

Usage Control: A Vision for Next Generation Access Control

Infs767, Oct 23, 2003

Ravi Sandhu and Jaehong Park (www.list.gmu.edu)

Laboratory for Information Security Technology (LIST) George Mason University

Problem Statement

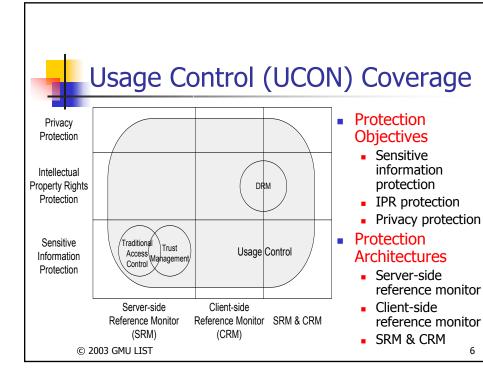
- Traditional access control models are not adequate for today's distributed, networkconnected digital environment.
 - Authorization only No obligation or condition based control
 - Decision is made before access No ongoing control
 - No consumable rights No mutable attributes
 - Rights are pre-defined and granted to subjects

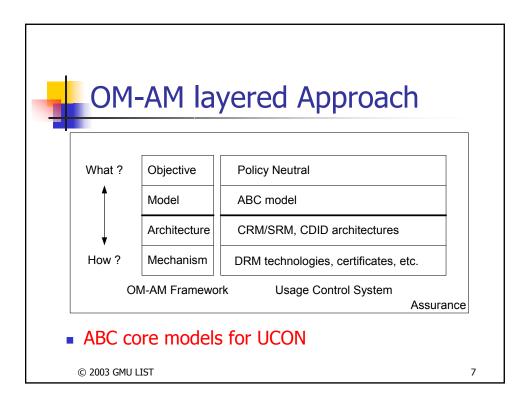
Prior Work

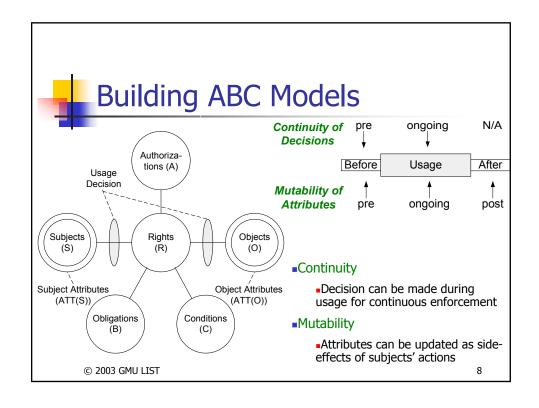
- Problem-specific enhancement to traditional access control
 - Digital Rights Management (DRM)
 - mainly focus on intellectual property rights protection.
 - Architecture and Mechanism level studies, Functional specification languages – Lack of access control model
 - Trust Management
 - Authorization for strangers' access based on credentials

© 2003 GMU LIST

2


Prior Work


- Incrementally enhanced models
 - Provisional authorization [Kudo & Hada, 2000]
 - EACL [Ryutov & Neuman, 2001]
 - Task-based Access Control [Thomas & Sandhu, 1997]
 - Ponder [Damianou et al., 2001]



Problem Statement

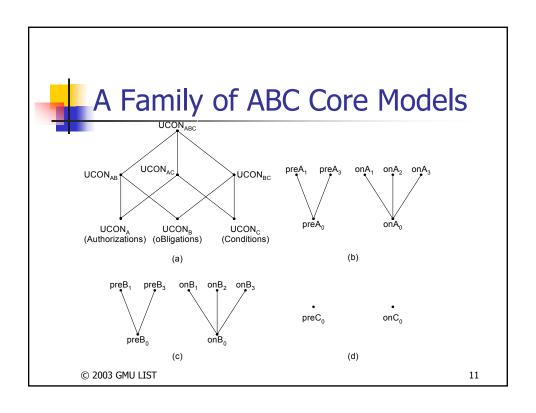
- Traditional access control models are not adequate for today's distributed, network-connected digital environment.
- No access control models available for DRM.
- Recently enhanced models are not comprehensive enough to resolve various shortcomings.
- Need for a unified model that can encompass traditional access control models, DRM and other enhanced access control models from recent literature

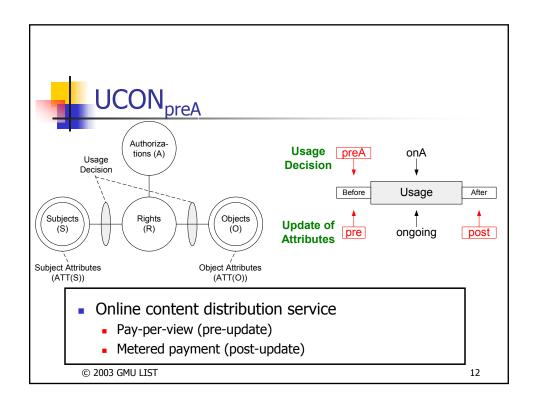
Examples

- Long-distance phone (pre-authorization with post-update)
- Pre-paid phone card (ongoing-authorization with ongoing-update)
- Pay-per-view (pre-authorization with preupdates)
- Click Ad within every 30 minutes (ongoingobligation with ongoing-updates)
- Business Hour (pre-/ongoing-condition)

© 2003 GMU LIST

С




ABC Model Space

	0(Immutable)	1(pre)	2(ongoing)	3(post)
preA	Y	Y	N	Y
onA	Y	Y	Y	Y
preB	Y	Y	N	Υ
onB	Y	Y	Y	Y
preC	Y	N	N	N
onC	Y	N	N	N

N: Not applicable © 2003 GMU LIST

10

UCON_{preA}: pre-Authorizations Model

- UCON_{preA0}
 - S, O, R, ATT(S), ATT(O) and preA (subjects, objects, rights, subject attributes, object attributes, and pre-authorizations respectively);
 - allowed(s,o,r) ⇒ preA(ATT(s),ATT(o),r)
- UCON_{preA1}
 - preUpdate(ATT(s)),preUpdate(ATT(o))
- UCON_{preA3}
 - postUpdate(ATT(s)),postUpdate(ATT(o))

© 2003 GMU LIST 13

UCON_{preA0}: MAC Example

- L is a lattice of security labels with dominance relation ≥
- clearance: S → L
- classification: O → L
- ATT(S) = {clearance}
- ATT(O) = {classification}
- allowed(s,o,read) ⇒ clearance(s) ≥ classification(o)
- allowed(s,o,write) ⇒ clearance(s) ≤ classification(o)

DAC in UCON: with ACL (UCON preA0)

- N is a set of identity names
- $id: S \rightarrow N$, one to one mapping
- ACL: $O \rightarrow 2^{N \times R}$, n is authorized to do r to o
- ATT(S)= {id}
- ATT(O)= {ACL}
- $allowed(s,o,r) \Rightarrow (id(s),r) \in ACL(o)$

© 2003 GMU LIST

15

RBAC in UCON: RBAC₁ (UCON_{preA0})

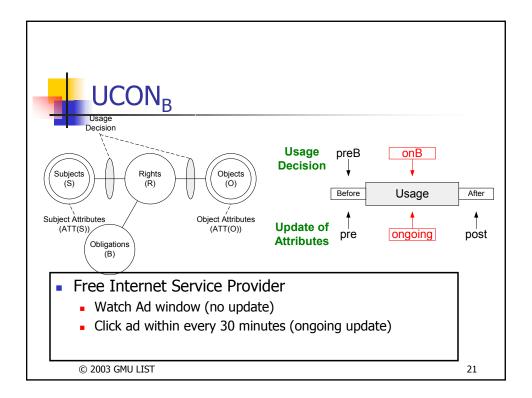
- $P = \{(o,r)\}$
- ROLE is a partially ordered set of roles with dominance relation ≥
- actRole: S → 2^{ROLE}
- Prole: P → 2^{ROLE}
- ATT(S) = {actRole}
- ATT(O) = {Prole}
- allowed(s,o,r) ⇒ ∃role ∈ actRole(s), ∃role' ∈ Prole(o,r), role ≥ role'

DRM in UCON: Pay-per-use with a pre-paid credit (UCON_{preA1})


- M is a set of money amount
- credit: $S \rightarrow M$
- value: O x R → M
- ATT(s): {credit}
- ATT(o,r): {value}
- allowed(s,o,r) ⇒ credit(s) ≥ value(o,r)
- preUpdate(credit(s)): credit(s) = credit(s) value(o,r)

© 2003 GMU LIST 17

UCON_{preA3}: DRM Example


- Membership-based metered payment
 - M is a set of money amount
 - ID is a set of membership identification numbers
 - TIME is a current usage minute
 - member: S → ID
 - expense: S → M
 - usageT: S → TIME
 - *value:* $O \times R \rightarrow M$ (a cost per minute of r on o)
 - ATT(s): {member, expense, usageT}
 - ATT(o,r): {valuePerMinute}
 - $allowed(s,o,r) \Rightarrow member(s) \neq \emptyset$
 - postUpdate(expense(s)): expense(s) = expense(s) +
 (value(o,r) x usageT(s))

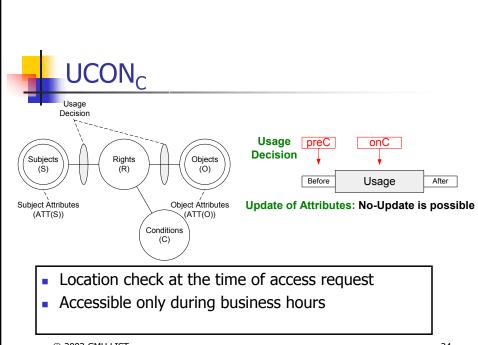
UCON_{onA}: ongoing-Authorizations Model

- UCON_{onA0}
 - S, O, R, ATT(S), ATT(O) and onA;
 - allowed(s,o,r) ⇒ true;
 - $Stopped(s,o,r) \leftarrow \neg onA(ATT(s),ATT(o),r)$
- UCON_{onA1}, UCON_{onA2}, UCON_{onA3}
 - preUpdate(ATT(s)),preUpdate(ATT(o))
 - onUpdate(ATT(s)),onUpdate(ATT(o))
 - postUpdate(ATT(s)),postUpdate(ATT(o))
- Examples
 - Certificate Revocation Lists
 - revocation based on starting time, longest idle time, and total usage time

UCON_{preB0}: pre-oBligations w/ no update

S, O, R, ATT(S), and ATT(O);

- OBS, OBO and OB (obligation subjects, obligation objects, and obligation actions, respectively);
- preB and preOBL (pre-obligations predicates and pre-obligation elements, respectively);
- preOBL ⊆ OBS x OBO x OB;
- preFulfilled: OBS x OBO x OB → {true,false};
- getPreOBL: $S \times O \times R \rightarrow 2^{preOBL}$, a function to select pre-obligations for a requested usage;
- $preB(s,o,r) = \Lambda_{(obs_i,obo_i,ob_i) \in getPreOBL(s,o,r)} preFulfilled(obs_i,obo_i,ob_i);$
- preB(s,o,r) = true by definition if $qetPreOBL(s,o,r) = \emptyset$;
- $allowed(s,o,r) \Rightarrow preB(s,o,r)$.
- Example: License agreement for a whitepaper download
 © 2003 GMU LIST


22

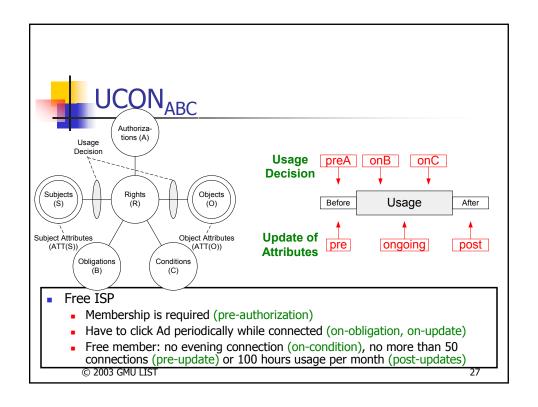
UCON_{onB0}: ongoing-oBligations w/ no update

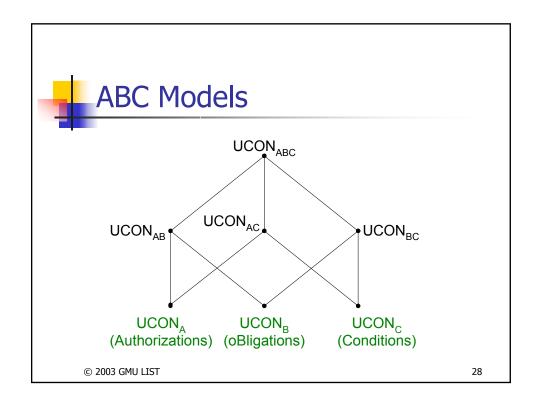
- S, O, R, ATT(S), ATT(O), OBS, OBO and OB;
- T, a set of time or event elements;
- onB and on OBL (on-obligations predicates and ongoing-obligation elements, respectively);
- onOBL ⊆ OBS x OBO x OB x T;
- onFulfilled: OBS x OBO x OB x T→ {true,false};
- getOnOBL: $S \times O \times R \rightarrow 2^{onOBL}$, a function to select ongoing-obligations for a requested usage;
- $onB(s,o,r) = \Lambda_{(obs_i,obo_i,ob_i,t_i) \in getOnOBL(s,o,r)}$ onFulfilled(obs;,obo;,obi,t;);
- onB(s,o,r) = true by definition if $getOnOBL(s,o,r) = \emptyset$;
- allowed(s,o,r) ⇒ true;
- Stopped(s,o,r) $\Leftarrow \neg onB(s,o,r)$.
- Example: Free ISP with mandatory ad window

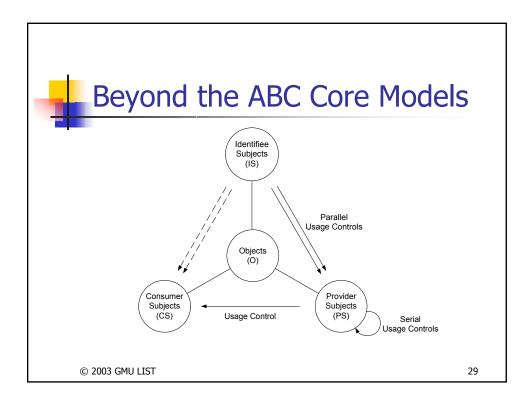
© 2003 GMU LIST 23

UCON_{preC0}: pre-Condition model

- S, O, R, ATT(S), and ATT(O);
- preCON (a set of pre-condition elements);
- preConChecked: preCON → {true,false};
- getPreCON: S x O x R → 2^{preCON};
- $preC(s,o,r) = \Lambda_{preCon \ i \in qetPreCON(s,o,r)} preConChecked(preCon_i);$
- $allowed(s,o,r) \Rightarrow preC(s,o,r)$.
- Example: location checks at the time of access requests


© 2003 GMU LIST


25



UCON_{onC0}: ongoing-Condition model

- S, O, R, ATT(S), and ATT(O);
- onCON (a set of on-condition elements);
- onConChecked: onCON → {true,false};
- getOnCON: S x O x R → 2^{onCON};
- $onC(s,o,r) = \Lambda_{onCon_i \in getOnCON(s,o,r)} onConChecked(onCon_i);$
- allowed(s,o,r) ⇒ true;
- $Stopped(s,o,r) \leftarrow \neg onC(s,o,r)$
- Example: accessible during office hour

Conclusion

- Developed A family of ABC core models for Usage Control (UCON) to unify traditional access control models, DRM, and other modern enhanced models.
- ABC model integrates authorizations, obligations, conditions, as well as continuity and mutability properties.

Future Research

- Enhance the model
 - UCON administration or management
 - Detail of update procedure in ABC model
 - Delegation of usage rights
- Develop Architectures and Mechanisms
 - Payment-based architectures
 - CRM and SRM
 - Architectures for multi-organizations (B2B)
- UCON Engineering
 - Analysis of policy
 - Designing/modeling rules and Attributes

© 2003 GMU LIST

31

Publications

- Jaehong Park and Ravi Sandhu, "The ABC Core Model for Usage Control: Integrating Authorizations, oBligations, and Conditions" to appear on ACM Transactions on Information and System Security (TISSEC), 2004
- Ravi Sandhu and Jaehong Park, "<u>Usage Control: A vision for Next Generation Access Control</u>" to appear on The Second International Workshop "Mathematical Methods, Models and Architectures for Computer Networks Security (MMM-ACNS), Sep. 2003.
- Jaehong Park and Ravi Sandhu, "<u>Towards Usage Control Models: Beyond Traditional Access Control</u>" In Proceedings of 7th ACM Symposium on Access Control Models and Technologies, Jun. 2002
- Jaehong Park and Ravi Sandhu, "<u>Originator Control in Usage Control</u>" In Proceedings of 3rd International Workshop on Policies for Distributed Systems and Networks, pp. 60-66, IEEE, Jun. 2002
- Jaehong Park, Ravi Sandhu, and James Schifalacqua, "Security Architectures for Controlled Digital information Dissemination." In Proceedings of Annual Computer Security Applications Conference (ACSAC), pp. 224-233, Dec. 2000