Outline

— Language Hierarchy

— Definition of Turing Machine
— TM Variants and Equivalence
— Decidability

— Reducibility

Language Hierarchy

- -

. ; ™
'ﬁlrlng—rccogmzablc N

- — -

- R —

decidable

// o ct)n:ext erL f,) // /
// / /
(I/: regular I J .
\\\ /// i-"/

—

*Regular: finite memory
*CFG/PDA: infinite memory but in stack space
*TM: infinite and unrestricted memory

—TM Decidable/Recursive

—TM Recognizable/Recursively Enumerable

Outline

— Definition of Turing Machine

Semantics of TM

‘ control j

R [o)..

Alem Turing (1912-19854)

* Not a real machine, but a model of computation

* Components:

— l-way infinite tape: unlimited memory

* Store input, output, and intermediate results

* Infinite cells

 Each cell has a symbol from a finite alphabet
— Tape head:

* Point to one cell

* Read or write a symbol to that cell

* move left or right

States of a TM

Initial state:
— Head on leftmost cell
— input on the tape
— Blank everywhere else
Accept state
Reject state
Loop

Accept or reject immediately

An Example
B = {w#w|w < {0,1}"}, and B = L(M1)

» The tape changing:

|
o

11000#011000uw ...
1

1000#0110000uL ...

™

1000#x11000uU ...

e
[y

[y

1000#x11000u ...

J

1000#x110000L ...

b
5

¥
LXXXITXXHFXXTXXEXU ...
accept

Formal Definition

A Turing machine is a 7-tuple (Q. X, ", 4. q0. 9accept- dreject), Where
Q, ¥, and I are all finite sets and

1. @@ is the set of states,

2. 2 is the input alphabet, where the blank symbol , & L,
3. I is the tape alphabet, where ;e and = C I,

4. 6:QxT — Qx T x{L,R} is the transition function,
5. qo € () is the start state,

6. qaccept € @ Is the accept state, and

7. greject € @ Is the reject state.

Example of transition function:
6(q,a) = (p,b, L)
d(q,a) = (p,b, R)

Configuration

* A configuration of TM:
— Current state
— Symbols on tape
— Head of location
A formal specification of a configuration:

— uqu, where
u, v are strings on I', and wv is the current content on taps
q is current state

~ head is in the first symbol of v.

ex: 1011, 01111
[

[iToTalsTo e s a s]ufu]uk- -

Configuration

* For two configurations:
uaq;bv and ug;jacv, where
a,b,cel’, and u,v € I'*
uaq;bv yields uq;acv if 6(q;,b) = (¢, ¢, L)
uaq;bv yields uacq;v if 6(q;,b) = (¢, ¢, R)

» Two special cases:

— the leftmost cell
* qbvyields g,cv for 5(q,,6)=(q;,¢,L)
* g;bvyields cq,v for 9(9:0)=(g;,¢. R)
— on the cell with blank symbol
— wuag; is equivalent to uwag;LJ

Configuration

* Initial configuration with input w: q,w
* Accepting configuration: uq .,
* Rejecting configuration: U pjoctV
UG yecepv @0 Uug,;,.,v do not yield any other configurations

— Immediate effect of accepting/rejecting
— Halting configurations
* ForaTM M, a string w € L(M) if there is a sequence of
configurations C;,C,,...C, such that:
- Ci=q,w
— Cyyields C,, for 1 <i<k
= = U yeqpVs v v € 1

Languages

* Turing-recognizable Languages:

— Fora LcT exists a M such that M recognizes L

— “Recognize” means accept, reject, or loop
Turing-decidable languages:

— Fora 1, exists a M such that M decides L

— “Decide” means halting: either accept or reject
Turing-decidable C Turing-recognizable

— Halting Problem is Turing-recognizable, but not decidable.
Not all languages are Turing-recognizable

— There are some languages cannot be recognized by a TM.
+ Complement of Halting problem is Turing-unrecognizable

An example
A = L(M>), where A = {0%"|n > 0}

» Semantical description:
For an input string w:
{ sweep left to the right along the tape, crossing off every other 0
if tape contains single 0
{ return accepted.,}
elseif tape contains odd number and more than one of Os
{ return (rejected),}

else go back to leftmost cell;

}
* Formal description:

My = {Q.X.T.0.q1. quccept Qreject - Where
u—R
o Q=1{01.92. 3. 93 G5 Gaceept- Treject } =—R
-
* = {{}} Greject
o I'= {0,201}

e 4: state transition diagram

Outline

— TM Variants and Equivalence

TM Variants

Multitape TM
Nondeterministic TM
Enumerators

Equivalence:All have same power
— Recognize the same class of languages
— Can be simulated by an ordinary TM

Simple variant

e 0:QxT—-QxTI'x{L,R,S}

e« 0:QxT —QxT x{L,R RR,LL}

» They are equivalent in recognizing
language:
— They can be simulated by original the TM

— The difference is not significant

Multitape TM

* A multitape TM is identical to ordinary TM

except:

— ktapes, where f>1

— Each tap has its own head
—0:QxI'*" - QxT*x{L,R,S}*

— 0(qi,ay,az, ..., ar) = (qj,b1,b2,.... by, L,

M |

Multitape TM

* Theorem: each multitape TM has an equivalent single tape
™

— Put# in a single tape for demarcation of original k tapes.

— Each movement of M is simulated by a series movement of S on each
segment.

— For a right-move on the rightmost cell of ith tape in M, S write blank
symbol in (i+1)th #, and right-shifts all symbols after that one cell.

— | EOOTenT.-
M | =

'. e
blaju|...

E“—Lholuohloula AHDLAOMES

Nondeterministic TM

* A nondeterministic TM is identical to an ordinary
TM except:
~ 0:QxT = P(QxT x{L,R})
— At any point the head has several possibilities to
read/write/move.
* In deterministic TM, a computation is a single
path with sequence of configurations.

* In nondeterministic TM, a computation is a tree or
a directed acyclic graph.

— A NTM accepts an input string if there exists a path
leading to an accept state.

— If all paths lead to reject state, then this input is
rejected.

NTM

* A computation single path and multi-path in
a tree:

Detenninj_su'c Nondeterministic
computation computation
« start
(l
(" .
()
) reject !
* accept or reject 1- accept
Nodeterminism

* Is nondeterministic model always
equivalent to a deterministic model?
— Yes, for FA

— No, for PDA
» Some CFL cannot be recognized by any DPDA.

— Yes, for TM!

NTM

* Theorem: Every NTM has an equivalent
DTM.

|_I(root)

—

— | [oToTx]o]u]... inputtpe
D #_)
i |x|x|#|0|llx|ul.‘. simulation tape

|_;]2]3|3|2|3|1]2}1|1[3[u|.‘. address tape

[]
121 122 123

* For a computing tree of a NTM N with an input w,
simulated with a 3-tape DTM M:
— Ist tape: input w
— 2nd tape: tape of a computing path with N
— 3rd tape: node address (finite)

Enumerator

+ Semantically, an enumerator is a TM with an attached
printer.

* Every time the TM wants to add a string to its output list, it
sends the string to the printer.

* The language enumerated by an enumerator E is the
collection of all the strings that £ eventually prints out.

s
=

=

control Lty

- .+ work tape

Enumerator

o Theorem: 4 language is Turing-recognizable iff
some enumerator enumerates it.

— For a language, if £ enumerates it, then construct a TM M works
as:

* Run E. Every time that E outputs a string, compare it with input w.

» If wappears in the output of £, accept.
— For a language recognized by a TM M, construct £ such that:
* Run M for i steps on each input, s1, s2, ..., si.
+ If any computations accept, print out the corresponding s;.
* Repeat the above two steps with all possible inputs

* An enumerator can be regarded as a 2-tape TM.
— Write accepted list on the 2" tape.

Other Variants

Write-twice TM

— Each cell on tape can only be written twice

Write-once TM
— Each cell on tape can only be written once
TM with doubly infinite tape
— Two-way infinite tape
Universal TM
— A TM that takes input of description of another TM.

Thesis

* Church-Turing Thesis:
— Any algorithm can be expressed as a TM
— Formally defines an algorithm:

Turing machine

Intuitive notion
algorithms

of algorithms equals

» Extended Church-Turing Thesis:
— Any polynomial-time algorithm can be expressed as a
TM that operates in polynomial time.
— A polynomial-time algorithm: number of element operations is a
polynomial function of input length.
— A polynomial-time TM: number of state transition is a polynomial
function of input length.

Describing TM

* Formal description
— specifying Turing machine’s states, transition function,
and so on.

* Implementation description

— using natural language to describe the way that the
Turing machine moves its head and the way that it
stores data on its tape.

 High-level description

— using natural language describe an algorithm, ignoring
the implementation model.

Outline

— Decidability

Solvability

* Solvable:
— an algorithm to solve it,
— a TM decides it.

» Unsolvable:
— not algorithm to solve it
—no TM can decide it.

Decidable Language
Apea = {(B,w) | B is a DFA that accepts w}

» Acceptance problem:
— Whether a particular DFA B accepts a given input string w.

* Membership problem:

— Another way to say: whether <B,w> is a member of 4.

* Theorem: A, is a decidable language.
M = "On input (B,w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. If the simulation ends in an accept state, accept; otherwise,
reject.”

Decidable Language

ANFA = {(B,w) | B is an NFA that accepts w}.

* Theorem: Ay, is a decidable language.

N = "On input (B,w), where B is an NFA and w is a string:
1. Convert NFA B to an equivalent DFA C.

2. Run TM M for deciding Apga (as a “procedure”) on input
(C,w).

3. If M accepts, accept; otherwise, reject.”

Decidable Language

Arex = {{(R,w) | R is a regular expression that generates w}

e Theorem: 4 rEx1S a decidable language.

P = "On input (R,w), where R is a regular expression and w is
a string:

1. Convert regular expression R to an equivalent DFA A.
2. Run TM M for deciding Apga on input (A, w).

3. If M accepts, accept; otherwise, reject.”

Decidable Language
Eppa = {(A) | A'is a DFA and L(A) = 0}

* Emptiness test problem:
— Whether the language of a particular DFA is empty.

* Theorem: Epp, is a decidable language.

T = "On input (A), where A is a DFA:
1. Mark the start state of A.
2. Repeat Step 3 until no new states get marked.

3. Mark any state that has a transition coming into it from any
state that is already marked.

4. If no accept state is marked, accept; otherwise, reject.”

Decidable Language

EQpea ={ (A,B) | A and B are DFAs and L(A) = L(B) }

» Equivalence problem:

— Test whether two DFAs recognize the same language.

* Theorem: EODﬂ is a decidable language.

F = "On input (A, B), where A and B are DFAs:
1. Construct DFA C = (ANB)U (AN B).

2. Run TM T for deciding Epga on input (C).

3. If T accepts, accept; otherwise, reject.”

. @ .

Other Problems

* Acpg1s decidable.
* Epg1s decidable.
* EQ pq 1s undecidable.

— CFG is not closed in intersection and complementation.

* Ap,1s undecidable.
— Halting problem

* E,1s undecidable.

* EQq, 1s undecidable.

Halting Problem
Arm ={(M,w) | M isa TM and M accepts w}

Theorem: Ay, is Turing-recognizable.

U= "On input (M,w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its
reject state, reject.”

— U s an example of universal TM.
— U keeps looping if M neither accepts or rejects.

Halting Problem

* Theorem: Ay, is undecidable.

— Can be proved by recursive theorem.

Suppose H is a decider for At

accept if M accepts w
reject if M does not accept w

H((M,w)) = {
D = "On input (M), where M is a TM:
1. Run H on input (M, {M)).
2. If H accepts, reject and if H rejects, accept.”

accept if M does not accept (m)
reject if M accepts (m)

D((M)) ={

__ |} aceept if D does not accept (D)
b((D)) = { reject if D accepts (D)

Unrecognizable

e Theorem: There are languages that cannot
recognized by any TM.
— The set of TMs are countable

* @, X, and I are all finite sets
e Number of transition functions is countable.

— The set of languages is uncountable.
w e I'*
Lcrx
« L € P(I'), P(I'*) is uncountable

— Diagonalization method to prove this

Countable and Uncountable

» Two infinite sets 4 and B are the same size if
there is a correspondence from A to B.
— A correspondence is a one-to-one and onto function:
f:A—B
— one-to-one: f(a) %= f(b) whenever a = b
— Onto: Vvbe B.da e A, fla)=1b

* A setis countable if either it is finite or it has the
same size as N ={1,2,3...}; otherwise it is
uncountable.

Countable

 Set of position rational numbers is
countable: {m/n,m,n € N'}

= e v
(T (1Y (1Y T~ T
AL 02 43/ s8] a5/
f d e e e
f | ' h Y Y o
[() & (3) ¥ 1
| Il 2 A3/ 1 5
{ rd rd
\ \ (Y (3 3 3 3)
N PN] 4 [
NO[(BS &7 08 4 4
3 N E NV 3 3 5
2 L
e 5% 5
s £ NS 2 .

» Set of real numbers R 1s uncountable:

Assume that a correspondence f existed between N and R.

n | f(n)

1| 3.14159...
2 |55.55555---
3| 0.12345...
4

0.50000- - -

We can find an z, 0 < x < 1, so that the i-th digit following the
decimal point of z is different from that of f(i); for example,
x=0.4641--- is a possible choice.

Uncountable

» The set of all languages over an alphabet is
uncountable.

— Think that a real number is a string over
alphabet of {. , 0,1,2,3,4,5,6,7,8,9}

— Similar diagonalization way to prove with
general alphabet

Theorem: 4 language is decidable iff both
it and its complement language are
Turing-recognizable.

— If 4 1s decided by M, then :

* M,=“on input w:
1. Run M, onw.

2. If M, rejects, accept; if M, accepts, reject.
— M, decides 4
— IfAand 4 are Turing-recognizable:
Let My be a recognizer for A and M, be a recognizer for A.
M = "On input w:

1. Run both M; and Mz on input w in parallel. (M takes turns
simulating one step of each machine until one of them halts.)

2. If My accepts, accept and if M5 accepts, reject.”

Arm = {(M,w) | M isa TM and M does not accept w}

 Theorem: Aty isnot Turing-recognizable

—If ATm is Turing-recognizable, and 4, is
Turing-recognizable, then 4 ,,, must be
decidable.—contradiction!

Outline

— Reducibility

Reducibility

Semantics

Reduce A, to HALTy,
PCP Problem

Mapping Reducibility

