INFS 766
Internet Security Protocols

Lecture 9
Kerberos

Prof. Ravi Sandhu

SYSTEM MODEL

WORK-STATIONS
WS
WS
WS
WS
SERVERS
NFS
GOPHER
LIBRARY
KERBEROS

PHYSICAL SECURITY

- CLIENT WORKSTATIONS
 - None, so cannot be trusted
- SERVERS
 - Moderately secure rooms, with moderately diligent system administration
- KERBEROS
 - Highly secure room, with extremely diligent system administration

KERBEROS OBJECTIVES

- provide authentication between any pair of entities
- primarily used to authenticate user-at-workstation to server
- in general, can be used to authenticate two or more secure hosts to each other on an insecure network
- servers can build authorization and access control services on top of Kerberos

TRUST:
BILATERAL RHOSTS MODEL

A trusting B
A will allow users logged onto B to log onto A without a password

TRUST:
CONSOLIDATED KERBEROS MODEL

A trusting B, C, D, E, F
KERBEROS
TRUST: CONSOLIDATED KERBEROS MODEL

- breaking into one host provides a cracker no advantage in breaking into other hosts
- authentication systems can be viewed as trust propagation systems
 - the Kerberos model is a centralized star model
 - the rhosts model is a tangled web model

WHAT KERBEROS DOES NOT DO

- makes no sense on an isolated system
- does not mean that host security can be allowed to slip
- does not protect against Trojan horses
- does not protect against viruses/worms

KERBEROS DESIGN GOALS

- IMPECCABILITY
 - no cleartext passwords on the network
 - no client passwords on servers (server must store secret server key)
 - minimum exposure of client key on workstation (smartcard solution would eliminate this need)
- CONTAINMENT
 - compromise affects only one client (or server)
 - limited authentication lifetime (8 hours, 24 hours, more)
- TRANSPARENCY
 - password required only at login
 - minimum modification to existing applications

KERBEROS DESIGN DECISIONS

- Uses timestamps to avoid replay.
 Requires time synchronized within a small window (5 minutes)
- Uses DES-based symmetric key cryptography
- stateless

KERBEROS VERSIONS

- We describe Kerberos version 4 as the base version
- Kerberos version 5 fixes many shortcomings of version 4, and is described here by explaining major differences with respect to version 4

NOTATION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>client principal</td>
</tr>
<tr>
<td>s</td>
<td>server principal</td>
</tr>
<tr>
<td>Kx</td>
<td>secret key of “x” (known to x and Kerberos)</td>
</tr>
<tr>
<td>Kc,s</td>
<td>session key for “c” and “s” (generated by Kerberos and distributed to c and s)</td>
</tr>
<tr>
<td>(P)Ko</td>
<td>P encrypted with Ko</td>
</tr>
<tr>
<td>Tc,s</td>
<td>ticket for “c” to use “s” (given by Kerberos to c and verified by s)</td>
</tr>
<tr>
<td>Ac,s</td>
<td>authenticator for “c” to use “s” (generated by c and verified by s)</td>
</tr>
</tbody>
</table>
TICKETS AND AUTHENTICATORS

\[T_{c,s} = \{ s, c, \text{addr}, \text{time}_o, \text{life}, K_{c,s} \} K_s \]
\[A_{c,s} = \{ c, \text{addr}, \text{time}_a \} K_{c,s} \]

addr is the IP address, adds little removed in version 5

SESSION KEY DISTRIBUTION

USER AUTHENTICATION

for user to server authentication, client key is the user's password (converted to a DES key via a publicly known algorithm)

TRUST IN WORKSTATION

untrusted client workstation has \(K_c \)
is expected to delete it after decrypting message in step 2
compromised workstation can compromise one user
compromise does not propagate to other users

AUTHENTICATION FAILURES

Ticket decryption by server yields garbage
Ticket timed out
Wrong source IP address
Replay attempt

KERBEROS IMPERSONATION

active intruder on the network can cause denial of service by impersonation of Kerberos IP address
network monitoring at multiple points can help detect such an attack by observing IP impersonation
KERBEROS RELIABILITY

- Availability enhanced by keeping slave Kerberos servers with replicas of the Kerberos database
- Slave databases are read only
- Simple propagation of updates from master to slaves

USE OF THE SESSION KEY

- Kerberos establishes a session key $K_{c,s}$
- Session key can be used by the applications for
 - Client to server authentication (no additional step required in the protocol)
 - Mutual authentication (requires fourth message from server to client $((T_c,s)K_{c,s})f(A_c)$, where f is some publicly known function)
 - Message confidentiality using $K_{c,s}$
 - Message integrity using $K_{c,s}$

TICKET-GRANTING SERVICE

- Problem: Transparency
 - User should provide password once upon initial login, and should not be asked for it on every service request
 - Workstation should not store the password, except for the brief initial login
- Solution: Ticket-Granting Service (TGS)
 - Store session key on workstation in lieu of password
 - TGS runs on same host as Kerberos (needs access to K_c and K_s keys)

TICKET LIFETIME

- Life time is minimum of:
 - Requested life time
 - Max lifetime for requesting principal
 - Max lifetime for requesting service
 - Max lifetime of ticket granting ticket
- Max lifetime is 21.5 hours
NAMING

- Users and servers have same name format:
 - name.instance@realm
- Example:
 - sandhu@isse.gmu.edu
 - sandhu.root@isse.gmu.edu
 - rcmd.ipc4@isse.gmu.edu
 - rcmd.csis@isse.gmu.edu
- Mapping of Kerberos authentication names to local system names is left up to service provider

KERBEROS V5 ENHANCEMENTS

- Naming
 - Kerberos V5 supports V4 names, but also provides for other naming structures such as X.500 and DCE
- Timestamps
 - V4 timestamps are Unix timestamps (seconds since 1/1/1970). V5 timestamps are in OSI ASN.1 format.
- Ticket lifetime
 - V4 tickets valid from time of issue to expiry time, and limited to 21.5 hours.
 - V5 tickets have start and end timestamps. Maximum lifetime can be set by realm.

KERBEROS V5 ENHANCEMENTS

- Kerberos V5 tickets are renewable, so service can be maintained beyond maximum ticket lifetime.
- Ticket can be renewed until min of:
 - requested end time
 - start time + requesting principal’s max renewable lifetime
 - start time + requested server’s max renewable lifetime
 - start time + max renewable lifetime of realm

KERBEROS INTER-REALM AUTHENTICATION

- Kerberos V4 limits inter-realm interaction to realms which have established a shared secret key
- Kerberos V5 allows longer paths
- For scalability one may need public-key technology for inter-realm interaction

KERBEROS INTER-REALM AUTHENTICATION

KERBEROS DICTIONARY ATTACK

- First two messages reveal known-plaintext for dictionary attack
- first message can be sent by anyone
- Kerberos v5 has pre-authentication option to prevent this attack