We narrow down our focus so we can discuss in detail how UCON can be realized in architecture level:

- Sensitive information protection
- First systematic study for generalized security architectures for digital information dissemination
- Architectures can be extended to include payment function
Three Factors of Security Architectures

- **Virtual Machine (VM)**
 - runs on top of vulnerable computing environment and has control functions

- **Control Set (CS)**
 - A list of access rights and usage rules
 - Fixed, embedded, and external control set

- **Distribution Style**
 - Message Push (MP), External Repository (ER) style

Architecture Taxonomy

- **VM**: Virtual Machine
- **CS**: Control Set
- **MP**: Message Push
- **ER**: External Repository

- **NC1**: No control architecture w/ MP
- **NC2**: No control architecture w/ ER
- **FC1**: Fixed control architecture w/ MP
- **FC2**: Fixed control architecture w/ ER
- **EC1**: Embedded control architecture w/ MP
- **EC2**: Embedded control architecture w/ ER
- **XC1**: External control architecture w/ MP
- **XC2**: External control architecture w/ ER
No Control Architecture w/ Message Push (NC1)

- Distributor directly sends a copy of digital contents to each recipient
- Each recipient stores the copy of digital information at local storage
- After distribution, no direct means to control the distributed digital information
- To access the digital information from multiple system, the recipient needs to transport the information

No Control Architecture w/ External Repository (NC2)

- Digital information is sent to an external repository server for distribution
- A recipient must connect to the external repository to access the digital content
- Once a recipient has received the digital contents, there is no way to control access or usage
Fixed Control Architecture w/ Message Push (FC1)

- Digital content is encapsulated in a digital container
- Control set is encoded into virtual machine
- The control set cannot be changed after the distribution of the virtual machine
- Access is controlled based on control set
- Each recipient should keep the received information for further access to it

Fixed Control Architecture w/ External Repository (FC2)

- Similar to FC1, except that digital container is sent to external repository for distribution
- A recipient must connect to the external repository to access or download the digital container
- Accessibility to the content by a single recipient from multiple computers
Embedded Control Architecture w/ Message Push (EC1)

- Control set is embedded in the digital container with digital information
- Distributed content will be controlled based only on the preset access rights and usage rules
- After distribution, distributor cannot change the control set of the distributed digital content
- Recipients can access digital content without any network connection
- Only pre-set revocation is available

Embedded Control Architecture w/ External Repository (EC2)

- Digital container is sent to the external repository server for distribution
- If digital container is prohibited from being locally stored, the distributor can revoke a previous granted access by changing control set
External Control Architecture w/ Message Push (XC1)

- Control set can be encapsulated independently from digital content
- Two possible options:
 - Network connection is always required
 - Network connection is required from time to time (one time connection is possible)

External Control Architecture w/ External Repository (XC2)

- Separation of content and access rights
- 4 variations
 - Both encapsulated digital content and encapsulated control set can be stored on recipient’s local storage
 - Encapsulated digital content is freely available, but control set cannot be locally stored
 - Only encapsulated control set can be stored
 - Neither can be stored locally
Commercial Solutions

<table>
<thead>
<tr>
<th>Solution</th>
<th>Organization</th>
<th>N C 1</th>
<th>N C 2</th>
<th>F C 1</th>
<th>F C 2</th>
<th>E C 1</th>
<th>E C 2</th>
<th>X C 1</th>
<th>X C 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adobe Acrobat</td>
<td>Adobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDF Merchant & WebBuy</td>
<td>Adobe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PageVault</td>
<td>Authentica</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>SoftSEAL</td>
<td>Breaker Technologies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Confidential Courier</td>
<td>Digital Delivery, Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>docSPACE</td>
<td>DocSPACE Co.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>CIPRESS</td>
<td>Fraunhofer Institute for Computer Graphics & Mitsubishi Co.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cryptolope</td>
<td>IBM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>InTether</td>
<td>Infraworks Co.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>InterTrust</td>
<td>InterTrust Technologies Co.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>RightMarket</td>
<td>RightMarket.com Inc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>