INFS 767 Fall 2000

The RBAC96 Model

Prof. Ravi Sandhu
George Mason University

AUTHORIZATION, TRUST AND RISK

- Information security is fundamentally about managing
 - authorization and
 - trust
 so as to manage risk
SOLUTIONS

- OM-AM
- RBAC
- PKI
- and others

THE OM-AM WAY

<table>
<thead>
<tr>
<th>What?</th>
<th>Assurance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Mechanism</td>
<td></td>
</tr>
</tbody>
</table>

| How? |
|-------------|-----------|
| Assurance | |
LAYERS AND LAYERS

- Multics rings
- Layered abstractions
- Waterfall model
- Network protocol stacks
- OM-AM

OM-AM AND MANDATORY ACCESS CONTROL (MAC)

<table>
<thead>
<tr>
<th>What?</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No information leakage</td>
<td>Security labels</td>
</tr>
<tr>
<td>Lattices (Bell-LaPadula)</td>
<td>Security kernel</td>
</tr>
</tbody>
</table>

© Ravi Sandhu 2000
OM-AM AND DISCRETIONARY ACCESS CONTROL (DAC)

<table>
<thead>
<tr>
<th>What?</th>
<th>Owner-based discretion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>numerous</td>
</tr>
<tr>
<td></td>
<td>numerous</td>
</tr>
<tr>
<td></td>
<td>ACLs, Capabilities, etc</td>
</tr>
</tbody>
</table>

| How? | Assurance |

OM-AM AND ROLE-BASED ACCESS CONTROL (RBAC)

<table>
<thead>
<tr>
<th>What?</th>
<th>Policy neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RBAC96</td>
</tr>
<tr>
<td></td>
<td>user-pull, server-pull, etc.</td>
</tr>
<tr>
<td></td>
<td>certificates, tickets, PACs, etc.</td>
</tr>
</tbody>
</table>

| How? | Assurance |

© Ravi Sandhu 2000
ROLE-BASED ACCESS CONTROL (RBAC)

- A user’s permissions are determined by the user’s roles
 - rather than identity or clearance
 - roles can encode arbitrary attributes
- multi-faceted
- ranges from very simple to very sophisticated

WHAT IS THE POLICY IN RBAC?

- RBAC is a framework to help in articulating policy
- The main point of RBAC is to facilitate security management
RBAC SECURITY PRINCIPLES

- least privilege
- separation of duties
- separation of administration and access
- abstract operations

RBAC96
IEEE Computer Feb. 1996

- Policy neutral
- can be configured to do MAC
 - roles simulate clearances (ESORICS 96)
- can be configured to do DAC
 - roles simulate identity (RBAC98)
WHAT IS RBAC?

- multidimensional
- open ended
- ranges from simple to sophisticated

RBAC CONUNDRUM

- turn on all roles all the time
- turn on one role only at a time
- turn on a user-specified subset of roles
RBAC96 FAMILY OF MODELS

RBAC3
ROLE HIERARCHIES + CONSTRAINTS

RBAC1
ROLE HIERARCHIES

RBAC0
BASIC RBAC

RBAC0

USER-ROLE ASSIGNMENT
PERMISSION-ROLE ASSIGNMENT

SESSIONS

© Ravi Sandhu 2000
PERMISSIONS

- Primitive permissions
 - read, write, append, execute
- Abstract permissions
 - credit, debit, inquiry

PERMISSIONS

- System permissions
 - auditorObject permissions
 - read, write, append, execute, credit, debit, inquiry
PERMISSIONS

- Permissions are positive
- No negative permissions or denials
 - negative permissions and denials can be handled by constraints
- No duties or obligations
 - outside scope of access control

ROLES AS POLICY

- A role brings together
 - a collection of users and
 - a collection of permissions
- These collections will vary over time
 - A role has significance and meaning beyond the particular users and permissions brought together at any moment
ROLES VERSUS GROUPS

- Groups are often defined as
 - a collection of users

- A role is
 - a collection of users and
 - a collection of permissions

- Some authors define role as
 - a collection of permissions

USERS

- Users are
 - human beings or
 - other active agents

- Each individual should be known as exactly one user
USER-ROLE ASSIGNMENT

- A user can be a member of many roles
- Each role can have many users as members

SESSIONS

- A user can invoke multiple sessions
- In each session a user can invoke any subset of roles that the user is a member of
PERMISSION-ROLE ASSIGNMENT

- A permission can be assigned to many roles
- Each role can have many permissions

MANAGEMENT OF RBAC

- Option 1:
 USER-ROLE-ASSIGNMENT and PERMISSION-ROLE ASSIGNMENT can be changed only by the chief security officer
- Option 2:
 Use RBAC to manage RBAC
RBAC1

ROLE HIERARCHIES

USER-ROLE ASSIGNMENT

PERMISSION-ROLE ASSIGNMENT

USERS

ROLES

PERMISSIONS

SESSIONS

HIERARCHICAL ROLES

Primary-Care Physician

Specialist Physician

Physician

Health-Care Provider
HIERARCHICAL ROLES

Supervising Engineer

Hardware Engineer
Software Engineer

Engineer

PRIVATE ROLES

Hardware Engineer
Supervising Engineer
Software Engineer

Hardware Engineer
Software Engineer

Engineer
EXAMPLE ROLE HIERARCHY

Director (DIR)

Project Lead 1 (PL1)
- Production 1 (P1)
- Quality 1 (Q1)
 - Engineer 1 (E1)

Project Lead 2 (PL2)
- Production 2 (P2)
- Quality 2 (Q2)
 - Engineer 2 (E2)

Engineering Department (ED)

Employee (E)

PROJECT 1

PROJECT 2
EXAMPLE ROLE HIERARCHY

Director (DIR)

Project Lead 1 (PL1)
 Production 1 (P1)
 Engineer 1 (E1)
 Quality 1 (Q1)

Project Lead 2 (PL2)
 Production 2 (P2)
 Engineer 2 (E2)
 Quality 2 (Q2)

PROJECT 1

PROJECT 2
RBAC3

ROLE HIERARCHIES

- USER-ROLE ASSIGNMENT
- PERMISSIONS-ROLE ASSIGNMENT

USERS → **ROLES** → **PERMISSIONS**

SESSIONS → **CONSTRANTS**

CONSTRAINTS

- **Mutually Exclusive Roles**
 - Static Exclusion: The same individual can never hold both roles
 - Dynamic Exclusion: The same individual can never hold both roles in the same context
CONSTRAINTS

- **Mutually Exclusive Permissions**
 - Static Exclusion: The same role should never be assigned both permissions
 - Dynamic Exclusion: The same role can never hold both permissions in the same context

- **Cardinality Constraints on User-Role Assignment**
 - At most \(k \) users can belong to the role
 - At least \(k \) users must belong to the role
 - Exactly \(k \) users must belong to the role
CONSTRAINTS

- Cardinality Constraints on Permissions-Role Assignment
 - At most k roles can get the permission
 - At least k roles must get the permission
 - Exactly k roles must get the permission