- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

States of a TM

- Initial state:
 - Head on leftmost cell
 - input on the tape
 - Blank everywhere else
- Accept state
- Reject state
- Loop
- Accept or reject immediately

An Example

 $B = \{w \# w | w \in \{0, 1\}^*\}, \text{ and } B = L(M_1)$

• The tape changing:

Formal Definition

A **Turing machine** is a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ , and Γ are all finite sets and

- 1. Q is the set of states,
- 2. Σ is the input alphabet, where the *blank* symbol $_{\sqcup} \notin \Sigma$,
- 3. Γ is the tape alphabet, where $_{\sqcup}\in\Gamma$ and $\Sigma\subseteq\Gamma,$
- 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- 6. $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state.

Example of transition function:

 $\delta(q, a) = (p, b, L)$ $\delta(q, a) = (p, b, R)$

Configuration

• For two configurations:

 uaq_ibv and uq_jacv , where $a, b, c \in \Gamma$, and $u, v \in \Gamma^*$ uaq_ibv yields uq_jacv if $\delta(q_i, b) = (q_j, c, L)$ uaq_ibv yields $uacq_jv$ if $\delta(q_i, b) = (q_j, c, R)$

- Two special cases:
 - the leftmost cell
 - $q_i bv$ yields $q_j cv$ for $\delta(q_i, b) = (q_j, c, L)$
 - $q_i bv$ yields $cq_j v$ for $\delta(q_i, b) = (q_j, c, R)$
 - on the cell with blank symbol
 - uaq_i is equivalent to $uaq_i \sqcup$

Languages

- Turing-recognizable Languages:
 - For a $L \subseteq \Gamma^*$, exists a M such that M recognizes L
 - "Recognize" means accept, reject, or loop
- Turing-decidable languages:
 - For a $L \subseteq \Gamma^*$, exists a M such that *M* decides *L*
 - "Decide" means halting: either accept or reject
- Turing-decidable ⊂ Turing-recognizable
 - Halting Problem is Turing-recognizable, but not decidable.
- Not all languages are Turing-recognizable
 - There are some languages cannot be recognized by a TM.
 - Complement of Halting problem is Turing-unrecognizable

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

TM Variants

- Multitape TM
- Nondeterministic TM
- Enumerators
- Equivalence: All have same power
 - Recognize the same class of languages
 - Can be simulated by an ordinary TM

Simple variant

- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, RR, LL\}$
- They are equivalent in recognizing language:
 - They can be simulated by original the TM
 - The difference is not significant

Multitape TM

- A multitape TM is identical to ordinary TM except:
 - -k tapes, where $k \ge 1$
 - Each tap has its own head

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R, S\}^k$$

 $- \ \delta(q_i, a_1, a_2, \dots, a_k) = (q_j, b_1, b_2, \dots, b_k, L, R, \dots, R)$

Enumerator

- Theorem: <u>A language is Turing-recognizable iff</u> some enumerator enumerates it.
 - For a language, if *E* enumerates it, then construct a TM *M* works as:
 - Run E. Every time that E outputs a string, compare it with input w.
 - If *w* appears in the output of *E*, *accept*.
 - For a language recognized by a TM *M*, construct *E* such that:
 - Run *M* for *i* steps on each input, *s*1, *s*2, ..., *si*.
 - If any computations accept, print out the corresponding *sj*.
 - Repeat the above two steps with all possible inputs
- An enumerator can be regarded as a 2-tape TM.
 - Write accepted list on the 2nd tape.

Other Variants

- Write-twice TM
 - Each cell on tape can only be written twice
- Write-once TM
 - Each cell on tape can only be written once
- TM with doubly infinite tape
 - Two-way infinite tape
- Universal TM
 - A TM that takes input of description of another TM.

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Solvability

- Solvable:
 - an algorithm to solve it,
 - a TM decides it.
- Unsolvable:
 - not algorithm to solve it
 - no TM can decide it.

Decidable Language

 $A_{\mathsf{NFA}} = \{ \langle B, w \rangle \mid B \text{ is an NFA that accepts } w \}.$

• Theorem: <u>A_{NFA} is a decidable language</u>.

N = "On input $\langle B, w \rangle$, where B is an NFA and w is a string:

- 1. Convert NFA B to an equivalent DFA C.
- 2. Run TM M for deciding A_{DFA} (as a "procedure") on input $\langle C,w\rangle.$
- 3. If M accepts, accept; otherwise, reject."

Decidable Language

 $A_{\mathsf{REX}} = \{ \langle R, w \rangle \mid R \text{ is a regular expression that generates } w \}$

• Theorem: <u>A_{REX} is a decidable language</u>.

P= "On input $\langle R,w\rangle,$ where R is a regular expression and w is a string:

- 1. Convert regular expression R to an equivalent DFA A.
- 2. Run TM M for deciding A_{DFA} on input $\langle A, w \rangle$.
- 3. If *M* accepts, *accept*; otherwise, *reject*."

Decidable Language

 $E_{\mathsf{DFA}} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

- Emptiness test problem:
 - Whether the language of a particular DFA is empty.
- Theorem: <u>*E*_{DFA} is a decidable language</u>.

T = "On input $\langle A \rangle$, where A is a DFA:

- 1. Mark the start state of A.
- 2. Repeat Step 3 until no new states get marked.
- 3. Mark any state that has a transition coming into it from any state that is already marked.
- 4. If no accept state is marked, accept; otherwise, reject."

Decidable Language

 $EQ_{\mathsf{DFA}} = \{ \langle A, B \rangle \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \}$

• Equivalence problem:

- Test whether two DFAs recognize the same language.

L(A)

L(B)

• Theorem: <u>EQ_{DFA} is a decidable language</u>.

F = "On input $\langle A, B \rangle$, where A and B are DFAs:

- 1. Construct DFA $C = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 2. Run TM T for deciding E_{DFA} on input $\langle C \rangle$.
- 3. If T accepts, accept; otherwise, reject."

Halting Problem

 $A_{\mathsf{TM}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$

Theorem: <u>A_{TM} is Turing-recognizable</u>.

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- 1. Simulate M on input w.
- 2. If *M* ever enters its accept state, *accept*; if *M* ever enters its reject state, *reject*."
 - U is an example of universal TM.
 - U keeps looping if M neither accepts or rejects.

Unrecognizable

- Theorem: *There are languages that cannot recognized by any TM.*
 - The set of TMs are countable
 - Q, Σ , and Γ are all finite sets
 - Number of transition functions is countable.
 - The set of languages is uncountable.
 - $\bullet \quad w\in \Gamma^*$
 - $L \subseteq \Gamma^*$
 - $L \in \mathcal{P}(\Gamma^*), \mathcal{P}(\Gamma^*)$ is uncountable
 - Diagonalization method to prove this

Countable and Uncountable

- Two infinite sets *A* and *B* are the <u>same size</u> if there is a <u>correspondence</u> from A to B.
 - A correspondence is a <u>one-to-one</u> and <u>onto</u> function: $f: A \rightarrow B$
 - one-to-one: $f(a) \neq f(b)$ whenever $a \neq b$
 - Onto: $\forall b \in B, \exists a \in A, f(a) = b$
- A set is <u>countable</u> if either it is finite or it has the same size as N = {1,2,3...}; otherwise it is <u>uncountable</u>.

Uncountable

- The set of all languages over an alphabet is uncountable.
 - Think that a real number is a string over alphabet of {., 0,1,2,3,4,5,6,7,8,9}
 - Similar diagonalization way to prove with general alphabet

 $\overline{A_{\mathsf{TM}}} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ does not accept } w \}$

- Theorem: $\overline{A_{TM}}$ *is not Turing-recognizable*
 - If $\overline{A_{TM}}$ is Turing-recognizable, and A_{TM} is Turing-recognizable, then A_{TM} must be decidable.—contradiction!

Outline

- Language Hierarchy
- Definition of Turing Machine
- TM Variants and Equivalence
- Decidability
- Reducibility

Reducibility

- Semantics
- Reduce A_{TM} to $HALT_{TM}$
- PCP Problem
- Mapping Reducibility