INFS 766
Internet Security Protocols

Lecture 9
Kerberos

Prof. Ravi Sandhu
PHYSICAL SECURITY

- CLIENT WORKSTATIONS
 - None, so cannot be trusted

- SERVERS
 - Moderately secure rooms, with moderately diligent system administration

- KERBEROS
 - Highly secure room, with extremely diligent system administration

KERBEROS OBJECTIVES

- provide authentication between any pair of entities
- primarily used to authenticate user-at-workstation to server
- in general, can be used to authenticate two or more secure hosts to each other on an insecure network
- servers can build authorization and access control services on top of Kerberos
TRUST: BILATERAL RHOSTS MODEL

A trusts B
A will allow users logged onto B to log onto A without a password

TRUST: CONSOLIDATED KERBEROS MODEL
TRUST:
CONSOLIDATED KERBEROS MODEL

- breaking into one host provides a cracker no advantage in breaking into other hosts
- authentication systems can be viewed as trust propagation systems
 - the Kerberos model is a centralized star model
 - the rhosts model is a tangled web model

WHAT KERBEROS DOES NOT DO

- makes no sense on an isolated system
- does not mean that host security can be allowed to slip
- does not protect against Trojan horses
- does not protect against viruses/worms
KERBEROS DESIGN GOALS

- **IMPECCABILITY**
 - no cleartext passwords on the network
 - no client passwords on servers (server must store secret server key)
 - minimum exposure of client key on workstation (smartcard solution would eliminate this need)

- **CONTAINMENT**
 - compromise affects only one client (or server)
 - limited authentication lifetime (8 hours, 24 hours, more)

- **TRANSPARENCY**
 - password required only at login
 - minimum modification to existing applications

KERBEROS DESIGN DECISIONS

- Uses timestamps to avoid replay. Requires time synchronized within a small window (5 minutes)
- Uses DES-based symmetric key cryptography
- stateless
KERBEROS VERSIONS

- We describe Kerberos version 4 as the base version.
- Kerberos version 5 fixes many shortcomings of version 4, and is described here by explaining major differences with respect to version 4.

NOTATION

c client principal
s server principal
K_x secret key of “x” (known to x and Kerberos)
K_{c,s} session key for “c” and “s” (generated by Kerberos and distributed to c and s)
\{P\}K_q P encrypted with K_q
T_{c,s} ticket for “c” to use “s” (given by Kerberos to c and verified by s)
A_{c,s} authenticator for “c” to use “s” (generated by c and verified by s)
TICKETS AND AUTHENTICATORS

- $T_{c,s} = \{s, c, addr, time_o, life, K_{c,s}\}K_s$
- $A_{c,s} = \{c, addr, time_a\}K_{c,s}$
- $addr$ is the IP address, adds little removed in version 5

SESSION KEY DISTRIBUTION

1. Kerberos
2. Client
3. Server

- c, s \rightarrow $\{T_{c,s}, K_{c,s}\}K_c$
- $T_{c,s}, A_{c,s}$
USER AUTHENTICATION

- for user to server authentication, client key is the user’s password (converted to a DES key via a publicly known algorithm)

TRUST IN WORKSTATION

- untrusted client workstation has K_c
- is expected to delete it after decrypting message in step 2
- compromised workstation can compromise one user
- compromise does not propagate to other users
AUTHENTICATION FAILURES

- Ticket decryption by server yields garbage
- Ticket timed out
- Wrong source IP address
- Replay attempt

KERBEROS IMPERSONATION

- Active intruder on the network can cause denial of service by impersonation of Kerberos IP address
- Network monitoring at multiple points can help detect such an attack by observing IP impersonation
KERBEROS RELIABILITY

- availability enhanced by keeping slave Kerberos servers with replicas of the Kerberos database
- slave databases are read only
- simple propagation of updates from master to slaves

USE OF THE SESSION KEY

- Kerberos establishes a session key $K_{c,s}$
- session key can be used by the applications for
 - client to server authentication (no additional step required in the protocol)
 - mutual authentication (requires fourth message from server to client $\{f(A_{c,s})\}K_{c,s}$, where f is some publicly known function)
 - message confidentiality using $K_{c,s}$
 - message integrity using $K_{c,s}$
TICKET-GRANTING SERVICE

- **Problem: Transparency**
 - user should provide password once upon initial login, and should not be asked for it on every service request
 - workstation should not store the password, except for the brief initial login

- **Solution: Ticket-Granting Service (TGS)**
 - store session key on workstation in lieu of password
 - TGS runs on same host as Kerberos (needs access to K_c and K_s keys)

TICKET-GRANTING SERVICE

![Diagram of Kerberos and TGS exchange](Image)

1. $c, tgs \rightarrow \text{Kerberos}$
2. $\{T_{c,tgs}, K_{c,tgs}\} \rightarrow \text{Client}$

- **Client**
- **Kerberos**

- **1.** C, TGS
- **2.** $\{T_{c,tgs}, K_{c,tgs}\}K_c$

deleted from workstation after this exchange (have to trust the workstation)

retained on the workstation
TICKET-GRANTING SERVICE

TGS

\[T_{c,tgs}, A_{c,tgs}, s \]

\[\{ T_{c,s}, K_{c,s} \} K_{c,tgs} \]

Client

Server

\[T_{c,s}, A_{c,s} \]

TICKET LIFETIME

- Life time is minimum of:
 - requested life time
 - max lifetime for requesting principal
 - max lifetime for requesting service
 - max lifetime of ticket granting ticket

- Max lifetime is 21.5 hours
NAMING

- Users and servers have same name format:
 - name.instance@realm
- Example:
 - sandhu@isse.gmu.edu
 - sandhu.root@isse.gmu.edu
 - rcmd.ipc4@isse.gmu.edu
 - rcmd.csis@isse.gmu.edu
- Mapping of Kerberos authentication names to local system names is left up to service provider

KERBEROS V5 ENHANCEMENTS

- Naming
 - Kerberos V5 supports V4 names, but also provides for other naming structures such as X.500 and DCE
- Timestamps
 - V4 timestamps are Unix timestamps (seconds since 1/1/1970). V5 timestamps are in OSI ASN.1 format.
- Ticket lifetime
 - V4 tickets valid from time of issue to expiry time, and limited to 21.5 hours.
 - V5 tickets have start and end timestamps. Maximum lifetime can be set by realm.
KERBEROS V5 ENHANCEMENTS

- Kerberos V5 tickets are renewable, so service can be maintained beyond maximum ticket lifetime.
- Ticket can be renewed until min of:
 - requested end time
 - start time + requesting principal’s max renewable lifetime
 - start time + requested server’s max renewable lifetime
 - start time + max renewable lifetime of realm

KERBEROS INTER-REALM AUTHENTICATION

Kerberos Realm 1

\[\text{shared secret key}\]

client

Kerberos Realm 2

server
KERBEROS INTER-REALM AUTHENTICATION

- Kerberos V4 limits inter-realm interaction to realms which have established a shared secret key
- Kerberos V5 allows longer paths
- For scalability one may need public-key technology for inter-realm interaction

KERBEROS DICTIONARY ATTACK

- First two messages reveal known-plaintext for dictionary attack
- first message can be sent by anyone
- Kerberos v5 has pre-authentication option to prevent this attack