
Logical Model and Specification of Usage Control

XINWEN ZHANG
FRANCESCO PARISI-PRESICCE
JAEHONG PARK
RAVI SANDHU
George Mason University

The recent usage control model (UCON) is a foundation for next generation access control models
with distinguishing properties of decision continuity and attribute mutability. A usage control
decision is determined by combining authorizations, obligations, and conditions, presented as
UCONABC core models by Park and Sandhu. Based on these core aspects, we develop a first-
order logic specification of UCON with an extension of Lamport’s temporal logic of actions (TLA).
The building blocks of this model include: (1) a sequence of states expressed by the attributes
of the subjects, the objects, and the system, (2) authorization predicates on subject and object
attributes, (3) usage control actions to update attributes and accessing status of a usage process,
(4) obligation actions, and (5) condition predicates on system attributes. Usage control policies
are defined as a set of temporal logic formulas that are satisfied as system state changes. We show
the flexibility and expressive capability of this logic model by specifying the core models of UCON
and some applications. We also show how model checking based on computational tree logic can
verify security policies in a UCON system specified in this manner.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—Access controls;
K.6.5 [Management of Computing and Information Systems]: Security and Protection—Unauthorized access

General Terms: Security

Additional Key Words and Phrases: access control, usage control, security policy, logic specifica-
tion

1. INTRODUCTION

Traditional access control models such as lattice-based access control (LBAC) [Bell and
Lapadula 1975; Denning 1976; Sandhu 1993] and role-based access control (RBAC) [Sandhu
et al. 1996] primarily consider static authorization decisions based on subjects’ permissions
on target objects. Policy-based authorization management systems have been proposed
[Bertino et al. 2001; Damianou et al. 2001; Jajodia et al. 2001; Jajodia et al. 1997], in
which a centralized reference monitor (or distributed reference monitor with centralized

This research was partially supported by the National Science Foundation grant CNS-0310776.
A preliminary version of this paper appeared under the title “A Logical Specification for Usage Control” in the
Proceedings of 9th ACM Symposium on Access Control Models and Technologies, Yorktown Heights, New York,
USA, June 2-4, 2004.
Authors’ address: 4400 University Drive, George Mason University, MSN 4A4, Fairfax, VA 22030.
Email: {xzhang6, fparisip, jpark2, sandhu}@gmu.edu
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 2000 ACM 1094-9224/2000/1100-0111 $5.00

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000, Pages 111–0??.

112 · X. Zhang et al.

administration) checks a subject’s permission when access is requested, and the request is
granted according to the security policies at the time of the access request. Once a subject
is granted a permission, the object can be accessed repeatedly.

The development in information technology, especially in electronic commerce appli-
cations, requires additional features for access control. In recent information systems, the
usage of a digital object can not only be one instant access or activity, like read and write,
but also temporal and transient, such as payment-based online reading, metered by read-
ing time or chapters, or a downloadable music file that can only be played 10 times. So
a subject’s permission may decrease, expire, or be revoked along with the usage of the
object.

Recently proposed usage control (UCON) is a new access control model that extends
traditional access control models in multiple aspects [Park and Sandhu 2004]. In UCON,
an access may be an instantaneous action, but may also be a process lasting for some
duration with several related and subsequent actions. Actions and events during an access
process may result in changes to the system state, such as subject or object attributes, or in
changes in the status of an access (e.g., revoke an access). Usage control can be enforced
before or during an access process, or both. A usage decision in UCON is made by policies
of authorizations, obligations, and conditions (also referred asUCONABC core models).
Authorization decisions are determined by policies using attributes of the subject, object,
and right. Obligations are actions that are required to be performed before or during the
access process. Conditions are environment restrictions that are required to be valid before
or during access. An extreme example of UCON is the traditional access control models,
in which the authorization decision is typically made instantly when an access request
is generated, and there is no further check after that. More generally, usage control is a
comprehensive model to represent the underlying mechanism of existing access control
models and policies, as well as the access control in digital rights management (DRM),
trust management, and other modern information systems.

The distinguishing properties of UCON beyond traditional access control models are
continuity of access decision and mutability of subject attributes and object attributes. In
UCON, authorization decisions are not only checked and made before the access, but may
be repeatedly checked during the access and may revoke the access if some policies are
not satisfied, according to the changes of the subject or object attributes, or environmen-
tal conditions. Mutability is a new concept introduced by UCON, but its features can be
found in traditional access control models and policies. For example, in a Chinese Wall
policy, if a subject accesses an object in a conflict-of-interest set, then he/she cannot ac-
cess any other conflicting objects in the future. That means, the potential object list that
the subject can access (we can consider this a subject attribute) has been changed as a
side-effect of a previous access. This change, consequently, will restrict the next access of
this subject. History-based access control policies can be expressed by UCON with this
feature of attribute mutability. Also, mutability is useful to specify dynamic constraints
in access systems, such as separation of duty (SoD) policies, cardinality constraints, etc.
Another prospective area is consumable access. Consumable access is becoming an impor-
tant aspect in many applications, especially in DRM. For example in a pay-per-use DRM
application with fixed credit of a subject, the available access time decreases with ongoing
access.

Continuity and mutability in UCON introduce interactive and concurrent concepts into

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 113

access control. An access results in the update of subject or object attributes as side-effects.
These changes, in turn, may result in the change of other ongoing or future accesses by the
same subject, or to the same object, or some access that is implicitly related. That means,
an access may change not only its own state, but also the state of other accesses.

Park and Sandhu [Sandhu and Park 2003; Park and Sandhu 2004] presented the concept
of mutability and continuity, and a conceptual model of UCON, which consists of several
core sub-models including authorization, obligations, and conditions. The main contri-
bution of this paper with respect to previous papers is that we formalize UCON model
with first-order temporal logic, while in previous work the model is informal and concep-
tual. As UCON fundamentally extends the underlying mechanism from traditional access
control models, and comprehensively captures the new features of recent proposed secu-
rity systems, a formalized specification of the principles of UCON and its flexibility is
necessary. With a logical specification, we provide a tool to precisely define policies for
system designer and administrator. With a conceptual and informal model, the capability
to define policy is limited. Also, a logical specification provides precise meaning of new
features of UCON, such as mutability of attributes and continuity of usage control deci-
sions. Further, the verification of security properties in a specific UCON system needs a
logical formalization of the model. Finally, to analyze general properties of UCON models
such as expressive power and safety problem, we need a formalized model.

We use an extended form of Lamport’s temporal logic of actions (TLA) [Lamport 1994]
to build our logic model and formal specification. The basic components include predicates
between subject, object, and system attributes, as well as actions performed by the system
or subjects. A usage control policy is a logic formula built from these components.

The rest of this paper is organized as follows. Section 2 shows a motivating exam-
ple of usage control, especially the new features of continuity and mutability. Section 3
gives a brief introduction of UCON. The mutability property of UCON is illustrated in
Section 4. Section 5 introduces TLA briefly. Section 6 presents the details of our logic
model. Section 7 presents the specification of the core UCON authorization models with
our logic model. Section 8 and Section 9 introduce the logical specification of obligation
core models and condition core models, respectively. Section 10 illustrates the flexibility
and expressive power of our logical model. Section 11 discusses the security verification
with model checking mechanisms in TLA specified UCON models. Some related work in
access control with temporal aspects is reviewed in Section 12. Finally, we summarize this
paper and present some ongoing and future work in Section 13.

2. MOTIVATING EXAMPLE

In this section we present an example motivating the new features of UCON. Traditional
access control models and policies have difficulties, or lack the flexibility to specify poli-
cies in these scenarios. This example is originally from [Park and Sandhu 2004].

Consider a DRM application with limited number of simultaneous usages, where an
objecto can only be accessed and simultaneously used by a maximum of 10 users at a
time. Each new access request must be granted and there is only one access generated
from a single user at any time. If the number of users accessing the object is 10, then
one existing user’s ongoing access is revoked when a new request is generated. There
are different policies to determine which user’s ongoing access must be revoked. Among
them:

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

114 · X. Zhang et al.

(a) Revocation by start time: the longest usage is revoked.
(b) Revocation by idle time: the usage with the longest idle time is revoked.
(c) Revocation by total usage time: the user with the longest accumulating usage time is

revoked.

For these three different policies, we need to define different temporal attributes for sub-
jects and objects1. Specifically:

(a) For each subject, we define the starting time as an attribute. The list of accessing
subjects is defined as an object attribute, and each time a new access request is generated,
the set of accessing subjects is updated by adding the requesting subject. In UCON
terminology, this is a pre-update. If the total accessing number is already 10, then the
ongoing subject with the earliest start time is revoked, and the new access is permitted.
When an access is ended by a subject or revoked by the system, the total accessing
number is updated by subtracting one, and the subject is removed from the accessing
list. This is called a post-update.

(b) Objects have the same attributes as in (a). Each subject has two attributes: the status
of the subject with a value ofbusy or idle, and continuous idle time in a single usage
process. In order to monitor the idle time, the system has to check the status and update
the idle time during the entire ongoing access by means of ongoing-update. Similar to
(a), there are pre-update, revoking access, and post-update actions. Revocation is per-
formed with respect to the longest idle access when the total count of ongoing accessing
subjects is larger than 10.

(c) Here again objects have the same attributes as in (a). Each subject has an attribute of
accumulating usage time to record the total usage time of this subject on this object over
the subject and object life. Similar to (a) and (b), there are pre-update, revoking access,
and post-update actions. Revocation is performed with respect to the subject with the
longest usage time access when the total count of ongoing accessing subjects is larger
than 10. In addition, there is a post-update of subject attribute after the usage (either
ended by a subject or revoked by the system) by adding this usage time to the subject’s
historically accumulating accessing time.

In this example, an access is a process that interacts not only with a subject, but also
with the system and other related processes which are accessing or trying to access the
same object concurrently. There are many other examples to motivate UCON model that
cannot be expressed by traditional access control models. We explore some of these later
in this paper as we describe our logical approach. An access decision is no longer a single
function of (subject, object, right), but may depend on attributes of the entities involved in
the access, and may change the attributes of these entities. On the other side, an access is
not a simple action, but consists of a serious of actions and events not only from a subject,
but also from the system.

3. USAGE CONTROL

In this section we briefly review the general ideas of UCON and the core authorization
models. The details of these models can be found in [Sandhu and Park 2003; Park and
Sandhu 2004].

1These policies require specification of a tie-breaking rule which we ignore for sake of simplicity.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 115

As depicted in Figure 1, a usage control system has six components: subjects and their
attributes, objects and their attributes, rights, authorizations, obligations, and conditions2.
The authorizations, obligations and conditions are components of usage control decisions.
An authorization rule permits or denies access of a subject to an object with a specific right
based on subject and object attributes. Obligations are activities that have to be performed
by subjects before or during an access. Conditions are system environment restrictions,
not related to subject or object attributes.

Rights
(R)

Authoriz

ations

(A)

Subjects

(S)

Objects

(O)

Subject Attributes (SA) Object Attributes (OA)

Obliga

tions

(B)

Condi

tions

(C)

Usage

Decisions

Fig. 1. Usage control model

The most important properties that distinguish UCON from traditional access control
models and trust management are the continuity of usage decisions and the mutability of
attributes. Continuity means that a control policy may be enforced not only before an
access, but during the period of the access. Figure 2 shows a complete usage process con-
sisting of three phases along the time line: before usage, ongoing usage, and after usage.
The control decision components are checked and enforced in the first two phases, named
pre-decisions and ongoing-decisions respectively. In the after-usage phase, we don’t en-
force any policy since there is no access control after a subject finishes a usage on an
object3.

Mutability means that subject or object attribute may be updated to a new value as a re-
sult of accessing. Along with the three phases there are three kinds of updates: pre-updates,
ongoing-updates, and post-updates. All these updates are performed and monitored by the
system. An update of subject or object attributes may result in a system action to permit
or revoke an access. An update can affect not only the concurrent usage, but also other
usages related to the same subject or object. An update on the current usage may generate

2Note that this diagram is slightly different from that in [Sandhu and Park 2003; Park and Sandhu 2004]. Here
we place the usage decisions at the center instead of the rights.
3There can be obligations and conditions (post-obligation and post-conditions) defined in this phase. UCON
is a session-based access control model, since it controls the current access request and ongoing access. The
obligations and conditions after an access are regarded as long-term obligations and conditions, which are not
included in the core UCON, but should be included in related administrative models. In this paper we only focus
on the core aspects of UCON, while administrative models will be developed in the future.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

116 · X. Zhang et al.

cascading updates, while an update on other usages can act as external events that would
cause a change of the concurrent usage, such as revocation.

before-usage ongoing-Usage after-usage

Continuity of

Decisions

pre-decision ongoing-decision

pre-update ongoing-update post-update

Mutability of

Attributes

Fig. 2. Continuity and mutability properties of UCON

4. ATTRIBUTE MANAGEMENT AND MUTABILITY

Usage control model includes several underlying assumptions. In UCON, usage decision
is request-based, i.e., rights are not pre-assigned to subjects and permissions are granted
at the time of usage requests. Authorization decisions are based on subject attributes and
object attributes according to usage control policies. Depending on usage control policies,
these attributes may have to be updated and their management is a key concern in usage
control. Attribute management can be either“admin-controlled” or “system-controlled”.
This section discusses these two categories. Figure 3 shows a taxonomy of attribute man-
agement.

4.1 Admin-controlled Attribute Management (Immutable)

Administrator-controlled attributes can be modified only by explicit administrative actions.
These attributes are modified at the administrator discretion but are “immutable” in that the
system does not modify them automatically, unlike mutable attributes. Here the adminis-
trator can be either asecurity officeror auser, although in general, administrative actions

Self-controlled Non-self-controlled

Security Officer-controlled User-controlled

Admin-controlled
(Immutable)

System-controlled
(Mutable)

Attribute Management

Fig. 3. Attribute management taxonomy

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 117

are made by security officers. If a subject is assigned to a new security label or to a new
membership group because of a management decision, updates on attributes are made by
administrative actions. This is a typical approach in traditional access control policies such
as MAC and RBAC. Static separation of duty and user-role assignment in RBAC belongs
in this category. However, there are other cases where subject attributes are controlled
by a user. Thisuser-controlledattribute management can be further classified intoself-
controlledandnon-self-controlled. An example of self-controlled attribute management
is role activation in RBAC, where a user can activate or deactivate his or her roles in a
session. Controlling a users’ ability to update attributes (e.g., activated roles) is also con-
sidered as an administrative issue. In non-self controlled cases, attributes are controlled by
a user other than the user of subjects or sessions. For example, in an online music store, the
parents of a child may preset the child’s maximum purchase limits to 20 dollars a month
by controlling the attributes of the child. In UCON, all these cases are considered as part
of the administrative model and are not included in this paper.

4.2 System-controlled Attribute Management (Mutable)

Unlike admin-controlled, in system-controlled attribute management, updates are made as
side effects or results of user’s usage on objects. For instance, a subject’s credit balance
is decreased by the value of the usage on an object at the time of the usage. This is dif-
ferent from the update by an administrative action because the update in this case is done
by the system while in admin-controlled management the update involves administrative
decisions and actions. This is why system-controlled attributes are mutable attributes that
do not require any administrative action for updates. Therefore attribute mutability is con-
sidered as part of UCON core models. In both admin-controlled and system-controlled
management, it is the security officer who manages the ability of user updates and system
updates. In this paper our concern lies in the system-controlled mutability issue where
updates are made as side effects of users’ actions on objects. Five types of access control
policies with system-controlled attribute mutability are summarized in [Park et al. 2004],
including exclusiveness, accounting, immediate access revocation, obligations, and dy-
namic confinements.

5. TEMPORAL LOGIC OF ACTIONS

Extending temporal logic [Manna and Pnueli 1991] by introducing boolean valued actions,
the temporal logic of actions (TLA) [Lamport 1994] is a powerful tool to specify systems
and their properties, especially for interactive and concurrent systems. In this section we
first give a brief introduction to the basic terms and the syntax of temporal formulae, and
then introduce some additional temporal operators along with their semantics.

5.1 Building Blocks

Variables, values, and states are basic concepts in TLA. Values areelements of a data type.
A variable has a name likex andy, and can be assigned a value. We assume that there is an
infinite set of available variables with namesx, y, etc., to which values can be assigned. A
constant is a variable that is assigned a fixed value. A state is characterized by assignment
of a values[[x]] to each variablex.

A function is a nonboolean expression built from variables, operator symbols, and con-
stants, such asx2 + y − 3. The semantics[[f]] of a functionf is a mapping from states

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

118 · X. Zhang et al.

to values. For example,[[x2 + y − 3]] is the mapping that assigns to the states the value
s[[x]]2+s[[y]]−3, wheres[[x]] ands[[y]] denote the values thats assigns tox andy. Generally:

s[[f]] ≡ f(∀‘v’ : s[[v]]/v)

wheref(∀‘v’ : s[[v]]/v) is the value obtained by substitutings[[v]] for v. Semantically, a
variable is also a function that assigns the values[[x]] to the states.

A predicate is a boolean expression built from variables, operator symbols, and con-
stants, such asx = y + 1. The semantics[[P]] of a predicateP is a mapping from states to
booleans. A states satisfies a predicateP iff s[[P]], the value of[[P]] in s, equalstrue.

An action is a boolean-valued expression formed from variables, primed variables, op-
erator symbols, and constants, such asx′ = y + 1 andx′− 1 /∈ y′. Semantically, an action
represents a relation between old states and new states, where unprimed variables refer to
the old state and the primed variables refer to the new state. Formally, an actionA is a
function assigning a booleans[[A]]t to a pair of states(s, t). For example,x′ = y + 1 has
the boolean value oft[[x]] = s[[y]] + 1. We say that(s, t) is anA step ifs[[A]]t equalstrue.
Generally:

s[[A]]t ≡ A(∀‘v’ : s[[v]]/v, t[[v]]/v′)

Since a predicateP is a boolean expression built from variables and constants, it is
regarded as a special action without primed variables. A pair(s, t) is aP step iff s[[P]] is
true.

5.2 Temporal Formulas and Semantics

The basic temporal operator is¤ (always). The semantics of a temporal action is defined
using the concept ofbehavior. A behaviorσ in TLA is an infinite sequence of states
< s0, s1, s2, ... > (a finite set of states can be regarded as infinite with identical repeating
states). With this idea, the semantics of an atomic formula with actions is defined as:

< s0, s1, s2, ... > [[A]] ≡ s0[[A]]s1

< s0, s1, s2, ... > [[¤A]] ≡ ∀n ≥ 0 : sn[[A]]sn+1

The same semantics can be defined for predicates since a predicate is a special form of
action.

In TLA, a formula is built from predicates and actions with logical connectors and tem-
poral operators. Recursively, a temporal formula is defined by the following grammar in
BNF:

< formula >:≡< predicate > | < action > |¬ < formula > |
< formula > ∧ < formula > | < formula > ∨ < formula > |
< formula >→< formula > |¤ < formula > |

A formula is an assertion about a behavior. The semantic valueσ[[F]] of a formulaF is
a boolean value on a behaviorσ. Formally:

< s0, s1, s2, ... > [[F]] ≡ s0[[F]]s1

< s0, s1, s2, ... > [[¤F]] ≡ ∀n ≥ 0 :< sn, sn+1, sn+2, ... > [[F]]

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 119

5.3 Extension of TLA

Other future operators, such as “eventually” (♦) and “infinitely often” (¤♦) can be defined
using the “always” (¤) operator. The relationship between the “always” and the “eventu-
ally” operators can be expressed as:

♦F ≡ ¬¤¬F

Based on the semantics of temporal actions and formulas, we can define other temporal
operators and semantics similarly.

5.3.1 The“Next” and “Until” Temporal Operator.For a behavior< s0, s1, s2, ... >,
the semantics of theNextoperator (©) is defined as:

< s0, s1, s2, ... > [[©F]] ≡ s1[[F]]s2

Until (U) is a binary operator. A formulaFUG is true if F is alwaystrue until G is
true along the sequence of states. Semantically:

< s0, s1, s2, ... > [[FUG]] ≡ ∃i ≥ 0 :
(
si[[G]]si+1 ∧ (0 ≤ j < i →

sj [[F]]sj+1)
)

Note that the semantics ofFUG has no requirement onG for sj andF for si and the
following states, which is different from the “until” in the English language.

There is an equivalence between these temporal operators:

♦F ≡ (F ∨ ¬F)UF

5.3.2 Past Temporal Operators.TLA only defines future temporal operators like¤
and♦. In traditional temporal logic there are past temporal operators to specify the prop-
erties during the past time compared to the current time. For a behavior< s0, s1, s2, ... >
in TLA, if we considers0 as the state at the current time, thens1, s2, ... are states of the
future on the time series. We use the state sequence..., s−2, s−1 for states during the past
time along this time series. Therefore, a behavior is a state sequence:

< ..., s−2, s−1, s0, s1, s2, ... >

Based on this, we can define past temporal operators similar to the future ones:¥ (Has-
always-been), ¨ (Once), Ä (Previous), S (Since). Semantically:

< ..., s−2, s−1, s0, s1, s2, ... > [[¥F]] ≡ ∀n < 0 : sn[[F]]sn+1

< ..., s−2, s−1, s0, s1, s2, ... > [[¨F]] ≡ ∃n < 0 : sn[[F]]sn+1

< ..., s−2, s−1, s0, s1, s2, ... > [[ÄF]] ≡ s−1[[F]]s0

< ..., s−2, s−1, s0, s1, s2, ... > [[FSG]] ≡
∃i < 0 :

(
si[[G]]si+1 ∧ (i < j < 0 → sj [[F]]sj+1)

)

Similar to the future operators, there are some equivalences among these past operators.
For example,

¨F ≡ ¬¥¬F
¨F ≡ FS(F ∨ ¬F)

6. LOGICAL MODEL OF UCON

In this section we present a logical approach for formalizing UCON. First we describe the
basic components such as predicates and actions, then we define the logic model of UCON
with these components.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

120 · X. Zhang et al.

6.1 Attributes and States

In TLA, a state is a set of assignments of values to variables. In UCON, there are three
different kinds of variables: subject attributes, object attributes, and system attributes.

In UCON the state of each subject or object is specified by a finite set of attributes. We
require that each entity (subject or object) has at least one attribute for identity, called name,
which is unique and cannot be changed. An attribute of an entity is denoted asent.att
whereent is the subject or object’s identity andatt is the attribute name. Hereafter, we
assume that an entity name without any attribute specified denotes its identity. Generally,
ent.a ∈ ATT (ent), whereATT (ent) is a finite set of attributes for each entityent.

A subject or object attribute is a variable of a specific datatype, which includes a set of
possible values and operators to manipulate them. A state of a subject or an object is an
assignment of values to attribute(s). The datatype of an attribute depends on what kind of
attribute it is, such as group membership, role, security clearance, credit amount, etc. The
assignment of a value to an attribute is denoted byent.att = value. Sometimes we just
useent.att to denote an attribute value when the context is clear.

System attributes are variables that are not related to a subject or an object directly, such
as system clock, location, etc. We define a special system state to specify the status of a
single access process(s, o, r). Specifically, the functionstate(s, o, r) is a mapping from
{(s, o, r)} to {initial, requesting, denied, accessing, revoked, end}. The semantics of
theinitial state is that the access(s, o, r) has not been generated, whilerequesting means
the access has been generated and is waiting for the system’s decision;denied means that
the system has denied the access request according to the authorization policies before
usage;accessing means that the system has permitted the access and the subject has been
accessing the object immediately after that. An access will go torevoked state when
its ongoing-access is revoked by the system, or it will go to anend state when a subject
finishes the usage.

In UCON, a function is an expression built from one or more attributes and constants.
Semantically, a function is a mapping from a set of attribute values to a new value. For
instance, in the example in Section 2, the total number of ongoing accessing subjects for
an object is a function of the object’s attribute (a list of accessing subjects).

The variables for the attributes (including subjects, objects, and the system), the func-
tions, and the constants comprise the basic terms of our logical model in UCON. A state
of a UCON system is an assignment of values to subject attributes, object attributes, and
system attributes.

6.2 Predicates

A predicate is a boolean expression built from variables and constants, where variables
includes subject attributes, object attributes, and system attributes. The semantics of a
predicate is a mapping from states to boolean values. A state satisfies a predicate if the
attribute values assigned in this state satisfy the predicate. For example, the predicate
Alice.credit > $100.0 is true if Alice’s credit attribute value in the current state of the
system is larger than $100.0. Since a system may have very different predicates from
another system, the set of predicates for a general UCONA model is not fixed. A unary
predicate is built from one attribute variable and constants, e.g.,Alice.credit ≥ $100.00,
file1.classification = ‘supersecure′. A binary predicate is built from two different at-
tribute variables, e.g.,dominate(Alice.cleareance, file1.classification), Alice.credit ≥
ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 121

requesting accesing end

denied revocked

denyaccess

and

preupdate

revokeaccess

and

postupdate

preupdate

and

permitaccess

endaccess

and

postupdate

onupdate

initial

state

tryaccess

Fig. 4. State transition of a single access with usage control actions

ebook.value, (Alice, r) ∈ file1.acl, wherefile1.acl is objectfile1’s access control list.
Note that the two attributes in a binary predicate can be from a single subject or object, or
one subject and one object, or from the system. There is a special predicatepermit(s, o, r)
in a UCON system, which istrue if a subjects can access an objecto with right r. This
predicate is the result of a usage control decision evaluated by the system.

6.3 Actions

There are two types of actions in UCON: usage control actions and obligation actions.

6.3.1 Usage Control Actions.Usage control actions include actions to update attribute
values, and actions to change the state of a single access process. An update action changes
the system state to a new state by updating the value of an attribute. Note that only subject
and object attributes can be updated in UCON, as the changes of system attributes are not
captured in the core models.

Corresponding to the point where an update is performed, there are three types of up-
date actions defined in UCON:preupdate, onupdate, andpostupdate. These actions are
performed by the security system in the phases of before usage, ongoing usage, and after
usage respectively. Essentially, each of these actions updates an attribute value to a new
value. We distinguish these three types based on the time to perform the updates. In a
real UCON model, an update action can have an arbitrary name specified by the system or
policy designer.

If the system performs the action successfully, the attribute value is changed to a new
value, and the action istrue, otherwise, it isfalse. Note that in our specification we do
not consider the time delay of an action, and we assume that an action is always performed
instantly causing the transition to the next state. In a real implementation, there is a mech-
anism to monitor the process and audit the update, so that the system can recover in the
event of a failure.

Other usage control actions are performed by a subject or the system and can change the
status of an access(s, o, r). As mentioned before, there are six different possible values
of state(s, o, r) during an access life cycle. The transition from a state to another state
is a usage control action, as shown in Figure 4. Note that Figure 4 only shows the state
transitions of the system attributestate(s, o, r) in one usage session. It does not show
subject/object attributes or other system attributes, usually included in the state.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

122 · X. Zhang et al.

We can categorize all the usage control actions into two classes: actions performed by a
subject and actions performed by the system. Figure 5 shows these actions during the life
cycle of a usage, which are briefly explained below.

before-usage ongoing-usage after-usage

Subject Actions

tryaccess

revokeaccess postupdate

System Actions

endaccess

preupdate onupdate*
permitaccess

or

denyaccess

Fig. 5. Usage control actions

(1) tryaccess(s, o, r): generates a new access request(s, o, r), performed by a subject.

(2) permitaccess(s, o, r): grants an access request of(s, o, r), performed by the system.

(3) denyaccess(s, o, r): rejects an access request of(s, o, r), performed by the system.

(4) revokeaccess(s, o, r): revokes an ongoing access(s, o, r), performed by the system.

(5) endaccess(s, o, r): ends an access(s, o, r), performed by a subject.

(6) preupdate(attribute): updates a subject or object attribute before access, performed
by the system.

(7) onupdate(attribute): updates a subject or object attribute during the usage phase,
performed by the system. The star symbol in Figure 5 indicates that this action may
be performed repeatedly by the system to continuously update an attribute.

(8) postupdate(attribute): updates a subject or object attribute after access, performed
by the system.

6.3.2 Obligation Actions.In UCON an obligation is an action that must be performed
by a subject before or during an access. Formally, an obligation is a statement with vari-
ables and attributes between two system states. In this paper we do not explicitly include
any variables or attributes from which obligations are built, since the obligation require-
ments of an access request heavily depend on specific applications. But implicitly, each
obligation involves one or more attributes or variables between two system states.

Definition 6.1. An obligation is an action described byob(s, o, r, sb, ob) whereob is
the action name,(s, o, r) is a particular usage process requiring the obligation, andsb, ob

are the obligation subject and object, respectively.

Note thatsb andob may be the same ass ando, or different, depending on the particular
application. For example, the downloading of a music file may need the action to click the
privacy button by the same subject. The obligation is defined as

click privacy(s, o, download, s, privacy statement)
ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 123

where the obligation subject is the same as the accessing subject, andprivacy statement
is the obligation object. For another example, a child’s watching an online movie may
need the parents’ agreement in advance. In this paper we assume that an obligation ac-
tion is always doable whenever required, so that an obligation is not dependent on other
permissions or attribute predicates.

6.4 Model and Satisfactions of Formulas

Definition 6.2. A logical model of UCON is a 5-tuple:
M = (S,PA,PC ,AA,AB), where

—S is a sequence of states of the system,

—PA is a finite set of authorization predicates built from the attributes of subjects and
objects,

—PC is a finite set of condition predicates built from the system attributes,

—AA is a finite set of usage control actions,

—AB is a finite set of obligation actions.

A state is a set of assignments of values to attributes, that is, a function on the set of
subjects and their attributes, the set of objects and their attributes, and the set of system
attributes. The setAA includes update actions and the actions changing the status of an
access(s, o, r).

A logic formula is built from predicates and actions with logic connectors and temporal
operators.

Definition 6.3. A logical formula in UCON is defined by the following grammar in
BNF:

ø ::= a|p(t1, ..., tn)|(¬ø)|(ø∧ ø)|(ø → ø)|¤ø|♦ø| © ø|øUø|¥ø|¨ø|Ä ø|øSø|
wherea is an action,p is a predicate of arityn, andt1, ..., tn are terms.

If a modelM with a states satisfies a formulaø, we writeM, s ² ø. Formally,

(1) M, s0 ² p iff s0[[p]], wherep ∈ P .

(2) M, s0 ² a iff s0[[a]]s1, wherea ∈ A, ands1 is next state ofs in S.

(3) M, s0 ² ¬ø iff M, s0 2 ø.

(4) M, s0 ² ø1 ∧ ø2 iff M, s0 ² ø1 andM, s0 ² ø2.

(5) M, s0 ² ø1 → ø2 iff M, s0 2 ø1 orM, s0 ² ø2.

(6) M, s0 ² ¤ø iff ∀n ≥ 0 : M, sn ² ø.

(7) M, s0 ² ♦ø iff ∃n ≥ 0 : M, sn ² ø.

(8) M, s0 ² ©ø iff M, s1 ² ø.

(9) M, s0 ² ø1Uø2 iff ∃i ≥ 0 : M, si ² ø2 ∧ (0 ≤ j < i →M, sj ² ø1)
(10) M, s0 ² ¥ø iff ∀n < 0 : M, sn ² ø.

(11) M, s0 ² ¨ø iff ∃n < 0 : M, sn ² ø.

(12) M, s0 ² Äø iff M, s−1 ² ø.

(13) M, s0 ² ø1Sø2 iff ∃i < 0 : M, si ² ø2 ∧ (i < j ≤ 0 →M, sj ² ø1)

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

124 · X. Zhang et al.

7. SPECIFICATION OF UCON AUTHORIZATION CORE MODELS

For each decision component in UCON, a number of core models are defined based on the
phase where updates are performed. In this section we first briefly introduce the core au-
thorization models, then present their TLA-based specifications. Obligation and condition
models are illustrated in the next two sections, respectively.

In authorization core models, usage control decisions are dependent on subject and ob-
ject attributes. Park and Sandhu [Sandhu and Park 2003; Park and Sandhu 2004] defined
seven core authorization models summarized below.

—preA0: A usage control decision is determined by authorizations before a usage, and
there is no attribute update before, during, or after this usage.

—preA1: A usage control decision is determined by authorizations before a usage, and
one or more subject or object attributes are updated before this usage.

—preA3: A usage control decision is determined by authorizations before a usage, and
one or more subject or object attributes are updated after this usage.

—onA0: Usage control is checked and the decision is determined by authorizations during
a usage, and there is no attribute update before, during, or after this usage.

—onA1: Usage control is checked and the decision is determined by authorizations during
a usage, and one or more subject or object attributes are updated before this usage.

—onA2: Usage control is checked and the decision is determined by authorizations during
access, and one or more subject or object attributes are updated during this usage.

—onA3: Usage control is checked and the decision is determined by authorizations during
a usage, and one or more subject or object attributes are updated after this usage.

Note that in the case of authorization before access and update during usage, since the
update of attributes does not trigger any authorization check during usage, it has the same
effect as update after usage (preA3)4. So this case is not included in UCON. For models
which enforce authorizations during a usage, ongoing-checking captures not only the at-
tribute changes from this local usage process, but also other related usage processes. For
example, a subject’s attribute change due to the system administrator’s action may revoke
his ongoing access to an object if the authorizations of this access is no longer valid.

7.1 The Model preA0

As presented in [Sandhu and Park 2003; Park and Sandhu 2004], most traditional access
control models can be expressed inpreA0 model, in which an authorization decision is
determined by the system before the access happens, and there is no update for subject or
object attributes. The usage control policies are:

p1 ∧ ... ∧ pi → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →©(

permitaccess(s, o, r)
)

wherep1, ...,pi are state predicates built from subject and/or object attributes. Thepermit
predicate states thats can accesso with r. Thepermitaccess action grants the permission
to s and starts the access. Since there is no update between the access request and the grant
action,permitaccess is true in the “next” state oftryaccess.

4This assumes no “interference” with other ongoing accesses.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 125

Example 1 In mandatory access control (MAC), each subject is assigned to a security
clearance, and each object is assigned to a security classification. Both clearance and clas-
sification are labels in a lattice structure. A subject’s clearance and an object’s classification
are compared to enforce some security policies, such as the simple property and the star
property. If the security clearance and classification are defined as attributes of subjects
and objects, respectively, MAC can be expressed in UCON as apreA0 model as shown
below.

dominate(s.clearance, o.classification) → permit(s, o, read)
tryaccess(s, o, read)∧permit(s, o, read) →©(

permitaccess(s, o, read)
)

dominate(o.classification, s.clearance) → permit(s, o, write)
tryaccess(s, o, write)∧permit(s, o, write) →©(

permitaccess(s, o, write)
)

dominate is a binary predicate on subject attributes and object attributes, anddominate(x, y)
is true iff x is a higher level label in the lattice thany.
Example 2 Discretionary access control (DAC) model with access control list (ACL) can
be expressed with apreA0 model. A subject attribute is its identity, and an object attribute
is an access control listacl of a set of pairs of(id, r), whereid is a subject’s identity, and
r is a right with which this subject can access this object.

(s.id, r) ∈ o.acl → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →©(

permitaccess(s, o, r)
)

7.2 The Model preA1

In preA1, the authorization rules are checked before the access, and there are one or more
update actions before the system grants the permission to a subject. The usage control
policies are:

p1 ∧ ... ∧ pi → permit(s, o, r)
permitaccess(s, o, r) → ¨

(
tryaccess(s, o, r)∧

permit(s, o, r) ∧ ♦(preupdate(attribute))
)

whereattribute is either a subject or an object attribute. The first rule is the same as
in preA0. The second rule says that when apermitaccess occurs, an access request
must have occurred before, thepermit predicate must have beentrue, and there was a
preupdate action that occurred after that. In this formula, thepermit predicate is only
required to betrue before the actionpreupdate. Note that only one update action is
specified here. This assumption is applied for other core models in this paper. We will
explicitly mention when multiple updates are needed.

We assume that the time line is bounded during the life time of an access period. The
“Once” operator does not refer to any past action beforetryaccess. The same assumption
is also made for future temporal operators.
Example 3 In a DRM pay-per-use application, a subject has a numerical valued attribute
of credit, and an object has a numerical valued attribute ofvalue. A read access can
be approved when a subject’scredit is more than an object’svalue. Before the access
can start, an update to the subject’scredit is performed by the system by subtracting the
object’svalue. The policies are:

(Alice.credit ≥ ebook1.value) → permit(Alice, ebook1, read)
permitaccess(Alice, ebook1, read) → ¨

(
tryaccess(Alice, ebook1, read)∧

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

126 · X. Zhang et al.

permit(Alice, ebook1, read) ∧ ♦(preupdate(Alice.credit))
)

preupdate(Alice.credit) : Alice.credit′ = Alice.credit− ebook1.value

The first rule specifies that whenever Alice’s credit is more than the value of ebook1, she
can read it. The second rules says that the granting of the permission to Alice implies an
update of her credit. Thepreupdate results in a new value of Alice’s credit by subtracting
ebook1’s value from the original credit.

7.3 The Model preA3

In preA3, the authorization rules are checked before the access, and there are one or more
update actions after the usage process. The usage control policies are:

p1 ∧ ... ∧ pi → permit(s, o, r)
permitaccess(s, o, r) → ¨(tryaccess(s, o, r)) ∧ permit(s, o, r)
endaccess(s, o, r) → ♦(postupdate(attribute))

The first two rules are the same as before, except that the update action does not appear in
the second rule. Note that the second rule is the same as

permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r) ∧ permit(s, o, r)

)

since there is no update in the before-usage phase. Actually, sincepermit(s, o, r) is only
dependent on the attributes ofs ando, and there is no update before theendaccess action,
once the access is approved,permit(s, o, r) must be true from thetryaccess action to the
endaccess action. The third rule says that apostupdate action must be performed by the
system after an access is ended by a subject. Since the authorization rules are not enforced
after granting the access, there is no access revocation in this model.
Example 4 In a DRM membership-based application, a readers has attributesid and total
expense, and a booko has attributestitle andreadingCost. A reading group is a subject
with attributesreaderList = {id1, id2, ...} andbookList = {book1.title, book2.title, ...}.
The policies are:

(s.id ∈ readingGroup.readerList)∧ (o.title ∈ readingGroup.bookList)
→ permit(s, o, read)
permitaccess(s, o, read) →
¨(tryaccess(s, o, read))∧ permit(s, o, read)
endaccess(s, o, read) → ♦(postupdate(s.expense))
postupdate(s.expense) : s.expense′ = s.expense + o.readingCost

In this example, the authorization policy states that if boths ando belong toreadingGroup,
thens can read the book and his expense is updated by adding the cost of this book after
the access.

7.4 The Model onA0

In the pre-authorization models, there is no security check after a system grants a permis-
sion. InonA0, the authorization policies are enforced during the access period. The usage
control policy is given below:

permitaccess(s, o, r) → ¤
(¬(p1 ∧ ... ∧ pi)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 127

In theonA0 model, the authorization predicates have to be satisfied in any state during the
access period, otherwise the access is revoked by the system immediately. The policy says
that, after the actionpermitaccess, the formula

¬(p1 ∧ ... ∧ pi) ∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)

must be always true, so that either the authorization predicatesp1, ..., pi are true when the
subject isaccessing the object in a state, or there is anrevokeaccess action from the
system in that state.

The policy inonA0 model can also be specified as the following formula with“Until”
operator:

permitaccess(s, o, r) → (p1∧...∧pi)U(revokeaccess(s, o, r)∨endaccess(s, o, r))

which indicates that if a usage is permitted, the authorization predicates are true until this
usage process is revoked by the system or ended by the subject. Since therevokeaccess
action changesstate(s, o, r) from accessing to revoked, andendaccess action changes
state(s, o, r) from accessing to end, then this formula is equivalent to the original one.
Similarly we can use both approaches in other ongoing models (in this and next two sec-
tions).

Since we are specifying the core aspects of UCON, we do not include the pre-authorization
rules in ongoing-authorization models. In practice, real applications may require a combi-
nation of several core models.
Example 5 In an organization, a user Bob (with roleemployee) has a temporary position
to conduct a short-term project with a certificate oftemp cert. While Bob is access-
ing some sensitive information, his digital certificate (temp cert) for this project is being
checked repeatedly. If his certificate is in the Certification Revocation List (CRL) of the or-
ganization, his temporary role membership is revoked and he cannot access the information
any more. The control rule for the access is:

permitaccess(Bob, o, r) → ¤
(¬((Bob.role = employee)

∧(Bob.temp cert ∈ CRL)) ∧ (state(Bob, o, r) = accessing) →
revokeaccess(Bob, o, r)

)

7.5 The Model onA1

In onA1, the authorizations are enforced during a usage process, and there are one or more
update actions before a subject starts to access an object. The control rules are:

permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r)∧ ♦(preupdate(attribute))

)
permitaccess(s, o, r) → ¤

(¬(p1∧...∧pi)∧(state(s, o, r) = accessing) →
revokeaccess(s, o, r)

)

Since there is no authorization check before a subject starts to access an object, in the first
rule, thepermitaccess action implies only an update action before it.

7.6 The Model onA2

In onA2, there are one or more update actions during a usage period. The control policies
are:

permitaccess(s, o, r) → ¤
(¬(p1∧...∧pi)∧(state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

128 · X. Zhang et al.

endaccess(s, o, r) ∨ revokeaccess(s, o, r) →
¨

(
permitaccess(s, o, r) ∧ ♦(onupdate(attribute))

)

In the second rule, we only specify that there is an update action during the ongoing-usage
phase. In applications where an update is required in every ongoing state, the second rule
is changed to:

endaccess(s, o, r) ∨ revokeaccess(s, o, r) →
¨

(
permitaccess(s, o, r) ∧¤(onupdate(attribute))

)

7.7 The Model onA3

In onA3, there must be update action(s) after a usage process. The control policies are:

permitaccess(s, o, r) → ¤
(¬(p1∧...∧pi)∧(state(s, o, r) = accessing) →

revokeaccess(s, o, r)
)

If an access is ended by the subject:
endaccess(s, o, r) → ♦(postupdate(attribute))
If an access is revoked by the system:
revokeaccess(s, o, r) → ♦(postupdate(attribute))

In many applications, the update after an access is ended by a subject, is different from the
one after an access is revoked by the system. Here we simply use the same action name
of postupdate, but they may change an attribute to different values, or update different
attributes. For example, an ended access may update the total usage time of the subject,
while a revoked access may update another attribute to record the time and reason of this
revocation for auditing purposes.
Example 6 Consider the usage control policies for the example in Section 2. In this
example an object attribute is a set of accessing subjectsaccessingS = {s|state(s, o, r) =
accessing}. We also define a systemclock as a system attribute. For the different policies
we define different subject attributes.

(a) Revocation by the earliest start time:
We define the starting time (startT ime) as a subject attribute. The authorization rules
are:

(1) true → permit(s, o, r)
(2) permitaccess(s, o, r) → ¨

(
tryaccess(s, o, r) ∧ permit(s, o, r) ∧

♦(preupdate(o.accessingS)) ∧ ♦(preupdate(s.startT ime))
)

preupdate(o.accessingS) : o.accessingS′ = o.accessingS ∪ {s}
preupdate(s.startT ime) : s.startT ime′ = sys.clock

(3) permitaccess(s, o, r) → ¤
(¬(|o.accessingS| ≤ 10)∧(state(s, o, r) =

accessing) ∧ (s.startT ime = MinstartT ime(o.accessingS)) →
revokeaccess(s, o, r)

)
(4) endaccess(s, o, r)∨revokeaccess(s, o, r) → ♦(postUpdate(o.accessingS)∧

♦(postUpdate(s.startT ime)
postUpdate(o.accessingS) : o.accessingS′ = o.accessingS − {s}
postUpdate(s.startT ime) : s.startT ime′ = null

where|o.accessingS| is the number of accessing subjects, andMinstartT ime(o.accessingS)
is the earliest start time fromaccessingS. The first rule says that a new access request

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 129

is always permitted. The second rule is apreA1 rule specifying that whenever a subject
tries to access the object, there must be two pre-updates before the subject starts to ac-
cess, one updatingaccessingS by adding this requesting subject, and another updating
s.startT ime by assigning the local system’s clock. The third rule says that when the to-
tal number of accessing user is larger than 10 (a new request is generated and approved),
the subject with earliest start time is revoked. The fourth rule specifies two post-updates
needed when the access is ended or is revoked, one updatingaccessingS by removing
the subject, and another one updatings.startT ime by assigning the valuenull, which
means the subject is not involved in an access.

(b) Revocation by the longest idle time:
We define two subject attributes: the status of the usage (status with valuebusy or idle)
and continuous idle time in a single usage period (idleT ime). The control rules are:

(1) true → permit(s, o, r)
(2) permitaccess(s, o, r) → ¨

(
tryaccess(s, o, r) ∧ permit(s, o, r) ∧

♦(preupdate(o.accessingS)) ∧ ♦(preupdate(s.idleT ime))
)

preupdate(o.accessingS) : o.accessingS′ = o.accessingS ∪ {s}
preupdate(s.idleT ime) : s.idleT ime′ = 0

(3) permitaccess(s, o, r) → ¤
(¬(|o.accessingS| ≤ 10)∧(state(s, o, r) =

accessing) ∧ (s.idleT ime = MaxidleT ime(o.accessingS)) →
revokeaccess(s, o, r)

)

(4) ¤
(
(state(s, o, r) = accessing)∧(s.status = idle) → onupdate(s.idleT ime)

)
onupdate(s.idleT ime) : s.idleT ime = s.idleT ime + 1

(5) endaccess(s, o, r)∨revokeaccess(s, o, r) → ♦(postupdate(o.accessingS))
postupdate(o.accessingS) : o.accessingS′ = o.accessingS − {s}

whereMaxidleT ime(o.accessingS) is the largestidleT ime in the object’saccessingS
attribute. Rules (1), (2), and (5) are the same as before, except that in rule (2), one
pre-update action is to initialize the subject’sidleT ime. In rule (3), the revocation is
determined by thes.idleT ime. Rule (4) specifies the mutability of the subject attribute
by saying that there must be a continuous update ofs.idleT ime performed by the system
whenever the state of a subject isidle.

(c) Revocation by the longest total usage time:
We define the accumulating usage timeusageT ime as a subject attribute. The control
rules are:

(1) true → permit(s, o, r)
(2) permitaccess(s, o, r) → ¨

(
tryaccess(s, o, r) ∧ permit(s, o, r) ∧

♦(preupdate(o.accessingS))
)

preupdate(o.accessingS) : o.accessingS′ = o.accessingS ∪ {s}
(3) permitaccess(s, o, r) → ¤

(¬(|o.accessingS| ≤ 10)∧(state(s, o, r) =
accessing) ∧ (s.usageT ime = MaxusageT ime(o.accessingS)) →
revokeaccess(s, o, r)

)
(4) endaccess(s, o, r) ∨ revokeaccess(s, o, r) →

♦(postupdate(s.usageT ime)∧ ♦(postupdate(o.accesingS))
postupdate(o.accesingS) : o.accessingS′ = o.accessingS − {s}
postupdate(s.usageT ime) : s.usageT imes′ = s.usageT ime+sys.periodT

whereMaxusageT ime(o.accessingS) is the largestusageT ime in accessingS. Rules
(1), (2) are the same as those in the previous case except that there is only one pre-update

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

130 · X. Zhang et al.

action; rule (3) specifies that the revocation is determined by the total usage time of the
subject. Rule (4) says that after each usage, there must be an update onusageT ime
by adding this usage time to the old value. Thesys.periodT is a system attribute to
record this accessing’s period5. Note that the revocation is determined by a subject’s
historically accumulating total usage time before this ongoing access. The time of an
ongoing access is not considered in theusageT ime attribute.

8. SPECIFICATION OF UCON OBLIGATION CORE MODELS

Obligations and conditions are two important components in the usage decision of UCON,
besides authorizations. In this section we discuss the logical approach of obligations. The
specification of conditions is discussed in the next section.

Because of the continuity of a usage decision, there are two types of obligations in
UCON.

1. pre-obligations: obligations that must have been performed before a subject starts to
access an object.

2. ongoing-obligations: obligations that must be performed during a usage process.

Obligations that have to be performed after an access, since they only affect the fu-
ture usage process, are considered as global obligations [Sandhu and Park 2003; Park and
Sandhu 2004]. For example, an action of a user clicking an agreement button before play-
ing a music file is regarded as an obligation, while the payment action of a monthly billing
is a global obligation, because this action does not affect the current usage access. In
UCON we need an administration model to capture the global obligations. In this paper,
we only focus on the session-based usage control model, in which only obligations before
and during the usage process are considered. The global obligations will be described in
future work on administrative models.

Similar to authorization core models, we distinguish different obligation core models
based on the point where updates are performed as shown below.

—preB0: A usage control decision is determined by obligations before an access, and
there is no attribute update before, during, or after the usage.

—preB1: A usage control decision is determined by obligations before an access, and one
or more subject or object attributes are updated before the usage.

—preB3: A usage control decision is determined by obligations before an access, and one
or more subject or object attributes are updated after the usage.

—onB0: Usage control is checked and the decision is determined by obligations during an
access, and there is no attribute update before, during, or after the usage.

—onB1: Usage control is checked and the decision is determined by obligations during an
access, and one or more subject or object attributes are updated before the usage.

—onB2: Usage control is checked and the decision is determined by obligations during an
access, and one or more subject or object attributes are updated during the usage.

—onB3: Usage control is checked and the decision is determined by obligations during an
access, and one or more subject or object attributes are updated after the usage.

5A system attribute may be defined and updated repeatedly along a usage process to record a single access’s
period. While the update of system attributes is not included in UCON core models, for simplicity we just use an
attribute to conceptually illustrate the post-update action here.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 131

8.1 The model preB0

Similar to the modelpreA0, the policies ofpreB0 are:

¨ob1 ∧ ¨ob2 ∧ . . . ∧ ¨obi → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →©(

permitaccess(s, o, r)
)

Theob1, . . . , obi are actions of obligations for access(s, o, r). The first rule requires that
an access is enabled after all the obligations are satisfied. The difference betweenpreB0

andpreA0 is that in the former an obligation can be satisfied any time before an access
is enabled, so that the “once” operator is applied in the first rule; while in the latter the
authorization predicates must be satisfied at the moment of thetryaccess action. Note that
here we just ignore the authorization factors (attribute predicates), since we are discussing
the core model.
Example 7In an online electronic marketing system, in order to place an order, a customer
has to click a button to agree to the order policies. We define an actionclick agreement
as an obligation for each order: the obligation subject is the same as the ordering sub-
ject, whileagree statement is the obligation object. The usage control policies for this
application are:

¨click agreement(s, o, order, s, agree statement) → permit(s, o, order)
tryaccess(s, o, order)∧permit(s, o, order) →©(

permitaccess(s, o, order)
)

8.2 The Model preB1

The policies forpreB1 are:

¨ob1 ∧ ¨ob2 ∧ . . . ∧ ¨obi → permit(s, o, r)
permitaccess(s, o, r) → permit(s, o, r) ∧
¨

(
tryaccess(s, o, r) ∧ ♦(preupdate(attribute))

)

The first rule is the same as inpreB0. In the second rule, an update action must be
performed aftertryaccess and beforepremitaccess. Note that this rule is different from
that inpreA1, since here thepermit predicate is determined by obligations, which can be
satisfied at any time before thepermitaccess action, while inpreA1, thepermit predicate
depends on attribute predicates evaluated before the update action.
Example 8 In an online electronic marketing system, an anonymous user needs to register
first in order to browse the products. The registration actionregist is a pre-obligation
action, after which the user’s role is changed fromanonymous to registered. This can
be expressed in apreB1 model as follows:

¨regist(s, o, browse, s, system) → permit(s, o, browse)
permitaccess(s, o, browse) → permit(s, o, browse) ∧
¨

(
tryaccess(s, o, browse) ∧ ♦(preupdate(s.role))

)
preupdate(s.role) : s.role′ = registered

In this policy,regist(s, o, browse, s, system) is an obligation action for access of a sub-
ject’s browsing an object. The subject in the obligation is the same subject who generates
the access request, while the object is a system objectsys, on which a subject can take the
reg right to be registered. The first rule specifies that once the registration obligation has
been completed, thepermit predicate becomes true in the next state. Note that since there
is only one obligation for this access, the first rule can be replaced by the following one:

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

132 · X. Zhang et al.

Ä
(
regist(s, o, browse, s, system, reg)

) → permit(s, o, browse)

This rules states that an access is enabled6 once after the subject finishes his registration.
The second formula specifies that before the system performs thepermitaccess action,
there must be atypeaccess action performed by the subject, thepermit predicate must
be true, andpreupdate action has been completed. Thepreupdate action updates the
subject’s role to a new value.

8.3 The Model preB3

The policies forpreB3 are:

¨ob1 ∧ ¨ob2 ∧ . . . ∧ ¨obi → permit(s, o, r)
permitaccess(s, o, r) → permit(s, o, r) ∧ ¨

(
tryaccess(s, o, r)

)
endaccess(s, o, r) → ♦

(
postupdate(attribute)

)

The rules in this policy are similar to those inpreA3, except that thepermit predi-
cate is determined by a set of obligations and their satisfactions are evaluated when the
permitaccess action is performed.

8.4 The Model onB0

In onB0, the usage control policies are enforced during an access period. The policy is:

permitaccess(s, o, r) → ¤
(¬(ob1 ∧ ... ∧ obi)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

Similar toonA0, the policy specifies that after the actionpermitaccess, the formula

¬(ob1 ∧ ... ∧ obi)∧ (state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

must be always true during an accessing process, so that either the obligationsob1, ..., obi

are true when the subject isaccessing the object, or the access is revoked immediately.
Example 9 In order to use an online provider service, an advertisement banner must be
opened on the client’s side, or the service is disconnected. This can be expressed in the
onB0 model as follows.

permitaccess(s, o, r) → ¤
(¬open ad(s, o, r, s, ad banner) ∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

In this policy, theopen ad is an obligation action that must be true during the whole
accessing process, in which thead banner is the obligation object.

8.5 The Model onB1

In onB1, there are one or more update actions before a subject starts to access an object.
The policies are:

permitaccess(s, o, r) → ¨
(
tryaccess(s, o, r)∧ ♦(preupdate(attribute))

)
permitaccess(s, o, r) → ¤

(¬(ob1 ∧ ... ∧ obi)∧
(state(s, o, r) = accessing) → revokeaccess(s, o, r)

)

6Here “enabled” means that thepermit predicate is true. The real permission is not granted until a request is
generated and the corresponding update(s) has been performed based on the second rule.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 133

The first rule specifies that there is an update action before accessing the object. Since
there is no usage control check before a subject starts to access an object, in the first rule,
thepermitaccess action implies only atryaccess and apreupdate action before it. The
second rule is the same as that inonB0.

8.6 The Model onB2

In onB2, there are one or more update actions during an accessing process. The policies
are:

permitaccess(s, o, r) → ¤
(¬(ob1 ∧ ... ∧ obi)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

endaccess(s, o, r) ∨
revokeaccess(s, o, r) →
¨

(
permitaccess(s, o, r) ∧ ♦(onupdate(attribute))

)

In the second rule, we only specify that there is an update action. For the cases where
an update is required in every state change during the ongoing access, the second rule
becomes:

endaccess(s, o, r) ∨ revokeaccess(s, o, r) →
¨

(
permitaccess(s, o, r) ∧¤(onupdate(attribute))

)

8.7 The Model onB3

In onB3, there must be update action(s) after a usage process. The control policies are:

permitaccess(s, o, r) → ¤
(¬(ob1 ∧ ... ∧ obi)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

If the access is ended by subject:
endaccess(s, o, r) → ♦(postupdate(attribute))
If the access is revoked by system:
revokeaccess(s, o, r) → ♦(postupdate(attribute))

Note that the update after an access is ended by a subject is usually different from the
one after an access is revoked by the system. Here, we simply use the same action name
of postupdate, but they may change the attribute to different values, or change different
attributes.

9. SPECIFICATION OF UCON CONDITION CORE MODELS

Conditions are environmental restrictions that have to be valid before or during a usage
process. Formally, a condition is a state predicate built from system attributes. For ex-
ample, a subject obtains a permission only when the system clock is in daytime, or in a
particular period during daytime.

Based on the point when a condition for a usage is checked, there are two types of
conditions:

(1) pre-conditions: conditions that must be true before an access.

(2) ongoing-conditions: conditions that must be true during the process of accessing an
object.

Similar to obligations in UCON, we only focus on pre-conditions and ongoing-conditions.
Since post-conditions do not affect the current usage request, we will consider this in an

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

134 · X. Zhang et al.

administrative model in future work. Therefore there are only two core condition models
in UCON,preC0 andonC0. Since a condition is built from the system attributes, the core
models are defined to be immutable, i.e., the subject or object’s attributes are not updated
before, during, or after an access. Note that this is different from the fact that system at-
tributes can be updated according to the environment, which is not captured by the UCON
core models.

The policy for the modelpreC0 is expressed by:

pc1 ∧ ... ∧ pci → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →©(

permitaccess(s, o, r)
)

wherepc1, ...,pci are condition predicates built from system attributes. This policy is very
similar to that ofpreA0, except that the predicates are built from system attributes, instead
of the subject’s and object’s attributes.

The policy ofonC0 is just:

permitaccess(s, o, r) → ¤
(¬(pc1 ∧ ... ∧ pci)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

As for preC0, this policy is similar to that ofonA0 except for the condition predicates.
Example 10 Suppose that a day-shift userdayshifter can access an object only during
daytime. We define the system timecurrent time as an attribute, denoting an environment
status, not an attribute of any subject or object. This is a combined model ofpreC0 and
onC0. The policies can be expressed as:

(s.role = dayshifter) ∧ (8am ≤ currentT ≤ 5pm) → permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →©(

permitaccess(s, o, r)
)

permitaccess(s, o, r) → ¤
(¬(8am ≤ currentT ≤ 5pm)∧

(state(s, o, r) = accessing) → revokeaccess(s, o, r)
)

The first two rules are the same as those inpreC0, which specify that before an access,
the subject’s role must bedayshifter and the system’s time between 8am and 5pm. The
third rule is foronC0, where the whole accessing process must be taking place during
daytime.

10. EXPRESSIVITY AND FLEXIBILITY

UCON is the first model to bring authorization, obligation, and condition together into
access control. Both mutability and continuity are rarely discussed in traditional access
control models and applications. In this section we apply the proposed logical UCON
model to show how to express some access control policies.

10.1 Role-based Access Control Models

In role-based access control (RBAC) [Sandhu et al. 1996], a role is a collection of permis-
sions, and a permission is a pair (object, right). A role can be assigned to a user by an
administrator or a security officer. A user can be assigned to a set of roles. In a session,
a user activates a subset of his roles and obtains all the permissions associated with these
activated roles. Roles may be organized in a partial order hierarchy, in which high-level
roles (senior roles) inherit the permissions assigned to low-level roles (junior roles). RBAC
can be expressed as a pre-authorization models in UCON, in which user-role assignments

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 135

can be regarded as subject attributes, permission-role assignments can be regarded as ob-
ject attributes, and the partial order relation between roles in role hierarchy is expressed by
attribute predicates.
Example 11 Consider an RBAC1 model [Sandhu et al. 1996] where all the rolesR are
in a partial order hierarchy with respect to the dominate relation≥. A subject (a user in
RBAC1) has an attributeactRole with value a subset ofR, the activated roles in a session.
An object has an attributeperRole with values sets of pairs(role, r) wherer is a right. A
permission(o, r) is assigned to arole iff (role, r) ∈ o.perRole.

The usage control policy for RBAC1 is expressed by:

(role1 ∈ s.actRole) ∧ ((role2, r) ∈ o.perRole) ∧ (role1 ≥ role2) →
permit(s, o, r)
tryaccess(s, o, r) ∧ permit(s, o, r) →©(

permitaccess(s, o, r)
)

This is a basicpreA0 policy, where the first rule specifies that if there isrole1 in the
subject’sactRole attribute,(role2, r) is in the object’sperRole attribute, androle1 dom-
inatesrole2 in the role hierarchy, then the subject can be granted access to the object with
the rightr.

RBAC with constraints can also be expressed with a UCON model. There are many
types of constraints that can be defined in RBAC, such as mutually exclusive roles, cardi-
nality, prerequisite roles, etc. [Sandhu et al. 1996]. With appropriate attributes defined for
subjects and objects, we can specify RBAC models with constraints.
Example 12 Consider an RBAC2 model with an exclusive constraint, whererole1 can
be activated by a user only ifrole3 is not activated in the same session. Each object has
the same attributes defined in the previous example. For each subject, besides the attribute
actRole, the attributeasgRole = {role1, role2, . . . , rolen} denotes explicitly the user-
role assignments. We can express this model in UCONpreA1 as follows:

(role1 ∈ s.asgRole)∧(role1 /∈ s.actRole)∧(role3 /∈ s.actRole)∧((role2, r) ∈
o.perRole) ∧ (role1 ≥ role2) → permit(s, o, r)
permitaccess(s, o, r) → ¨

(
tryaccess(s, o, r)∧ permit(s, o, r)∧♦preupdate(s.actRole)

preupdate(s.actRole) : s.actRole′ = s.actRole ∪ {role1}
The first rule specifies that the permission(s, o, r) can be granted ifrole1 is in the

subject’sasgRole but not inactRole (i.e., role1 is assigned tos but not activated), and
there is a junior rolerole2 of role1 such that(role2, r) is in the object’sperRole, and,
role3 is not in the value of the attributeactRole of the subject. Thepermitaccess action
implies a pre-update action of the subject’sactRole attribute by addingrole1 to it.

10.2 Chinese Wall Policy

The original Chinese Wall policy [Brewer and Nash 1988] prevents information flow be-
tween companies in conflict of interest. More generally, if a subject accesses an object in
a conflict-of-interest set, then this subject cannot access any other object in this set in the
future. We define an attribute to store the usage history of a subject: each time this sub-
ject generates an access request to an object, this attribute is checked and the authorization
decision is determined by the history. In the meantime this attribute is updated to record
this access information if the access request is approved. We show the policy with the
following example.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

136 · X. Zhang et al.

Example 13 Consider a system with a set of conflict object classesC = {c1, c2, . . . , cn}.
An object attributeclass indicates which class it belongs to. A subject attribute is defined
as ac = {cs1 , cs2 , . . . , csm}, wheres1, . . . , sm are integers from 1 ton, to record the
classes that a subject has accessed. Another subject attribute isao = {o1, o2, . . . , ok},
which stores the objects that the subject has accessed. The Chinese Wall policy forread
is:

(o ∈ s.ao) → permit(s, o, read)
tryaccess(s, o, read)∧permit(s, o, read) →©(

permitaccess(s, o, read)
)

(o /∈ s.ao) ∧ (o.class /∈ s.ac) → permit(s, o, read)
permitaccess(s, o, read) → ¨

(
tryaccess(s, o, read)∧ permit(s, o, read)∧

♦preupdate(s.ac) ∧ ♦preupdate(s.ao)
)

preupdate(s.ac) : s.ac′ = s.ac ∪ {o.class}
preupdate(s.ao) : s.ao′ = s.ao ∪ {o}

The first part of this policy is apreA0 model, which specifies that when a subject wants
to access an object accessed before, the access request is approved and there is no update.
The second part is apreA0 model because of the update of the subject’s attributes. Specif-
ically, if an object’s conflict set is not in a subject’sac list, this subject can access this
object, and bothac andao must be updated before the access.

10.3 Dynamic Separation of Duty

Dynamic separation of duty (DSoD) is a basic access control policy in many security sys-
tems. The concept of mutability for exclusiveness [Park et al. 2004] is presented to capture
the attribute mutability property in DSoD. Specifically, an object attribute is defined to
store a history of subjects accessing this object. Here we present a simple example of
object-based DSoD from [Simon and Zurko 1997].
Example 14 In a check issuing system, a check is prepared by a subject in theclerk role
and issued by a subject in thesupervisor role. A subject may have both aclerk role and
a supervisor role at the same time, but a subject is not allowed to issue a check that is
prepared by himself. For each object, the two attributespreparer and issuer store the
subjects that prepare and issue this object, respectively. Initially the values ofpreparer
and issuer are bothnull (not available). Each subject has two attributes:sid (subject
identity) androle. A predicate≥ is defined to specify the dominance relation between two
roles. The policy is specified below.

(s.role ≥ clerk) ∧ (o.preparer = null) → permit(s, o, prepare)
permitaccess(s, o, prepare) → ¨

(
tryaccess(s, o, prepare)∧

permit(s, o, prepare) ∧ ♦preupdate(o.preparer)
)

preupdate(o.preparer) : o.preparer′ = s.sid

(s.role ≥ supervisor) ∧ (o.preparer 6= null) ∧ (o.issuer = null) ∧
(o.preparer 6= s.sid) → permit(s, o, issue)
permitaccess(s, o, issue) → ¨

(
tryaccess(s, o, issue)∧

permit(s, o, issue) ∧ ♦preupdate(o.issuer)
)

preupdate(o.issuer) : o.issuer′ = s.sid

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 137

This is a basicpreA1 model. The first two rules say that a subject with a role dominating
clerk can prepare a check, and this check’spreparer attribute is set to the subject’s iden-
tity. The last two rules specify that a subject with a role dominatingsupervisor can issue
a check only if this subject is not the one who prepares this check.

10.4 MAC Policy with High Watermark Property

In traditional MAC, a subject’s clearance is assigned by a system administrator, and cannot
be changed unless the administrator assigns a new label to it. This can be expressed with
a UCON preA0 model as shown in Section 7. With the high watermark property, the
security clearance can be updated as a result of the user’s access actions, and this update
has to follow some predefined policies. We show this property in MAC as apreA1 model.
Example 15 SupposeL is a lattice of security labels with domination relation≥. A subject
has two attributes,clearance to represent the current label, andmaxClear to represent
the maximum clearance label. An object has one attribute ofclassification. All these
attributes have a value domain of a latticeL. The authorization policy forread is:

s.maxClear ≥ o.classification → permit(s, o, read)
permitaccess(s, o, read) → ¨

(
tryaccess(s, o, read)∧

permit(s, o, read) ∧ ♦(preupdate(s.clearance))
)

preupdate(s.clearance) : s.clearance′ = LUB(s.clearance, o.classification)

whereLUB is the function that returns the least upper bound of two labels.

10.5 Hospital Information Systems

In this section we show some examples of hospital information systems that require not
only authorizations, but obligations and conditions.
Example 16 Suppose that a medical doctor (s) can perform (r) a particular operation
(o) only if he has operated more than 3 times before7. This can be expressed as apreA1

model. The total times of the operations that a doctor has performed is stored as the subject
attributeexp. The policies are:

(s.role = doctor) ∧ (s.exp > 3) → permit(s, o, perform)
permitaccess(s, o, perform) → ¨

(
tryaccess(s, o, perform)∧

permit(s, o, perform) ∧ ♦(preupdate(s.exp))
)

preupdate(s.exp) : s.exp′ = s.exp + 1

Example 17 In this example, a medical doctor can perform an operation on a patient
only if the patient agrees to it on a consent form. This agreement is an obligation to be
completed before the operation, where the patient is the obligation subject, and the consent
is the obligation object. This model can be expressed by a combination ofpreA0 and
preB0. The policy is:

(s.role = doctor)∧¨ob agree
(
(s, o, operate, patient, consent, agree)

) →
permit(s, o, operate)
tryaccess(s, o, operate)∧permit(s, o, operate) →©(

permitaccess(s, o, operate)
)

7These examples just show applications of TLA formulas as usage control policies, but does not provide a com-
plete system specification. In this example, some other attribute predicates or conditions may enable a doctor to
perform an operation at the beginning (whenexp ≤ 3), i.e., with presence of senior doctors. This is not included
here.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

138 · X. Zhang et al.

The left side of the first formula is a mix of an authorization predicate and an obligation,
both of which must be true before the access can start.
Example 18 In this example, a junior medical doctor can perform an operation only when
the monitoring system is running in the operating room. We model the running status of
the monitoring system (monitoring) as a system attribute with value in{on, off}. This
model is a combination ofpreA0 andpreC0.

(s.role = junior doctor) ∧ (monitoring = on) → permit(s, o, operate)
tryaccess(s, o, operate)∧permit(s, o, operate) →©(

permitaccess(s, o, operate)
)

11. SECURITY VERIFICATION

We have defined the logical models for UCON with temporal logic. A usage control policy
is described by a logic formula that specifies the system state transitions by following the
actions defined in a logic model. In general, a security policy is a static property in the form
of a logical formula, based only on state predicates without actions, which has to be valid in
every state. A system administrator or designer has to make sure that the security properties
are satisfied. In this section we investigate the security property verification in our proposed
logical UCON models. First we describe the process for the dynamic separation of duty
policy in the model presented in Section 10.3, then we discuss the general security policy
enforcements in general UCON systems using model checking.

11.1 An Example

In Section 10.3 a logic model is presented to enforce a DSoD property. The two usage
control polices in this model specify the rules governing state changing in the system.
DSoD security requires that, in each system state, a check’s preparer is not the same as the
issuer (o.preparer 6= o.issuer). This must be valid in each state of the system. Note that
we adopt a strict equality here so that anull value is not equal to anothernull value by
definition (e.g., in the initial state of the system).

For simplicity, we consider a system with a minimal set of entities to issue a check.
According to the model presented in Section 10.3, the system has two subjectss1 and
s2, and a check objecto. Each subject has two attributes,sid androle, with s1.role =
clerk, s2.role = supervisor, and supervisor > clerk. Both subject attributes are
administrator-controlled attributes, and are not updated in the system by the usage con-
trol policies. Each object has two attributes,preparer andissuer, whose value domain
consists of all possiblesids in the system. Specifically,

Dpreparer = {null, s1, s2}
Dissuer = {null, s1, s2}

The two generic rights in the system areprepare andissue, and both subjects can gen-
erate access requests on the object in this system. Therefore, there are only four possible
usage state attributes:

—state(s1, o, prepare)

—state(s1, o, issue)

—state(s2, o, prepare)

—state(s2, o, issue)
ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 139

Each of them can be assigned a value from the domain{initial, requesting, accessing,
end, denied, revoked}. From Section 10.3 we know that the logic model specifying the
system is apreA1 model, in which only the three actionstryaccess, permitaccess, and
preupdate can occur. Therefore each of these state functions can have only the values
initial, requesting, accessing, andend 8.

A particular system states is defined by these subject and object attributes and their
values. Since the subject attributes are fixed, a system state is determined by the two
object attributes and the possible four usage state attributes, each of which can have one
of four possible values. Therefore there are3 × 3 × 44 = 2304 different possible states
of the system overall. From the initial state of the system, in which bothpreparer and
issuer have valuenull and all usage state attributes have valueinitial, most of these
states cannot (fortunately) be reached in the system’s life time, and can be ignored. For
example, a non-initialstate(s1, o, prepare) value cannot coexist with any other non-initial
value ofstate(s2, o, prepare) since there is only one subject preparing the check at any
time; similarly for state(s1, o, issue) andstate(s2, o, issue). Actually we can see that
s1’s role is clerk, which cannot issue a check, and thereforestate(s1, o, issue) is not in
any state of the system.

With these possible states and according to the usage control policies specified in Section
10.3, the state transitions of the system can be drawn as the directed graph shown in Figure
6. In this graph,t0 is the initial state; an edge between statesti andtj indicates a valid
action between these two states. For simplicity, the attributes with fixed value are not
shown in the states except for the initial one.

As Figure 6 shows, there are two different paths to issue a check. In the left path,
s1 prepares the check, and after that onlys2 can issue it, since thepermit(s, o, issue)
predicate requires that the issuer’ssid be different from the object’spreparer attribute
value. On the right path,s2 prepares the check, but after this action, the check cannot
be issued, sinces1.role is clerk, which is not permitted to issue a check, whiles2 itself
could not issue. Therefore no more actions can be performed after statet12 according to
the usage control policies.

To check if the DSoD is enforced by the model, we check the predicateo.preparer 6=
o.issuer in each reachable state of the system from the initial state. Specifically, in Figure
6 all the states along both paths have to be checked.

11.2 General Security Analysis with Model Checking

For a general TLA model in which the system has a finite number of states, the security
verification can always be checked using the mechanism introduced above. UCON core
models do not include actions to create new subjects and objects and therefore, if the
domain of each attribute is a finite set, the set of all possible states of the system is finite.
In this section we introduce model checking with computation tree logic (CTL) to verify
security properties in general UCON systems.

A CTL formula describes the property of a computation tree9. This tree shows all pos-
sible state changes starting from the initial state. The terms of CTL are state predicates,
and a CTL formula consists of predicates which are connected with path quantifiers and

8It is assumed thatendaccess is an action in all pre-authorization models.
9Generally, starting from an initial state, each possible sequence of state transitions can be regarded as a path in
a tree structure, of finite or infinite length, where the states may be repeated along a path.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

140 · X. Zhang et al.

t
0

s
1
.role=clerk

s
2
.role=supervisor

o.preparer=null

o.issuer=null

t
1

tryaccess(s
1
,o,prepare)

preupdate(s
1
,o,preparer)

permitaccess(s
1
,o,preparer)

endaccess(s
1
,o,preparer)

t
2

t
4

t
3

o.preparer=null

o.issuer=null

state(s
1
,o,prepare)

 =requesting

o.preparer=s1

o.issuer=null

state(s
1
,o,prepare)

 =requesting

o.preparer=s
1

o.issuer=null

state(s
1
,o,prepare)

 =accessing

o.preparer=s
1

o.issuer=null

state(s
1
,o,prepare)

 =end

t
9

tryaccess(s
2
,o,prepare)

preupdate(s
2
,o,preparer)

permitaccess(s
2
,o,preparer)

endaccess(s
2
,o,preparer)

t
10

t
12

t
11

o.preparer=s
2

o.issuer=null

state(s
2
,o,prepare)

 =requesting

o.preparer=null

o.issuer=null

state(s
2
,o,prepare)

 =requesting

o.preparer=s
2

o.issuer=null

state(s
2
,o,prepare)

 =accessing

o.preparer=s
2

o.issuer=null

state(s
2
,o,prepare)

 =end

tryaccess(s
2
,o,issue)

t
5

o.preparer=s
1

o.issuer=null

state(s
2
,o,issue)

 =requesting

preupdate(o.issuer)

t
6

o.preparer=s
1

o.issuer=s
2

state(s
2
,o,issue)

 =requesting

permitaccess(s
2
,o,issue)

t
7

o.preparer=s
1

o.issuer=s
2

state(s
2
,o,issue)

 =accessing

endaccess(s
2
,o,issue)

t
8

o.preparer=s
1

o.issuer=s
2

state(s
2
,o,issue)

 =end

supervisor

clerk

Fig. 6. State transitions in a DSoD system

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 141

temporal connectives. The two path quantifiers areA (for all paths) andE (there exists one
path), and the general temporal connectives10 areX (next state),F (some future state),G
(all future states), andU (until). A CTL formula can be defined by the BNF:

ø :≡ >|⊥|p|¬ø|ø∧ø|ø∨ø|ø → ø|AXø|EXø|A[øUø]|E[øUø]|AGø|EGø|AFø|EFø

wherep is a state predicate,> :≡ p∨¬p, and⊥ :≡ p∧¬p. For example, in a system state
s, EFø is true if there is a path starting froms, along which there exists at least one state
s′ in which the formulaø is true;AGø is true if along every path froms, ø is true in every
state.

The first step of model checking for security verification in UCON is to specify a static
security policy or property in a state formula. For example, the security property of the
DSoD policy in Section 10.3 iso.preparer 6= o.issuer. Since a security property must be
true in every state of the system, the CTL form of the security policy isAGø. For example,
the AG(o.preparer 6= o.issuer) is the formula for the DSoD system in the previous
section. As another example, for the usage control policies defined for the Chinese Wall
policy in Section 10.2, the security policy is specified as

AG¬(
(o1 ∈ s.ao) ∧ (o2 ∈ s.ao) ∧ (o1 ∈ c) ∧ (o2 ∈ c) ∧ (c ∈ s.ac)

)

This formula states that in any state of the system, there are no two different objects in the
same conflict class that have been accessed by a single subject.

For any state formulaø, we haveAGø :≡ ¬EF¬ø, andEFø :≡ E[>Uø], and therefore
AGø :≡ ¬E[>U¬ø]. Thus, the verification ofAGø is equivalent to the verification of
¬E[>U¬ø]. In general, the verification ofE[ø1Uø2] can be performed by the following
informal labelling algorithm:

—If ø2 is true in a state, label it withE[ø1Uø2].
—If ø1 is true in a states, and at least one of its successors is labelled withE[ø1Uø2],

labels with E[ø1Uø2].
—Repeat these two steps until there is no change.

For a state formulaø, a state is labelled withAGø if it is not labelled withE[>U¬ø]. A
successful enforcement of a security policy requires that all reachable states from the initial
state of the system be labelled withAGø. The complexity of this algorithm is a function
of number of system states, which depends on the subject/object attributes and their value
domains. Specifically, the number of the states in a system is exponential in the number
of attributes and their domain sizes. There are some mechanism to overcome this “state
explosion” problem in model verification, which is beyond the scope of this paper. If the
number of subjects or objects of a system is unbounded, or the attribute value domains are
infinite, the state of the system is infinite, and techniques of model checking for infinite
state system may be applicable.

12. RELATED WORK

Bertino et al. [Bertino et al. 1994; Bertino et al. 1996; 1999] introduce a temporal autho-
rization model for database management systems. In this model, a subject has permissions

10Note that the temporal connectives in CTL have different semantics from the temporal operators in our logic
model. In CTL, a temporal connective’s scope is all the system’s states along a path, while in our logic model, a
temporal operator’s scope is the states in a single access process, which is a subset of the states along a path.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

142 · X. Zhang et al.

on an object during some time intervals, or a subject’s permission is temporally dependent
on an authorization rule. For example, a subject can access a file only for one week. Our
authorization model is different: we consider the temporal characteristics in a single usage
period, with mutable attributes of subject and object before, during and after an access, that
is, the temporal properties are the result of the mutability of subject and object attributes,
which change due to the side-effects of accesses and usages. In contrast, Bertino et al.’s
model focuses on the validity of authorization policies with time period, and the tempo-
ral property of a policy is not related to an access action, but dependent on the system
administration policies. Gal et al. [Gal and Atluri 2000] propose a temporal data autho-
rization model (TDAM) for access control to temporal data. This work is orthogonal to our
approach, since we focus on the temporal authorization and usage process, while TDAM
focuses on the temporal attributes of data. For formal specifications with temporal logic in
security policies, Siewe et al. [Siewe et al. 2003] apply interval temporal logic to express
and compose access control polices, and Hansen and Sharp [Hansen and Sharp 2003] in-
troduce an approach for the analysis of security protocols using interval logic. The main
difference in our approach is that we use TLA in our logic specification, and we focus
on the atomic actions and temporal properties during a single usage process, while their
approaches focus on a higher level of system policies or security protocols.

Joshi et al. [Joshi et al. 2005] presented a generalized temporal RBAC model (GTRBAC)
to specify temporal constraints in role activation, user-role assignment, and role-permission
assignment. For example, a user can only activate a role for a particular duration. The
concept of temporal constraint is different from the mutability of UCON since it does not
have update actions. The dependency constraint in GTRBAC [Joshi et al. 2003] is similar
to the concept of obligation in UCON, but the dependency is more like the implication
relation between events in GTRBAC, i.e., if an event happens, it triggers another event;
while in UCON, obligations are explicit required actions to permit an access.

Bettini et al. [Bettini et al. 2002a; 2002b] present concepts of provisions and obliga-
tion in policy management: provisions are conditions or actions performed by a subject
before the authorization decision, while obligations are conditions or actions performed
after an access. In our model, we distinguish between conditions and obligations. All the
actions that a subject has to perform before usage are regarded as obligations, while for
future actions, we consider them as the obligations for future usage requests or long-term
obligations. Chomicki and Lobo [Chomicki and Lobo 2001] investigate the conflicts and
constraints of historical actions in policies. In their paper, actions are application activities,
and constraints are expressed with linear-time temporal connectors. In our paper we define
obligations as actions required by an access, and represent the logic approach with TLA.

13. CONCLUSIONS AND FUTURE WORK

We have developed a logic specification of UCON with temporal logic of actions. A logic
model is given by a sequence of system states specified by a set of subjects and their
attributes, a set of objects and their attributes, and the system attributes. The authorization
predicates are built from the subject and object attributes. Actions are the state transitions
of the system, including usage control actions to update attributes and accessing status of
a usage process, and obligation actions that have to be satisfied before or during an access.
Conditions are predicates on system attributes. Temporal formulas represent usage control
policies and are built from authorization predicates, actions, and system predicates. The

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

Logical Model and Specification of Usage Control · 143

powerful specification capability and flexibility of the extended TLA strengthens UCON
with precise modeling and specification. With the logically specified UCON system, we
investigate the security verification with model checking mechanisms such as the labelling
algorithm for finite state system.

This work opens several directions for further investigation. First of all, we need to
develop administrative models for UCON, including attributes management, administrative
policies, etc. UCON is attribute-based, and this requires synchronized attribute acquisition
and management. Also mentioned in this paper, post-obligations and post-conditions are
in the scope of the administrative model. If a subject does not satisfy an obligation after
an access, a security administrator needs to take compensatory actions according to the
administrator policies.

As a comprehensive access control model with new properties, UCON has shown strong
expressivity and flexibility to specify modern access control systems. In general, the ex-
pressive power and the decidability of safety are two conflicting objectives of an access
control model. We are investigating the safety problem, which is a fundamental problem
in access control. In UCON, the safety problem consists of deciding whether a subject can
obtain a particular permission on an object, given a set of attributes and initial values, as
well as updates of these attributes by performing some accesses.

As mentioned in Section 1, concurrency is a unique feature in UCON which has been
seldom investigated in access control models. In an open system, an update action of an
attribute will result in a change in the authorization decision in another access happening
concurrently. We can apply tools such as TLA+ [Lamport 2003] to specify access control
in such open and concurrent environments.

REFERENCES

BELL , D. E. AND LAPADULA , L. J. 1975. Secure computer systems: Mathematical foundations and model.
Mitre Corp. Report No.M74-244, Bedford, Mass..

BERTINO, E., BETTINI , C., FERRARI, E., AND SAMARATI , P.1996. A temporal access control mechanism for
database systems.IEEE Transactions on Knowledge and Data Engineering 8,1 (Feb.).

BERTINO, E., BETTINI , C., FERRARI, E., AND SAMARATI , P. 1999. An access control model supporting
periodicity constraints and temporal reasoning.ACM Transaction on Database Systems 23,3 (Sept.).

BERTINO, E., BETTINI , C., AND SAMARATI , P.1994. A temporal authorization model. InProceedings of ACM
Conference on Computer and Communication Security. ACM.

BERTINO, E., CATANIA , B., FERRARI, E., AND PERLASCA, P. 2001. A logical framework for reasoning
about access control models. InProceedings of the Sixth ACM Symposium on Access Control Models and
Technologies. ACM.

BETTINI , C., JAJODIA, S., WANG, X. S., AND WIJESEKERA, D. 2002a. Obligation monitoring in policy man-
agement. InProceedings of the 3rd Internationl Workshop on Policies for Distributed Systems and Networks.

BETTINI , C., JAJODIA, S., WANG, X. S., AND WIJESEKERA, D. 2002b. Provisions and obligations in policy
management and security applications. InProceedings of the 28th VLDB Conference.

BREWER, D. AND NASH, M. 1988. The chinese wall security policy. InProceedings of the IEEE Symposium
On Research in Security and Privacy.

CHOMICKI , J. AND LOBO, J.2001. Monitors for history-based policies. InProceedings of the 2nd Internationl
Workshop on Policies for Distributed Systems and Networks.

DAMIANOU , N., DULAY, N., LUPU, E., , AND SLOMAN , M. 2001. The ponder policy specification language.
In Proceedings of the Workshop on Policies for Distributed System s and Networks.

DENNING, D. E.1976. A lattice model of secure information flow.Communications of the ACM 19,5 (May).

GAL , A. AND ATLURI , V. 2000. An authorization model for temporal data. InProceedings of the ACM
Conference on Computer and Communication Security. ACM.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

144 · X. Zhang et al.

HANSEN, M. AND SHARP, R. 2003. Using interval logics for temporal analysis of security protocols. In
Proceedings of the ACM Workshop on Formal Methods in Security Engineering. ACM.

JAJODIA, S., SAMARATI , P., , AND SUBRAHMANIAN , V. S. 1997. A logical language for expressing autho-
rizations. InProceedings of the IEEE Symposium On Research in Security and Privacy. IEEE, Oakland,
California.

JAJODIA, S., SAMARATI , P., SAPINO, M. L., AND SUBRAHMANIAN , V. S.2001. Flexible support for multiple
access control policies.ACM Transactions on Database Systems 26,2 (June).

JOSHI, J., BERTINO, E., LATIF, U., AND GHAFOOR, A. 2005. A generalized temporal role-based access control
model. IEEE Transactions on Knowledge and Data Engineering 17,1.

JOSHI, J., BERTINO, E., SHAFIQ, B., AND GHAFOOR, A. 2003. Constraints: Dependencies and separation
of duty constraints in gtrbac. InProceedings of the 8th ACM Symposium on Access Control Models and
Technologies. ACM.

LAMPORT, L. 1994. The temporal logic of actions.ACM Transactions on Programming Languages and Sys-
tems 16,3 (May), also available from http://research.microsoft.com/users/lamport/tla/papers.html.

LAMPORT, L. 2003.Specifying Systems, The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley.

MANNA , Z. AND PNUELI , A. 1991. The Temporal Logic of Reactive and Concurrent Systems Specification.
Springer-Verlag.

PARK , J.AND SANDHU , R. 2004. TheuconABC usage control model.ACM Transactions on Information and
Systems Security 7,1 (Feb.).

PARK , J., ZHANG, X., AND SANDHU , R. 2004. Arrtibute mutability in usage control. InProceedings of the
Proceedings of 18th Annual IFIP WG 11.3 Working Conference on Data and Applications Security.

SANDHU , R. 1993. Lattice-based access control models.IEEE Computer 26,11 (Nov.).
SANDHU , R., COYNE, E., FEINSTEIN, H., AND YOUMAN , C. 1996. Role based access control models.IEEE

Computer, 29, (2), pp.38-47, 1996 29,2.
SANDHU , R. AND PARK , J. 2003. Usage control: A vision for next generation access control. InProceedings

of the Second International Workshop on Mathematical Methods, Models and Architectures for Computer
Networks Security.

SIEWE, F., CAU , A., AND ZEDAN, H. 2003. Compositional framework for access control policies enforcement.
In Proceedings of the ACM Workshop on Formal Methods in Security Engineering. ACM.

SIMON , R. T. AND ZURKO, M. E. 1997. Separation of duty in role-based environments. InIEEE Computer
Security Foundations Workshop. 183–194.

ACM Transactions on Information and System Security, Vol. 00, No. 00, 00 2000.

