Lectures 1 and 2

INFS 766/INFT 865 Internet Security Protocols

Lectures 1 and 2 Firewalls and Their Limitations

Prof. Ravi Sandhu

REFERENCE BOOKS

- Network Security Essentials, William Stallings, Prentice-Hall, 2000
- Security Technologies for the World Wide Web, Rolf Oppliger, Artech House, 2000
- ◆ Internet and Intranet Security, Rolf Oppliger, Artech House, 1998
- ◆ Building Internet Firewalls, Brent Chapman and Elizabeth Zwicky, O'Reilly and Associates, 1995
- Network Security: Private Communication in a Public World, C. Kaufman, R. Perlman and M. Speciner, Prentice-Hall, 1995

© Ravi Sandhu 2000

Lectures 1 and 2

WEB SOURCES

- source for RFCs and IETF
 - http://www.ietf.org
- cryptographic sources
 - RSA's frequently asked questions: http://www.rsa.com/rsalabs/newfaq
 - NIST encryption home page: http://csrc.nist.gov/encryption/
- ◆ firewall sources
 - Links to many vendor sites: http://www.waterw.com/~manower/vendor.html
 - Firewalls mailing lists and searchable archive: http://lists.gnac.net/firewalls
 - Firewalls frequently asked questions: http://www.clark.net/pub/mjr/pubs/fwfaq

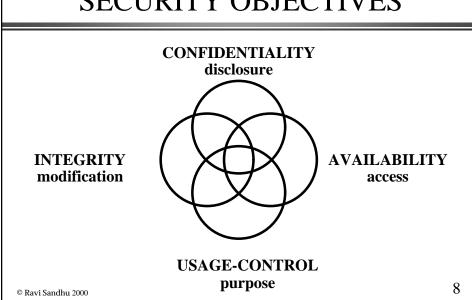
© Ravi Sandhu 2000

SECURITY COURSES CYCLE

- ◆ Fall
 - INFS 762 Information Systems Security
 - INFS 767 Secure Electronic Commerce
- Spring
 - INFS 766 Internet Security Protocols
 - INFS 765 Database Security
 - INFT 862 Formal Models for Computer Security

OPENING REMARKS

INTERNET INSECURITY


- ◆ Internet insecurity spreads at Internet speed
 - Morris worm of 1987
 - Password sniffing attacks in 1994
 - IP spoofing attacks in 1995
 - Denial of service attacks in 1996
 - Email borne viruses 1999
- ◆ Internet insecurity grows at super-Internet speed
 - security incidents are growing faster then the Internet (which has roughly doubled every year since 1988)

INTERNET SECURITY

- ◆ There are no clear cut boundaries in modern cyberspace
 - AOL-Microsoft war of 1999
 - Hotmail password bypass of 1999
 - Ticketmaster deep web links

© Ravi Sandhu 2000

SECURITY OBJECTIVES

SECURITY TECHNIQUES

- Prevention
 - access control
- Detection
 - auditing/intrusion detection
 - incident handling
- Acceptance
 - practicality

© Ravi Sandhu 2000

THREATS, VULNERABILITIES ASSETS AND RISK

- ◆ THREATS are possible attacks
- **♦ VULNERABILITIES are weaknesses**
- ASSETS are information and resources that need protection
- ◆ RISK requires assessment of threats, vulnerabilities and assets

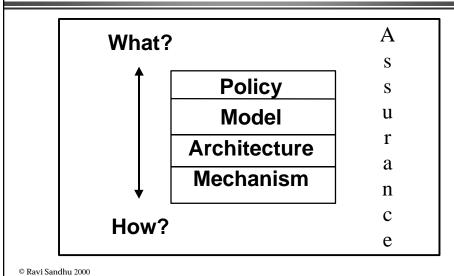
© Ravi Sandhu 2000 10

RISK

- **◆Outsider Attack**
 - **■** insider attack
- ◆Insider Attack
 - **■** outsider attack

© Ravi Sandhu 2000

PERSPECTIVE ON SECURITY


- No silver bullets
- ◆ A process NOT a turn-key product
- ◆ Requires a conservative stance
- ◆ Requires defense-in-depth
- ◆ A secondary objective
- ◆ Absolute security does not exist
- ◆ Security in most systems can be improved

PERSPECTIVE ON SECURITY

 absolute security is impossible does not mean absolute insecurity is acceptable

© Ravi Sandhu 2000

ENGINEERING AUTHORITY & TRUST 4 LAYERS

INTRUSION SCENARIOS

CLASSICAL INTRUSIONS SCENARIO 1

- ◆ Insider attack
 - The insider is already an authorized user
- ◆ Insider acquires privileged access
 - exploiting bugs in privileged system programs
 - exploiting poorly configured privileges
- Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access

CLASSICAL INTRUSIONS SCENARIO 2

- Outsider attack
- Acquire access to an authorized account
- ◆ Perpetrate an insider attack

© Ravi Sandhu 2000

17

NETWORK INTRUSIONS SCENARIO 3

- ◆ Outsider/Insider attack
- ◆ Spoof network protocols to effectively acquire access to an authorized account

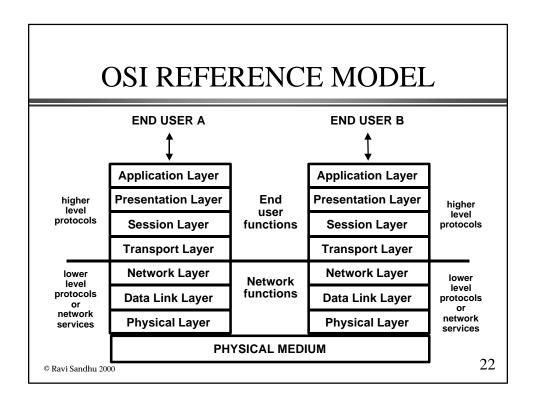
© Ravi Sandhu 2000

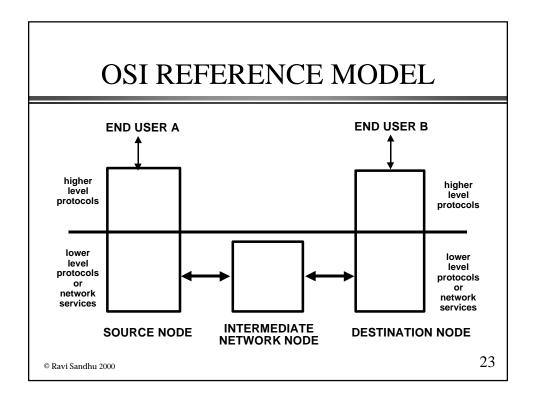
DENIAL OF SERVICE ATTACKS

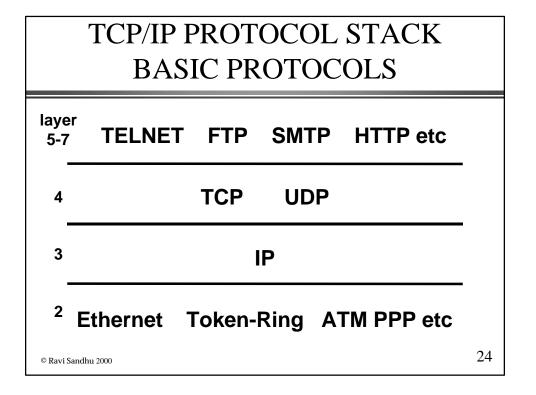
- Flooding network ports with attack source masking
- ◆ TCP/SYN flooding of internet service providers in 1996

© Ravi Sandhu 2000

19


INFRASTRUCTURE ATTACKS


10

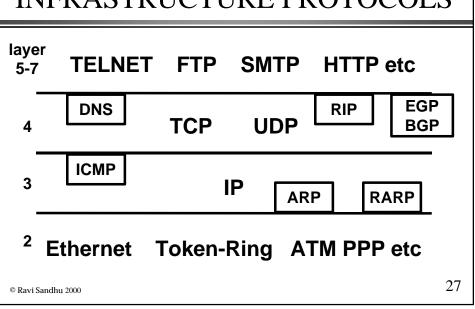

- ◆ router attacks
 - modify router configurations
- domain name server attacks
- ◆ internet service attacks
 - web sites
 - ftp archives

© Ravi Sandhu 2000

INTERNET ARCHITECTURE AND PROTOCOLS

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- ◆ IP (Internet Protocol)
 - connectionless routing of packets
- ◆ UDP (User Datagram Protocol)
 - unreliable datagram protocol
- **◆ TCP (Transmission Control Protocol)**
 - connection-oriented, reliable, transport protocol

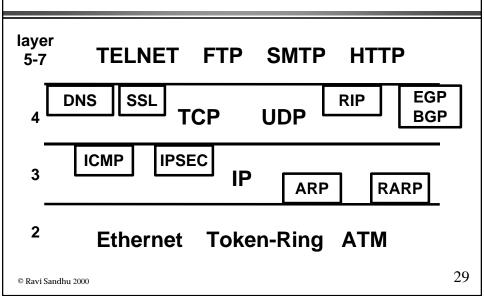

© Ravi Sandhu 2000

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

- ◆ TELNET: remote terminal
- ◆ FTP (File Transfer Protocol)
- **◆ TFTP (Trivial File Transfer Protocol)**
- **◆ SMTP (Simple Mail Transfer Protocol)**
- ◆ RPC (Remote Procedure Call)
- ◆ HTTP (Hyper Text Transfer Protocol)
- and others

© Ravi Sandhu 2000 26

TCP/IP PROTOCOL STACK INFRASTRUCTURE PROTOCOLS



TCP/IP PROTOCOL STACK INFRASTRUCTURE PROTOCOLS

- ◆ ICMP: Internet Control Message Protocol
- ◆ ARP: Address Resolution Protocol
- ◆ RARP: Reverse Address Resolution Protocol
- **◆ DNS: Domain Name Service**
- ◆ RIP: Routing Information Protocol
- ◆ BGP: Border Gateway Protocol
- ◆ EGP: External Gateway Protocol

© Ravi Sandhu 2000

TCP/IP PROTOCOL STACK SECURITY PROTOCOLS

INTERNET STANDARDS PROCESS

- ◆ IETF: Internet Engineering Task Force
 - Application Area
 - General Area
 - Internet Area
 - Operational Requirements Area
 - Routing Area
 - Security Area
 - Transport Area
 - User Services Area

© Ravi Sandhu 2000

IETF SECURITY AREA ACTIVE WORKING GROUPS

- ◆ IP Security Protocol (IPSEC)
- ◆ Transport Layer Security (TLS)
- ◆ Secure Shell (SECSH)
- ◆ Public Key Infrastructure X.509 (PKIX)
- ◆ Domain Name System Security (DNSSEC)
- ◆ S/MIME Mail Security (SMIME)
- ◆ Simple Public Key Infrastructure (SPKI)
- Common Authentication Technology (CAT)
- ♦ Web Transaction Security (WTS)
- ◆ One Time Password Authentication (OTP)
- Authenticated Firewall Traversal (AFT)
- An Open Specification for Pretty Good Privacy (OPENPGP)

© Ravi Sandhu 2000 31

RFCs AND IETF DRAFTS

- ◆ RFCs
 - Standards
 - Proposed Standard
 - Draft Standard
 - **Internet Standard**
 - Informational
 - Experimental
 - Historic
- IETF drafts
 - work in progress
 - expire after 6 months

MUST, SHOULD, MAY

- **◆ MUST**
 - mandatory, required of compliant implementations
- **◆ SHOULD**
 - strongly recommended but not required
- MAY
 - possibility
 - even if not stated a may is always allowed unless it violates MUST NOT

© Ravi Sandhu 2000 33

TCP/IP VULNERABILITIES

BASIC TCP/IP **VULNERABILITIES**

- many dangerous implementations of protocols
 - sendmail
- many dangerous protocols
 - NFS, X11, RPC
 - many of these are UDP based

© Ravi Sandhu 2000

35

BASIC TCP/IP **VULNERABILITIES**

- ◆ solution
 - allow a restricted set of protocols between selected external and internal machines
 - otherwise known as firewalls

© Ravi Sandhu 2000

IP PACKET

- ◆ header
- ◆ data
 - carries a layer 4 protocol
 - **■TCP**, UDP
 - or a layer 3 protocol
 - **■ICMP, IPSEC, IP**
 - or a layer 2 protocol
 - **IPX, Ethernet, PPP**

© Ravi Sandhu 2000 37

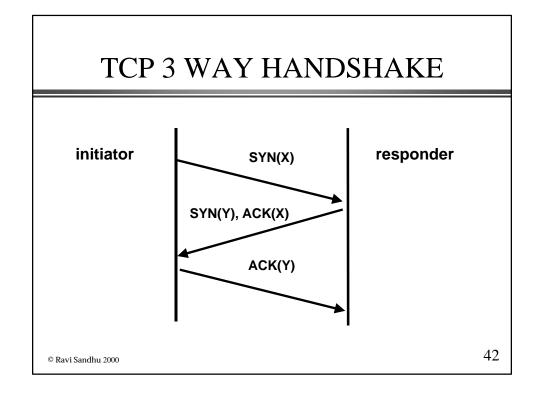
TCP INSIDE IP

IP TCP
HEADER

IP HEADER FORMAT

- version: 4bit, currently v4
- header length: 4 bit, length in 32 bit words
- TOS (type of service): unused
- ◆ total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- ◆ TTL (time to live): 8 bits, used as hop count
- Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet
- header checksum: 16 bit checksum
 source address: 32 bit IP address
- destination address: 32 bit IP address

© Ravi Sandhu 2000


IP HEADER FORMAT

- options
 - source routing
 - enables route of a packet and its response to be explicitly controlled
 - route recording
 - timestamping
 - security labels

© Ravi Sandhu 2000 40

TCP HEADER FORMAT

- ◆ source port number
 - source IP address + source port number is a socket: uniquely identifies sender
- destination port number
 - destination IP address + destination port number is a socket : uniquely identifies receiver
- ◆ SYN and ACK flags
- ◆ sequence number
- acknowledgement number

TCP SYN FLOODING ATTACK

- ◆ TCP 3 way handshake
 - send SYN packet with random IP source address
 - return SYN-ACK packet is lost
 - this half-open connection stays for a fairly long time out period
- ◆ Denial of service attack
- ◆ Basis for IP spoofing attack

© Ravi Sandhu 2000 43

IP SPOOFING

- ◆ Send SYN packet with spoofed source IP address
- ◆ SYN-flood real source so it drops SYN-ACK packet
- guess sequence number and send ACK packet to target
 - target will continue to accept packets and response packets will be dropped

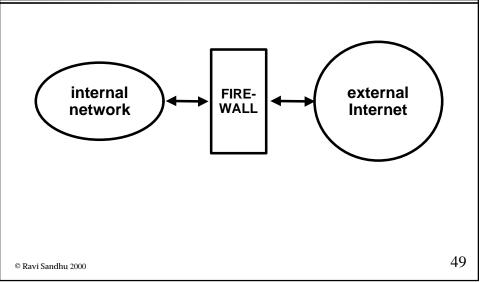
TCP SESSION HIJACKING

- ◆ Send RST packet with spoofed source IP address and appropriate sequence number to one end
- ◆ SYN-flood that end
- send ACK packets to target at other end

© Ravi Sandhu 2000 45

SMURF ATTACK

- ◆ Send ICMP ping packet with spoofed IP source address to a LAN which will broadcast to all hosts on the LAN
- ◆ Each host will send a reply packet to the spoofed IP address leading to denial of service

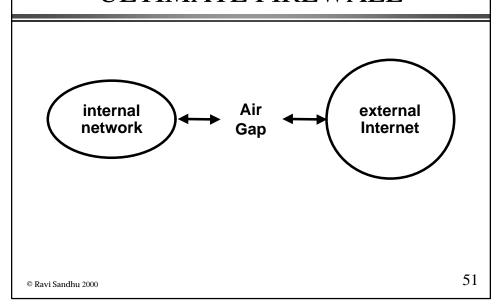

ULTIMATE VULNERABILITY

- ◆ IP packet carries no authentication of source address
- ♦ IP spoofing is possible
 - IP spoofing is a real threat on the Internet
 - IP spoofing occurs on other packet-switched networks also, such as Novell's IPX
- ◆ Firewalls do not solve this problem
- ◆ Requires cryptographic solutions

© Ravi Sandhu 2000 47

FIREWALLS

WHAT IS A FIREWALL?



WHAT IS A FIREWALL?

- all traffic between external and internal networks must go through the firewall
 - easier said than done
- firewall has opportunity to ensure that only suitable traffic goes back and forth
 - easier said than done

© Ravi Sandhu 2000

ULTIMATE FIREWALL

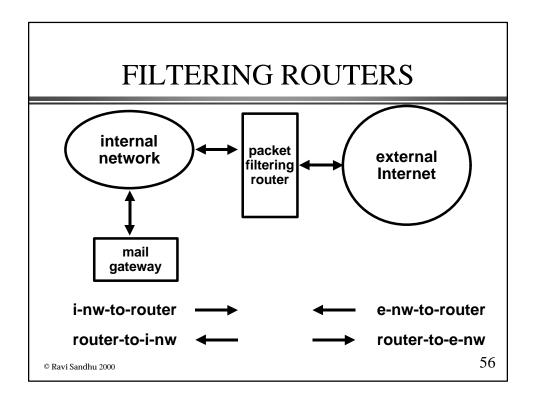
BENEFITS

- ◆ secure and carefully administer firewall machines to allow controlled interaction with external Internet
- internal machines can be administered with varying degrees of care
- ◆ does work

© Ravi Sandhu 2000

BASIC LIMITATIONS

- connections which bypass firewall
- services through the firewall introduce vulnerabilities
- insiders can exercise internal vulnerabilities
- ◆ performance may suffer
- ◆ single point of failure


© Ravi Sandhu 2000 53

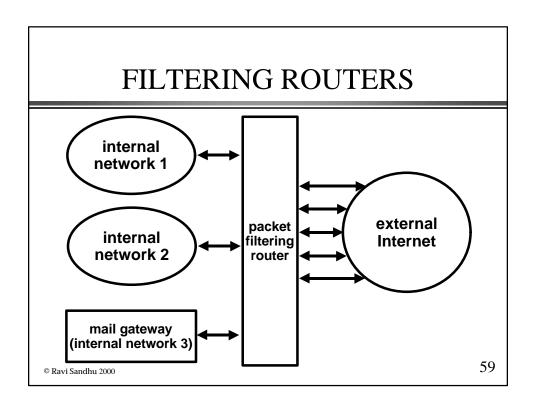
TYPES OF FIREWALLS

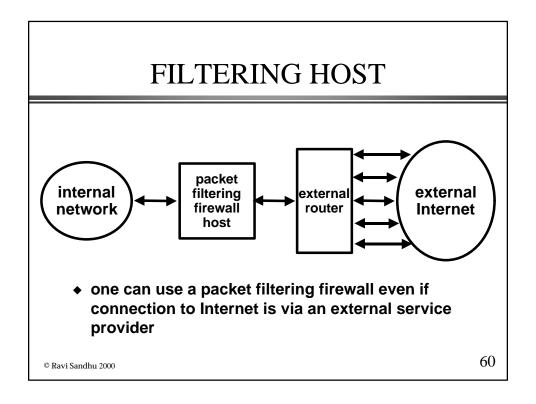
- ◆ Packet filtering firewalls
 - IP layer
- ◆ Application gateway firewalls
 - Application layer
- ◆ Circuit relay firewalls
 - **◆ TCP layer**
- ◆ Combinations of these

PACKET FILTERING FIREWALLS

- ◆ IP packets are filtered based on
 - source IP address + source port number
 - destination IP address + destination port number
 - protocol field: TCP or UDP
 - ◆ TCP protocol flag: SYN or ACK

PACKET FILTERING FIREWALLS


- drop packets based on filtering rules
- ◆ static (stateless) filtering
 - no context is kept
- dynamic (statefull) filtering
 - keeps context


© Ravi Sandhu 2000

PACKET FILTERING FIREWALLS

- ◆ Should never allow packet with source address of internal machine to enter from external internet
- ◆ Cannot trust source address to allow selective access from outside

© Ravi Sandhu 2000 58

PACKET FILTERING FIREWALLS

- packet filtering is effective for coarse-grained controls
- not so effective for fine-grained control
 - can do: allow incoming telnet from a particular host
 - cannot do: allow incoming telnet from a particular user

© Ravi Sandhu 2000 61

APPLICATION GATEWAY FIREWALLS application internal external gateway external network firewall router Internet host **SIMPLEST** CONFIGURATION 62 © Ravi Sandhu 2000

APPLICATION PROXIES

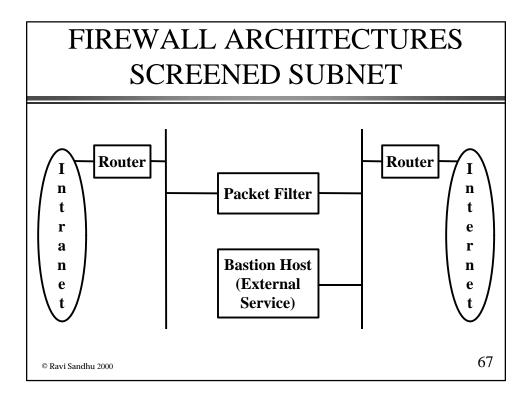
- have to be implemented for each service
- may not be safe (depending on service)

© Ravi Sandhu 2000

63

CLIENT-SIDE PROXIES Internal-Client External-Server

- allow outgoing http for web access to external machines from internal users
- ◆ requires some client configuration


© Ravi Sandhu 2000

SERVER-SIDE PROXIES External-Client Internal-Server

- allow incoming telnet for access to selected internal machines from selected external users
- requires some cryptographic protection to thwart sniffing and IP spoofing
- ◆ becoming increasingly important for
 - electronic commerce
 - VPN
 - remote access security

© Ravi Sandhu 2000

FIREWALL ARCHITECTURES **DUAL HOMED HOST** Router Router **Bastion Host** n n (Application t t Gateway) r \mathbf{e} a r **Bastion Host** n n (External e e Service) 66 © Ravi Sandhu 2000

INTRUSION DETECTION

RELATED TECHNOLOGIES

- Intrusion detection
- ◆ Vulnerability assessment
- ◆ Incident response
- ◆ Honey pots
- ◆ Sniffer probes

© Ravi Sandhu 2000

69

INTRUSION DETETCION TECHNIQUES

- Policy detection (or knowledge-based)
 - default permit
 - attack-signature based detection
 - also called misuse detection
 - default deny
 - specification-based detection
- ◆ Anomaly detection (or behavior-based)
 - requires user profiling
 - requires some learning capability in the system
- Combinations of these

© Ravi Sandhu 2000

INTRUSION DETECTION DATA SOURCE

- network-based intrusion detection
 - multiple sensor points
- ♦ host-based intrusion detection
 - multi-host based
- ◆ application-based intrusion detection
- combinations of these

© Ravi Sandhu 2000 71

ATTACKER

- ◆ Outsider
 - easier
- ◆ insider
 - harder

© Ravi Sandhu 2000

Lectures 1 and 2

INTRUSION DETECTION ISSUES

- ◆ effectiveness
- ◆ efficiency
- **◆** security
- ◆ inter-operability
- ◆ ease of use
- ◆ transparency

© Ravi Sandhu 2000

INTRUSION DETECTION CHALLENGES

- ◆ False alarm rate
- ◆ Performance and scalability

© Ravi Sandhu 2000

74

BASE RATE FALLACY

- Test for a disease is 99% accurate
 - 100 disease-free people tested, 99 test negative
 - 100 diseased people tested, 99 test positive
- ◆ Prevalence of disease is 1 in 10,000
- Alice tests positive
- ♦ What is probability Alice has the disease?

© Ravi Sandhu 2000

75

BASE RATE FALLACY

- ◆ Test for a disease is 99% accurate
 - 100 disease-free people tested, 99 test negative
 - 100 diseased people tested, 99 test positive
- ◆ Prevalence of disease is 1 in 10,000
- ◆ Alice tests positive
- What is probability Alice has the disease?1 in 100
- ◆ False alarm rate: 99 in 100 !!!!!

© Ravi Sandhu 2000

BASE RATE FALLACY BAYE'S THEOREM

◆ population: 1,000,000

♦ diseased: 100

◆ disease free: 999,900◆ false positive: 9,999

◆ true positive: 99

◆ Alice's chance of disease: 99/(9,999+99) = 1/100

© Ravi Sandhu 2000

BASE RATE FALLACY 99.99% ACCURACY

◆ population: 1,000,000

♦ diseased: 100

◆ disease free: 999,900◆ false positive: 99.99◆ true positive: 99.99

◆ Alice's chance of disease: 99.99/(99.99+99.99) = 1/2

NETWORK-BASED INTRUSION DETECTION SIGNATURES

- port signatures
- ◆ header signatures
- ◆ string signatures

© Ravi Sandhu 2000

79

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- ◆ Complements firewalls
- broad visibility into network activity
- ◆ no impact on network performance
- ◆ transparent installation

© Ravi Sandhu 2000

NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

- ◆ False positives
- miss new unknown attacks
- scalability with high-speed networks
- passive stance
- emergence of switched Ethernet

© Ravi Sandhu 2000

81

HOST-BASED INTRUSION DETECTION

- host wrappers or personal firewalls
 - look at all network packets, connection attempts, or login attempts to the monitored machine
 - **■** example, tcp-wrapper
- host-based agents
 - monitor accesses and changes to critical system files and changes in user privilege
 - **■** example, tripwire

© Ravi Sandhu 2000

INTRUSION DETECTION STANDARDS

- None exist
- ongoing efforts
 - CIDF: common intrusion detection framework
 for sharing information
 - IETF Intrusion Detection Working Group just started

© Ravi Sandhu 2000

INTRUSION DETECTION

- ◆ Needs to integrate with other security technologies such as cryptography and access control
- one component of defense-in-depth layered security strategy
- incident-response and recovery are important considerations