b.ρ ∈N and b.ρ > 1), we use the procedure UnrollFiniteRepetitive described

in Algorithm 6.5 to unroll it appropriately. We follow the procedure presented in section 6.4.4 to

unroll finite repetitive obligations. Thus, for the obligation b, the procedure UnrollFiniteRepetitive

clones b, varying only the time intervals of the new obligations based on b.δ. The exact number of

copies of b that are unrolled will depend on b.ρ.

Algorithm 6.5 UnrollFiniteRepetitive (γ,Φ,b)
Input: A policy 〈γ,Φ〉 and a finite repetitive obligation b.
Output: returns a set of unrolled obligations B that is generated by b.

1: B = /0; i := 1;
2: while i≤ b.ρ do
3: bi := b; bi.te := (b.w−b.δ)× i+b.ts−b.δ;
4: bi.ts := bi.te−w; B := B∪{bi}; i := i+1;
5: return B

Unrolling Infinite Repetitive Obligations When the obligation we want to add (b) is an infinite

repetitive obligation, Algorithm 6.3 uses procedure UnrollInfiniteRepetitive, described in algo-

rithm 6.6, to unroll a finite amount of it. Let us consider Bi ⊆ B is the set of infinite repetitive

obligations. Note that, b ∈ Bi. First, we find the overall period of all the obligations in Bi at which

211

the infinite repetitive obligations repeat themselves. In figure 6.4 we have two infinite repetitive

obligations, b1 = {u1,a,o, ts = 1, te = 5,δ = 1,ρ = I,w = 4} and b2 = {u1,a,o, ts = 1, te = 10,δ =

1,ρ = I,w = 9}. It is clear that after time 11, we see a pattern formed by the obligations, this is

the overall period. The overall period is the least common multiple (LCM) of the periods of each

bi ∈ Bi. For each infinite repetitive obligation bi, the period of bi is given by bi.δ+bi.w. Once the

TimeMaximum
End Time

Figure 6.5: Unrolling Infinite Repetitive Obligations

period is computed, we check to see whether the overall period is greater than the maximum end

time of the finite obligations (repetitive or non-repetitive). If this is the case, we just need to unroll

the infinite repetitive obligations three periods (to be safe). Otherwise, we unroll the infinite obliga-

tions until the maximum time, and then we unroll two additional periods (figure 6.5). In the current

pool of obligations let us assume that the only type of obligations present are the infinite repetitive

obligations. When we have calculated the overall period of these infinite repetitive obligations,

part of the authorization state influencing the permissibility of the infinite repetitive obligations,

after each of these period should be equivalent to the authorization state before, if the system is

accountable. If the authorization state is not necessarily equivalent, this will be revealed when the

second repetition is analyzed. Thus, we do not need to analyze the infinite repetitive obligations

beyond two repetitions. Similarly, when we have other types of obligations residing in the current

pool of obligations, we can safely unroll the infinite repetitive obligations for two additional period

after the maximum end time of the finite obligations and soundly decide accountability.

We now briefly summarize the non-incremental algorithm for deciding strong accountability

212

Algorithm 6.6 UnrollInfiniteRepetitive (γ,Φ,B,m)
Input: A policy 〈γ,Φ〉, a set of obligations, where Bi ⊆ B is a set of infinite repetitive obligations, and m

representing the last time point where a non-infinite obligation happens.
Output: returns a set of unrolled obligations B′ that is generated by B.

1: B′ = /0; period = LCM(B)
2: if period > m then
3: f inalTime := period∗3;
4: else
5: f inalTime := (⌈(m/period)⌉+2)×period;
6: for each obligation b′ ∈ Bi do
7: end := b′.te;
8: while end <= f inalTime do
9: bi := b′; bi.te := (b′.w−b′.δ)× i+b′.ts−b′.δ;

10: bi.ts := bi.te−w; B′ := B′∪{bi}; end := bi.te;
11: return B′

due to Pontual et al. [109] which we use as a procedure for deciding accountability in presence

of special cases of cascading obligations. We refer readers to Pontual et al. [109] for a detailed

presentation. A pseudo-code of the algorithm is presented just below.

Algorithm 6.7 Authorized (γ,Φ,B,b)
Input: A mini-ARBAC policy Φ, an authorization state γ, an obligation set B, and an obligation b.
Output: returns true if b is authorized with respect to γ.UA and B

1: if b = 〈u,grant,〈rt ,ut〉, [start,end]〉 then
2: return (∀[s,e] ∈ subint(B∪{ts, te})).

(overlaps([s,e], [ts, te])→
(∃〈ra,c,rt〉 ∈Φ.CA).(hasRole(γ,Φ,B,u |= ra, [s,e])
∧(∀l ∈ c).(hasRole(γ,Φ,B,ut |= l, [s,e]))))

3: else if b = 〈u,revoke,〈rt ,ut〉, [start,end]〉 then
4: return (∀[s,e] ∈ subint(B∪{ts, te})).

(overlaps([s,e], [ts, te])→
(∃〈ra,rt〉 ∈Φ.CR).(hasRole(γ,Φ,B,u |= ra, [s,e]))

5: else /* b = 〈u,a,〈~o〉, [start,end]〉 */
6: return (∀[s,e] ∈ subint(B∪{ts, te})).

(overlaps([s,e], [ts, te])→
(∃〈ra,〈a,~o〉〉 ∈ γ.PA).
(hasRole(γ,Φ,B,u |= ra, [s,e]))

The non-incremental algorithm takes as input a set of obligations, an authorization state, and a

mini-ARBAC policy and returns true when the set of obligations is strong accountable. For this,

the algorithm inserts all the administrative obligations in the set to a modified interval search tree.

Then it checks whether each of the obligation is authorized in its whole time interval. For this, the

213

Algorithm 6.8 hasRole (γ,Φ,B,u |=γ l, [s,e])

Input: A mini-ARBAC policy Φ, an authorization state γ, an obligation set B, a query u |=γ l in which l has
either the form r or ¬r, and a time interval [s,e].

Output: Returns true if u |=γ l is guaranteed to hold throughout the interval [s,e].
1: if l = r then /* positive role constraint */
2: if (∃〈u′,revoke,〈r,u〉, [start,end]〉 ∈ B).(

overlap([s,e], [start,end])) then
3: return false
4: if 〈u,r〉 ∈ γ.UA then
5: if (∃〈u′,revoke,〈r,u〉, [start,end]〉 ∈ B).(end < s) then
6: Select such a tuple so that end is maximized
7: if (∃〈u′′,grant,〈r,u〉, [start ′,end′]〉 ∈ B).

(start ′ > end∧ end′ < s) then
8: return true
9: else

10: return false
11: else
12: return true
13: else /* 〈u,r〉 /∈ γ.UA */
14: if (∃〈u′,grant,〈r,u〉, [start,end]〉 ∈ B).

(end < s) then
15: Select such a tuple so that start is maximized
16: if (∃〈u′′,revoke,〈r,u〉, [start ′,end′]〉 ∈ B).

(overlap([start,e], [start ′,end′])) then
17: return false
18: else
19: return true
20: else
21: return false
22: else /* l = ¬r negative role constraint */
23: In case of negative role checking (u |=γ l where l =¬r), the algorithm follows similar steps, reversing

the roles of “GRANT" and “REVOKE" and reversing the negative and positive role tests.

algorithm inspects whether the user performing the obligation has the necessary roles in the whole

time interval. For simplicity, let us consider the user u needs the role r to perform the obligation.

Then, the algorithm checks whether u has role r in the current authorization state. If yes, then

it checks whether there is an obligation overlapping with the current obligation that revokes r

(Queries like this can be done efficiently (O (logn)) using the modified interval search tree.). If no,

then u is guaranteed to have role r in the whole time interval. In case, u currently does not have

role r, then the algorithm checks whether there is a grant of the role r to u and no one is revoking

it. If that is the case, then u is guaranteed to have role r in the whole time interval.

214

Complexity Analysis of the Algorithm Let us consider the current pending pool of obligations

is B where |B|= n. Moreover, let us consider Bi⊆B denotes the set of infinite repetitive obligations

in the current pending pool of obligations where |Bi| = d. Let us consider the number of policy

rules Φ is k. (1) When the new obligation b we want to add incurs a finite number of cascading

obligations, the number of finite cascading obligations due to b can be approximated by k. This

is due to our restriction that our policies are free of cycles. Furthermore, let us consider that the

number of times the infinite repetitive obligations are unrolled is α. Thus, the total number of

obligations for which we need to check accountability in this case is ηc = α× d + k +(n− d).

Then, we check each of the η obligations are all authorized, which can be done using the non-

incremental algorithm presented by Pontual et al. [109] in O (kη2
c × log(ηc)). (2) In the case b

being a finite repetitive obligation, the number of times b needs to be unrolled is b.ρ. Let us denote

it by m. Thus, the total number of obligations for which we need to check accountability in this

case is ηr = α× d +m+(n− d). The resulting complexity of the algorithm in this case will be

O (kη2
r × log(ηr)) (3) For the case, b is an infinite repetitive obligation, we have to compute the

overall period of the obligations in Bi and b. Let, β denote the number of times the obligations

in Bi and b needs to be unrolled. Thus, the total number of obligations for which we need to

check accountability in this case is ηi = β× (d+1)+(n−d). This results in a time complexity of

O (kη2
i × log(ηi)).

6.5 Empirical Evaluation

The goal of the empirical evaluations is to determine whether strong accountability can be de-

cided efficiently for some special cases of cascading obligations. For those cases, our empirical

evaluations illustrate that it is actually feasible to decide the strong accountability property.

6.5.1 Experimental Environment

The algorithm for deciding strong accountability for special cases of cascading obligations is im-

plemented using C++ and compiled with g++ version 4.4.3. All experiments are performed using

215

an Intel i7 2.0GHz computer with 6GB of memory running Ubuntu 11.10.

6.5.2 Input Instance Generation

As in the case for many security researcher, we do not have access to real life access control poli-

cies that contain obligations. Thus, we synthetically generate problem instances for our empirical

evaluations. We belief the values of the different parameters we assume are appropriate for a

medium sized organization.

In our experiments, we consider 1007 users, 1051 objects, and 551 roles. We also consider

53 types of actions, 2 of which are administrative in nature (grant and revoke). We handcrafted a

mini-RBAC and mini-ARBAC policy with 1251 permission assignment rules, 560 role assignment

rules (maximum 5 pre-conditions in each), and 560 role revocation rules. Among the policy rules,

100 of them can incur new obligations. Each of which can incur a maximum of 10 new obligations

totaling 1000 new cascading obligations.

To generate the obligations, we handcrafted 6 strongly accountable sets of obligations in which

each set has 50 obligations. Each set has a different ratio of administrative to non-administrative

obligations (rat). We then replicated each set of obligations for different users to obtain the desired

number of obligations. Similarly, we generate the infinite and finite repetitive obligations, we use

6 sets of repetitive obligations that are strongly accountable. The execution times shown are the

average of 100 runs of each experiment.

6.5.3 Empirical Results

We now discuss our empirical results. Recall that, our accountability decision procedure takes

as input an accountable pool of obligations B, the current authorization state γ, a mini-ARBAC

policy Φ, and a new obligation b. It returns true when adding b and its associated new obligations

maintain accountability. In these empirical evaluations, we consider cases where b can incur a

finite amount of new obligations and can be finitely (resp., infinitely) repetitive.

216

0

10

20

30

40

50

60

E
xe

cu
tio

n
tim

e
(i

n
m

ill
is

ec
on

ds
)

0 20 40 60 80 100

Number of Obligations (in thousands)

100%-Administrative
80%-Administrative
60%-Administrative
40%-Administrative
20%-Administrative
0%-Administrative

Figure 6.6: Base Line (No Cascading Obligations).

Finite Cascading Obligations In this case study, we add an obligation to a strongly accountable

set of obligations. This obligation in turn incurs 1000 new obligations. Then, the algorithm needs

to decide whether these 1000 obligation along with the original strongly accountable obligation set

is still strongly accountable. Figure 6.7 presents the results for the strong accountability algorithm

for this case. Although the number of cascading obligations is fixed (1000) throughout this exper-

iment, we vary the number of obligations by changing the number of pending obligations in the

pool from 0 to 99000. We follow the same strategy for all the other case studies.

The time required by the strong accountability algorithm grows roughly linearly in the num-

ber of obligations. In the worst case (99,000 administrative obligations plus 1000 finite cascading

obligations), the algorithm runs in 103 milliseconds to determine that the set is strongly account-

able. This is roughly two times slower than the non-incremental strong accountability algorithm

217

0

20

40

60

80

100

120

E
xe

cu
tio

n
tim

e
(i

n
m

ill
is

ec
on

ds
)

0 20 40 60 80 100

Number of Obligations (in thousands)

100%-Administrative
80%-Administrative
60%-Administrative
40%-Administrative
20%-Administrative
0%-Administrative

Figure 6.7: Finite Cascading Obligations.

presented by Pontual et al. [109] without cascading of obligations. This is due to the overhead of

unfolding the cascading obligations (algorithm 6.5). As the algorithm must inspect every obliga-

tion following each administrative obligation, rat influences the execution time of the algorithm. In

addition, we have also simulated (cf. figure 6.8) the same case when the original set of obligations

have infinite repetitive obligations, in this case the worst execution time is still 103 milliseconds.

This is due to the fact that the time of procedure UnrollCascading dominates the time of procedure

UnrollInfiniteRepetitive.

Finite Repetitive Obligations In this experiment, we add a finite repetitive obligation to a

strongly accountable obligation set. This new obligation repeats 1000 times (ρ = 1000). The al-

gorithm decides whether the old set of obligations plus the 1000 copies of the repetitive obligation

218

0

20

40

60

80

100

120

E
xe

cu
tio

n
tim

e
(i

n
m

ill
is

ec
on

ds
)

0 20 40 60 80 100

Number of Obligations (in thousands)

100%-Administrative
80%-Administrative
60%-Administrative
40%-Administrative
20%-Administrative
0%-Administrative

Figure 6.8: Finite Cascading Obligations (with Infinite Repetitive Obligations).

is strongly accountable. Figure 6.9 shows the results for the strong accountability algorithm for

this case. The execution time of the strong accountability algorithm grows roughly linearly in the

number of obligations. In the worst case, the algorithm runs in 66 milliseconds to decide whether

the set is strongly accountable. In general, if the number of obligations generated by the finite

repetitive obligations is not too large (when compared with the original set), the time necessary

to decide accountability is not affected by the addition of finite repetitive obligations. As algo-

rithm 6.5 can unroll the repetitive obligations in a trivial way, the overhead of this procedure will

be small provided that the number of repetition is small. In addition, we have also simulated (cf.

figure 6.10) the same case when the original set of obligations have infinite repetitive obligations.

The worst case execution time, for this case, is 66 milliseconds.

219

0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e
(i

n
m

ill
is

ec
on

ds
)

0 20 40 60 80 100

Number of Obligations (in thousands)

100%-Administrative
80%-Administrative
60%-Administrative
40%-Administrative
20%-Administrative
0%-Administrative

Figure 6.9: Finite Repetitive Obligations.

Infinite Repetitive Obligations In these experiments, we add an infinite repetitive obligation

to a strongly accountable obligation set that already contains some infinite repetitive obligations.

These infinite repetitive obligations together with b is cloned for a total of 519 times. Figure 6.11

shows the results for the strong accountability algorithm for this case. The execution time of the

strong accountability algorithm grows roughly linearly in the number of obligations. In the worst

case, the algorithm runs in 66 milliseconds.

Remarks One of the problems that algorithm 6.3 can suffer from is that the number of finitely

unrolled obligations can be large. This is possible in three different cases. First, an obligation added

to the system can incur a large number of obligations (finite cascading obligations). Although

this is possible, we do not consider this as we prohibit existence of cycles in the policy rules.

220

0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e
(i

n
m

ill
is

ec
on

ds
)

0 20 40 60 80 100

Number of Obligations (in thousands)

100%-Administrative
80%-Administrative
60%-Administrative
40%-Administrative
20%-Administrative
0%-Administrative

Figure 6.10: Finite Repetitive Obligations (with Infinite Repetitive Obligations).

Thus, the number of new obligations that can be incurred by an obligation is bounded by the size

of the policy. Secondly, one can add a finite repetitive obligation that repeats a large number

of times. In this case, we can try to bound the number of times a finite repetitive obligation

can recur. Finally, when someone adds an infinite repetitive obligation, the overall period of all

the infinite repetitive obligations can be very large. In this case, we might end up unrolling the

infinite repetitive obligations many times. A possible solution to this problem is to impose a

restriction that finite and infinite repetitive obligations will only be non-administrative. As non-

administrative obligations do not alter the authorization state, we only need to unroll the infinite

repetitive obligations just beyond the maximum end time of non-repetitive obligations.

221

0

10

20

30

40

50

60

70

E
xe

cu
tio

n
tim

e
(i

n
m

ill
is

ec
on

ds
)

0 20 40 60 80 100

Number of Obligations (in thousands)

100%-Administrative
80%-Administrative
60%-Administrative
40%-Administrative
20%-Administrative
0%-Administrative

Figure 6.11: Infinite Repetitive Obligations.

6.6 Summary

In current work, we have refined the notion of strong accountability due to Irwin et al. [67] to

allow cascading obligations. We also enhance the obligation model used by Pontual et al. [109]

to support the specification of cascading obligations. We present several proposals to specify the

obligatee in the policy. We then show that deciding accountability in general is NP-hard. Thus,

we consider several simplifications for which the strong accountability decision becomes tractable.

We provide an algorithm, its complexity, and also present empirical evaluations of the algorithm.

Our experiments show that accountability can be efficiently decided for special cases of cascading

obligations.

222

Chapter 7: RELATED WORK

7.1 Access Control and Obligations

Obligations have received attention from numerous researchers [3, 11, 18, 31, 39, 54, 67, 69, 86,

94, 95, 97, 100, 101, 110, 122, 127]. Some of them are interested in efficiently specifying obliga-

tory requirements [3, 11, 18, 31, 94, 101, 122, 127] and others are interested in the management of

obligations [11, 39, 54, 67, 86, 100, 110].

Katt et al. [70] augmented the UCON model [105] to support post-obligations. Their system

considers two types of obligatory actions , non-trusted obligations and trusted obligations. Trusted

obligations are performed by the system, so they consider that they are never violated. Non-trusted

obligations; however, are user obligations and can be violated. They proposed a mechanism that

makes decisions based on the status of fulfillment of the non-trusted obligations. However, they

did not consider interaction of authorization systems and obligations.

Dougherty et al. [39] introduced an obligation model that supports several types of obligations,

negative, pre, and post-obligations. Moreover, their model also support some cases of cascading

obligations (finite repetitive obligations). For deciding whether an obligation is fulfilled they use

static analysis. In contrast, we manage special cases of cascading user obligations where they only

consider system obligations.

Ni et al. [100] presented a user obligation model based on an extended role based access con-

trol for privacy preserving data mining (PRBAC) [101]. Their model supports repeated obligations,

cascading obligations, pre and post-obligations and also conditional obligations. In addition, they

also present how to detect infinite obligation cascading in a policy. Their work is complimen-

tary to ours, since we study the impact of different types of cascading obligations when deciding

accountability.

Ali et al. [4] presented an enforcement mechanism for obligations in service oriented archi-

tectures. Their model supports many different aspects of real obligation systems (e.g., repeated

223

obligations, conditional and pre-obligations), but do not support cascading obligations. Although

their model is more expressive than ours, they assume that obligations have all the necessary per-

missions.

Elrakaiby et al. [41] borrow the concepts of Event Condition Action from the area of database

to present an obligation model. It supports pre and post-obligations, on-going obligations. Obli-

gations can have relative or absolute deadlines. They also introduce the concept of continuous

obligations, which is a variation of conditional obligation. To cope with violations, conflicts, and

lack of permissions in obligations, they adopt a set of strategies such as sanctions for users that

violate obligations, cancellation of obligations, delay of obligations, and re-compensation for users

that fulfill their obligations. In contrast, although our obligation model is less expressive, we use

accountability to detect violations before they occur.

Li et al. [86] extended XACML [127] to support a richer notion of obligations. They view obli-

gations as state machines and can express pre-obligations, post-obligations, stateful-obligations,

etc. However, they do not consider obligations requiring authorizations and in turn do not concen-

trate on deciding accountability. Although, the model we extend [109] is not as expressive as theirs,

we concentrate on those obligations that require authorizations and can alter the authorization state

of the system. Particularly, we are interested in expressing some special cases of cascading obliga-

tions and deciding accountability in presence of it. In this sense, our view of managing obligations

is different than theirs.

7.2 Privacy Policy Specification Language

The privacy policy specification language we use (section 3) is derived the privacy policy specifi-

cation framework Contextual Integrity (CI) presented by Barth et al. [11]. The goal of this thesis

and that of CI are fundamentally different. The work by Barth et al., are geared towards develop-

ing a framework for specification of practical privacy policies whereas our goal additionally is to

perform static policy analysis and to develop efficient compliance checking algorithm for practi-

cal privacy policies like HIPAA. We propose several modifications of their specification language.

224

Some of them are restrictions and some of them are enhancements of their specification language.

Notice in particular the limited way in which future temporal operators are used (figure 3.2).

Aside from the at the outer-most level, the only future subformulas are of the form given by β

and can be applied only to non-temporal formulas. This restriction allows us to syntactically

extract the present conditions and obligatory requirements imposed by the privacy policy and thus

gracefully define what it means for a transmission action to be weakly compliant with a privacy

policy of our form. Although, Gabbay [52] provides a syntactic way of separating the present

conditions and obligations from pLTL policy, it is not trivial to extend his approach for FOTL due

to predicates sharing variables among each other.

Furthermore following the example of DeYoung et al. [35], we extend CI [11] to contain two

extra pre-defined predicates for-purpose(m, pr) and purpose(pr, p̂r) to express the purpose of the

disclosure. This is inherent to HIPAA as it sometimes decides whether to allow (resp., deny) a dis-

closure based on the intended purpose of that disclosure (e.g., treatment, payment). Additionally,

we support arbitrary regulation specific predicates which are not supported by CI. Thus, due to

absence of these regulation specific predicates, their specification language cannot be used to cap-

ture fine-grained privacy requirements imposed by practical privacy regulations like HIPAA [62].

Moreover, CI supports having multiple context which provides a mechanism for combining differ-

ent privacy policies applicable to different contexts. In this thesis, we concentrate on the HIPAA

privacy rules, thus we have one context only, and consequently we remove the sort referring to the

context in question.

The FOTL formulas that we allow in the positive norms are of form ψ∧β whereas Barth et al.

allow arbitrary FOTL formulas (past and future). In case of negative norms, they do not allow any

temporal operators in the antecedent of the norms whereas, we allow pure past temporal formulas

of form ψ in the antecedent. However, they allow arbitrary FOTL formulas in the consequent of

the negative norms. On the other hand, the FOTL formulas that we allow in the consequent of the

negative norms are of form χ.

Lam et al. [79] propose a privacy policy specification language called pLogic based on stratified

225

datalog [113]. To demonstrate the adequacy of their specification language they specify §164.506

of HIPAA in pLogic. Due to the limitations of datalog, pLogic cannot specify temporal conditions

similar to ours. Furthermore, they cannot explicitly express obligations. We can actually spec-

ify all 84 disclosure related clauses of HIPAA in our specification language. In that sense, our

specification language is richer than pLogic.

In light of CI [11, 12], DeYoung et al. [35] propose an expressive FOTL based policy spec-

ification language PrivacyLFP. Their specification language is strictly more expressive than our

specification language. They have shown the adequacy of their specification language by captur-

ing all fine-grained privacy requirements imposed by all 84 disclosure related clauses of HIPAA.

Moreover, they specify the GLBA [2] privacy regulation in their PrivacyLFP. We adopted some of

their improvements over CI (e.g., purpose of a disclosure, arbitrary regulation specific predicates)

but left out others that were not relevant for HIPAA (fixed point operators). Note that, the goal of

their work is to precisely capture the privacy requirements imposed by practical privacy policies

like HIPAA, GLBA. Our goal additionally is to perform static policy analysis and developing effi-

cient compliance checking algorithm for these regulations. To this end, we have make some more

restricting assumptions about the form of the policies.

Garg et al. [55] propose an expressive, first-order-logic based privacy policy specification lan-

guage. They have also specified all 84 disclosure related clauses of the HIPAA privacy rule in

their specification language. Note that, their specification language is also strictly more expressive

than our specification language. However, we share some of the same goals, our goals differ in

some places. Specifically, one of our goal is to perform static policy analysis which requires us to

impose some syntactic restrictions on our policy specification language.

Basin et al. [13] propose an expressive, metric first order temporal logic (MFOTL) based pri-

vacy policy specification language. Their specification language is also more expressive than our

specification language. The principal goal of their work is to check whether whether an action is

compliant with a privacy policy specified in MFOTL. Note that, the goal of this thesis is to ad-

ditionally check in static time whether a policy has a desirable ∆-property. Also note that as we

226

have mentioned before provided that obligations do not interact with each other and the only place

deadlines are placed is on the obligations, then deadlines do not have any impact on our analysis.

Moreover, they do not have an encoding of HIPAA privacy rule in their specification language.

May et al. [94] present a formalism, based on HRU access control matrix model [59], called

Privacy APIs to encode practical privacy policies like HIPAA [62]. They also provide techniques

to convert privacy regulations to their formal language. They extended the HRU access control

matrix model to achieve the expressive power to specify useful practical privacy policies. Their

extensions include support for logging and notification, extending the syntax and semantics of

HRU conditional commands, specification of conditions, purposes, and obligations. They only

translate §164.506 of the 2000 and 2003 version of HIPAA in their formalism. It is also not clear

whether their specification language is expressive enough to specify the whole HIPAA privacy

rule. Moreover, FOPSL can capture fined grained privacy requirements (e.g., temporal conditions)

which their language cannot capture.

Ni et al. [101] present a family of model named P-RBAC (Privacy-aware Role Based Access

Control) that extends the traditional RBAC [8, 50] to support specification of practical but com-

plex privacy policies. Their model can specify conditions, purposes, obligations, etc., which are

necessary for privacy policy specification. However, it is not clear how these complex (temporal)

conditions are managed in their system. Moreover, they do not provide any explicit management

of obligations incurred due to an action. It is also not apparent how to encode some HIPAA rules

into their specification language due to absence of examples of such encodings.

The Enterprise Privacy Authorization Language (EPAL) [3] is a specification language used

to express organizational privacy policies. EPAL supports purpose of a disclosure or usage and

also allows obligations to be incurred when an action is either allowed or denied. However, in

EPAL’s policy rules there is no support for restricting the attributes of the sender of a information

and also the subject of the information. They can just impose restrictions on the attributes of the

receiver of a disclosure. Furthermore, they do not support past temporal conditions to be added to

the condition of a rule.

227

Wu et al. [126] use a two step approach to specify HIPAA privacy regulation into a declarative

style programming approach called Answer Set Programming (ASP) [21]. In the first step, the

natural language policy is converted to a abstract representation of the policy (generic pattern

based policy), which they introduce for interoperability of policies and ease of use. In the second

step, they take the generic pattern based policy and translate it to a logic based representation on

ASP. In their case study, they only use clause §164.506 of HIPAA. It is not clear whether all the

fine-grained privacy requirements imposed by HIPAA can be captured in their framework.

Breaux and Antón [20] propose a systematic methodology of extracting access rights and obli-

gations from the regulation text. They consider both HIPAA security and privacy rule. Note that

in this thesis we consider only the HIPAA privacy rule. Although, the access rights and obliga-

tions are extracted they do not perform any kind of analysis to give static guarantees about whether

incurred privacy promises or obligations can be fulfilled. Moreover, they are more interested in

capturing the privacy regulations accurately whereas our goal is to additional check consistency of

the regulation and also developing efficient compliance checking algorithms. In that sense, their

work is complementary to our work.

In the same vein as Breaux and Antón, Maxwell and Antón [93] propose a framework for cap-

turing a set of software requirements for checking compliance with the regulations like HIPAA.

They propose a production rule framework which can be used by software engineers to specify

compliance requirements of their developed software. Then they go on to check whether iTrust

which is an open source electronic medical records system, is compliant with the HIPAA secu-

rity rules. The goal of this thesis is however checking consistency of HIPAA privacy rules and

developing efficient compliance checking algorithm for it.

7.3 Privacy Policy Analysis and Compliance Checking

Garg et al., [55] propose an expressive, first-order-logic based privacy policy specification lan-

guage. They present a semi-automated auditing algorithm that incrementally inspects the log of a

system against a policy and detects violations. Their specification language is expressive enough

228

to capture the requirements of all 84 disclosure related clauses of HIPAA. Their algorithm takes a

privacy policy specified in their language and an incomplete log of the system and tries to evaluate

as much as the log as possible. They assume that the interpretation of some of the predicates can-

not be determined automatically or needs manual inspection from a human. In such a case, they

return a residual policy which can be further evaluated once part of the unavailable logs become

available. In their setting, they consider two kinds of incompleteness: (i) Past incompleteness: this

incompleteness is due to unavailable interpretation of some predicates, (ii) Future incompleteness:

this incompleteness is due to not enough time being passed. Incompleteness case (i) happens when

the policy has predicates about subjected belief which has to be manually inspected by a human or

the log did not capture all the necessary information required to reason about whether an action is

allowed by the policy. Incompleteness case (ii) happens when according to the policy a principal

incurs an obligation but the deadline of the obligation has not passed yet. In this case, it is not

reasonable to come to any conclusion about whether the obligation will be fulfilled or not.

Moreover, they allow quantification over infinite domains. To achieve finiteness, they have

developed a static linear time policy checking algorithm which checks whether the input-output

modes of the different predicates of the policy are well-moded. The well-modedness of the policy is

actually borrowed from the well-modedness of logic programs. The well-modedness of the policy

guarantees that while evaluating the policy with respect to a (possibly, incomplete) log, the number

of individuals that needs to be guaranteed is finite. Note that, they do not make the assumption that

the number of valuations which make a predicate true might not be finite. However, their algorithm

is not efficient due to the fact that while evaluating the policy, they have to go back and forth in the

log to check for satisfiable valuations of certain sub-formula of the policy. As we have shown in

this thesis, it is possible to keep a summary structure of the log which ensure that we do not have

to go back to the log which is a disk intensive operation according to our assumption. Provided

that a summary structure is kept in the memory, only the summary structure needs to accessed to

find satisfiable valuations of sub-formulas of the policy. However, note that, the policies for which

they can check compliance of is more expressive than the policies we consider. Moreover, in our

229

algorithm, we do not consider incompleteness of the finite execution history (incompleteness case

1). Also note that, considering that the incompleteness case (i) cannot happen, their algorithm can

be used as a runtime monitor to detect any violation of the policy in preemptive manner.

Basin et al. [13] propose a specification language based on metric first order temporal logic

(MFOTL). MFOTL differs with traditional FOTL in regards to the constraints imposed to the tem-

poral logic operators (e.g., S , U). In MFOTL, there a time restriction on each temporal logic

formula as interval of form [c,d] where c,d ∈ N. The restriction [c,d] specifies when a formula

φ is being evaluated in the time t then the formula φ must hold true with the interval [t− c, t− d]

for past time formulas (resp., [t + c, t + d] for future time formulas). Note that, in their language

they also allow future time temporal operators. The time interval associated with the future tem-

poral operators enable them to wait only a finite amount of time (time dependent on the interval)

before deciding whether certain future formula has held. Due to the time interval restrictions, the

properties that can be specified in their language are safety properties. In our language, we assume

past temporal operators do not have any time restrictions whereas we do not have any future tem-

poral operators in the formula weak(℘) which we need to check for compliance. They provide a

PSPACE-complete algorithm for incrementally checking compliance of a policy specified in their

language with respect to a history. Similar to mode checking, they come up with a static time

checking algorithm called the “safe-range checking”. The safe-range checking algorithm basically

verify whether all the free variables of a formula is in the output mode of the formulas. This actu-

ally boils down to requiring that every predicate a finite number of valuations for which the formula

holds true. Our temporal mode checking is more expressive than their safe-range check and allows

more expressive policies to be checked for compliance. They also assume strict temporal operators

whereas we consider non-strict version of the temporal operators. Note that, unlike the work of

Garg et al. [55], they assume that logs are complete and they view their algorithm for checking

compliance to be used online as a reference monitor deciding whether to allow or disallow certain

actions.

Basin et al. [15] extended their previous work on compliance checking to handle disagreeing

230

and incomplete logs. To this end, they propose a three valued logic where along with the traditional

t (true) and f (false), they have an extra value ⊥ which denotes “don’t know”. They provide the

interpretation of different operators based on the three-valued operands. Moreover, they assume

the number of valuations that makes a formula true can be one of the following: FIN, CO-FIN,

and NONE. FIN represents that the number of valuations which make a certain formula true is

finite. CO-FIN represents that the number of valuations which make a certain formula true is

co-finite, meaning that the complement of that set is finite. NONE represents that the number of

valuations which make the formula true is infinite. They then extend their previous compliance

checking algorithm to handle these sets and define different operations on the sets as relational

algebra operators like projection, join, etc. Note that, our compliance checking algorithm cannot

handle incompleteness of the logs or disagreement of the logs.

Dinesh et al. [37, 38] translate regulations in statements in predicate linear temporal logic

(predLTL) where the constraints imposed by the regulations are either obligatory or permitted.

They use traces to model the operations of the organization. Then they check whether these traces

satisfy the restrictions imposed by the formalized regulations in the formal logic. They specifically

consider the Food and Drug Administration’s Code of Federal Regulations [102–104] (FDA CFR).

Then they introduce another logic (RefL) that can be used to analyze and reason about references

to other regulations and their implications. In contrast, our work focuses on HIPAA privacy rules

and developing techniques to check whether a privacy policy has a desired ∆-property and use it

to develop efficient compliance checking algorithm. In that sense, their work is complementary to

our work.

Krukow et al. [73] develop a specification language which can specify history-based require-

ments for transaction monitoring. Their language is past-only fragment of the first order temporal

logic (FOTL). They also assume that the only predicates that are allowed are unary predicates

(predicates with one argument). They also assume a special counting quantifier which enables the

policy to refer to the number of times a formula has held in the past. They then come up with a

compliance checking algorithm that incrementally checks whether a finite trace is compliant with

231

the history-based requirements specified in their language. Moreover, in their language, they only

assume action predicates, which has the implication that the number of individuals that can satisfy

action predicate at one point of time is finite. Although, the domain they support for the different

sorts can be infinite, this assumption ensures that at each point of time, the number of individuals

that has to be considered are the ones that appear in the history which in turn is finite. First, while

specifying HIPAA, it is required to have predicates which are not unary. Secondly, according

to the specification of HIPAA, sometimes it is required to have non-action predicates to specify

subjected belief, which violates their requirements to have only action predicates. Thus, their ap-

proach of checking weak compliance is too restrictive and is not applicable for privacy regulations

like HIPAA.

Bauer et al. [16] also propose a specification language which can specify history-based re-

quirements for transaction monitoring. Similar to the work of Krukow et al. [73], they consider

past only fragment of first order temporal logic. However, the language proposed by Bauer et al.,

is strictly more expressive than the language proposed by Krukow et al. In their language, they

consider arbitrary predicates instead of just unary predicates assumed by Krukow et al. They also

assume interpreted function symbols which are in PSPACE. Then they come up with a compliance

checking algorithm that incrementally checks whether a history satisfies the policy specified in

their language. Note that, in their specification language they also consider action/event predicates

and the implication of that is that the number of valuations that makes the predicate hold in a

state is finite sized. They also prove that the complexity of their compliance checking algorithm

is PSPACE-complete provided that interpreted functions and relations specified in the policy is in

PSPACE. Due to the fact that they consider each predicate has finite number of satisfiable valua-

tions in each state, prohibits to specify HIPAA in their specification language as HIPAA privacy

rules might refer to predicates which do not satisfy this constraint. In that sense, our specification

language is strictly more expressive than their language as we do not consider any such restriction

about all the predicates should have finite satisfiable valuations.

Lam et al. [79] proposed a stratified datalog based policy specification language which they

232

used to encode the section §164.506 of HIPAA. Recall that, their specification language is not

expressive enough to capture obligations imposed by HIPAA. One can then use a datalog engine

to check whether an action is compliant with the privacy policy which is expressed as a datalog

program. In a follow up work, Lam et al. [78] developed a generalized way of coming up with a

finite domain (small model) for the policy which is sufficient to check any properties of the policy.

In our policy analysis technique, we also come up with small model theorems for slices of HIPAA

privacy rules. However, their approach is more generalized than ours due to the restricted syntax

of their specification language. Then they develop techniques which enable them to automatically

generate a form of access control policy used in Attribute-based Encryption (ABE). They use this

approach to transmit sensitive health information over untrusted servers and clouds. In contrast,

our goal is to develop formal verification techniques to check compliance and consistency of the

privacy regulations.

May et al. [94] present a formalism, based on HRU access control matrix model [59], called

Privacy APIs to encode practical privacy policies like HIPAA [62]. As discussed before, they only

specify clause §164.506 of HIPAA, translate it to the SPIN model checker’s modeling language

PROMELA, and then use the SPIN model checker [65] to check different desired invariants of the

specification. They consider conditions and fulfillment of obligations to be represented as envi-

ronmental flags. However, they do not explain how these flags are set or how to explicitly manage

obligations. HIPAA contains complex temporal conditions and it is not very clear how these con-

ditions can scalably be managed in their formalism. Additionally, they only translate §164.506 of

HIPAA in their formalism, it is not clear whether their specification language is expressive enough

to translate the whole HIPAA. Roughly, their work concentrates on specifying privacy policy and

analyze whether some simple invariants hold. Their analysis do not provide any kind of assur-

ance about whether obligations or privacy promises can be fulfilled. The goal of this thesis is to

first statically check whether a policy has a desirable ∆-property (all incurred obligations can be

discharged) and then develop efficient compliance checking algorithm for policies that satisfy this

property.

233

Safety properties can be enforced by security automata [14,48,66,92,115], an approach that has

received a lot of attention. The actions of a system can be mediated by a wrapper that maintains the

automaton’s state and terminates the system if it attempts to perform an action for which no legal

transition exists. Determination of legality is made one action at a time. Walker [124] introduced

programming language techniques for enforcing a policy expressed as a security automaton. Ligatti

et al. [88] extended security automata by using edit automata to postpone realizing actions from

when the system being monitored attempts them until the system being monitored has attempted

additional properties that will restore the renewal property . This is clearly unworkable as a way

of enforcing HIPAA, because a doctor cannot decide to “not realize” a patient’s request for their

medical records until the doctor has attempts to supply those records. Another issue with using

edit automata to enforce HIPAA privacy rule is that obligations are not supported, making security

automata inappropriate for our purposes. Moreover, the literature on security automata has only

consider propositional temporal logic properties, which is inadequate for our purposes.

234

Chapter 8: CONCLUSION

8.1 Summary

Organizations collect personal information from customers to provide them with services. They

use computer information systems to store, manage, and disclose the collected information. Fed-

eral privacy regulations like HIPAA, GLBA, and SOX, mandate how the collected information can

be used or disclosed by the organizations. These federal regulations carry the force of law and

violation of these federal regulations can bring down heavy financial penalties on the organization

and the accountable person. Thus, it is of paramount importance for the organizations to have

means to check compliance of their information system with applicable privacy regulations.

Privacy regulations like HIPAA impose two kinds restrictions when allowing certain disclosure

operation, present requirements and obligatory requirements. Present requirements imposed by

the privacy policy restricts disclosure operation based on the system’s finite execution history. An

obligatory requirement (or, simply obligation) is a future requirement and it requires the obligatee

(a particular individual or the system) to perform an action in some future time interval. Prior

work by Garg et al. [55] and Basin et al. [13], has shown that to check whether an action is

consistent with the present requirements can be decided automatically and efficiently. Obligations,

particularly user obligations, cannot be enforced as it is not feasible to force an individual to take

an action. However, it is possible to monitor the fulfillment of an obligation. Precisely, it is feasible

to check whether certain pending obligation has been fulfilled, as most of the time a deadline is

associated with an obligation.

When an obligation is violated, an enforcement mechanism that checks to see whether cer-

tain action satisfies the present requirements or certain obligation is violated, cannot differentiate

whether the obligation was not permitted by the policy or the user was not diligent enough to carry

out the obligation. At a first approximation, this distinction might not seem interesting or impor-

tant, but we argue that this information is important. When an individual working for a hospital

235

violates federal privacy regulations like HIPAA, the hospital is steeply punished for violating the

regulation. Specifically consider the case of Cignet Health Center which was fined a staggering

$1.3 million for violating the obligation associated with §164.524 [112]. Now hypothetically con-

sider the situation, where, under the correct interpretation, the HIPAA policy did not allow covered

entities to fulfill the obligation in §164.524, in that case, if Cignet Health Center was fined, it would

have been unreasonable. Thus, before punishing someone for violating the law, we should have

formal assurance that the law is well-formed. The notion well-formedness in our case, is allowing

incurred obligation to be performed in a policy conforming way.

To provide such formal assurance about policy well-formedness, in this thesis we first con-

verted the natural language specification of regulation into a formal policy specification language.

We considered two candidate formal policy specification languages, namely, XACML [26,127] and

FOPSL [27]. We first evaluated XACML [127] as a candidate specification language for HIPAA.

We showed that XACML has some important features but lacks some other features to specify

HIPAA. We then proposed extensions to XACML which will enable it to specify HIPAA. However,

XACML’s inadequacy to specify HIPAA in a flexible way and to capture the fine grained require-

ments of HIPAA, we considered another policy specification language, FOPSL. FOPSL is inspired

by the specification languages presented by Barth et al. [11] and DeYoung et al. [35]. FOPSL has

well-defined semantics and can capture the fine grained requirements of HIPAA. FOPSL is a re-

stricted fragment of many sorted first order temporal logic (FOTL). To demonstrate the expressive

power of FOPSL, we have encoded all 84 disclosure related clauses of HIPAA in FOPSL (see

Appendix A).

We then formally specified what it means for an action to be compliant with privacy policies

written in FOPSL. We borrowed the notion of compliance from the work of Barth et al. [11].

Although, their specification language is a restricted fragment of FOTL, their definition of policy

compliance is only applicable to policies specified in propositional linear temporal logic (pLTL).

There is a general consensus among the researchers in the academia that practical privacy policies

like HIPAA cannot be concisely represented in pLTL [13, 35, 55]. We formally specified two

236

notions of compliance, weak compliance and strong compliance. An action is weakly compliant

with a policy if the action satisfies all the present conditions imposed by the policy. On the contrary,

an action is strongly compliant if it does not incur an unsatisfiable obligation or it does not prohibit

a pending obligation to be carried out. We provided an algorithm for checking weak compliance,

that takes as input a finite history, a privacy policy, and checks to see whether there is any violation

of the policy in the trace. Our algorithm has a runtime complexity of O (|L ||ϕ|) where |L | represents

the history length and |ϕ| represents the policy length. Our algorithm has a space complexity which

is linear to the policy length. We then showed that for policies written in FOPSL, to check whether

an action is strongly compliant is undecidable by reducing the Turing machine halting problem [47]

to checking strong compliance for policies written in FOPSL.

To mitigate the undecidability result of strong compliance, we formally specified the ∆-property

(weak compliance entails strong compliance) borrowed from Barth et al. [11]. Although, they were

the first to specify the property, their semantic definition of ∆-property and its associated decision

procedure were only applicable to policies written in pLTL. Informally, a policy has the ∆-property

if all the weakly compliant action of the policy is also strongly compliant. To check compliance

of a policy which has the ∆-property, it is sufficient just to check the weak compliance. Moreover,

when a policy has the ∆-property, it guarantees that all the incurred obligations can be met. It is

sufficient to check the ∆-property once for each policy and before it is deployed for enforcement.

We are the first to formally specify what it means for a policy to have the ∆-property. Given

a policy ℘ written in FOPSL, we syntactically extracted a formula δ(℘) in first order CTL* with

linear past logic (FO-CTL*lp). We showed that ℘has the ∆-property, if the most permissive model

of ℘, M℘, satisfies the formula δ(℘) (M℘ |=
? δ(℘)). The most permissive model of a policy ℘,

denoted by M℘, is the model in which at each step one of the all possible actions referred to by

the ℘ is chosen to be performed. Considering M℘ of a policy ℘ is reasonable because when ℘

can incur obligations that cannot be met even in the most permissive model then it is not possible

that those obligations can be met in other more restricted models. Also, more restrictive models

can not reach any policy “states” that are not reachable with the most permissible model, so other

237

models would not be able to incur any obligations that would not be able to be incurred by the

most permissive model. Other models exhibit a subset of behaviors which are of the interest to the

analysis of the ∆-property. However, model checking of FO-CTL*lp is undecidable in general and

thus checking whether a policy has the ∆-property is in general undecidable.

We then made some assumptions, which we showed that practical privacy policies like HIPAA

satisfies, and based on them we came up with sound, semi-automated technique to check whether

a policy has the ∆-property. We first showed that there are two cases in which a policy might fail to

possess the ∆-property. We showed that due to a syntactic restriction of FOPSL, only one violation

case can actually occur for policies of our form. Thus, for policies specified in FOPSL, the only

way the ∆-property can be violated is when the policy allows a weakly compliant action to incur an

unsatisfiable obligation. We then made the assumption that obligations do not interact with each

other. Based on this assumption, we came up with a privacy policy slicing algorithm which takes

as input a privacy policy and an obligation, and returns a sub-policy of the input policy which is

sufficient for analyzing whether the input obligation is satisfiable. After that it is required to come

up with a small model theorem which converts an analytical problem of unbounded carriers to an

analytic problem of small, finite sized carrier. Once we have developed a small model theorem,

we can rewrite the universal and existential quantifiers as finite conjunctions and disjunctions and

replace the relations with propositions. The resulting policy is in pLTL and to check whether the

resulting pLTL policy has the ∆-property we can apply two possible techniques. One possible

technique is tableau-based and is proposed by Barth et al. The other technique is proposed by us

and requires model checking a CTL*lp specification. The complexity of both of the approaches are

same and they are both EXPSPACE-complete. We currently do not have access to a CTL*lp model

checker, so we used the approach of Barth et al. to show the efficacy of our policy technique.

To demonstrate the applicability and efficacy of our policy analysis technique, we ran our

policy analysis technique on our interpretation of HIPAA. According to two obligations in HIPAA

(§160.310 and §164.524), we first slice the HIPAA policy. The algorithm runs linear to the policy

size and with an optimization (human support) yields a sub-policy of size 5 norms which is 6.5% of

238

the original policy size. We then showed how to develop a small model theorem for the two policy

slices. There are two additional obligations in HIPAA which require sending privacy notices. In

this thesis, we assumed privacy notices do not contain any individually identifiable information

and thus is trivially allowed by the HIPAA privacy rule. Once we had the small model theorem, we

converted the sliced policy to a pLTL policy. We then used the GOAL [120] automata generation

tool to generate a tableau automata with Büchi accepting condition. We then checked whether all

the reachable states from the initial state, can reach a strongly connected component with at least

one accepting state. Our analysis ran less than 10 minutes and verified that our interpretation of

HIPAA has the ∆-property.

Note that, organizations that are required to check compliance of their computer information

system with applicable privacy regulations will require access control policies to safe guard their

resources from unauthorized access. For instance, consider the HIPAA privacy policy rule in

§164.508 which requires that a covered entity can disclose a patient’s psychotherapy note pro-

vided that it has already received a valid authorization that allows the covered entity’s action. Now

the covered entity must ensure that one of the authorized employee can get access to it rather

than any arbitrary employee of the covered entity. To ensure this, the covered entity should put

forward an access control policy that only allows the authorized employee to access the patient’s

psychotherapy notes. Access control policies can have some notion of obligations. Research has

shown different applications of obligations in access control policies: policy management [17,18],

risk management and tackling insider threat [10, 25], managing pervasive systems [117], usage

control [105], data protection [63], etc. There are generally two kinds of obligations, user obli-

gations and system obligations. A user (resp., system) obligation is an action that a user (resp.,

system) must fulfill in some future time interval. Although, system obligations can be assumed to

be fulfilled, user obligations cannot be assumed to be fulfilled due to the fact that it is not feasible

to force a user to take an action. Moreover, user obligations like any other actions require proper

authorization to be fulfilled. Without formally ensuring a user will have appropriate authoriza-

tions to fulfill her obligations, it is not possible to distinguish whether the user was not diligent

239

or the user did not have proper authorization to fulfill the obligation. If the company were to

take into account a user’s obligation fulfillment rate to evaluate its performance, there should be

assurance that incurred the user has the necessary authorization privileges to fulfill all his obliga-

tions. To this end, prior work [67, 109, 110] introduces a property of the authorization state and

pending obligations, called “accountability”. The accountability property roughly requires that all

the pending obligatory actions are authorized, the obligatee has the necessary authorizations to

fulfill them. They propose to maintain accountability as an invariant and denying any action that

disturbs the accountability. The accountability property guarantees that any obligation violation

is due to the lack of diligence from the user not due to lack of appropriate privileges. However,

prior work assumes that obligatory actions cannot further incur additional obligations (no cascad-

ing obligations). They achieve this by separating the set of possible actions into two disjoint sets,

discretionary actions and obligatory actions and making sure that obligatory actions cannot further

incur obligations. This is a very restricted constraint and due to it their obligation model is inca-

pable to encode a lot of real life scenarios. In this thesis, we first defined what it means by a state

is accountable in presence of cascading user obligations. We showed that there are two different

interpretations of accountability, existential and universal. We then gave justifications of choosing

the existential interpretation of accountability. We then proved that checking both interpretations

of accountability is in general NP-hard in presence of cascading obligations. We then proposed

some special yet practical cases of cascading obligations and for which we provided a tractable

decision procedure. Finally, we demonstrated through empirical evaluations that maintaining ac-

countability in presence of these special yet practical cases of cascading obligations is feasible in

practice. In the worst case, it takes 103 milliseconds, on a reasonable desktop machine, to decide

whether accountability holds for a state with 105 pending obligations.

8.2 Open Problems

The notion of strong compliance due to Barth et al. [11] is appropriate for closed systems where

it is reasonable to assume that all the agents in the system will cooperate to achieve the policy

240

satisfaction. However, this is not a valid assumption for an open system. This is due to the fact

that one cannot safely assume that the environment will cooperate for policy satisfaction instead a

safe assumption would be to consider environment as an adversary. Based on this, one can have a

stronger notion of strong compliance, namely, adversarial strong compliance.

One way to precisely define the adversarial strong compliance by explicitly distinguishing

between cooperating agents and potentially non-cooperating agents (environment) of the system.

Our formulation requires the cooperating agents to have a strategy that enables them to satisfy the

policy, no matter what actions are initiated by the non-cooperating agents (or, by the environment).

Definition 88 (Adversarial Strong Compliance). For a finite history σ′f and a contemplated action

a where σ f = σ′f · a, a is adversarially strongly compliant (denoted by ASC) with respect to a

privacy policy ℘ if there exists a strategy for the agents (both software and human) of the system

(denoted by A) such that no matter what actions the environment takes, the agents in the system

following the strategy would be able to force the system to take an infinite trace (extension) σ j

such that σ f ·σ j |=℘. Here, σ′f can be viewed as the current system history whereas a can be

viewed as the contemplated action. More formally using mp−ATL∗ we can define adversarial

strong compliance in the following way. Given a CGS G , an environment η, a finite history σ′, and

a contemplated action a where σ = σ′ ·a, we say that action a is adversarially strongly compliant

with respect to a privacy policy ℘ if G ,σ,η |= 〈〈A〉〉℘holds.

Adversarial strong compliance is stronger than the notion of strong compliance. As a result,

when an action is adversarially strongly compliant it is also strongly compliant. However, it can be

the case that an action is strongly compliant but not adversarially strongly compliant. One possible

example where an action is strongly compliant but not adversarially strongly compliant can be as

follows.

Example 89 (Not Adversarially Strongly Compliant). Let us consider there is a prison facility and

it has a clinic to treat the inmates. Let us also assume they have the following simple but unrealistic

privacy requirements.

241

(A) When one doctor (d1) requests for a patient’s (inmate) medical records for treatment to an-

other doctor (d2), then it is doctor d2’s responsibility (obligation) to provide doctor d1 with

the necessary medical records.

(B) A doctor can disclose a patient’s, who is also an inmate, medical records provided that he

received a court order that allows him to do so.

Now consider that there are two doctors, John and Kathy, in the prison clinic. John treated patient

(inmate) Rob and has access to his medical records. Now, Kathy is treating Rob and wants his

medical records. So, Kathy sends a request to John for the medical records. As a result of the

request, according to privacy requirement (A), John incurs an obligation to provide the medical

records of Rob. However, according to privacy requirement (B), John can only disclose Rob’s

medical records if he has received a court order that approves him. Recall that, strong compliance

assumes that all the agents of the system (inside or outside) would cooperate to achieve the policy

satisfaction. Thus, the action of Kathy is strongly compliant as the court can cooperate and send an

order to John to release Rob’s medical records enabling John to fulfill his obligation. However, the

court is an outside (environmental) entity. Adversarial strong compliance does not assume that the

court would cooperate and send an order to John to release Rob’s information. As a result, John

would not be able to fulfill his obligation, making the action of Kathy not adversarially strongly

compliant.

Computational Complexity of Adversarial Strong Compliance. For a given finite history σ′,

and a contemplated action a, to check whether that action a is adversarially strongly compliant with

respect to a privacy policy ℘, can be decided in 2EXPTIME-complete of the policy size, provided

that the ℘ is specified in propositional LTL. As we have already seen in the formal definition of

adversarial strong compliance, to check whether an action is adversarially strongly compliant with

respect to a policy ℘ one has to check whether the mp−ATL∗ formula 〈〈A〉〉℘1 is satisfiable with

respect to the most permissive CGS. Model checking a mp−ATL∗ formula is 2EXPTIME-complete

1A denotes the set of agents (human and machine) in the system.

242

with respect to the formula size [98]. In our case, our policy ℘ is an FOTL formula. As a result,

the complexity of deciding whether a certain action is adversarially strongly compliant (model

checking a FOmp−ATL∗ formula 〈〈A〉〉℘) is undecidable.

Theorem 90 (Complexity of Adversarial Strong Compliance). For a given finite history σ′, and

a contemplated action a, to check whether that action a is adversarially strongly compliant with

respect to an FOTL privacy policy ℘ is undecidable.

As deciding whether an action is adversarially strongly compliant with a policy ℘ is undecid-

able in general. In the same vein as ∆-property, one can possibly come up with a similar property

which we decided to call the ⋆-property. When a privacy policy ℘ of an open system has the

⋆-property it signifies that any action that is weakly compliant is also adversarially strongly com-

pliant. More precisely, any weakly compliant action that incurs an obligation, there is a strategy

for the agents in the system such that the obligation can be discharged. In that case, it suffices just

to enforce the weak compliance. Note that, the ⋆-property gives a more stronger assurance that

what ∆-property gives, as it mentions that for fulfilling the obligation no collaboration with the

environment is necessary as the environment might act against the system. We now specify what

it means for a privacy policy ℘ to have the ⋆-property.

Definition 91 (⋆-property). The ⋆-property holds for a given privacy policy℘, if for any possible

environment η and for any possible finite trace σ f that satisfies σ f , |σ f |−1,η |=weak(℘), there

exists a strategy for the agents2 of the system (denoted by A) such that no matter what actions the

environment takes, the agents in the system following the strategy would be able to force the system

to take an infinite trace (extension) σi such that σ f ·σi |=℘. More formally, for a given privacy

policy ℘, the ⋆-property holds if for all CGS G , for all environments η, for all finite history σ f

such that G ,σ f ,η |=weak(℘) then G ,σ f ,η |= 〈〈A〉〉℘holds.

The ⋆-property for a privacy policy can be precisely specified using the FOmp−ATL∗. Note

that, if for a policy the following FOmp−ATL∗ is valid then it guarantees that as long as each action

2software and human

243

〈〈∅〉〉[weak(℘)−→ 〈〈A〉〉℘]

Figure 8.1: FOmp−ATL∗ formulation of the ⋆-property for ℘. We denote this formula by ∂(℘).

is weakly compliant, it is also adversarially strongly compliant.

A FOmp−ATL∗ specification for ⋆-property We use ∂(℘) to denote the formula in figure 8.1.

In essence, the formula says the following for every path starting at the initial state and at each

step along that path. If WC has held at every step up to the current one, then no matter what

decisions the other agents make thereafter, the agents in A (all the agents of the system excluding

the environment) can force an infinite sequence of global decisions that yields a trace satisfying

the privacy policy.

Based on the semantics of FOmp−ATL∗, we can see that the formula in figure 8.1 precisely

captures the notion of ⋆-property. When the formula ∂(℘) is satisfied in the most permissive

computational game structure G℘, we can say that ℘has the desired property of ⋆-property. The

following theorem states that our specification correctly captures the ⋆-property.

Theorem 92. Given a privacy policy ℘, ℘ has the ⋆-property if and only if there exists an en-

vironment η such that G℘,η |= ∂(℘) holds where G℘ is the most permissive computational game

structure of ℘.

It however remains open whether our technique for checking ∆-property is applicable to check-

ing the ⋆-property of a policy written in FOPSL. Moreover, it also remains open to come up with

techniques to check whether a policy specified in pLTL has ⋆-property. To this end, it is necessary

to develop a mp−ATL∗ model checker based on the algorithm described in [98]. In this work, we

check the ∆-property of propositional slices of HIPAA using the technique proposed by Barth et

al. [11]. It would be desirable to develop a CTL*lp model checker to demonstrate that the CTL*lp

formula of the ∆-property is usable.

Recall that, we do not have any general small model theorem results for the ∆-property and

244

the policies written in FOPSL. This step in the policy analysis is what causes our technique to be

semi-automated and incomplete. To show whether all policies written in FOPSL have the small

model theorem with respect to ∆-property remains an open problem. If one can have a positive

general small model theorem result (every policy specified in FOPSL has a general small model

theorem) then it might be interesting to explore whether it is possible to fully automate the policy

analysis technique we proposed.

The procedure for checking the ∆-property, described in this thesis, checks to see whether the

model general model of the policy ℘, M℘ satisfies the δ(℘) formula. Organizations that deal

with storing, managing, and disclosing collected personal information, has specific workflow that

sometime prescribes what it possible and what is not permitted. The most permissive model of a

policy ℘, M℘ has all possible executions that a system can have which tries to check compliance

with ℘. However, the model of a real organization can be more restrictive than M℘ with respect to

℘. In that case, one first have to verify that for a given policy ℘, the ∆-property holds. Once this

is verified it provides the assurance that the policy is well-formed. Now one can have a situation

where the policy ℘ has the ∆-property, but the specific model of the organization does not have

prescribed flows that allow principals to discharge their obligations. This is due to the fact that

one can incur an obligation according to the ℘ but the model of the organization does not have

any prescribed execution where the obligation is attempted to be fulfilled. In that case, one has

to verify that the specific model of the organization Mo satisfies the δ(℘) formula (Mo |= δ(℘)).

This will ensure that the organization’s model allows any incurred obligations to be successfully

discharged. Considering these real life models (workflows) from hospitals and checking whether

these models allows all incurred obligations to be successfully discharged is open.

When checking weak compliance, our weak compliance checking algorithm reports whether

there is a policy violation. However, it cannot report any useful diagnostic information which

can help the user to understand the exact cause of violation for future references. Enhancing

the algorithm to output proper diagnostic information is also open. Moreover, our current weak

compliance checking algorithm assumes the log or the history to be past-complete. It signifies

245

that everything that is true or false is completely captured in the log or the history. However, in

a real life scenario, this might not be a valid assumption. This is due to the fact that the logs can

be distributed and also that the logger might not be correct, and it might cause the information

to be not logged properly. In such case, one can extend our compliance checking algorithm to

handle incompleteness. Moreover, our compliance checking algorithm cannot handle bounded

liveness properties (or, obligations). More precisely, it cannot check whether an obligation is

violated or incurred. Extending the language and the algorithm to support monitoring of obligation

fulfillment is open. This dissertation does not contain any experimental results for the scalability

of the compliance checking algorithm. Evaluating the algorithm with real life log or execution

traces is also open.

Currently, we only consider HIPAA in our policy analysis case study. Although, HIPAA is

one of the largest and most complicated privacy policies, one might also consider other practical

privacy policies like Google’s [57] privacy policy, Facebook’s [49] privacy policy, SOX [116], and

GLBA [2], to understand the efficacy of our policy analysis technique.

In our work on providing assurance that all the incurred obligations will have proper autho-

rization according to some access control policy in presence of obligations, we do not consider

how to recover from accountability violation. Prior work [110] provide techniques to recover

from accountability violation but makes the simplifying assumption that cascading obligations

cannot happen. One might explore whether it is possible to relax this constraint. Moreover,

we [28, 67, 109, 110] propose to maintain accountability as an invariant by denying actions that

violate accountability. However, when one wants to provide diagnostic information why certain

actions were denied one might end up revealing the security policy to the user whose action was

denied. This is undesirable in most cases. One might take a different route where one provides a

user with an alternative plan of actions which might enable the user to perform its desired action.

Prior work [111] has provided a solution based on partial order planners [19,71,99,106]. However,

they make the simplifying assumption that no cascading obligations can occur. One can explore

whether it is possible to relax this assumption and come up with a reasonably feasible solution to

246

this problem. Moreover, one might explore whether it is possible to assign blames to user [68]

when an obligation goes unfulfilled and there can be cascading obligations in the system.

247

Appendix A: HIPAA PRIVACY RULE SPECIFICATION IN FOPSL

To have a better understanding of how the norms are derived from the regulation text, please

consult [35] Note that, the policies are abstracted in some places. The abstractions do not influence

the policy analysis results. To get a finer-grained HIPAA policy, see the above pdf document.

Moreover, the current encoding has a simplified version of 164.524.

Positive Norms

% <164/502/a/1/i>

inrole(p1, covered -entity) ∧ inrole(p2, individual) ∧ inrole(q, individual) ∧ samePerson(p2, q) ∧

in(t, PHI)

% <164/502/a/1/iii>

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ incidentToUseDisclosure(p1, p2, q,

t, u)

% <164/502/a/1/iv> % Abstracted obtained authorization

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

(∃ m27 : M. (((send(q, p1, m27))) ∧ satisfiesAllValidAuthorizationRequirement(m27, p1, p2, q,

t, u)

∧ (¬(violatesValidAuthorizationRequirement(m27, p1, p2, q, t, u)))

))

% <164/502/a/2/ii>

inrole(p1, covered -entity) ∧ inrole(p2, secretary) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u,

compliance -investigation)

% <164/502/d/1>

inrole(p1, covered -entity) ∧ inrole(p2, business -associate) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

purpose(u, creating -deidentified -info) ∧ businessAssociateOf(p2, p1)

% <164/502/e> % FINISHED

inrole(p1, covered -entity) ∧ inrole(p2, business -associate) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

satisfactoryAssuranceWillSafeGuardInfo(p1, p2, q, t, u) ∧ businessAssociateOf(p2, p1)

∧ (¬ (inrole(p1, covered -entity) ∧ inrole(p2, provider) ∧ providerOf(p2, q) ∧ purpose(u, treatment)

))

248

∧ (¬ (((inrole(p1, group -health -plan) ∨ inrole(p1,health -insurance -issuer) ∨ inrole(p1, HMO)) ∧

inrole(p2, plan -sponsor))

∧

(

restrictUsageAndDisclosure(p1, p2, q, t, u)

)

))

∧ (¬ (inrole(p1, agency) ∧ inrole(p2, goverment -health -plan) ∧ purpose(u,

determine -eligibility -enrollment) ∧ (

((¬(samePerson(p1, p2))) ∧ determineEligibilityEnrollment(p1, p2)) ∨

(¬(eligibilityEnrollmentInfoCollectedBy(p2)))

)))

% <164/502/g/3/ii/A>

inrole(p1, covered -entity) ∧ (inrole(p2, parent) ∨ inrole(p2, guardian) ∨ inrole(p2, loco -parentis)) ∧

inrole(q, individual) ∧ in(t, PHI)

∧ permittedByOtherLaw(p1, p2, q, t, u) ∧ (parentOf(p2, q) ∨ guardianOf(p2, q) ∨ locoParentis(p2,

q))

% <164/502/j/1> % Divide into 3 norms based on receipient role

% PART (1)

(inrole(p1, work -force -member) ∨ inrole(p1, business -associate))

∧ (inrole(p2, health -oversight -agency) ∨ inrole(p2, public -health -authority))

∧ in(t, PHI) ∧ (purpose(u, investigate -allegation) ∨ purpose(u, oversee -conduct -condition))∧

authorizedByLawForPurpose(p2, u) ∧

believesCoveredEntityInvolvedInUnethicalOrDangerous(p1) ∧ coveredEntityWorkForceMember(p1) ∧

coveredEntityBusinessAssociate(p1)

% PART (2)

(inrole(p1, work -force -member) ∨ inrole(p1, business -associate)) ∧

inrole(p2, healthcare -accreditation -organization) ∧

in(t, PHI) ∧ purpose(u, report -unethical -conduct -allegation) ∧

believesCoveredEntityInvolvedInUnethicalOrDangerous(p1) ∧ coveredEntityWorkForceMember(p1) ∧

coveredEntityBusinessAssociate(p1)

% PART (3)

(inrole(p1, work -force -member) ∨ inrole(p1, business -associate))

inrole(p2, attorney) ∧

in(t, PHI) ∧ purpose(u, determine -legal -options) ∧

249

believesCoveredEntityInvolvedInUnethicalOrDangerous(p1) ∧ coveredEntityWorkForceMember(p1) ∧

coveredEntityBusinessAssociate(p1)

∧ attorneyOf(p2, p1)

% <164/502/j/2>

(inrole(p1, work -force -member) ∧ inrole(p1, victim -of-crime)) ∧ inrole(p2, law-enforcement -official) ∧

inrole(q, suspected -perpetrator) ∧ in(t, info -164-512-f2i) ∧ coveredEntityWorkForceMember(p1)

∧ victimeOfCrime(p1, q)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF 502 %%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% BEGIN OF 506 %%%

% <164/506/b/1>

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ (purpose(u, treatment) ∨ purpose(u,

payment) ∨ purpose(u, health -care -operations)) ∧ obtainedConsent(p1, p2, q, t, u)

% <164/506/c/1>

inrole(p1, covered -entity) ∧ inrole(p2, work -force -member) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

(purpose(u, treatment) ∨ purpose(u, payment) ∨ purpose(u, health -care -operations)) ∧

workForceMemberOf(p2, p1)

% <164/506/c/2>

inrole(p1, covered -entity) ∧ inrole(p2, provider) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u,

treatment) ∧

providerOf(p2, q)

% <164/506/c/3> % p2’s payment

inrole(p1, covered -entity) ∧ (inrole(p2, covered -entity) ∨ inrole(p2, provider)) ∧ inrole(q,

individual) ∧ in(t, PHI) ∧ purpose(u, payment) ∧

(inrole(p2, provider) −→ providerOf(p2, q))

% <164/506/c/4>

inrole(p1, covered -entity) ∧ inrole(p2, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

bothHasRelationShip(p1, p2, q) ∧

(purpose(u, healthcare -op-paras -1-2) ∨ purpose(u, healthcare -fraud -abuse -detection) ∨ purpose(u,

healthcare -fraud -abuse -compliance))

250

% <164/506/c/5>

inrole(p1, covered -entity) ∧ inrole(p2, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ purpose

(u, OHC-health -care -operations) ∧

participantOfSameOrganizedHealthcareArrangement(p1, p2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF 506%%%

%%%%%%%%%%%%%%%%%% BEGIN OF 508 %%%

% <164/508> has no positive norms

% It has only two negative norms

%%%%%%%%%%%%%%%%%%% END OF 508 %%%

%%% BEGIN OF 510

%%%

% <164/510/a>

%%%%%% Separate into two norms

%%%%%%%% Missing exception 164.510(a)(3)(ii), cannot express weak until

%%%%%%%%%%%% PART(1)

inrole(p1, covered -entity) ∧ inrole(p2, clergy) ∧ inrole(q, individual) ∧ in(t, directory -information)

∧ purpose(u, directory)

∧ (

((¬(∃ m11 : M. (send(q, p1, m11) ∧ directoryObjection510a(m11, p1, p2, q, t, u)))) S (∃ m12 :

M. (send(p1, q, m12) ∧

opportunityToObject(m12, p1, p2, q, t, u)))) ∨

((¬(practicalToProvideOpportunityToObject(p1, p2, q, t, u)))

∧ consistentWithPriorPreference(p1, p2, q, t, u) ∧ believesInBestInterest(p1, p2, q, t, u))

)

%%%%%%%%%%%%%%%%% PART (2)

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ (in(t, directory -information) ∧ (¬ (in(t,

religious -affiliation))))∧ purpose(u, directory)

∧ (

251

((¬(∃ m13 : M. (send(q, p1, m13) ∧ directoryObjection510a(m13, p1, p2, q, t, u)))) S (∃ m14 :

M. (send(p1, q, m14) ∧

opportunityToObject(m14, p1, p2, q, t, u)))) ∨

((¬(practicalToProvideOpportunityToObject(p1, p2, q, t, u)))

∧ consistentWithPriorPreference(p1, p2, q, t, u) ∧ believesInBestInterest(p1, p2, q, t, u))

)

% <164/510/b/1/i>

inrole(p1, covered -entity) ∧ (inrole(p2, family -member) ∨ inrole(p2, relative) ∨ inrole(p2,

close -friend) ∨ inrole(p2, identified -164510b))

∧ inrole(q, individual) ∧ in(t, PHI) ∧ relevant -to-involvement(t, p2, q) ∧

(familyMemberOf(p2, q) ∨ relativeOf(p2, q) ∨ closeFriendOf(p2, q) ∨ identifiedPerson(p2, q))

% <164/510/b/1/ii> %Separate into two positive norms for keeping the syntax

% PART (1)

inrole(p1, covered -entity) ∧ (inrole(p2, family -member) ∨ inrole(p2, personal -rep) ∨ inrole(p2,

responsible -for-care))

∧ in(t, location -condition -death) ∧ purpose(u, notification -164510b) ∧

(personalRepOf(p2, q) ∨ familyMemberOf(p2, q) ∨ responsibleForCareOf(p2, q))

%PART (2)

inrole(p1, covered -entity) ∧ (inrole(p2, family -member) ∨ inrole(p2, personal -rep) ∨ inrole(p2,

responsible -for-care))

∧ in(t, PHI) ∧ purpose(u, assist -notification -164510b) ∧

(personalRepOf(p2, q) ∨ familyMemberOf(p2, q) ∨ responsibleForCareOf(p2, q))

% <164/510/b/4>

inrole(p1, covered -entity) ∧ inrole(p2, authorizedByLaw -CharterToAssistInDisasterRelief) ∧

in(t, PHI) ∧ purpose(u, coordinate -disclosure -under -164510b1ii) ∧

(

(¬ (profJudgementReqDoNotInterfereWithEmergencyResponse(p1, p2, q, t, u)))

∨

(

(

inrole(p1, covered -entity) ∧

(inrole(p2, family -member) ∨ inrole(p2, relative) ∨ inrole(p2, close -friend) ∨ inrole(p2,

identified -164510b)

∨ inrole(p2, personal -rep) ∨ inrole(p2, responsible -for-care)) ∧

inrole(q, individual) ∧ in(t, PHI) ∧

(familyMemberOf(p2, q) ∨ relativeOf(p2, q) ∨ closeFriendOf(p2, q) ∨

252

identifiedPerson(p2, q) ∨ personalRepOf(p2, q) ∨ familyMemberOf(p2, q) ∨

responsibleForCareOf(p2, q))

∧ ((available(p1, q) ∧ hasCapabilityToMakeHealthCareDecisions(q)))

−→

(

(

∃ m15 : M. ((send(q ,p1, m15) ∧ isAgreement 164510b2(m15, p1, p2, q, t, u)))

)

∨

(

(¬(∃ m16 : M. (send(q, p1, m16) ∧ isObjection 164510b2(m16, p1, p2, q, t, u))))

S

(∃ m17 : M. (send(p1, q, m17) ∧ isOpportunityToObject(m17, p1, p2, q, t, u)))

)

∨

(professionalJudgementIndividualDoesNotObject(p1, p2, q, t, u))

)

)

∧

(

inrole(p1, covered -entity) ∧

(inrole(p2, family -member) ∨ inrole(p2, relative) ∨ inrole(p2, close -friend) ∨ inrole(p2,

identified -164510b)

∨ inrole(p2, personal -rep) ∨ inrole(p2, responsible -for-care)) ∧

inrole(q, individual) ∧ in(t, PHI) ∧

(familyMemberOf(p2, q) ∨ relativeOf(p2, q) ∨ closeFriendOf(p2, q) ∨

identifiedPerson(p2, q) ∨ personalRepOf(p2, q) ∨ familyMemberOf(p2, q) ∨

responsibleForCareOf(p2, q))

∧ (¬((available(p1, q) ∧ hasCapabilityToMakeHealthCareDecisions(q))))

−→

(

professionalJudgementIsInBestInterestof164510b3(p1, p2, q, t, u)

∧

relevantToInvolvement(p1, p2, q, t, u)

)

)

)

)

%%%%%%%%%%%%%%%%%%%%%%%% END OF 510 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

253

%%%%%%%%%%%%%%%%%%%%%%%% BEGIN OF 512 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% <164/512/a/1>

%%%%%%%%%%% THIS MIGHT NEED TO BE REWRITTEN TO BE COMPREHENSIBLE

%%%%%%%%%%% CURRENTLY THIS NORM IS INCOMPREHENSIBLE

%%%%%%%%%%% A LITTLE TRICK LIKE BOOLEAN SIMPLIFICATION MIGHT HELP TO

%%%%%%%%%%% TO SEPARATE THIS INTO MULTIPLE POSITIVE NORMS

% <164/512/c> %%%%%% Separate into two norms

%%%%%%%%%%% For this norm only the definition needs to be fixed for

%%%%%%%%%% the function which returns all pair of obligations

%%%%%%%%% PART (1)

inrole(p1, covered -entity) ∧ inrole(p2, government -authority) ∧

inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, reports -of-abuse) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

authorizedByLawForPurpose(p2, u) ∧ believesVictimOfAbuse(p1, q) ∧

(isRequiredByLaw(p1, p2, q, t, u) ∨ individualHasAgreed(p1, p2, q, t, u)

∨ (authorizedByStatueRegulation(p1, p2, q, t, u) ∧ (

believesDisclosureNecessaryToPreventHarm(p1, p2, q, t, u) ∨

(incapacitated(q) ∧ assuranceDisclosureNotUsedAgainstIndividual(p1, p2, q, t, u) ∧

believesWaitingForAgreementWouldHinderEnforcement(p1, p2, q, t, u)))))

∧ ((

∃ m25 : M. (((send(p1, q, m25))) ∧ isNoticeOfReport(m25, p1, p2, q, t, u))

) ∨ believesNoticeWouldRiskIndividual(p1, p2, q, t, u))

%%%%%%%%%%%%%%%%%% PART (2)

inrole(p1, covered -entity) ∧ inrole(p2, government -authority) ∧

inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, reports -of-abuse) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

authorizedByLawForPurpose(p2, u) ∧ believesVictimOfAbuse(p1, q) ∧

(isRequiredByLaw(p1, p2, q, t, u) ∨ individualHasAgreed(p1, p2, q, t, u)

∨ (authorizedByStatueRegulation(p1, p2, q, t, u) ∧ (

believesDisclosureNecessaryToPreventHarm(p1, p2, q, t, u) ∨

(incapacitated(q) ∧ assuranceDisclosureNotUsedAgainstIndividual(p1, p2, q, t, u) ∧

believesWaitingForAgreementWouldHinderEnforcement(p1, p2, q, t, u)))))

∧ (∃ m26 : M. ((send(p1, q, m26) ∧ isNoticeOfReport(m26, p1, p2, q, t, u))))

% <164/512/e/1/i> % can be abstracted % a little different from Henry’s

254

inrole(p1, covered -entity) ∧ (inrole(p2, court) ∨ inrole(p2, judicial -administrative -tribunal)) ∧

in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m4 : M. ((send(p2, p1, m4)) ∧ isOrder(m4, p1, p2, q, t)))

% <164/512/e/1/ii>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding)

∧ isRequiredByLaw(p1, p2, q, t, u)

∧ (∃ m5 : M. ((send(p2, p1, m5)) ∧ isLawfulProcess(m5, p1, p2, q, t, u)))

∧

(

(

∃ m18 : M. ((send(p2, p1, m18) ∧ satisfiesConditionOf512e1iii(m18, p1, p2, q, t, u)))

)

∨

(

∃ m19 : M. ((send(p2, p1, m19) ∧ satisfiesConditionOf512e1iv(m19, p1, p2, q, t, u)))

)

)

% <164/512/e/1/vi>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m20 : M. ((send(p2, p1, m20) ∧ isLawfulProcess(m20, p1, p2, q, t, u) ∧

madeReasonableEffortToNotify(p1, p2, q, t, u))))

% <164/512/f/1/i> %%%%%%%%%%%% This is different from Henry’s

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧

(purpose(u, law-enforcement) ∧ (¬(purpose(u, reports -of-child -abuse))))

∧ isRequiredByLaw(p1, p2, q, t, u) ∧ (¬(isRequiredByLaw512c1i(p1, p2, q, t, u)))

% <164/512/f/1/ii>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

law-enforcement)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

((inComplianceWithCourtOrder(p1, p2, q, t, u)) ∨ (inComplianceWithGrandJurySubpoena(p1, p2, q,

t, u))

255

∨ ((inComplianceWithAdministrativeRequest(p1, p2, q, t, u)) ∧ (minimumNecessary(p1, p2, m, u)) ∧

(deIdentifiedInformationNotSufficient(u))))

% <164/512/f/2>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ (in(t, info -512-f-2) ∧ in(t,

PHI))

∧ purpose(u, law-enforcement -relevant -identification -location)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m23: M. (((send(p2, p1, m23))) ∧ isRequestFor(m23, p1, p2, q, t, u)))

% <164/512/f/3/i>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ (inrole(q, victim -of-crime) ∨ inrole

(q, suspected -victim -of-crime))

∧ in(t, PHI) ∧ purpose(u, law-enforcement) ∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m22 : M. (((send(p2, p1, m22))) ∧ isRequestFor(m22, p1, p2, q, t, u)))

∧

(∃ m21 : M. (((send(q, p1, m21))) ∧ isAgreementTo(m21, p1, p2, q, t, u)))

% <164/512/f/3/ii>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧

((inrole(q, victim -of-crime) ∨ inrole(q, suspected -victim -of-crime)) ∧ inrole(q,

emergency -circumstance))

∧ in(t, PHI) ∧ purpose(u, law-enforcement) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m24 : M. (((send(p2, p1, m24))) ∧ (isRequestFor(m24, p1, p2, q, t, u)))) ∧

isNeededToDetermineCrime(p1, p2, q, t, u) ∧ notUsedAgainstVictim(p1, p2, q, t, u) ∧

isActivityAdverselyAffectedByWait(p1, p2, q, t, u) ∧ believesInBestInterest(p1, p2, q, t, u)

% <164/512/f/4>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ inrole(q, deceased)

∧ in(t, PHI) ∧ purpose(u, suspicious -death -notification) ∧ isRequiredByLaw(p1, p2, q, t, u) ∧

deathMayBeResultOfACrime(p1, q)

% <164/512/f/5>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

report -possible -crime -on-premise)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧ believesEvidenceOfCrimeOnPremises(p1, p2, q, t, u)

% <164/512/f/6>

256

(inrole(p1, provider) ∧ inrole(p1, covered -entity))∧

inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

alert -of-crime -commission -location -victims -perpetrator)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

providingEmergencyHealthCare(p1, q)

∧ appearsNecessaryToAlertOfCrimeCommissionLocationOfVictimsPerpetrator(p1, p2, q, t, u)

∧ (¬(believesEmergencyResultOfAbuseNeglectOrDomesticViolence(p1, q)))

% <164/512/b/1/i> % separate into two norms

%PART (1)

inrole(p1, covered -entity) ∧ inrole(p2, public -health -authority) ∧ in(t, PHI) ∧

authorizedByLawForPurpose(p2, u)

∧ (purpose(u, disease -prevention -control) ∨ purpose(u, public -health -surveillance) ∨ purpose(u,

public -health -investigation)

∨ purpose(u, public -health -intervention))

%PART (2) about foreign-government-agency

inrole(p1, covered -entity) ∧ inrole(p2, foreign -government -agency) ∧ in(t, PHI) ∧

authorizedByLawForPurpose(p2, u)

∧ (purpose(u, disease -prevention -control) ∨ purpose(u, public -health -surveillance) ∨ purpose(u,

public -health -investigation)

∨ purpose(u, public -health -intervention))

% <164/512/b/1/ii>

inrole(p1, covered -entity) ∧ (inrole(p2, public -health -authority) ∨ inrole(p2, government -authority)) ∧

authorizedByLawForPurpose(p2, u) ∧ in(t, PHI) ∧ purpose(u, reports -of-child -abuse)

% <164/512/b/1/iii>

inrole(p1, covered -entity) ∧ inrole(p2, responsible -for-FDA-regulated -product) ∧ in(t, PHI) ∧ purpose

(u, quality -safety -effectiveness -activities)

% <164/512/b/1/iv>

inrole(p1, covered -entity) ∧ inrole(p2, risk -of-contracting -or-spreading -disease) ∧ in(t, PHI) ∧

purpose(u, notify -for-public -health -intervention)

% <164/512/b/1/v> % Separate into two norms

%%%%%%%% PART (1)

257

((inrole(p1, covered -entity) ∧ inrole(p1, covered -health -care -provider)) ∧ (inrole(p1,

work -force -member) ∨ inrole(p1, provides -medical -surveillance)

∨ inrole(p1, provides -injury -evaluation))) ∧

inrole(p2, employer) ∧ (inrole(q, individual) ∧ inrole(q, work -force -member))

∧ in(t, workplace -injury -findings) ∧ purpose(u, obligation -to-record -workplace -injury)

∧ workForceMemberOf(q, p2) ∧ (workForceMemberOf(p1, p2) ∨ providerOfMedicalSurveillance(p1, p2) ∨

providerOfInjuryEvaluation(p1, p2))

∧ (∃ m10 : M. ((send(p1, q, m10)) ∧ isNoticeOfWorkplaceDisclosure(m10)))

%%%%%%% PART (2)

((inrole(p1, covered -entity) ∧ inrole(p1, covered -health -care -provider)) ∧ (inrole(p1,

work -force -member) ∨ inrole(p1, provides -medical -surveillance)

∨ inrole(p1, provides -injury -evaluation))) ∧

inrole(p2, employer) ∧ (inrole(q, individual) ∧ inrole(q, work -force -member))

∧ in(t, medical -surveillance -findings) ∧ purpose(u, obligation -to-perform -medical -surveillance)

∧ workForceMemberOf(q, p2) ∧ (workForceMemberOf(p1, p2) ∨ providerOfMedicalSurveillance(p1, p2) ∨

providerOfInjuryEvaluation(p1, p2))

∧ (∃ m910 : M. ((send(p1, q, m910)) ∧ isNoticeOfWorkplaceDisclosure(m910)))

% <164/512/d/3> %%%%% Different from Henry’s, Limin’s looks more reasonable

inrole(p1, covered -entity) ∧ inrole(p2, health -oversight -agency) ∧ in(t, PHI)

authorizedByLawForPurpose(p2, u) ∧

(purpose(u, over -sight -government -benefit -programs -health -eligibility) ∧

purpose(u, over -sight -government -regulated -entity -health -compliance)∧

purpose(u, over -sight -subject -to-civil -rights -health -compliance)

) ∧ ((¬(isSubjectOfInvestigation(q))) ∧ ((relatedToReceiptHealthCare(u)) ∨

(relatedToPublicHealthBenefits(u))

∨ (relatedToPublicBenefitsQualificationDependsOnHealth(u))))

% <164/512/g/1> % different from Henry’s

inrole(p1, covered -entity) ∧ (inrole(p2, coroner) ∨ inrole(p2, medical -examiner)) ∧ inrole(q, deceased)

∧ in(t, PHI)

∧ (purpose(u, identification) ∨ purpose(u, determining -cause -of-death) ∨ purpose(u,

other -duties -authorized -by-law))

% <164/512/g/2> % separate into two norms

258

%PART (1)

inrole(p1, covered -entity) ∧ inrole(p2, funeral -director) ∧ inrole(q, deceased) ∧ in(t, PHI) ∧ purpose

(u, funeral -director -duties)

∧ necessaryForDuties(p1, p2, q, t, u)

%PART (2)

inrole(p1, covered -entity) ∧ inrole(p2, funeral -director) ∧ inrole(q, almost -deceased) ∧ in(t, PHI) ∧

purpose(u, funeral -director -duties)

∧ necessaryForDuties(p1, p2, q, t, u) ∧ earlyDisclosureNecessary(p1, p2, q, t, u)

% <164/512/h>

inrole(p1, covered -entity) ∧ (inrole(p2, organ -procurement -org) ∨ inrole(p2,

engaged -in-procurement -banking -transplantation -of-organs -eyes -tissue)) ∧

in(t, PHI) ∧ purpose(u, facilitate -organ -eye-tissue -donation -transplantation)

% <164/512/i/1>

inrole(p1, covered -entity) ∧ inrole(p2, researcher) ∧ inrole(q, deceased) ∧ in(t, PHI) ∧ purpose(u,

research)

∧ (∃ p4 : P. (∃ m6 : M. ((inrole(p4, IRB) ∨ inrole(p4, privacy -board)) ∧ ((send(p4, p1, m6))) ∧

isApprovalAuthorizationWaiver(m6, p4, p1, p2, q, t) ∧ otherNecessaryRequirement164512i1(p4, p1,

p2, q, t, u)

)))

% <164/512/j/1/i>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, lessen -health -threat) ∧

consistentWithApplicableLaw(p1, p2, q, t, u)

∧ believesNecessaryToLessenHealthThreat(p1, p2, q, t, u) ∧ believesCanLessenThreat(p1, p2, q, t,

u)

% <164/512/j/1/ii/A>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ inrole(q, individual) ∧ in(t, PHI)

∧ purpose(u, identify -apprehend)

∧ consistentWithApplicableLaw(p1, p2, q, t, u) ∧ (∃ m7 : M. ((send(q, p1, m7)) ∧

isAdmissionOfCrime(m7, q) ∧ believesCrimeCausedSeriousHarm(p1, m7)))

∧

(¬(learnedWhileTreatingPropensityForCrime(p1, q)))

∧

(¬(learnedThroughRequestForTreatmentOfPropensityForCrime(p1, q, t)))

∧

(

259

(∃ m8 : M.(((send(q, p1, m8)) ∧ isAdmissionOfCrime(m8, q) ∧ containsMessage(m8, m) ∧

contains(m8, q, t))))

∧ in(t, some -PHI -512j3)

)

% <164/512/j/1/ii/B>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ inrole(q, individual) ∧

in(t, PHI) ∧ purpose(u, identify -apprehend) ∧ consistentWithApplicableLaw(p1, p2, q, t, u) ∧

beleivesEscapedLawfulCustody(p1, q)

% <164/512/k/1/i>

inrole(p1, covered -entity) ∧ inrole(q, armed -forces -personnel) ∧ in(t, PHI)

∧ (∃ p5: P. (deemedNecessaryForMission(p5, p1, p2, q, t, u) ∧

publishedInFrCommandAuthorityForDisclosure(p5, p1, p2, q, t, u)

∧ publishedInFrPurposeForDisclosure(p5, p1, p2, q, t, u)))

% <164/512/k/1/ii>

(inrole(p1, covered -entity) ∧ inrole(p1, component -of-DOD-or-DOT)) ∧ inrole(p2, DVA) ∧ inrole(q,

previous -armed -force -personnel)

∧ in(t, PHI) ∧ purpose(u, eligibilityDeterminationForVeteransBenefit)

% <164/512/k/1/iii>

(inrole(p1, covered -entity) ∧ inrole(p1, component -of-DVA)) ∧ inrole(p2, component -of-DVA) ∧ inrole(q,

previous -armed -force -personnel)

∧ in(t, PHI) ∧ (purpose(u, eligibilityDeterminationForVeteransBenefit) ∧ purpose(u,

provisionOfVeteransBenefits))

% <164/512/k/1/iv>

inrole(p1, covered -entity) ∧ inrole(q, foreign -armed -forces -personnel) ∧ in(t, PHI)

∧ (∃ p6: P. (deemedNecessaryForMission(p6, p1, p2, q, t, u) ∧

publishedInFrCommandAuthorityForDisclosure(p6, p1, p2, q, t, u)

∧ publishedInFrPurposeForDisclosure(p6, p1, p2, q, t, u)))

% <164/512/k/2>

inrole(p1, covered -entity) ∧ inrole(p2, authorized -federal -official) ∧ in(t, PHI) ∧ purpose(u,

nationalSecurityActivities)

% <164/512/k/3>

inrole(p1, covered -entity) ∧ inrole(p2, authorized -federal -official) ∧ in(t, PHI) ∧ purpose(u,

nationalSecurityActivities)

260

∧ (purpose(u, provisionToProtectiveServices) ∧ purpose(u, conductInvestigations18USC871-9))

% <164/512/k/4>

(inrole(p1, covered -entity) ∧ inrole(p1, component -of-DOS)) ∧ inrole(p2, DOS-official) ∧ inrole(q,

individual) ∧ in(t, medical -suitability)

∧ (purpose(u, securityClearance -EO -10450 -12698) ∨ purpose(u,

determineAvailabilityForForeignService) ∨ purpose(u, determineFamilyCompany))

% <164/512/k/5/i>

inrole(p1, covered -entity) ∧ (inrole(p2, correctional -institution) ∨ inrole(p2,

law-enforcement -official)) ∧ inrole(q, inmate)

∧ in(t, PHI) ∧ lawfulCustodyOf(q, p2) ∧ receipientBelievesDisclosureNecessary(p2, p1, p2, q, t,

u)

% <164/512/k/6/i>

(inrole(p1, health -plan) ∧ inrole(p1, government -public -benefits -program)) ∧ inrole(p2,

government -public -benefits -program)

∧ in(t, PHI) ∧ relatesToEligibilityEnrollmentInHealthPlan(q, t, p1) ∧

disclosureRequiredOrAuthorizedByStatuteOrRegulation(p1, p2, q, t, u)

% <164/512/k/6/ii>

(inrole(p1, covered -entity) ∧ inrole(p1,

government -agency -administering -public -health -benefits -program))

∧ (inrole(p2, covered -entity) ∧ inrole(p2,

government -agency -administering -public -health -benefits -program))

∧ in(t, PHI) ∧ servesSimilarPopulation(p1, p2) ∧ relatesToTheProgram(q, t, p1) ∧

(necessaryForCoordination(p1, p2, q, t, u) ∨ necessaryForImprovingManagement(p1, p2, q, t, u))

% <164/512/l>

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u,

complying -with -laws -worker -compensation -or-other -programs) ∧

authorizedAndNecessaryForWorkersCompensationLaws(p1, p2, q, t, u)

%%%%%%%%%%% END OF 512 %%%

%%% p7, m9 %%%%%%%%%%

%%%%%%%%%%% BEGIN OF 514 %%

261

% <164/514/e/1>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ (purpose(u, research) ∨ purpose(u, public -health) ∨ purpose

(u, health -care -operations))

∧ isLimitedData(t) ∧ (∃ m9 : M. (send(p2, p1, m9) ∧ isLimitedDataUseAgreement(m9) ∧

satisfiesOtherLimitedDataUseAgreementRequirement(p1, p2, m9))

)

% <164/514/e/3/ii> %% ¬ IN CMU DOCUMENT, NEEDS TO BE ENCODED ANYWAYS

inrole(p1, covered -entity) ∧ inrole(p2, business -associate) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

purpose(u, creating -limited -data -set)

∧ businessAssociateOf(p2, p1)

% <164/514/f/1>

inrole(p1, covered -entity) ∧ (inrole(p2, business -associate) ∨ inrole(p2, related -foundation))

∧ (in(t, demographic -info) ∨ in(t, healthcare -dates)) ∧ purpose(u, fundraising)

∧ (businessAssociateOf(p2, p1) ∨ relatedFoundationOf(p2, p1))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% END OF 514 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%% p7, m10 %%%%%%

% % % % % % % % Synthetic Policy Rule 1 %%%%%%%

inrole(p1, secretary)∧ inrole(p2, covered -entity)∧ inrole(q, individual)∧

purpose(u, compliance -investigation)∧ request(p1, p2, q, PHI)

% % % % % % % % % % % % % % Synthetic Policy Rule 2 %%%%%%%%%%%%%%%%%%%%%%%%%%

inrole(p1, individual)∧ inrole(p2, covered -entity)∧ inrole(q, individual)∧

purpose(u, access -request) ∧ samePerson(p1, q) ∧ request(p1, p2, q, PHI)

% % % % % % % % % % % Synthetic Policy Rule 3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

inrole(p1, parent)∧ inrole(p2, covered -entity) ∧ inrole(q, individual) ∧

purpose(u, accessrequest) ∧ parentOf(p1, q) ∧ request(p_1, p_2, q, PHI)

% % % % % % % % % % % % % % % % % % END OF POSITIVE NORMS %%%%%%%%%%%%%%%%%%

Negative Norms

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

% <164/502/b>

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI)

262

−→

(

(believesMinimumNecessaryForPurpose(p1, p2, q, t, u))

∨

(inrole(p2, provider) ∧ purpose(u, treatment))

∨

(inrole(p1, covered -entity) ∧ inrole(p2, individual) ∧ inrole(q, individual) ∧ samePerson(p2, q) ∧

in(t, PHI))

∨

(

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧

(∃ m127 : M. (((send(q, p1, m127))) ∧ satisfiesAllValidAuthorizationRequirement(m127, p1, p2,

q, t, u)

∧ (¬(violatesValidAuthorizationRequirement(m127, p1, p2, q, t, u)))

))

)

∨

(inrole(p1, covered -entity) ∧ inrole(p2, secretary) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u,

compliance -investigation))

∨

(

% <164/512/c> %%%%%% Separate into two norms

%%%%%%%%%%% For this norm only the definition needs to be fixed for

%%%%%%%%%% the function which returns all pair of obligations

%%%%%%%%% PART (1)

inrole(p1, covered -entity) ∧ inrole(p2, government -authority) ∧

inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, reports -of-abuse) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

authorizedByLawForPurpose(p2, u) ∧ believesVictimOfAbuse(p1, q) ∧

(isRequiredByLaw(p1, p2, q, t, u) ∨ individualHasAgreed(p1, p2, q, t, u)

∨ (authorizedByStatueRegulation(p1, p2, q, t, u) ∧ (

believesDisclosureNecessaryToPreventHarm(p1, p2, q, t, u) ∨

(incapacitated(q) ∧ assuranceDisclosureNotUsedAgainstIndividual(p1, p2, q, t, u) ∧

believesWaitingForAgreementWouldHinderEnforcement(p1, p2, q, t, u)))))

∧ ((

∃ m125 : M. (((send(p1, q, m125))) ∧ isNoticeOfReport(m125, p1, p2, q, t, u))

) ∨ believesNoticeWouldRiskIndividual(p1, p2, q, t, u))

)

∨

(

inrole(p1, covered -entity) ∧ inrole(p2, government -authority) ∧

263

inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, reports -of-abuse) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

authorizedByLawForPurpose(p2, u) ∧ believesVictimOfAbuse(p1, q) ∧

(isRequiredByLaw(p1, p2, q, t, u) ∨ individualHasAgreed(p1, p2, q, t, u)

∨ (authorizedByStatueRegulation(p1, p2, q, t, u) ∧ (

believesDisclosureNecessaryToPreventHarm(p1, p2, q, t, u) ∨

(incapacitated(q) ∧ assuranceDisclosureNotUsedAgainstIndividual(p1, p2, q, t, u) ∧

believesWaitingForAgreementWouldHinderEnforcement(p1, p2, q, t, u)))))

∧ (∃ m226 : M. ((send(p1, q, m226) ∧ isNoticeOfReport(m226, p1, p2, q, t, u))))

)

∨

(

% <164/512/e/1/i> % can be abstracted % a little different from Henry’s

inrole(p1, covered -entity) ∧ (inrole(p2, court) ∨ inrole(p2, judicial -administrative -tribunal)) ∧

in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m554 : M. ((send(p2, p1, m554)) ∧ isOrder(m554, p1, p2, q, t))

))

∨(

% <164/512/e/1/ii>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding)

∧ isRequiredByLaw(p1, p2, q, t, u)

∧ (∃ m665 : M. ((send(p2, p1, m665)) ∧ isLawfulProcess(m665, p1, p2, q, t, u)))

∧

(

(

∃ m118 : M. ((send(p2, p1, m118) ∧ satisfiesConditionOf512e1iii(m118, p1, p2, q, t, u)))

)

∨

(

∃ m119 : M. ((send(p2, p1, m119) ∧ satisfiesConditionOf512e1iv(m119, p1, p2, q, t, u)))

)

)

)

∨(

% <164/512/e/1/vi>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m120 : M. ((send(p2, p1, m120) ∧ isLawfulProcess(m120, p1, p2, q, t, u) ∧

madeReasonableEffortToNotify(p1, p2, q, t, u))))

264

)

∨(

% <164/512/f/1/i> %%%%%%%%%%%% This is different from Henry’s

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧

(purpose(u, law-enforcement) ∧ (¬(purpose(u, reports -of-child -abuse))))

∧ isRequiredByLaw(p1, p2, q, t, u) ∧ (¬(isRequiredByLaw512c1i(p1, p2, q, t, u)))

)

∨(

% <164/512/f/1/ii>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

law-enforcement)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

((inComplianceWithCourtOrder(p1, p2, q, t, u)) ∨ (inComplianceWithGrandJurySubpoena(p1, p2, q,

t, u))

∨ ((inComplianceWithAdministrativeRequest(p1, p2, q, t, u)) ∧ (minimumNecessary(p1, p2, m, u)) ∧

(deIdentifiedInformationNotSufficient(u))))

)

∨(

% <164/512/f/2>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ (in(t, info -512-f-2) ∧ in(t,

PHI))

∧ purpose(u, law-enforcement -relevant -identification -location)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m223: M. (((send(p2, p1, m223))) ∧ isRequestFor(m223, p1, p2, q, t, u)))

)

∨(

% <164/512/f/3/i>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ (inrole(q, victim -of-crime) ∨ inrole

(q, suspected -victim -of-crime))

∧ in(t, PHI) ∧ purpose(u, law-enforcement) ∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m122 : M. (((send(p2, p1, m122))) ∧ isRequestFor(m122, p1, p2, q, t, u)))

∧

(∃ m121 : M. (((send(q, p1, m121))) ∧ isAgreementTo(m121, p1, p2, q, t, u)))

)

∨(

% <164/512/f/3/ii>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧

265

((inrole(q, victim -of-crime) ∨ inrole(q, suspected -victim -of-crime)) ∧ inrole(q,

emergency -circumstance))

∧ in(t, PHI) ∧ purpose(u, law-enforcement) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m124 : M. (((send(p2, p1, m124))) ∧ (isRequestFor(m124, p1, p2, q, t, u)))) ∧

isNeededToDetermineCrime(p1, p2, q, t, u) ∧ notUsedAgainstVictim(p1, p2, q, t, u) ∧

isActivityAdverselyAffectedByWait(p1, p2, q, t, u) ∧ believesInBestInterest(p1, p2, q, t, u)

)

∨(

% <164/512/f/4>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ inrole(q, deceased)

∧ in(t, PHI) ∧ purpose(u, suspicious -death -notification) ∧ isRequiredByLaw(p1, p2, q, t, u) ∧

deathMayBeResultOfACrime(p1, q)

)

∨(

% <164/512/f/5>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

report -possible -crime -on-premise)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧ believesEvidenceOfCrimeOnPremises(p1, p2, q, t, u)

)

∨(

% <164/512/f/6>

(inrole(p1, provider) ∧ inrole(p1, covered -entity))∧

inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

alert -of-crime -commission -location -victims -perpetrator)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

providingEmergencyHealthCare(p1, q) ∧

appearsNecessaryToAlertOfCrimeCommissionLocationOfVictimsPerpetrator(p1, p2, q, t, u)

∧ (¬(believesEmergencyResultOfAbuseNeglectOrDomesticViolence(p1, q)))

)

)

%%%

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

% <164/502/g/3/ii/B>

inrole(p1, covered -entity) ∧ (inrole(p2, parent) ∨ inrole(p2, guardian) ∨ inrole(p2, loco -parentis)) ∧

inrole(q, individual) ∧ in(t, PHI)

∧ prohibitedByOtherLaw(p1, p2, q, t, u) ∧ (parentOf(p2, q) ∨ guardianOf(p2, q) ∨

locoParentis(p2, q))

266

−→ (FALSE)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

% <164/508/a/2> %%% [DONE]

inrole(p1, covered -entity) ∧ in(t, psychotherapy -notes) −→

(

(∃ m129 : M. (((send(q, p1, m129))) ∧ satisfiesAllValidAuthorizationRequirement(m129, p1, p2,

q, t, u)

∧ (¬(violatesValidAuthorizationRequirement(m129, p1, p2, q, t, u)))

)

)

∨

(

inrole(p1, covered -entity) ∧ purpose(u, counseling -training -programs) ∧

counselingTrainingProgramsOf(p1)

)

∨

(

inrole(p1, covered -entity) ∧ purpose(u, defense -in-legal -proceeding) ∧ defenseInLegalProceeding(p1,

q)

)

∨

(

inrole(p1, covered -entity) ∧ (inrole(p2, coroner) ∨ inrole(p2, medical -examiner)) ∧ inrole(q, deceased)

∧ in(t, PHI)

∧ (purpose(u, identification) ∨ purpose(u, determining -cause -of-death) ∨ purpose(u,

other -duties -authorized -by-law))

)

∨

(

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, lessen -health -threat) ∧

consistentWithApplicableLaw(p1, p2, q, t, u)

∧ believesNecessaryToLessenHealthThreat(p1, p2, q, t, u) ∧ believesCanLessenThreat(p1, p2, q, t,

u)

)

∨

267

(

% <164/512/c> %%%%%% Separate into two norms

%%%%%%%%%%% For this norm only the definition needs to be fixed for

%%%%%%%%%% the function which returns all pair of obligations

%%%%%%%%% PART (1)

inrole(p1, covered -entity) ∧ inrole(p2, government -authority) ∧

inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, reports -of-abuse) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

authorizedByLawForPurpose(p2, u) ∧ believesVictimOfAbuse(p1, q) ∧

(isRequiredByLaw(p1, p2, q, t, u) ∨ individualHasAgreed(p1, p2, q, t, u)

∨ (authorizedByStatueRegulation(p1, p2, q, t, u) ∧ (

believesDisclosureNecessaryToPreventHarm(p1, p2, q, t, u) ∨

(incapacitated(q) ∧ assuranceDisclosureNotUsedAgainstIndividual(p1, p2, q, t, u) ∧

believesWaitingForAgreementWouldHinderEnforcement(p1, p2, q, t, u)))))

∧ ((

∃ m225 : M. (((send(p1, q, m225))) ∧ isNoticeOfReport(m225, p1, p2, q, t, u))

) ∨ believesNoticeWouldRiskIndividual(p1, p2, q, t, u))

)

∨

(

inrole(p1, covered -entity) ∧ inrole(p2, government -authority) ∧

inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, reports -of-abuse) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

authorizedByLawForPurpose(p2, u) ∧ believesVictimOfAbuse(p1, q) ∧

(isRequiredByLaw(p1, p2, q, t, u) ∨ individualHasAgreed(p1, p2, q, t, u)

∨ (authorizedByStatueRegulation(p1, p2, q, t, u) ∧ (

believesDisclosureNecessaryToPreventHarm(p1, p2, q, t, u) ∨

(incapacitated(q) ∧ assuranceDisclosureNotUsedAgainstIndividual(p1, p2, q, t, u) ∧

believesWaitingForAgreementWouldHinderEnforcement(p1, p2, q, t, u)))))

∧ (∃ m126 : M. ((send(p1, q, m126) ∧ isNoticeOfReport(m126, p1, p2, q, t, u))))

)

∨

(

% <164/512/e/1/i> % can be abstracted % a little different from Henry’s

inrole(p1, covered -entity) ∧ (inrole(p2, court) ∨ inrole(p2, judicial -administrative -tribunal)) ∧

in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m664 : M. ((send(p2, p1, m664)) ∧ isOrder(m664, p1, p2, q, t))

))

∨(

% <164/512/e/1/ii>

268

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding)

∧ isRequiredByLaw(p1, p2, q, t, u)

∧ (∃ m555 : M. ((send(p2, p1, m555)) ∧ isLawfulProcess(m555, p1, p2, q, t, u)))

∧

(

(

∃ m218 : M. ((send(p2, p1, m218) ∧ satisfiesConditionOf512e1iii(m218, p1, p2, q, t, u)))

)

∨

(

∃ m219 : M. ((send(p2, p1, m219) ∧ satisfiesConditionOf512e1iv(m219, p1, p2, q, t, u)))

)

)

)

∨(

% <164/512/e/1/vi>

inrole(p1, covered -entity) ∧ in(t, PHI) ∧ purpose(u, judicial -administrative -proceeding)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m220 : M. ((send(p2, p1, m220) ∧ isLawfulProcess(m220, p1, p2, q, t, u) ∧

madeReasonableEffortToNotify(p1, p2, q, t, u))))

)

∨(

% <164/512/f/1/i> %%%%%%%%%%%% This is different from Henry’s

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧

(purpose(u, law-enforcement) ∧ (¬(purpose(u, reports -of-child -abuse))))

∧ isRequiredByLaw(p1, p2, q, t, u) ∧ (¬(isRequiredByLaw512c1i(p1, p2, q, t, u)))

)

∨(

% <164/512/f/1/ii>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

law-enforcement)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

((inComplianceWithCourtOrder(p1, p2, q, t, u)) ∨ (inComplianceWithGrandJurySubpoena(p1, p2, q,

t, u))

∨ ((inComplianceWithAdministrativeRequest(p1, p2, q, t, u)) ∧ (minimumNecessary(p1, p2, m, u)) ∧

(deIdentifiedInformationNotSufficient(u))))

)

∨(

269

% <164/512/f/2>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ (in(t, info -512-f-2) ∧ in(t,

PHI))

∧ purpose(u, law-enforcement -relevant -identification -location)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m123: M. (((send(p2, p1, m123))) ∧ isRequestFor(m123, p1, p2, q, t, u)))

)

∨(

% <164/512/f/3/i>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ (inrole(q, victim -of-crime) ∨ inrole

(q, suspected -victim -of-crime))

∧ in(t, PHI) ∧ purpose(u, law-enforcement) ∧ isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m222 : M. (((send(p2, p1, m222))) ∧ isRequestFor(m222, p1, p2, q, t, u)))

∧

(∃ m221 : M. (((send(q, p1, m221))) ∧ isAgreementTo(m221, p1, p2, q, t, u)))

)

∨(

% <164/512/f/3/ii>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧

((inrole(q, victim -of-crime) ∨ inrole(q, suspected -victim -of-crime)) ∧ inrole(q,

emergency -circumstance))

∧ in(t, PHI) ∧ purpose(u, law-enforcement) ∧

isRequiredByLaw(p1, p2, q, t, u) ∧

(∃ m224 : M. (((send(p2, p1, m224))) ∧ (isRequestFor(m224, p1, p2, q, t, u)))) ∧

isNeededToDetermineCrime(p1, p2, q, t, u) ∧ notUsedAgainstVictim(p1, p2, q, t, u) ∧

isActivityAdverselyAffectedByWait(p1, p2, q, t, u) ∧ believesInBestInterest(p1, p2, q, t, u)

)

∨(

% <164/512/f/4>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ inrole(q, deceased)

∧ in(t, PHI) ∧ purpose(u, suspicious -death -notification) ∧ isRequiredByLaw(p1, p2, q, t, u) ∧

deathMayBeResultOfACrime(p1, q)

)

∨(

% <164/512/f/5>

inrole(p1, covered -entity) ∧ inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

report -possible -crime -on-premise)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧ believesEvidenceOfCrimeOnPremises(p1, p2, q, t, u)

)

270

∨(

% <164/512/f/6>

(inrole(p1, provider) ∧ inrole(p1, covered -entity))∧

inrole(p2, law-enforcement -official) ∧ in(t, PHI) ∧ purpose(u,

alert -of-crime -commission -location -victims -perpetrator)

∧ isRequiredByLaw(p1, p2, q, t, u) ∧

providingEmergencyHealthCare(p1, q) ∧

appearsNecessaryToAlertOfCrimeCommissionLocationOfVictimsPerpetrator(p1, p2, q, t, u)

∧ (¬(believesEmergencyResultOfAbuseNeglectOrDomesticViolence(p1, q)))

)

∨

(

% <164/512/d/3> %%%%% Different from Henry’s, Limin’s looks more reasonable

inrole(p1, covered -entity) ∧ inrole(p2, health -oversight -agency) ∧ in(t, PHI)

∧

authorizedByLawForPurpose(p2, u) ∧

(purpose(u, over -sight -government -benefit -programs -health -eligibility) ∧

purpose(u, over -sight -government -regulated -entity -health -compliance)∧

purpose(u, over -sight -subject -to-civil -rights -health -compliance)

) ∧ ((¬(isSubjectOfInvestigation(q))) ∧ ((relatedToReceiptHealthCare(u)) ∨

(relatedToPublicHealthBenefits(u))

∨ (relatedToPublicBenefitsQualificationDependsOnHealth(u))))

)

%________________________

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

% <164/508/a/3/i>

inrole(p1, covered -entity) ∧ inrole(q, individual) ∧ in(t, PHI) ∧ purpose(u, marketing)

−→

(

(∃ m128 : M. (((send(q, p1, m128))) ∧ satisfiesAllValidAuthorizationRequirement(m128, p1, p2,

q, t, u)

∧ (¬(violatesValidAuthorizationRequirement(m128, p1, p2, q, t, u)))

))

∨

(inrole(p1, covered -entity) ∧ samePerson(p2, q) ∧ faceToFace(p1, p2, q, t, u))

∨

271

(inrole(p1, covered -entity) ∧ promotionalGiftOfNominalValue(p1, p2, q, t, u)

)

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

% <164/510/b/2> %%%%%%%%%% Negative Norms

inrole(p1, covered -entity) ∧

(inrole(p2, family -member) ∨ inrole(p2, relative) ∨ inrole(p2, close -friend) ∨ inrole(p2,

identified -164510b)

∨ inrole(p2, personal -rep) ∨ inrole(p2, responsible -for-care)) ∧

inrole(q, individual) ∧ in(t, PHI) ∧

(familyMemberOf(p2, q) ∨ relativeOf(p2, q) ∨ closeFriendOf(p2, q) ∨

identifiedPerson(p2, q) ∨ personalRepOf(p2, q) ∨ familyMemberOf(p2, q) ∨

responsibleForCareOf(p2, q))

∧ ((available(p1, q) ∧ hasCapabilityToMakeHealthCareDecisions(q)))

−→

(

(

∃ m115 : M. ((send(q ,p1, m115) ∧ isAgreement 164510b2(m115, p1, p2, q, t, u)))

)

∨

(

(¬(∃ m116 : M. (send(q, p1, m116) ∧ isObjection 164510b2(m116, p1, p2, q, t, u))))

S

(∃ m117 : M. (send(p1, q, m117) ∧ isOpportunityToObject(m117, p1, p2, q, t, u)))

)

∨

(professionalJudgementIndividualDoesNotObject(p1, p2, q, t, u))

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

% <164/510/b/3> %%%%%%%%%% NEgative Norms

inrole(p1, covered -entity) ∧

(inrole(p2, family -member) ∨ inrole(p2, relative) ∨ inrole(p2, close -friend) ∨ inrole(p2,

identified -164510b)

272

∨ inrole(p2, personal -rep) ∨ inrole(p2, responsible -for-care)) ∧

inrole(q, individual) ∧ in(t, PHI) ∧

(familyMemberOf(p2, q) ∨ relativeOf(p2, q) ∨ closeFriendOf(p2, q) ∨

identifiedPerson(p2, q) ∨ personalRepOf(p2, q) ∨ familyMemberOf(p2, q) ∨

responsibleForCareOf(p2, q))

∧ (¬((available(p1, q) ∧ hasCapabilityToMakeHealthCareDecisions(q))))

−→

(

professionalJudgementIsInBestInterestof164510b3(p1, p2, q, t, u)

∧

relevantToInvolvement(p1, p2, q, t, u)

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%

%%%%%%%%%%% EXTRA THREE NORMS %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%% <160/310>

inrole(p1, secretary) ∧ inrole(p2, covered -entity) ∧ inrole(q, individual) ∧ in(t, dii) ∧ purpose(u,

investigation)

−→

(

(

∃ t1 : T. (∃ m999 : M. (send(p2, p1, m999) ∧ inrole(p2, covered -entity) ∧ inrole(p1, secretary) ∧

inrole(q, individual) ∧ contains(m999, q, t1) ∧ in(t1, PHI)))

)

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% <164.524> -------> VERY SIMPLIFIED %%%%%%%%%%%%%%%%%%%%%%%%%%

inrole(p1, individual) ∧ inrole(p2, covered -entity) ∧ inrole(q, individual) ∧ in(t, dii) ∧ purpose(u,

access) ∧ samePerson(p1, q)

−→

(

273

(

∃ t2 : T. (∃ m1999 : M. (send(p2, p1, m999) ∧ inrole(p2, covered -entity) ∧ inrole(p1, individual) ∧

inrole(q, individual) ∧ contains(m1999, q, t2) ∧ in(t2, PHI) ∧ samePerson(p1, q)))

)

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%% <MY OWN NORM FOR TEST> %%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%% START OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

(inrole(p1, parent) ∨ inrole(p1, guardian) ∨ inrole(p1,loco -parentis))

∧

inrole(p2, covered -entity) ∧ inrole(q, individual) ∧ in(t, dii) ∧ purpose(u, access) ∧

(parentOf(p1, q) ∨ guardianOf(p1, q) ∨ locoParentis(p1, q))

−→

(

(

∃ t3 : T. (∃ m2999 : M. (send(p2, p1, m999) ∧ inrole(p2, covered -entity) ∧ (inrole(p1, parent) ∨

inrole(p1, guardian) ∨ inrole(p1,loco -parentis)) ∧ inrole(q, individual) ∧ contains(m2999, q, t3)

∧ in(t3, PHI) ∧ (parentOf(p1, q) ∨ guardianOf(p1, q) ∨ locoParentis(p1, q))))

)

)

%%%%%%%%%%%%%%%%%%%%%% END OF NEGATIVE NORM %%%%%%%%%%%%%%%%%%%%%%%%%

274

BIBLIOGRAPHY

[1] The Medicare and Medicaid EHR Incentive Program. http://www.cms.gov/Regulations-

and-Guidance/Legislation/EHRIncentivePrograms/index.html?redirect=/ehrincentiveprograms/.

[2] Senate banking committee, Gramm-Leach-Bliley Act, 1999. Public Law 106-102.

[3] Enterprise privacy authorization language (EPAL) version 1.2, November 2003.

http://www.zurich.ibm.com/pri/projects/epal.html.

[4] Muhammad Ali, Laurent Bussard, and Ulrich Pinsdorf. Obligation Language and Frame-

work to Enable Privacy-Aware SOA. In Data Privacy Management and Autonomous

Spontaneous Security, volume 5939 of Lecture Notes in Computer Science, pages 18–32.

Springer Berlin, Heidelberg, 2010.

[5] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters,

21(4):181–185, October 1985.

[6] Bowen Alpern and Fred B. Schneider. Recognizing safety and liveness. Distributed Com-

puting, 2:117–126, 1987.

[7] Rajeev Alur and ThomasA. Henzinger. Logics and models of real time: A survey. In Real-

Time: Theory in Practice, Lecture Notes in Computer Science. 1992.

[8] ANSI. American national standard for information technology – role based access control.

ANSI INCITS 359-2004, February 2004.

[9] KrzysztofR. Apt and Elena Marchiori. Reasoning about prolog programs: From modes

through types to assertions. Formal Aspects of Computing, 6(1):743–765, 1994.

[10] Nathalie Baracaldo and James Joshi. Beyond accountability: using obligations to reduce

risk exposure and deter insider attacks. In Proceedings of the 18th ACM symposium on

275

Access control models and technologies, SACMAT ’13, pages 213–224, New York, NY,

USA, 2013. ACM.

[11] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy and contex-

tual integrity: Framework and applications. IEEE Symposium on Security and Privacy.

[12] Adam Barth, John Mitchell, Anupam Datta, and Sharada Sundaram. Privacy and utility in

business processes. In IEEE CSF ’07.

[13] David Basin, Felix Klaedtke, and Samuel Müller. Monitoring security policies with metric

first-order temporal logic. In ACM SACMAT ’10.

[14] David Basin, Ernst-Ruediger Olderog, and Paul E. Sevinc. Specifying and analyzing secu-

rity automata using csp-oz. In ASIACCS, pages 70–81, 2007.

[15] David A. Basin, Felix Klaedtke, Srdjan Marinovic, and Eugen Zalinescu. Monitoring com-

pliance policies over incomplete and disagreeing logs. In RV, 2012.

[16] Andreas Bauer, Rajeev Gore, and Alwen Tiu. A first-order policy language for history-

based transaction monitoring. In M. Leucker and C. Morgan, editors, Proceedings of the

6th International Colloquium on Theoretical Aspects of Computing (ICTAC), volume 5684

of Lecture Notes in Computer Science, pages 96–111, Berlin, Heidelberg, August 2009.

Springer-Verlag.

[17] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provisions and

obligations in policy management and security applications. In Proceedings of the 28th

international conference on Very Large Data Bases, VLDB ’02, pages 502–513. VLDB

Endowment, 2002.

[18] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provisions and

obligations in policy rule management. J. Netw. Syst. Manage., 11(3):351–372, 2003.

276

[19] Avrim Blum and Merrick Furst. Fast planning through planning graph analysis. In Proceed-

ings of the 14th International Joint Conference on Artificial Intelligence (IJCAI 95), pages

1636–1642, 1995.

[20] Travis Breaux and Annie Antón. Analyzing regulatory rules for privacy and security re-

quirements. IEEE TSE ’08.

[21] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński. Answer set programming at a

glance. Commun. ACM, 54(12):92–103, December 2011.

[22] Julius R. Büchi. On a decision method in restricted second order arithmetic. In Proceedings

of LMPS’60, 1962.

[23] M. Casassa and F. Beato. On Parametric Obligation Policies: Enabling Privacy-Aware In-

formation Lifecycle Management in Enterprises. In Policies for Distributed Systems and

Networks., pages 51 –55, jun. 2007.

[24] Edward Y. Chang, Zohar Manna, and Amir Pnueli. Characterization of temporal property

classes. In ICALP, pages 474–486, 1992.

[25] Liang Chen, Jason Crampton, Martin J. Kollingbaum, and Timothy J. Norman. Obligations

in risk-aware access control. In Proceedings of the 2012 Tenth Annual International Con-

ference on Privacy, Security and Trust (PST), PST ’12, pages 145–152, Washington, DC,

USA, 2012. IEEE Computer Society.

[26] Omar Chowdhury, Haining Chen, Jianwei Niu, Ninghui Li, and Elisa Bertino. On xacml’s

adequacy to specify and to enforce hipaa. In HealthSec’12.

[27] Omar Chowdhury, Andreas Gampe, Jianwei Niu, Jeffery von Ronne, Jared Bennatt, Anu-

pam Datta, Limin Jia, and William H. Winsborough. Privacy promises that can be kept:

a policy analysis method with application to the hipaa privacy rule. In Proceedings of the

277

18th ACM symposium on Access control models and technologies, SACMAT ’13, pages

3–14, New York, NY, USA, 2013. ACM.

[28] Omar Chowdhury, Murillo Pontual, William H. Winsborough, Ting Yu, Keith Irwin, and

Jianwei Niu. Ensuring Authorization Privileges for Cascading User Obligations. In ACM

SACMAT ’12.

[29] Edmund M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Transactions on Programming

Language and Systems (TOPLAS), 8(2):244–263, 1986.

[30] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization skele-

tons using branching-time temporal logic. In Logic of Programs, Workshop, pages 52–71,

London, UK, UK, 1982. Springer-Verlag.

[31] D. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification Lan-

guage. In IEEE POLICY ’01.

[32] Rocco De Nicola and Frits Vaandrager. Action versus state based logics for transition sys-

tems. In Proceedings of the LITP spring school on theoretical computer science on Se-

mantics of systems of concurrent processes, pages 407–419, New York, NY, USA, 1990.

Springer-Verlag New York, Inc.

[33] Frank Dederichs and Rainer Weber. Safety and liveness from a methodological point of

view. Information Processing Letters, 1990.

[34] Piotr Dembinski and Jan Maluszynski. And-parallelism with intelligent backtracking for

annotated logic programs. In SLP, pages 29–38, 1985.

[35] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kaynar, and Anupam Datta. Experiences

in the logical specification of the hipaa and glba privacy laws. In ACM WPES ’10.

278

[36] Henry DeYoung, Deepak Garg, Limin Jia, Dilsun Kirli Kaynar, and Anupam Datta. Techni-

cal report CMU-CyLab-10-007: Experiences in the logical specification of the HIPAA and

GLBA privacy laws, 2010.

[37] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky. Checking traces for regulatory

conformance. In RV ’08.

[38] Nikhil Dinesh, Aravind Joshi, Insup Lee, and Oleg Sokolsky. Reasoning about conditions

and exceptions to laws in regulatory conformance checking. In Proceedings of the 9th

international conference on Deontic Logic in Computer Science, DEON ’08, pages 110–

124, Berlin, Heidelberg, 2008. Springer-Verlag.

[39] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Obligations and their inter-

action with programs. In Proceedings of ESORICS 2007, pages 375–389.

[40] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Obligations and their inter-

action with programs. In 12th European Symposium On Research In Computer Security,

Dresden, Germany, September 24-26, Proceedings, pages 375–389, 2007.

[41] Yehia Elrakaiby, Frédéric Cuppens, and Nora Cuppens-Boulahia. Formal enforcement and

management of obligation policies. Data Knowl. Eng., 71:127–147, January 2012.

[42] E. Allen Emerson. Temporal and modal logic. In Jan van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B, chapter 16, pages 995–1072. Elsevier Science,

1990.

[43] E. Allen Emerson. Automated temporal reasoning about reactive systems. In Proceedings

of the VIII Banff Higher order workshop conference on Logics for concurrency : struc-

ture versus automata: structure versus automata, pages 41–101, Secaucus, NJ, USA, 1996.

Springer-Verlag New York, Inc.

279

[44] E. Allen Emerson and Joseph Y. Halpern. Sometimes and not never revisited: on branching

versus linear time temporal logic. J. ACM, 33(1):151–178, January 1986.

[45] E. Allen Emerson and Joseph Y. Halpern. “Sometimes” and “not never” revisited: on

branching versus linear time temporal logic. J. ACM, 1986.

[46] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about rings. In POPL ’95, 1995.

[47] E. Engeler. Introduction to the theory of computation. Computer science and applied math-

ematics. Academic Press, 1973.

[48] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security policies: a retrospec-

tive. In Proceedings of the workshop on New security paradigms, pages 87–95, 2000.

[49] Inc. Facebook. Facebook’s Privacy Policy. Available at

https://www.facebook.com/about/privacy.

[50] David F. Ferraiolo, Ravi S. Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy

Chandramouli. Proposed NIST standard for role-based access control. ACM TISSEC ’01.

[51] Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2(3 - 4):189 – 208, 1971.

[52] Dov Gabbay. The imperative future. chapter : The declarative past and imperative future,

pages 35–67. John Wiley & Sons, Inc., New York, NY, USA, 1996.

[53] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the temporal analysis

of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of

programming languages, POPL ’80, pages 163–173, New York, NY, USA, 1980. ACM.

[54] Pedro Gama and Paulo Ferreira. Obligation policies: An enforcement platform. In 6th

IEEE International Workshop on Policies for Distributed Systems and Networks, Stockholm,

Sweden, June 2005. IEEE Computer Society.

280

[55] Deepak Garg, Limin Jia, and Anupam Datta. Policy auditing over incomplete logs: theory,

implementation and applications. In ACM CCS ’11.

[56] Deepak Garg, Limin Jia, and Anupam Datta. A logical method for policy enforcement over

evolving audit logs. CoRR, abs/1102.2521, 2011.

[57] Inc. Google. Google’s Privacy Policy. Available at

http://www.google.com/policies/privacy/.

[58] D. Harel and A. Pnueli. On the development of reactive systems. In Logics and Models of

Concurrent Systems, pages 477–498, 1985.

[59] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating

systems. CACM ’76.

[60] Klaus Havelund and Grigore Roşu. Efficient monitoring of safety properties. Int. J. Softw.

Tools Technol. Transf., ’04.

[61] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In TACAS’

02.

[62] Health Resources and Services Administration. Health insurance portability and account-

ability act, 1996. Public Law 104-191.

[63] Manuel Hilty, David A. Basin, and Alexander Pretschner. On obligations. In ESORICS,

pages 98–117, 2005.

[64] Ian M. Hodkinson, Frank Wolter, and Michael Zakharyaschev. Decidable fragment of first-

order temporal logics. Ann. Pure Appl. Logic ’00.

[65] Gerard J. Holzmann. The model checker SPIN. TSE ’97.

[66] Marieke Huisman and Alejandro Tamalet. A formal connection between security automata

and jml annotations. In FASE, pages 340–354, 2009.

281

[67] Keith Irwin, Ting Yu, and William H. Winsborough. On the modeling and analysis of

obligations. In Proceedings of the 13th ACM conference on Computer and communications

security, pages 134–143, New York, NY, USA, 2006. ACM.

[68] Keith Irwin, Ting Yu, and William H. Winsborough. Assigning responsibilities for failed

obligations. In IFIPTM Joined iTrust and PST Conference on Privacy, Trust Management

and Security, pages 327–342. Springer Boston, 2008.

[69] A. J. I. Jones. On the relationship between permission and obligation. In ICAIL ’87, New

York, NY, USA. ACM.

[70] Basel Katt, Xinwen Zhang, Ruth Breu, Michael Hafner, and Jean-Pierre Seifert. A general

obligation model and continuity: enhanced policy enforcement engine for usage control. In

Proceedings of the 13th ACM symposium on Access control models and technologies, pages

123–132, New York, NY, USA, 2008. ACM.

[71] Henry A. Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the Tenth

European Conference on Artificial Intelligence (ECAI’92), pages 359–363, 1992.

[72] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Syst.,

1990.

[73] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A logical framework for history-

based access control and reputation systems. J. Comput. Secur., 16(1):63–101, 2008.

[74] O. Kupferman and M.Y. Vardi. Vacuity detection in temporal model checking. In 10th Ad-

vanced Research Working Conference on Correct Hardware Design and Verification Meth-

ods, volume 1703 of Lecture Notes in Computer Science, pages 82–96. Springer-Verlag,

1999.

[75] O. Kupferman and M.Y. Vardi. Memoryful branching-time logics. In Proc. 21st IEEE Symp.

on Logic in Computer Science, 2006.

282

[76] Orna Kupferman and Amir Pnueli. Once and for all. In Proceedings of the 10th Annual

IEEE Symposium on Logic in Computer Science, pages 25–, Washington, DC, USA, 1995.

IEEE Computer Society.

[77] Orna Kupferman, Amir Pnueli, and Moshe Y. Vardi. Once and for all. J. Comput. Syst. Sci.

’12.

[78] Peifung E. Lam, John C. Mitchell, Andre Scedrov, Sharada Sundaram, and Frank Wang.

Declarative privacy policy: finite models and attribute-based encryption. In ACM IHI ’12.

[79] Peifung E. Lam, John C. Mitchell, and Sharada Sundaram. A Formalization of HIPAA for

a Medical Messaging System. In TrustBus ’09.

[80] L. Lamport. Proving the correctness of multiprocess programs. IEEE TSE’77.

[81] Leslie Lamport. "sometime" is sometimes "not never": on the temporal logic of programs. In

Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, POPL ’80, pages 174–185, New York, NY, USA, 1980. ACM.

[82] Leslie Lamport. Proving possibility properties. Theoretical Computer Science, 206(1-2):341

– 352, 1998.

[83] François Laroussinie, Nicolas Markey, and Ph. Schnoebelen. Temporal logic with forget-

table past. In IEEE LICS ’02.

[84] François Laroussinie, Nicolas Markey, and Ph. Schnoebelen. Temporal logic with forget-

table past. In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer

Science, LICS ’02, pages 383–392, Washington, DC, USA, 2002. IEEE Computer Society.

[85] Martin Leucker and Christian Schallhart. A brief account of runtime verification. Journal

of Logic and Algebraic Programming, 78(5):293–303, 2009.

283

[86] Ninghui Li, Haining Chen, and Elisa Bertino. On practical specification and enforcement of

obligations. In Proceedings of the second ACM conference on Data and application security

and privacy, 2012.

[87] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust-

management framework. In Proceedings of the IEEE Symposium on Security and Privacy,

2002.

[88] Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies.

ACM Trans. Inf. Syst. Secur., 12:19:1–19:41, January 2009.

[89] Zohar Manna and Amir Pnueli. The anchored version of the temporal framework. In REX

Workshop ’88.

[90] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer, 1992.

[91] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety. Springer-

Verlag New York, Inc., New York, NY, USA, 1995.

[92] Fabio Martinell and Ilaria Matteucci. Through modeling to synthesis of security automata.

Electron. Notes Theor. Comput. Sci., 179:31–46, 2007.

[93] Jeremy C. Maxwell and Annie I. Antón. The production rule framework: developing a

canonical set of software requirements for compliance with law. In Proceedings of the 1st

ACM International Health Informatics Symposium, IHI ’10, pages 629–636, New York, NY,

USA, 2010. ACM.

[94] Michael J. May, Carl A. Gunter, and Insup Lee. Privacy APIs: Access control techniques to

analyze and verify legal privacy policies. In IEEE CSFW ’06.

[95] L.T. McCarty. Pemissions and obligations. In Proceedings IJCAI-83, 1983.

284

[96] C.S. Mellish and University of Edinburgh. Dept. of Artificial Intelligence. The Automatic

Generation of Mode Declarations for Prolog Programs. Research paper / Department of

Artifical Intelligence, University of Edinburgh. Department of Artificial Intelligence, Uni-

versity of Edinburgh, 1981.

[97] Naftaly H. Minsky and Abe D. Lockman. Ensuring integrity by adding obligations to priv-

ileges. In Proceedings of the 8th international conference on Software engineering, pages

92–102, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[98] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Relentful strategic reasoning in

alternating-time temporal logic. In international conference on Logic for programming,

artificial intelligence, and reasoning, pages 371–386, 2010.

[99] XuanLong Nguyen and Subbarao Kambhampati. Reviving partial order planning. In IJCAI,

pages 459–466, 2001.

[100] Qun Ni, Elisa Bertino, and Jorge Lobo. An obligation model bridging access control policies

and privacy policies. In SACMAT’ 08, New York, NY, USA. ACM.

[101] Qun Ni, Alberto Trombetta, Elisa Bertino, and Jorge Lobo. Privacy -aware role based access

control. In ACM SACMAT ’07.

[102] Food and Drug Administration - Department of Health and Human Ser-

vices. FDA Regulations Relating to Good Clinical Practice and Clinical Trials.

http://www.fda.gov/ScienceResearch/SpecialTopics/RunningClinicalTrials/ucm155713.htm.

[103] Food and Drug Administration - Department of Health and Hu-

man Services. Privacy Protection - 21 CFR part 21.71 for disclo-

sure of records in privacy act record systems; accounting required.

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=21.71.

285

[104] Food and Drug Administration - Department of Health and Human Services. Pub-

lic Information - 21 CFR part 20.63 for personnel, medical, and similar files, dis-

closure of which constitutes a clearly unwarranted invasion of personal privacy.

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=20.63.

[105] Jaehong Park and Ravi Sandhu. The uconabc usage control model. ACM Trans. Inf. Syst.

Secur., 7(1):128–174, 2004.

[106] J. Scott Penberthy. Ucpop: A sound, complete, partial order planner for adl. pages 103–114.

Morgan Kaufmann, 1992.

[107] Guillaume Piolle and Yves Demazeau. Obligations with deadlines and maintained in-

terdictions in privacy regulation frameworks. In IAT ’08: Proceedings of the 2008

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages 162–168,

Sidney, Australia, December 2008. IEEE Computer Society.

[108] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Symposium on

Foundations of Computer Science, volume 526, pages 46–67, 1977.

[109] Murillo Pontual, Omar Chowdhury, William Winsborough, Ting Yu, and Keith Irwin. To-

ward Practical Authorization Dependent User Obligation Systems. In ASIACCS’ 10, pages

180–191. ACM Press, 2010.

[110] Murillo Pontual, Omar Chowdhury, William H. Winsborough, Ting Yu, and Keith Irwin.

On the management of user obligations. SACMAT ’11, New York, NY, USA. ACM.

[111] Murillo Pontual, Keith Irwin, Omar Chowdhury, William H. Winsborough, and Ting Yu.

Failure feedback for user obligation systems. In The Second IEEE International Conference

on Information Privacy, Security, Risk and Trust, 2010.

286

[112] Paul Roberts. HIPAA Bares Its Teeth: $4.3m Fine For Privacy Violation. Avail-

able at https://threatpost.com/en_us/blogs/hipaa-bares-its-teeth-43m-fine-privacy-violation-

022311.

[113] Kenneth A. Ross. Modular stratification and magic sets for datalog programs with negation.

J. ACM, 41(6):1216–1266, November 1994.

[114] A. Sasturkar, Ping Yang, S.D. Stoller, and C.R. Ramakrishnan. Policy analysis for adminis-

trative role based access control. In Computer Security Foundations Workshop, 2006. 19th

IEEE, 2006.

[115] Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and

System Security, 3:2000, 2000.

[116] Securities and Exchange Commission. Sarbanes-oxley act, 2002. Public Law 107-204.

[117] Chetan Shankar and Roy Campbell. Managing pervasive systems using role-based obliga-

tion policies. In Proceedings of the 4th annual IEEE international conference on Pervasive

Computing and Communications Workshops, PERCOMW ’06, pages 373–, Washington,

DC, USA, 2006. IEEE Computer Society.

[118] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. J.

ACM ’85.

[119] Scott D. Stoller, Ping Yang, C R. Ramakrishnan, and Mikhail I. Gofman. Efficient policy

analysis for administrative role based access control. In CCS ’07, New York, NY, USA,

2007. ACM.

[120] Yih-Kuen Tsay, Ming-Hsien Tsai, Jinn-Shu Chang, and Yi-Wen Chang. Büchi store : An

open repository of büchi automata. In TACAS ’11.

287

[121] Michael Tschantz, Anupam Datta, and Jeanette Wing. Formalizing and enforcing purpose

restrictions in privacy policies. In Proceedings of 33rd IEEE Symposium on Security and

Privacy. IEEE, 2012.

[122] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson,

S. Kulkarni, and J. Lott. Kaos policy and domain services: Toward a description-logic

approach to policy representation, deconfliction, and enforcement. In POLICY ’03, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[123] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program

verification. In Proceedings of the 1st Annual Symposium on Logic in Computer Science

(LICS’86), pages 332–344. IEEE Comp. Soc. Press, June 1986.

[124] David Walker. A type system for expressive security policies. In POPL, pages 254–267,

2000.

[125] Mark Weiser. Program slicing. In ICSE ’81.

[126] Ruoyu Wu, Gail-Joon Ahn, and Hongxin Hu. Towards hipaa-compliant healthcare systems.

In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, IHI

’12, pages 593–602, New York, NY, USA, 2012. ACM.

[127] XACML TC. Oasis extensible access control markup language (xacml).

288

VITA

Omar Haider Chowdhury received his B.Sc. in Computer Science and Engineering at the

Bangladesh University of Engineering and Technology in Dhaka, Bangladesh in 2007. He started

pursuing his Ph.D. in the department of Computer Science at the University of Texas at San An-

tonio from Fall 2007. He worked under the supervision of Dr. William H. Winsborough from

Fall 2008 until Dr. Winsborough passed away in Fall 2011. After that, he has been advised by

Dr. Jianwei Niu. His research interest broadly lies in the field of computer security, formal verifi-

cation techniques, and computer privacy. He is currently working on developing rigorous formal

verification techniques to check whether organizations are compliant with applicable privacy reg-

ulations. He has worked as a senior software developer in Structured Data Systems Ltd., in Dhaka,

Bangladesh. He has also worked in Cylab, Carnegie Mellon University as a visiting researcher. His

professional objective is to get a faculty position in the field of computer security and privacy.

