INFS 766 Internet Security Protocols

Lectures 1 and 2 Firewalls

Prof. Ravi Sandhu

OPENING REMARKS

COURSE PREREQUISITE

* Must have completed INFS 612 or equivalent

- concurrent enrollment in INFS 612 does <u>not</u> satisfy prerequisite
- Must be familiar with Discrete Mathematics and Formal Notation (such as INFS 501)
- * INFS 762 is not required as a prerequisite
- * Must be internet, web and pdf capable
- * This is a protocols-oriented course
 - without these prerequisites you will have a hard time and will get no sympathy from me

3

SC	HEDU	JLE (OF CLAS	SES
				1
	01/17/01	1	Firewalls	
	01/24/01	2	Firewalls	
	01/31/01			
	02/07/01	3	Cryptography	
	02/14/01	4	Cryptography	
	02/21/01	5	SSL	1
	02/28/01	exam 1	lectures 1-5	1
	03/07/01		Spring Break	1
	03/14/01	6	Digital Certificates	1
	03/21/01	7	IPSEC	1
	03/28/01	8	IPSEC	1
	04/04/01	9	Kerberos	1
	04/11/01	-	no lecture	1
	04/18/01	10	Radius, OCSP	1
	04/25/01	11	Secure Email	1
	05/02/01	exam 2	lectures 7-12	1

GRADING

7

- * Two in-class closed book exams
- Equal weightage
- * Each lecture is important

- * source for RFCs and IETF
 - http://www.ietf.org
- * cryptographic sources
 - RSA's frequently asked questions: <u>http://www.rsasecurity.com/rsalabs/faq/index.html</u>
 - > NIST encryption home page: http://csrc.nist.gov/encryption/
- * firewall sources
 - > Firewalls frequently asked questions: http://www.interhack.net/pubs/fwfaq/

INTERNET INSECURITY

* Internet insecurity spreads at Internet speed

- Morris worm of 1987
- > Password sniffing attacks in 1994
- > IP spoofing attacks in 1995
- > Denial of service attacks in 1996
- > Email borne viruses 1999
- > Distributed denial of service attacks 2000

Internet insecurity grows at super-Internet speed

 security incidents are growing faster than the Internet (which has roughly doubled every year since 1988)

11

THREATS, VULNERABILITIES ASSETS AND RISK

- *** THREATS are possible attacks**
- *** VULNERABILITIES are weaknesses**
- ASSETS are information and resources that need protection
- RISK requires assessment of threats, vulnerabilities and assets

INTRUSION SCENARIOS

CLASSICAL INTRUSIONS SCENARIO 1

Insider attack

> The insider is already an authorized user

Insider acquires privileged access

- > exploiting bugs in privileged system programs
- > exploiting poorly configured privileges
- Install backdoors/Trojan horses to facilitate subsequent acquisition of privileged access

CLASSICAL INTRUSIONS SCENARIO 2

*** Outsider attack**

 Acquire access to an authorized account

***** Perpetrate an insider attack

21

NETWORK INTRUSIONS SCENARIO 3

- *** Outsider/Insider attack**
- Spoof network protocols to effectively acquire access to an authorized account

© Ravi Sandhu 2001

 Flooding network ports with attack source masking

© Ravi Sandhu 2001

 TCP/SYN flooding of internet service providers in 1996

TCP/IP PROTOCOL STACK BASIC PROTOCOLS

© Ravi Sandhu 2001

30

INF	TCP/IP PROTOCOL STACK FRASTRUCTURE PROTOCOLS				
layer 5-7	TELNET FTP SMTP HTTP etc				
4	DNS TCP UDP RIP EGP BGP				
3	ICMP IP ARP RARP				
² Ethernet Token-Ring ATM PPP etc					
© Ravi Sandl	u 2001 31				

TCP/IP PROTOCOL STACK SECURITY PROTOCOLS	
layer 5-7 TELNET FTP SMTP HTTP	
4 DNS SSL TCP UDP RIP EGP BGP	
3 ICMP IPSEC IP ARP RARP	
² Ethernet Token-Ring ATM	
© Ravi Sandhu 2001 3	3

INTERNET STANDARDS PROCESS

- * IETF: Internet Engineering Task Force
 - > Application Area
 - > General Area
 - > Internet Area
 - > Operational Requirements Area
 - > Routing Area
 - > Security Area
 - > Transport Area
 - > User Services Area

- * An Open Specification for Pretty Good Privacy (openpgp)
- Authenticated Firewall Traversal (aft)
- Common Authentication Technology (cat)
 IP Security Policy (insp)
- IP Security Policy (ipsp)
 IP Security Protocol (ipsoc)
- IP Security Protocol (ipsec)
 IP Security Parente Access (incr
- IP Security Remote Access (ipsra)
 Intrusion Detection Exchange Format (idwg)
- Kerberized Internet Negotiation of Keys (kink)
- * Kerberos WG (krb-wg)
- One Time Password Authentication (otp)
- * Public-Key Infrastructure (X.509) (pkix)
- S/MIME Mail Security (smime)
- * Secure Network Time Protocol (stime)
- * Secure Shell (secsh)

© Ravi Sandhu 2001

- Securely Available Credentials (sacred)
- * Security Issues in Network Event Logging (syslog)
- Simple Public Key Infrastructure (spki)
- Transport Layer Security (tls)
- * Web Transaction Security (wts)
- XML Digital Signatures (xmldsig)

many dangerous implementations of protocols

- > sendmail
- * many dangerous protocols
 - > NFS, X11, RPC
 - > many of these are UDP based

© Ravi Sandhu 2001

BASIC TCP/IP VULNERABILITIES

* solution

- allow a restricted set of protocols between selected external and internal machines
- > otherwise known as firewalls

© Ravi Sandhu 2001

IP HEADER FORMAT

- * version: 4bit, currently v4
- * header length: 4 bit, length in 32 bit words
- * TOS (type of service): unused
- total length: 16 bits, length in bytes
- identification, flags, fragment offset: total 16 bits used for packet fragmentation and reassembly
- * TTL (time to live): 8 bits, used as hop count
- Protocol: 8 bit, protocol being carried in IP packet, usually TCP, UDP but also ICMP, IPSEC, IP, IPX, PPP, Ethernet

43

- header checksum: 16 bit checksum
- * source address: 32 bit IP address
- * destination address: 32 bit IP address

TCP SYN FLOODING ATTACK

> send SYN packet with random IP source address

47

- > return SYN-ACK packet is lost
- > this half-open connection stays for a fairly long time out period
- * Denial of service attack
- ***** Basis for IP spoofing attack

PACKET FILTERING FIREWALLS

- Should never allow packet with source address of internal machine to enter from external internet
- Cannot trust source address to allow selective access from outside

 requires some cryptographic protection to thwart sniffing and IP spoofing

69

- * becoming increasingly important for
 - > electronic commerce
 - > VPN
 - remote access security

- Intrusion detection
- Vulnerability assessment
- * Incident response
- * Honey pots

© Ravi Sandhu 2001

Sniffer probes

INTRUSION DETETCION TECHNIQUES

- * Policy detection (or knowledge-based)
 - > default permit
 - attack-signature based detection
 - also called misuse detection
 - > default deny
 - specification-based detection
- * Anomaly detection (or behavior-based)
 - requires user profiling
 - requires some learning capability in the system
- * Combinations of these

INTRUSION DETECTION DATA SOURCE

network-based intrusion detection
multiple sensor points
host-based intrusion detection
multi-host based
application-based intrusion detection
combinations of these

© Ravi Sandhu 2001

INTRUSION DETECTION CHALLENGES

- * False alarm rate
- * Performance and scalability

BASE RATE FALLACY

***** Test for a disease is 99% accurate

- > 100 disease-free people tested, 99 test negative
- > 100 diseased people tested, 99 test positive
- * Prevalence of disease is 1 in 10,000
- * Alice tests positive
- * What is probability Alice has the disease?

© Ravi Sandhu 2001

BASE RATE FALLACY BAYE'S THEOREM

© Ravi Sandhu 2001

BASE RATE FALLACY 99.99% ACCURACY

- * population: 1,000,000
- * diseased: 100
- * disease free: 999,900
- * false positive: 99.99
- * true positive: 99.99
- * Alice's chance of disease: 99.99/(99.99+99.99) = 1/2

© Ravi Sandhu 2001

NETWORK-BASED INTRUSION DETECTION SIGNATURES

NETWORK-BASED INTRUSION DETECTION ADVANTAGES

- ***** Complements firewalls
- * broad visibility into network activity
- * no impact on network performance
- * transparent installation

© Ravi Sandhu 2001

NETWORK-BASED INTRUSION DETECTION DISADVANTAGES

***** False positives

* miss new unknown attacks

- * scalability with high-speed networks
- * passive stance
- * emergence of switched Ethernet

HOST-BASED INTRUSION DETECTION

* host wrappers or personal firewalls

- look at all network packets, connection attempts, or login attempts to the monitored machine
 - example, tcp-wrapper

* host-based agents

- > monitor accesses and changes to critical system files and changes in user privilege
 - example, tripwire

© Ravi Sandhu 2001

INTRUSION DETECTION STANDARDS

None exist

- * ongoing efforts
 - > CIDF: common intrusion detection framework
 - for sharing information
 - > IETF Intrusion Detection Working Group just started

87

