AUTHORIZATION, TRUST AND RISK

- Information security is fundamentally about managing
 - authorization and
 - trust
 so as to manage risk
THE OM-AM WAY

<table>
<thead>
<tr>
<th>What?</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Assurance</td>
</tr>
<tr>
<td>Model</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
</tr>
<tr>
<td>Mechanism</td>
<td></td>
</tr>
</tbody>
</table>

LAYERS AND LAYERS

- Multics rings
- Layered abstractions
- Waterfall model
- Network protocol stacks
- Napolean layers
- RoFi layers
- OM-AM
- etcetera
OM-AM AND MANDATORY ACCESS CONTROL (MAC)

What?
- No information leakage
- Lattices (Bell-LaPadula)
- Security kernel
- Security labels

How?

OM-AM AND DISCRETIONARY ACCESS CONTROL (DAC)

What?
- Owner-based discretion
- Numerous
- Numerous
- ACLs, Capabilities, etc

How?
OM-AM AND ROLE-BASED ACCESS CONTROL (RBAC)

What?

- Objective neutral
- RBAC96, ARBAC97, etc.
- user-pull, server-pull, etc.
- certificates, tickets, PACs, etc.

How?

DISTRIBUTED RBAC (DRBAC) CASE STUDY

- Approximately a dozen physical sites
- Approximately 2-3 simulation models/site
- Fewer than 100 roles structured in a very shallow hierarchy
 - A subset of roles is used in any single simulation model
- Fewer than 100 users
- A user uses only one role at a time
 - Convenient but not critical
- Moderate rate of change
Permission-role assignment
- Locally determined at each simulation model

User-role assignment
- A user can be assigned to a role if and only if all simulation models using that role agree
- A user is revoked from a role if and only if any simulation model using that role revokes the user

Each simulation model has a security administrator role authorized to carry out these administrative tasks

A simulation model can assign permissions to a role X at any time
- even if X is previously unused in that simulation model

Consequently any simulation model can revoke any user from any role!
MODEL CUSTOMIZATION

- Each session has a single role
- SM = \{sm1, ..., smk\}, simulation models
- OP = \{op1, ..., op_l\}, operations
- P = SM \times OP, permissions
- SMA = \{sma1, ..., smk\}, administrative roles
- R \cap SMA = \emptyset
- Admin: SM \leftrightarrow SMA

© Ravi Sandhu 2000
MODEL CUSTOMIZATION

- Can formalize the administrative rules given earlier
- For each simulation model designate a unique user to be the chief security administrator who is authorized to assign and revoke users from the security administrator role for that model

DRBAC ARCHITECTURES

- Permission-role
 - Enforced locally at each simulation model
- Permission-role administration
 - Enforced locally at each simulation model
 - May need to communicate to other simulation models
- User-role
 - See following slides
- User-role administration
 - Centralized or decentralized
USER-PULL

Client \rightarrow Server

User-role Authorization Server

PROXY-BASED

Client \rightarrow Proxy Server \rightarrow Server

User-role Authorization Server
THE OM-AM WAY

<table>
<thead>
<tr>
<th>What?</th>
<th>How?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectives</td>
<td>Assurance</td>
</tr>
<tr>
<td>Model</td>
<td>Assurance</td>
</tr>
<tr>
<td>Architecture</td>
<td>Assurance</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Assurance</td>
</tr>
</tbody>
</table>