Logic of Authentication 1. BAN Logic

Ravi Sandhu

BAN Logic

- BAN is a logic of belief.
- In an analysis, the protocol is first idealized into messages containing assertions, then assumptions are stated, and finally conclusions are inferred based on the assertions in the idealized messages and those assumptions.

Source

These lectures are primarily based on:

 Paul Syverson and Iliano Cervesato, *The Logic of Authentication Protocols*, in R.
 Focardi, R. Gorrieri (Eds.): Foundations of Security Analysis and Design, Lecture Notes in Computer Science, LNCS 2171, Springer-Verlag 2001.

The language of BAN

- In all of these expressions, *X* is either a message or a formula.
- As we will see, every formula can be a message, but not every message is a formula.

Protocol 1 (Needham-Schroeder Shared-Key) [NS78]

Message $1 \land A \rightarrow S : \land, B, n_A$

 $Message \ 2 \ S \rightarrow A: \{n_A, B, k_{AB}, \{k_{AB}, A\}k_{BS}\}k_{AS}$

Message $3A \rightarrow B: \{k_{AB}, A\}k_{BS}$

Message 4 $B \rightarrow A : \{n_B\}k_{AB}$

Message $5 A \rightarrow B : \{n_B - 1\}k_{AB}$

Nonces are random unpredictable values generated by a principal and included in messages so that she can tell any messages later received and containing her nonce must have been produced after she generated and sent the nonce.

The language of BAN

- P ↔ Q : (Read 'k is a good key for P and Q'.) k will never be discovered by any principal but P, Q, or a principal trusted by P or Q. (The last case is necessary, since the server often sees, indeed generates, k.)
- PK(P, k): (Read 'k is a public key of P'.) The secret key, k⁻¹, corresponding to k will never be discovered by any principal but P or a principal trusted by P.
- [X] k : Short for "{X}k from P" (Read 'X encrypted with k (from P)'.) This is the notation for encryption. Principals can recognize their own messages. Encrypted messages are uniquely readable and verifiable as such by holders of the right keys.

BAN Rules: Nonce Verification

P believes fresh(X)

P believes Q said X

P believes Q believes X

This rule allows promotion from the past to the present (something said some time in the past to a present belief). In order to be applied, *X* should not contain any encrypted text.

BAN Rules: Message Meaning

 $P \text{ believes } P \leftrightarrow^{*} Q$

P received $\{X\}k$

P believes Q said X

"If *P* receives *X* encrypted with *k* and if *P* believes *k* is a good key for talking with *Q*, then *P* believes *Q* once said *X*."

In applying symmetric keys, there is no explicit distinction between signing and encryption.

NSKK Idealization

- First message is omitted
 Plaintext is omitted
- It is assumed that principals recognize their own messages. Thus, with a shared key, if a recipient can decrypt a message, she can tell who it is from. As this is often implicitly clear, the *from* field is often omitted.
- What is inside the encrypted messages is also altered. Specifically, the key k_{AB} is replaced by assertions about it.

19

Also in the last message n_B - 1 is changed to just n_B.

NSSK Annotated Protocol

P8. A received $\{n_A, A \leftrightarrow^{kAB} B, fresh(k_{AB}), \{A \leftrightarrow^{kAB} B\}k_{BS}\}k_{AS}$ from S P9. B received $\{A \leftrightarrow^{kAB} B\}k_{BS}$ from S P10. A received $\{n_B, A \leftrightarrow^{kAB} B\}k_{AB}$ from B P11. B received $\{n_B, A \leftrightarrow^{kAB} B\}k_{AB}$ from A

Basically read directly from idealized protocol

NSSK Derivations

8. B believes S said $(A \leftrightarrow^{kAB} B)$

By Message Meaning using P2, P9.

This gives us Bob's belief in the goodness of k_{AB} . Unlike Alice, Bob has sent no nonce at this point in the protocol. To get Bob's belief in freshness we need the following assumption.

P12. B believes fresh $(A \leftrightarrow^{kAB} B)$ [Dubious]

This is different than P6, P7 which were based on nonces that the believing principal generates. Here Bob believes that a random value generated by someone else is fresh.

25

NSSK Derivations

Similarly we can get A believes B believes $A \leftrightarrow^{kAB} B$ By Belief Conjuncatenation using 13. See page 73, need clarification about use of nB

NSSK: Denning-Sacco Attack [DS81]

Message 3 $E_A \rightarrow B$: { k_{AB} , A} k_{BS} Message 4 $B \rightarrow E_A$: { n_B } k_{AB} Message 5 $E_A \rightarrow B$: { $n_B - 1$ } k_{AB}

 E_A is the attacker masquerading as A using an old compromised session key k_{AB} within the lifetime of the long-term key k_{BS} . The attack is not directly uncovered by BAN but BAN analysis shows the desired beliefs of B cannot be derived without the dubious assumption P12 B believes $fresh(A \leftrightarrow^{kAB} B)$ that underlies this attack.

29

The Nessett Protocol [Nes90]

Idealized Nessett Protocol

Message 1 $A \rightarrow B$: { $n_A, A \leftrightarrow^{kAB} B$ } k_A^{-1} Message 2 $B \rightarrow A$: { $A \leftrightarrow^{kAB} B$ } $_{kAB}$

Annotation Premises

P1. *B* received $\{n_A, A \leftrightarrow^{kAB} B\} k_A^{-1}$ P2. *A* received $\{A \leftrightarrow^{kAB} B\}_{kAB}$

