Binding Identities and Attributes Using Digitally Signed Certificates

Joon S. Park, NRL/ITT
Ravi Sandhu, George Mason Univ.

Introduction

- In this paper, we
 - Analyze the basic structure of digital certificates and classify the nature of the information.
 - Identify 3 different binders.
 - Describe each binder and compare with others.
Digital Certificate

- What is it?
 - Signed by a CA to confirm that the information in it is valid and belong to the subject.

- Purpose?
 - To provide the integrity of the information (e.g., identities or attributes) in the certificates.

Related Work

- X.509 Certificates
- Attribute Certificates
- SPKI (Simple Public Key Infrastructure)
- PGP (Pretty Good Privacy)
- Smart Certificates
We classify the nature of information in certificates into blocks. The content of each block depends on applications and policies. ID certificates should contain authentication information. Attribute certificates should link to ID certificates.
Binders

- What is a binder?
 - A mechanism to link attributes to proper identities

- Factors
 - Different CAs
 - Different lifetimes
 - Strength

- To satisfy the requirements, we identify
 - Monolithic Signature
 - Autonomic Signature
 - Chained Signature

Monolithic Signature

<table>
<thead>
<tr>
<th>ID Certificate</th>
<th>Attribute Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signed by ID CA</td>
<td>Signed by ID CA</td>
</tr>
<tr>
<td>Identity Info.</td>
<td>Attributes</td>
</tr>
<tr>
<td>Subject's Name</td>
<td>Role</td>
</tr>
<tr>
<td>Subject's Email</td>
<td>Group Title</td>
</tr>
<tr>
<td>Subject Number</td>
<td></td>
</tr>
<tr>
<td>Authentication Info.</td>
<td>Other Info.</td>
</tr>
<tr>
<td>Subject's Public Key</td>
<td>Serial Number</td>
</tr>
<tr>
<td>Info.</td>
<td>Issuer</td>
</tr>
<tr>
<td>Subject's Password Info.</td>
<td>Valid Period</td>
</tr>
<tr>
<td></td>
<td>FPC</td>
</tr>
</tbody>
</table>

Note: The content of each block depends on the policy or application.
Monolithic Signature

- The simplest binding mechanism.
- Identity and attributes are tightly-coupled.
- Problems
 - Multiple CAs, Different Lifetimes

Autonomic Signature

- Diagram showing the structure of an ID Certificate and an Attribute Certificate.
- Note: The content of each block depends on the policy or application.
Autonomic Signature

- Supports multiple CAs and different lifetimes.
- Binding some information (e.g., subject’s name) in ID certificates and attribute certificates.
- Identity and attributes are loosely-coupled.

Chained Signature

Note: The content of each block depends on the policy or application.
Chained Signature

- Supports multiple CAs and different lifetimes.
- Binding ID CA’s signatures in ID certificates and attribute certificates.

A Comparison

<table>
<thead>
<tr>
<th></th>
<th>Monolithic</th>
<th>Autonomic</th>
<th>Chained</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAs</td>
<td>Single</td>
<td>Multiple</td>
<td>Multiple</td>
</tr>
<tr>
<td>Lifetimes</td>
<td>Same</td>
<td>Different</td>
<td>Different</td>
</tr>
<tr>
<td>Binding Strength</td>
<td>Tightly-Coupled</td>
<td>Loosely-Coupled</td>
<td>Medium</td>
</tr>
<tr>
<td>Reusability</td>
<td>Low</td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Certificate Discovery</td>
<td>Easy</td>
<td>Medium</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
Conclusions

- In this paper
 - We analyzed the basic structure of digital certificates and classified the nature of the information.
 - We identified 3 different binders.
 - We described each binder and compared with others.