A Logic Specification for Usage Control

Xinwen Zhang, Jaehong Park
Francesco Parisi-Presicce, Ravi Sandhu

George Mason University

SACMAT 2004

Outline

Introduction of UCON

Temporal Logic of Action (TLA)

Logic Modd for UCON with TLA
Specification of Authorization Core Models
Obligation and Conditions

Conclusions and Future Work

UCON

* A unified framework for next generation access control

» A comprehensive model to represent the underlying
mechanism of existing access control models and policies.

» Try to extend the limits of traditional access control
models:

Authorization only — No obligation or condition based control

I dentity based only — No attributes based support

Decision is made before access — No ongoing control

No consumabl e rights - No mutable attributes

Rights are pre-defined and granted to subjects

UCON

* UCON provides agenera model beyond DRM
and Trust management:
— Digital Rights Management (DRM)
< Mainly focus on intellectual property rights protection with
architecture and mechanism level studies

* Lack of access control model

— Trust Management
« Authorization for strangers access based on credentials
 Lack of an abstract model with attribute-based.

OM-AM Layered Approach

What ? Objective Policy Neutral

Model UCON,;. model

Architecture CRM/SRM, CDID architectures

How ? Mechanism DRM technologies, Trusted computing, etc.

OM-AM Framework Usage Control System

Assurance

» Model examples: Access Matrix, Lattice-based model,
Role-base access control model

UCON Model

Basic components: @
— Subjects and attributes

— Objectsand attributes
— Rights
Logically, UCON is amapping from a Usage o
set of { subject/object attributes, right} >
to {true, false} .

Subject Attributes (SA) Object Attributes (OA)

Usage control decisions are based on Ravord o
authorization, obligations, and @ ©
conditions.

Referred as UCON ;g model

Continuity and Mutability of UCON

Continuity of
Decisions

pre-decision ongoing-decision

Before Usage After

pre-update ongoing-update post-update

Mutability of
Attributes

» A single usage process has three phases
— before access, during usage, and access
» Continuity: control decision can be checked before or
during access
» Mutability: attribute updates can be performed before,
during or after access
— Pre-update, on-update, and post-update

Core Authorization Models

» According to the authorization control attribute update
points, we have seven core authorization models:

— preA,: control decision is determined before access, and thereis no
attribute update.

— preA;: control decision and and attribute update before access.

— preA;: control decision is determined before access, and attribute update
after access.

— onA,: control decision is checked and determined during usage, and there
is no attribute update.

— onA,: control decision is checked and determined during usage, and there
is attribute update before access.

— onA,: control decision is checked and determined during usage, and there
is attribute update during usage.

— 0nA;: control decision is checked and determined during usage, and there
is attribute update after usage.

* A real UCON system may be a hybrid of them.

Outline

Introduction of UCON
Temporal Logic of Action (TLA)
Logic Modd for UCON with TLA

Specification of Authorization Core Modelsin
UCON

Obligation and Conditions
Conclusions and Future Work

Temporal Logic of Action

Basic Terms:

— Vaiables: x, y

— Values: 5, “abc”

— Constants

— A dateisan assignment of values to variables
Functions: nonboolean expression with variables and
constants

— Semantically, afunction is a mapping from states to values.
State Predicates: boolean expression with variables and
constants

— Semantically, apredicate is a mapping from states to booleans.
Actions: boolean expression with variables, primed
variables, and constants

— Semantically, an action is afunction assigning a boolean to a pair of states
(st), where sisthe old state with variables, and t isthe new state with
primed variables.

TLA

» Behavior: a sequence of states
<90, ¢, 82,...,>

*Semantics of an action A:
< S80,81,82,... > [[A]] = So[[A]]S1
*Temporal operator: [1(always)
< 80,81, 82, ... > [OA] =Vn € N : s, [A]sn+1
e Tempora Formula
F =< predicate > |00 < action > |-F|F AN F|FV F|F — F|OF

e Semantics:

< 80, S51,82,... > [[F]] = 80[[F]]81
< 80,81,82,... > [OF] =Vn € N :< 8p, Snt1s Snt2, - > [F]

TLA

» Other tempora operators:
— “Eventualy”:

< 80,81, 82, ... > [OF] = 3In € N :< 8p,y Spt1, Spta, - > [F]

OF = -0O-F

— “Next":
< 80,81, 82, ... > [OF] = s1[F]s2

— “Until”:
< 80,581,582, ... > IU‘“I/{GH =3i>0: (.SjHGH.S;+1 N (0 <] <i— sj[[F]]st))

» Past temporal operators:
Has-always-been, Once, Previous, Since

<oy $-2,8-1,50, 51,52, ... > [BF] =Yn < 0: 8, [F]sn+1

< .y $-92,85-1,50,51,52, ... > [[‘FH =dn<0: .Q,,IIFHS,,+1

<oy $—2, 821,50, 81,82, ... > [OF] = s_1[F]so

< ey §22,81, 80,81, 82, ... > [FSG] = 3i < 0: (8;[Gsip1 A (i < j <0 — s;[Flsjt1))

Outline

* Introduction of UCON
» Temporal Logic of Action (TLA)
» Logic Mode for UCON with TLA

 Specification of Authorization Core Modelsin
UCON

 Obligation and Conditions
e Conclusions and Future Work

Logical Model of UCON: Attributes

» A state of UCON is an assignment of valuesto
attributes:

— Subject attributes: role, security clearance, credit amount, etc.

— Object attributes: type, directory, etc.

— System attributes: time, location, etc.

— A gpecia system attribute:
 state(s,0,r)={initial, requesting, denied, accessing, revoked, end}
« To specify the status of a single access process (s,0,r)
 Authorization actions defined to change this state.

Logica Model of UCON: Predicates

 Predicates. boolean expression built from
subject attributes, object attributes, and
system attributes:

— Unary predicates:
Alice.credit > $1000, filel.classification = “secure”
— Binary predicates:
Dominate(Alice.clearance, filel.classification)
in((Bab, read), file2.ACL)
— Ternary predicate permit(s,o,r):
« usage control decision
» Trueif asisallowed to accesso withr.

Logic Model of UCON: Actions

Subject Actions

tryaccess endaccess

» Two types of actions: 1
— Actions performed by a subject Before Usage | A]
— Actions performed by the system ! !

permitaccess
or preupdate onupdate* revokeaccess postupdate

denyaccess

System Actions

» state(s,0,r) transition with actions:

initial
state

onupdate

preupdate

and
permitaccess
requesting

endaccess
and
postupdate

tryaccess

denyaccess revokeaccess
and and
preupdate postupdate

Logic Model of UCON

DEFINITION 1. A4 logical formula in UCON is defined by the
following grammar in BNF:

¢ = a|p(t1, ..., tn)|(—0)[(810)|(2 — 0)|Va : 9|3z :
9|09]0g| O o|olUs|Bs|#g| © ¢|6Sa|

where a is an action, p is a predicate of arity n, t1, ..., t,, are terms,
and x is a variable.

DEFINITION 2. An logic authorization model of UCON is a
triplee M = (S, P, A), where

o S is a sequence of states of subject, object, and the system
attributes,

e P is a finite set of state predicates on subject and/or object
attributes,

o A is a finite set of state actions.

Logical Model of UCON

If a model M with a state s satisfies a formula @, we write M, s F
¢. Semantically,

. M, so F piff so[p], where p € P.

)

. M, s0 F aiff sofa]si, where a € A, and s is next state of
sinS.

w

. M, so Eoiff M, so ¥ 0.

>

M, s0 F o1 A g2 iff M, so F g1 and M, so F 2.

w

. M, s0 F 01 — 02 iff M, s0 ¥ 01 or M, 50 F 2.

o

. M, s0 EVa : giff forall a, M, so E o(z/a).

N

. M, so F 3z : ¢ iff for some a, M, so F ¢(x/a).

o

. M, so FEOpiffVn > 0: M, s, Fo.
9. M, s0EQ@iffdn >0: M, s, E g.
10. M, s0E Qo iff M, s1 E 0.

1. M,s0 Eo1ldoo iff 30 > 0: M, s; Foa A(0<j<i—
M, s; Eor)

12. M,s0 Elpiffvn <0: M,s, Fo.
13. M,s0 F #¢iff In < 0: M, s, Fg.
14. M,s0 EOoiff M,s_1 F 0.

15. M,s0 FE 01802 iff 3 <0: M,si Foa A(i<j<0—
M., s Eo1)

Outline

Introduction of UCON

Temporal Logic of Action (TLA)

Logic Modd for UCON with TLA
Specification of Authorization Core Models
Obligation and Conditions

Conclusions and Future Work

Specification of Core Models
* preA:

p1 A ... A p; — permit(s,o,r)
tryaccess(s,o,r) A permit(s,o,r) — O(pe’r’m,itaccess(s, 0, r))

» Example 2: BLP model

dominate(s.cleareance, o.class fication) — permit(s, o, read)

tryaccess(s, o, read) A permit(s, o, read) — Q(permitaccess(s, o, read))
dominate(o.class fication, s.cleareance) — permit(s, o, write)
tryaccess(s, o, write) A permit(s, o, write) — O(permitaccess(s, o, wm'te))

» Example3: DAC with ACL

n((s.ID,r),o0.acl) — permit(s,o,r)
tryaccess(s, o,r) A permit(s,o,r) — O (permitaccess(s, o,1))

10

Specification of Core Models

* preA;:

P1 A .. A p; — permit(s,o,r)
permitaccess(s,0,r) — $(tryaccess(s,o,r)A\permit(s, o, 7)AQ(preupdate(attribute)))

» Example 4: DRM pay-per-use application

(Alice.credit > ebookl.value) — permit(Alice, ebookl, read)
permitaccess(Alice, ebookl, read) — O(tryaccess(Alice, ebook1, read)
A (preupdate(Alice.credit))) A permit(Alice, ebookl, read)
preupdate : Alice.credit’ = Alice.credit — ebookl.value

Specification of Core Models

* preA;:

p1 A ... A p; — permit(s,o,r)
permitaccess(s,o,r) — #(tryaccess(s,o,r)) A permit(s,o,r)
endaccess(s, 0,1) — O(postupdate(attribute))

Example 5 DRM membership-based application:

subject: Alice, with attributes of I D and total expense

object: bookl, with attributes of title and readingCost

subject: readingGroup, with attribute reader List = {ID1,1D2, ...} and book List =
{book1.title, book2.title, ...}

right:read

in(Alice, readingGroup.reader List) Nin(book1.title, readingGroup.book List) —
permit(Alice, bookl, read)

permitaccess(Alice, book1, read) — #(tryaccess(Alice,book1, read))A
permit(Alice, bookl, read)

endaccess(Alice, book1,read) — O(postupdate(Alice.expense))

postupdate : Alice.expense’ = Alice.expense + ebookl.readingCost

11

Specification of Core Models
* ONA

O(=(prA-..Api)Astate(s, 0,1) = accessing) — O(revokeaccess(s,0,1)))

* Example6:

O(=(Bob.role = employee) A(Bob.temp_cert € RCL))A(state(Bob,o,r) =
accessing) — O(revokeaccess(Bob,o,1)))

Specification of Core Models

e ONA;:

permitaccess(s,o,r — $(tryaccess(s,o,7)\Q(preupdate(attribute)))
O(=(p1A-..Ap;)A(state(s, 0,r) = accessing) — O(revokeaccess(s, o, 7")))

e ONA,:
O(—(p1A...Ap;) A(state(s, 0, 1) = accessing) — O(revokeaccess(s,o,1)))

endaccess(s,o0,r)Vrevokeaccess(s,0,r) — O(permitaccess(s, 0,T)A\
O(onupdate(attribute)))

* ONAg:

O(=(p1A...Ap;)A(state(s, 0,1) = accessing) — O(revokeaccess(s, 0,1)))
endaccess(s, 0, r)Vrevokeaccess(s,0,r) — O(postupdate(attribute))

12

Specification: an Example

» Example 7: Resource-constrained access control
— Limited number (10) of ongoing accessing for a single object
— Object attribute: accessingS = {s|s is accessing o}
— When 11 subject requesting new access, one ongoing accessing
subject will be revoked.

* a. revocation by earliest usage will be revoked
e Subject attribute: startTime

(1) true — permit(s,o,r)

(2) permitaccess(s,0,1) — #(preupdate(o.accessingsS)), where preupdate : o.accessingS’ =
o.accessingS + {s}

(3) tryaccess(x,0,1) A (x ¢ o.accessingS) A (|o.accessingS| = 10) A (s € o.accessingS) A
(s.startTime = Min(o.accessingS)) — O(revokeaccess(s,0,r))

(4) endaccess(s, o, r)Vrevokeaccess(s, 0,1) — O(postUpdate(o.accessingsS), where postUpdate :
o.accessingS’ = o.accessingS — {s}

Specification: an Example

* b. revocation by longest idle usage
» Subject attribute: idleTime

(1) true — permit(s,o,r)

(2) permitaccess(s,o0,1) — #(preupdate(o.accessings)), where preupdate : o.accessingS’ =
o.accessingS + {s}

(3) tryaccess(z,0,7) A (x ¢ o.accessingS) A (Jo.accessingS| = 10) A (s € o.accessingS) A
(s.idleTime = Max(o.accessingS)) — O(revokeaccess(s,o0,1))

* C. revocation by longest total usage
* Subject attribute: usageTime

(1) true — permit(s,o,r)

(2) permitaccess(s,o,r) — #(preupdate(o.accessing$S)), where preupdate : o.accessingS’ =
o.accessingS + {s}

(3) tryaccess(z,0,1) A (x ¢ o.accessingS) A (Jo.accessingS| = 10) A (s € o.accessingS) A
(s.usageTime = Max(o.accessingS)) — O(revokeaccess(s,0,1))

(4) endaccess(s, 0, r)Vrevokeaccess(s,0,1) — O(postupdate(usageTime) \O(postupdate(accesings)),
where postupdate : o.accessingS’ = o.accessingS — {s}

13

Outline

* Introduction of UCON

» Temporal Logic of Action (TLA)

» Logic Mode for UCON with TLA
 Specification of Authorization Core Models
» Obligation and Conditions

 Conclusions and Future Work

Obligations

» Two types of obligationsin UCON:
— pre-obligations, which must have been performed before access.
— ongoing-obligations, which must be performed during usage.

Definition 3 An obligation is an action described by:
ap(8,0,7;, 8, 0p, Th, PATAL, ..., PAT A, ..

where ay, is the obligation name, (s,0,r) is a particular usage process requiring the
obligation, sy, oy, 1 are obligation subject, object and right, para,, ..., para; are
optional parameters .

Definition 4 A4 logical model of UCON with authorizations and obligations is a 4-
tuple:

M= (S,P, As, As)

where S is a sequence of states, P is a finite set of predicates, A is a finite set of
authorization actions (same as the A in the authorization model), Ag is a finite set of
obligation actions.

14

Obligations

» Example: click license agreement before making order:

(s.role = registered) — permit(s,o, order)
permit(s, o.order) A& (click',agreement(s, o,order, s, agree_statement, click))
— permitaccess(s, o, order)

Conditions

Conditions are environment restrictions before or during usage.

In UCON, acondition is a predicate built from system attributes, such as
time and location.

Definition 5 A4 logical model of UCON with authorizations, obligations, and condi-
tions is a S-tuple:

M = (8, Pa,Pec,As, As)

where S, A4, and Ag are the same as before, P4 is a finite set of authorization
predicates (the P before), and P¢ is a finite set of condition predicates.

Example:

(s.role = dayshifter)A(8am < currentT < 5pm) — permitaccess(s,o,r)
(s.role = nightshifter)A—(8am < currentT < 5pm) — permitaccess(s,o,r)

15

Outline

Introduction of UCON

Temporal Logic of Action (TLA)

Logic Modd for UCON with TLA
Specification of Authorization Core Models
Obligation and Conditions

Conclusions and Future Work

Conclusions

* A logica mode for UCON with:
— States with:
 subject attributes and values
« Object attributes and values
e System attribute and values
— Predicates:
» Authorization predicates built from subject and object attributes
« Condition predicates built from system attributes
— Actions:
« Attribute update actions
» Usage control actions
< Obligation actions
— Temporal formulas of usage control policies

 First-order logic specification of the UCON models with
new features of:
— Mutability
— Continuality

16

Future Work

 UCON:
— Enrich UCON model, such as constraints, delegations
— Administrative UCON model

« Attribute management

« Administrative policies
— Expressive power and safety analysis for UCON
— Concurrency of UCON

» Development of architecture and mechanism for
UCON system

17

