
The NTree: A Two Dimension Partial Order
for Protection Groups

RAVINDERPAL S. SANDHU

The Ohio State University

The benefits of providing access control with groups of users rather than with individuals as the unit
of granularity are well known. These benefits are enhanced if the groups are organized in a subgroup
partial order. A class of such partial orders, called ntrees, is defined by using a forest of rooted trees
or inverted rooted trees as basic partial orders and combining these by refinement. Refinement
explodes an existing group into a partially ordered ntree of new groups while maintaining the same
relationship between each new group and the nonexploded groups that the exploded group had.
Examples are discussed to show the practical significance of ntrees and the refinement operation. It
is shown that ntrees can be represented by assigning a pair of integers called lr-u&es to each group
so that g is a subgroup of h if and only if l[g] I l[h] and r[g] 5 r[h]. Refinement allows a complex
ntree to be developed incrementally in a top-down manner and is useful for the initial definition of
an ntree as well as for subsequent modifications. To make the latter use of refinement practical, a
method is presented for assigning lr-values to the new groups introduced by refinement so lr-values
assigned to nonexploded groups need not be changed. It is also shown how to guarantee that the lr-
values of the exploded group will get assigned to one of the new groups.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General-systems
specification methodology; C.2.0 [Computer-Communication Networks]: General-security and
protection; D.2.0 [Software Engineering]: General-protection mechanisms; D.4.6 [Operating
Systems]: Security and Protection-access controls; security kernels; H.l.O [Models and Princi-
ples]: General; H.2.0 [Database Management]: General-security, integrity, and protection; K.6.m
[Management of Computing and Information Systems]: Miscellaneous-security

General Terms: Design, Management, Security, Theory

Additional Key Words and Phrases: Access control lists, authorization, hierarchies, partial orders,
protection groups.

1. INTRODUCTION

The ability to share files and other resources among the users of a system has
obvious benefits. It is convenient for both the users and the system administrators
to have the facility to specify access based on groups of users as a unit.
Membership in a group is presumably determined by the need to share resources
and information, so the group provides a suitable unit for an individual user’s
access decisions. A user can make a file available to an entire group without

Author’s Address: Department of Computer and Information Science, The Ohio State University,
Columbus, OH 43210.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1988 ACM 0734-2071/88/0500-0197 $01.50

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988, Pages 197-222.

198 l Ravinderpal S. Sandhu

having to explicitly provide access to every member. Similarly, a file’s availability
can be revoked from a group without explicitly revoking each member’s access.
Also, new users can be made members of appropriate groups, thereby obtaining
access to a number of files and resources. Some systems, such as the popular
UNIX [ll], allow for access control only in terms of groups. Even the more
sophisticated systems, such as Multics [12], which have provision for specifying
access at the level of individual users, recognize the advantages of protection
groups and provide facilities for specifying access in terms of groups.

In practice, it is often desirable that groups bear some relationship to each
other. For instance, consider a project divided into several independent tasks
assigned to different teams. We can define a group for each task team so its
members have common access to resources relevant to the task. Since some
resources may pertain to the entire project, we can define a project group such
that members of the individual task groups are thereby also members of the
project group. The project-wide resources are then made explicitly available to
the project group alone. This is certainly more convenient than having to
explicitly make such resources available to every task group, even if it were
possible to do so. It is also more convenient than explicitly making every member
of a task group a member of the project group. By allowing membership in a
group to automatically imply membership in some other groups, we can reduce
the number of explicit access decisions that need to be made by the users, as well
as reduce the number of groups to which a user must explicitly belong.

Let G be a set of groups and let g 5 h signify that group g is a subgroup of
group h, in the sense that every member of g is thereby also a member of h. Note
that members of g have more privileges than members of h. We require that the
subgroup relation is a partial ordering of G, i.e., 5 is reflexive, transitive, and
asymmetric. The reflexive property is obviously required since every member of
g is already a member of g. Transitivity is certainly an intuitive and reasonable
assumption and perhaps even inevitable. After all, if g 5 h and h 5 k, then every
member of g is a member of h and so should also be a member of k. Once the
reflexive and transitive requirements are accepted, the asymmetric requirement
merely eliminates redundancy by excluding groups that would otherwise be
equivalent. If g is a proper subgroup of h we write g < h; that is, g I h and
gf h.

We say a user is a direct member of g if the user is explicitly designated as a
member of g and thereby is an indirect member of every h such that g < h. The
intention is that a user will be a direct member of a small number of unrelated
groups, perhaps just one, but will thereby obtain indirect membership in a larger
number of groups. We say that a tile or other resource is explicitly available to
group g if the access control information associated with the file (perhaps in an
access-control list) makes explicit mention of group g. The file is thereby implicitly
available to every proper subgroup h of g. Again the intention is that a tile will
be explicitly available to a small number of unrelated groups, but implicitly
available to a larger number of groups.

Consider again the project example mentioned earlier. Let tl and tz be task
groups and p the project group. If there is no group organization we have
essentially two methods for solving the protection and sharing problem. We can
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 199

make the project resources explicitly available to both t1 and tz and ignore p. We
say this solution is based on resource and file assi&ment. The other solution is
to explicitly make every member of tl and every member of tz a member of p. We
say this solution is based on user assignment. Both solutions have the undesirable
property of introducing redundancy. In the latter case, whenever a new member
is added to a task team we will need to also add him or her to the project group.

In the former case, suppose a new task group t3 is created. The protection
information associated with all project files will need to be modified to explicitly
mention t3. There is also the possibility of keeping all project files in a single
directory and treating the protection attributes of the files as a property of the
directory, so the protection information to be modified is in one place. This
approach shifts the redundancy problem from files to directories, which may be
more manageable, at the cost of lost flexibility in assigning protection attributes
of individual files.

On the other hand, if a subgroup relation can be defined, we can specify that
task groups are subgroups of the project group and the redundancy problem
disappears. For this reason many contemporary systems offer a facility for
defining group organization. It appears that two basic approaches have been used
thus far. One approach, which we call explicit group organization, is to enumerate
the subgroups of a group. TOPS-20 is a well known example of this approach.
To define a group we need to enumerate the user identifiers of the direct members
anyway, and it is reasonable to also enumerate the identifiers of subgroups. If
only the immediate subgroups are explicitly enumerated and transitivity is
handled by the access control mechanism by following the chains of subgroups,
we have a low redundancy solution. However, the mechanism may have to chase
several chains of subgroups before arriving at an access decision. If all subgroups
are explicitly enumerated we simplify the access control mechanism but rein-
troduce redundancy.

The second approach for implementing a subgroup relation is based on implicit
group organization and requires that groups be named so the group organization
is reflected in the group names [12]. In our project example we might name the
task groups as p/t1 and p/t2 while the project group is named as p/p. By use of
wildcards we can identify all three groups by p/*, for instance. The access control
information for project files can contain explicit mention of p/*, meaning that
access is available to all groups that match this pattern. This is a low-redundancy
solution, since task group p/t3 can be created and its members will immediately
have access to the project files. Also, a new member of a task group need only be
assigned to that task group. The biggest drawback of this approach is the need
to set up group names with great care so the wildcard facility can accommodate
the group organization. Another drawback is that the users must keep the naming
conventions in mind when defining the protection attributes of their files. We
feel this is an unreasonable burden for the users. Moreover, we may need several
fields in the group names to achieve this effect. For instance, in a rooted tree
hierarchy we would need a different field for each level of the tree.

In this paper we propose a class of partial orders, called ntrees, which have a
very simple implicit representation and yet appear to cover a large variety of
practical situations. We show that ntrees can be represented by assigning a pair

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

200 - Ravinderpal S. Sandhu

of integers called Zr-ualues to each group so that g < h if and only if l[g] < l[h]
and r[g] < r[h]. We also show that new groups can be introduced in ntrees in
certain natural ways without affecting the lr-values of existing groups.

NTrees are a method for implicit group organization that can be efficiently
implemented and that directly solve a large class of common protection problems.
By their very nature, complex ntrees can be incrementally constructed in a top-
down manner, using simple ntrees at each step. We are well aware that ntrees
do not solve all practical problems directly. Subgroup hierarchies outside the
direct scope of ntrees must be handled by an explicit group organization in
addition to the implicit ntree structure, or by user or resource assignment. We
recommend that deviations from an ntree be handled by explicit group organi-
zation or by user assignment rather than by file assignment, if possible. This
puts the responsibility for the subgroup organization on the security administra-
tor, where it properly belongs.

To summarize our position, in general, protection problems must be solved by
a combination of implicit and explicit group organization and user and resource
assignment. Solutions based on resource assignment are undesirable since they
place excessive burden on the user. It is no doubt desirable that flexibility in file
assignment be available to the users, but it is inappropriate to expect users to
understand complicated conventions for solving their protection and sharing
requirements. NTrees are a powerful technique for implicit group organization
that support many commonly occurring hierarchies directly. The issue of mapping
an arbitrary partial order into an ntree by additional explicit group organization
and user assignment is an important one, but it is outside the scope of this paper.
These issues cannot even be addressed until the implicit group organization is
defined. In this sense, the implicit group organization problem is more funda-
mental, and is the one discussed in this paper.

2. TWO DIMENSION PARTIAL ORDERS

We begin by reviewing the mathematical basis for ntrees and their implicit
representation by lr-values. Partial orderings are conventionally depicted by
Hasse diagrams as shown in Figure 1, for instance. The partial order represented
by a Hasse diagram is obtained by directing the edges downwards; for example,
from a to b in Figure l(a), indicating that a is a subgroup of b, and taking the
transitive and reflexive closure of the resulting directed graph.

Every partial order P on a set of elements G can be extended to a linear
ordering of G, by the familiar procedure of topological sorting. In general there
will be more than one linear extension of P. Let I’(P) be the collection of all
linear extensions of P. The intersection of linear orderings L1, Lp, . . . , Lk
is defined as the set of ordered pairs ((u, v)] (u, v) E L1 A (u, v) E L2 . a . A
(u, v) E LkJ. A realizer of P is a subset of I’(P) whose intersection equals P. It is
easy to see that P(P) is a realizer of P, so a realizer always exists. The dimension
of a partial order P, written as dim(P), is the size of the smallest realizer of P
[3]. A partial order has dimension one if and only if it is a linear ordering. The
partial order of Figure l(a) has a size two realizer consisting of the linear orderings
abed and acbd, so its dimension is two. Similarly, the partial order of Figure l(b)
has dimension two because it has a realizer abed and cadb. The partial order of
Figure l(c) has dimension three. The results of dimension theory cited in this
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups - 201

a

(4 lb)

Fig. 1. Hasse diagrams.

(c)

paper are all available in the books by Fishburn [4] and Golumbic [5], often with
simpler proofs than the original source.

In this paper we restrict the subgroup relation 5 to be a partial order with
dimension two or less. We now motivate this restriction. If dim(s) Sk we can
represent the subgroup partial ordering on a set of groups G by assigning a k-
tuple of integers to each group in G as follows. Let L1, LZ, . . . , Lk be a realizer
of 5. The ith component of the k-tuple assigned to g is the position of g in the
linear ordering Li. It follows that g 5 h if and only if each component of the k-
tuple assigned to g is less than or equal to the corresponding component of the
k-tuple assigned to h. We can then determine whether one group is a subgroup
of another by a component-wise comparison of fixed size tuples of integers. This
representation will be useful if k is much smaller than] G] (the size of G). It is
known that for every set G of size six or more, there exists a partial ordering on
G with dimension Ll/2] G] 1 [7]. If we fix the upper bound on dim(<) at some
small value while permitting a large number of protection groups, it follows that
we cannot allow 5 to be an arbitrary partial order. An upper bound of one
amounts to assuming that 5 is a linear ordering, which is not very useful. So the
smallest useful upper bound on dim(s) is two.

It turns out that the class of partial orders with dimension less than or equal
to two includes several cases of practical importance. A partial order whose Hasse
diagram is a rooted tree, as in Figure 2(a) for instance, has dimension two. A size
two realizer for a rooted tree is easily computed by a left-to-right preorder
traversal L and a right-to-left preorder traversal R as demonstrated in Figure 2.
This tree can then be represented by assigning the pair of integers (1, 1) to a,
(2, 6) to b, and so on. By a component-wise comparison of these pairs we can
determine for instance that a i g, whereas c and g are incomparable. Similarly,
a partial order whose Hasse diagram is an inverted rooted tree, as in Figure 2(b)
for example, has dimension two. A size two realizer for an inverted rooted tree is
easily computed by reversing the size two realizer for the corresponding rooted
tree. A proof of these observations follows.

THEOREM 1. A partial order whose Hasse diagram is a rooted tree or an inverted
rooted tree has a realizer of size two.

PROOF. By the above discussion it suffices to consider the case of a rooted
tree. Let T be a rooted tree, with left-to-right preorder traversal L and right-to-
left preorder traversal R. If (u, v) E T, then clearly u precedes v in both L and
R, SO (u, v) E L n R. If (u, v) @ T, without loss of generality, let the path in the

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

202 ’ Ravinderpal S. Sandhu

e f 9 h i

L: abefgcdhi
R: adihcbgfe

(a)

e f h

a

L: ihdcgfeba
R: efgbchida

(b)

Fig. 2. A tree and an inverted tree.

tree from the root to u be to the left of the path from the root to v. But then u
precedes v in L and follows v in R, so (u, v) 4 L n R. q

More generally, a partial order whose Hasse diagram consists of a forest of
mutually disjoint trees and inverted trees has a realizer of size two, as will be
proved shortly. The partial orders of Figures l(a) and l(b) are examples of
dimension two partial orders with Hasse diagrams other than trees.

There are partial orders of practical importance that have dimension greater
than two. For instance, in Figure l(c) the a, b, and c groups might represent
project teams while the d, e, and f groups represent different categories of
resources. Figure l(c) is a particular case of the more general situation where
Pit **-9 pn are project groups, rl, . . . , r,, are resource groups, each project group
needs resources in all but one of the resource groups, and it so happens that
project pi needs resources in groups rj, j # i. The resulting subgroup relation is
((pi, rj)] i # j). For n 2 3 the dimension of this partial order is n [3]. Another
situation of practical importance with possibly high-dimension partial orders
arises in military security policies [l, 2, 91. Let S be the set of compartments
whose subsets determine the categories and let 2’ be the power set of S, that is,
the set of all subsets of S. The dimension of the set inclusion partial order on 2’
is] S] [a]. Since this partial order can be represented using] S] bits for each
subset of S, the dimension approach is clearly not useful for this case.

Although some of the theory we develop (Section 4.1 in particular) is applicable
to partial orders of arbitrary dimension, we are skeptical about whether the use
of an upper bound such as three or four will provide substantially greater benefit
than our proposal of limiting the dimension to two. There will remain practical
cases where the need for a higher dimension can be argued. As discussed in the
Introduction, our objective is to develop an implicit group organization that can
be efficiently implemented and that directly solves a large class of commonly
occurring situations. We are proposing the class of ntrees for this purpose, which
are a proper subset of the two-dimension partial orders. We reiterate that ntrees
do not solve all practical requirements for protection groups directly and
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1986.

The NTree: A Two Dimension Partial Order for Protection Groups l 203

deviations from the ntree organization must be handled by additional explicit
group organization or by user assignment.

A major advantage of two-dimension partial orders is that their theory is well
understood and quite simple. One of the significant results is that two-dimension
partial orders can be efficiently recognized and a size two realizer can be
efficiently computed by the following procedure. The incomparability graph of a
partial order has an undirected edge connecting g and h if g and h are incompa-
rable. A partial order has dimension less than or equal to two if and only if its
incomparability graph is transitively orientable [3]. A polynomial algorithm for
recognizing transitively orientable graphs and computing the orientation exists
[lo], from which a size two realizer is easily obtained. An efficient method is also
known for determining all possible realizers of size two [5]. For dimension three
and higher, it is not even known whether we can efficiently determine the
dimension of a partial order without enumerating all possible realizers [5].

The rest of the paper is organized as follows. In Section 3 we review the
operation of refinement by which a node in a Hasse diagram is replaced by
another Hasse diagram. The significant property is that refinement allows us to
develop complex Hasse diagrams in a top-down fashion without increasing the
dimension. This leads us to define the class of partial orders called ntrees that
are constructed by refinement using a forest of rooted trees or inverted rooted
trees at each step so the dimension is no greater than two. We discuss examples
to show the practical importance of ntrees for protection groups. In Section 4
we discuss how the subgroup partial order can continue to be developed by
refinement even after the system has been in operation for a while. The important
consideration is that this should require only an incremental change in represen-
tation of the subgroup partial ordering. The representation developed in
Section 4.1 is actually applicable to partial orders of any dimension, while the
representation of Section 4.2 applies only to ntrees. Section 5 concludes the
paper.

3. NTREES

A fundamental result of dimension theory allows us to construct new partial
orders from existing ones without increasing the dimension [6]. Let P and Q be
partial orders on disjoint sets G and H, respectively. Consider some u E G. The
refinement of u in P into Q is the partial order P’ on the set (G - (u)) U H
formed by the union of the following sets of ordered pairs.

(1) {(x, x’) I (x, x’) E P for all x, x’ E G - (u))

(2) Hx, Y) I b, u) E P for all x E G - (u), y E H]

(31 ((Y, x) I h xl E P for all x E G - {u), y E HI

(4) I(Y, Y’) I (Y, Y’) E Q for all (y, y’) E HJ

Figure 3(c) shows the result of refining d in the partial order of Figure 3(a) into
the partial order of Figure 3(b).

Informally, the refinement of u in P into Q is the partial order whose Hasse
diagram is obtained by substituting Q’s Hasse diagram in place of u in P’s Hasse
diagram. We say that u is the group that is refined or exploded and that Q is the

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

204 l Ravinderpal S. Sandhu

a

b d

e
(a)

f 9

Y i

d

j A k
h

(b)

a

L: abcde
R: adcbe

L: fgdhijk
R: ikjgfdh

b
k

L: abcfgdhijke
R: aikjgfdhcbe

e

(c)

Fig. 3. Refinement.

refining partial order. We think of refinement as exploding an existing group into
a partially ordered set of new groups while maintaining the same relationship
between the new groups and other previously existing groups that the exploded
group had. Refinement is a natural method for incrementally developing more
detail in a top-down manner. It is particularly important because of the following
result.

THEOREM 2. [6] Let P and Q be partial orders on disjoint sets G and H,
respectively. Let u E G. If P’ is the refinement of u in P into Q, then dim(P’) ‘=
max(dim(P), dim(Q)).

PROOF. Let d = dim(P’) and e = max(dim(P), dim(Q)}. By assumption there
are realizers Li, . . . , L, and J1, . . . , J, for P and Q, respectively. For i = 1 . . . e,
refine u in Ji into Li, obtaining the linear ordering J[. Then J;, . . . , J,’ is a
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 205

realizer for P’. So d 5 e. Conversely, by assumption, there is a realizer Mi, . . . ,
Md for P’. Select an arbitrary member v of H. In every Mi replace v by u and
drop all other elements of H to obtain the linear ordering Mf . By definition, v
has the same relationship in P’ to the elements of G - (u) that u does in P. So
M:,..., MA is a realizer for P and e 5 d. Cl

Clearly, if P and Q have dimension less than or equal to two so does P’. It is now
easy to prove our earlier claim regarding a forest of mutually disjoint trees and
inverted trees.

COROLLARY 3. A partial order whose Hasse diagram consists of a forest of
mutually disjoint rooted trees and inverted rooted trees has a realizer of size two.

PROOF. An empty partial order, where all distinct elements are pairwise
incomparable, has a size two realizer obtained by any linear ordering of the
elements and its reverse. A forest of rooted trees and inverted trees can be
obtained by refining the elements of an empty partial order one at a time into a
rooted tree or inverted rooted tree, as appropriate. The corollary follows from
Theorems 1 and 2. Cl

From Hirugachi’s theorem it follows that so long as we confine ourselves to
partial orders of dimension less than or equal to two, we can repeatedly apply
the refinement operation to generate new partial orders whose dimension will
not exceed two. We call this the successive refinement procedure. The simplest
dimension two partial orders are the rooted tree and inverted rooted tree. These
represent important relationships between groups that have practical applica-
tions. Rather than allowing arbitrary dimension two partial orders in the process
of successive refinement, we propose that only trees and inverted trees be used.
This leads us to the following definition.

Definition 4.

(1) A partial order whose Hasse diagram is a forest of mutually disjoint rooted
trees and inverted rooted trees is an ntree.

(2) A partial order obtained by refining a node in an ntree into another ntree is
an ntree.

(3) Nothing else is an ntree.

The n in the name ntree is intended as a mnemonic both for inverted and for
nested in the sense of refinement. Clearly, the dimension of an ntree is less than
or equal to two. The partial orders of Figures l(a), 2, and 3 are ntrees, whereas
the partial orders of Figure l(b) and l(c) are not.

To illustrate the usefulness of ntrees in a practical context, consider a project
divided into three independent tasks with each task assigned to a team. We can
define groups tl, tP, and tS for the tasks and a group s for the project supervisors
related as in Figure 4(a), so the supervisors are members of each task team but
not vice versa. This allows the information and resources, such as working
documents for each task group, to be kept separate and inaccessible from other
task groups while a supervisor can access all of these. Alternatively, we can define
a single group p related to the task groups as shown in Figure 4(b). With this
structure the task teams can share information and resources of common interest

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1986.

206 l Ravinderpal S. Sandhu

A tw3 t1 t2 t3 P

(4 (b) ’

S

t1

0

t2 t3

P

(c)

S

I
W

0

t4

0

t5

s2

t4 t5

0

P2

(4 (4 (0

Fig. 4. NTrees for a project.

(for instance, the final design produced by a task team) while keeping working
documents and such within each task group. Finally, the tree and inverted tree
are not only useful by themselves but can occur together as in Figure 4(c). The
partial order of Figure 4(c) is an ntree. One method of constructing this ntree by
refinement is to begin with two groups, s for supervisors and w for workers, as
in Figure 4(d). Then refine w into the three task groups and project group of
Figure 4(b) to obtain the ntree of Figure 4(c).

The ntree of Figure 4(c) embodies three important aspects of a protection
policy:

(1) Separation: The three task groups tl, tz, and t3 are pairwise incomparable
with respect to the subgroup ordering.

(2) Sharing: The three separate task groups are all subgroups of a common
group p that allows sharing of information and resources.

(3) Oversight: The three separate task groups all have s as a common subgroup
to facilitate oversight and coordination.

Independent groups that are pairwise incomparable provide support only for
separation. A tree supports separation and oversight while an inverted tree
supports separation and sharing. The ntree supports all three aspects. Moreover,
since ntrees can be nested by refinement, these three basic policy aspects
are available at every level of detail. For instance, if it turns out that task t3 of
Figure 4(c) should really be two distinct tasks, we can refine it into tl and t5
of Figure 4(e). Alternately, if t3 is complex enough to justify treating it as a
subproject we may refine it into the partial order of Figure 4(f). Note that the
separation between incomparable groups in an ntree is not absolute but is
intended to model the logical situation. For instance, task teams tl and tz may

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 207

a

(a)

d

(b)

c
(4

m

a

k)

Fig. 5. A sequence of refinements.

actually have some common members. A user who is a member of both teams
will have to be explicitly made a direct member of tl and of tz. The task groups
are logically separate in that membership in one does not imply membership in
the other, and as such are incomparable in the ntree.

Repeated application of refinement allows us to construct large and complex
ntrees from simple ones while making policy decisions incrementally. This
facilitates top-down dekign of an organization’s subgroup structure. A sequence
of refinements is illustrated in Figures 5(a) through 5(f) with the end result
shown in Figure 5(g). At the top level of design, we begin with the subgroup
ordering of Figure 5(a), which shows m, for top management overseeing three

ACM Transactions on Computer Systenis, Vol. 6, No. 2, May 1966.

208 l Ravinderpal S. Sandhu

area groups d, g, and c for defense, government, and commercial, respectively.
These three independent area groups are subgroups of the all-inclusive group a.
This ntree is isomorphic to the ntree of Figure 4(c) but occurs at a high level in
the organization. The three area groups d, g, and c in Figure 4(a) are then refined
independently into different ntrees. The defense group d is refined into the ntree
of Figure 5(b) with three subareas ar, af, and n for army, air force, and navy,
respectively, each with its own management group. It is convenient and useful to
allow the name of the exploded group to occur as the name of one of the groups
in the refining ntree. Formally, we can think of this as a renaming of one of these
groups after refinement has been done. Figure 5(b) indicates that the name d
will be used after refinement for a group to facilitate sharing among the three
subareas. Proceeding in this manner, the government group g is refined into the
ntree of Figure 5(c) with two subareas s and f for state and federal, respectively,
with a management group mp for oversight and g retained as a group for sharing.
Then mg is refined into the ntree of Figure 5(d) with two management subareas
mh for hardware and m, for software with mg itself being retained for oversight
of these two management subareas. The commercial group is refined into the
ntree of Figure 5(e) with a management group m, and c being retained. Finally,
to illustrate how individual projects can be factored in, we show the navy group
n in Figure 5(b) being refined into the ntree of Figure 5(f) with three project
groups pl, p2, and p3, and n being retained as a group for sharing among the
three projects.

The sequence of refinements outlined above results in the ntree of Figure 5(g).
There is ample opportunity for further refinement of this structure. For instance,
ar, af, s, f, and c can be refined into projects as was done for n. Or the project
groups pl, p2, and p3 can be refined into tasks and subprojects along the lines of
Figure 4. The successive refinement approach allows policy decisions to be made
incrementally and independently by different people in the organization. For
example, top management need only be concerned about the high-level structure
of Figure 5(a) and leave it to lower-level managers to decide the refinement of
the d, g, and c groups. The persons responsible for refining d need not be
concerned about the refinement of g or c. Similarly, the refinement of a project
group can be the responsibility of the project manager independent of what other
project managers may do. Thus policy outlines can be decided at a high level
while details are determined at appropriate lower levels.

It is possible that successive refinement, or any other method for developing
the subgroup partial order, may result in some groups that are unlikely to be
used. For instance, it may turn out on further consideration that group g in the
ntree of Figure 5(g) is not required because the s and f groups can achieve all the
sharing needed by means of group a; or, perhaps the mh and m, groups turn out
to be unnecessary. In such cases we can drop these unneeded groups while
inducing the subgroup partial ordering on the remaining groups as shown in
Figure 6. It turns out that inducing an ntree on a subset of the groups results in
another ntree.

Formally, let P be a partial order on G and let G’ be any subset of G. The
partial order P’ obtained by inducing P on G’ is ((u, u) 1 (u, u) E P A u, u E G’).
By restricting the linear orderings in a realizer of P to the elements of G’ we
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 209

m a,

a r

a

Fig. 6. An induced ntree.

obtain a realizer for P’. So dim(P’) is less than or equal to dim(P). For ntrees
we can make a stronger statement, as follows.

THEOREM 5. Let 5 be an ntree on the set of groups G and let G’ C G. The
partial order 5 obtained by inducing 5 on G’ is an ntree.

PROOF. From the definition of ntree it is evident that any ntree can be obtained
by a refinement sequence that at each step refines a group into a forest of disjoint
rooted trees and inverted rooted trees (rather than into an arbitrary ntree). Let
z = UlU2 . . . un be such a refinement sequence the end result of which is 5.
Assume, without loss of generality, that there is no renaming during the refine-
ment steps. Each step ui in this sequence refines some group hi into a forest Fi of
rooted and inverted rooted trees on a set of groups Hi. Let G” = G’ - G; that is,
G” is the set of groups removed when inducing 5 on G’. Note that G” cannot
include groups that are refined at any of the refinement steps of 2. Obtain FT by
inducing Fi on the set of groups Hi - G”. Clearly FT is a forest of rooted and
inverted rooted trees. For each gi in 2 define the refinement step a* as the
refinement of hi into FF. Let <* be the ntree that results from the modified
refinement sequence Z* = a: az* . . . u,*.

We show that 5 ’ = j*. If u 5’ v there is a refinement step ui in Z that refines
some hi into a forest Fi with (u, v) E Fi. The corresponding refinement step a*
in Z* refines hi into Ff with (u, v) E FF. So u s* v. Conversely, if u ZZ* v
there is a refinement step a* in Z* that refines some hi into a forest FF with
(u, v) E FT. But then the corresponding refinement step ui in Z refines hi into a
forest Fi that includes (u, v). SO u 5’ v. 0

Because of this result we can eliminate unneeded groups at any stage in the
successive refinement procedure by inducing the current ntree on the subset of

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

210 l Ravinderpal S. Sandhu

groups that we wish to retain, thereby obtaining another ntree. This is useful
both during the initial design of an ntree as well as during the life of a system.
For instance, when tasks and projects get completed the corresponding groups
can be removed.

Another consequence of Theorem 5 is that the result of inducing 5 on a subset
of groups that are of interest to a particular user is an ntree. Recall that a user
is a direct member of g if the user is explicitly designated as a member of g and
thereby is an indirect member of every h such that g 5 h. Let G’ be the set of
groups of which a given user is a direct or indirect member. The subgroup relation
induced on G’ is an ntree, so the groups to which a user belongs form an ntree.
As another example let G’ be the set of groups that are comparable with respect
to 5 with one or more of the groups to which a user belongs directly. That is G’
is the set of groups with which this user can share resources. Again the subgroup
relation induced on G’ is an ntree. In this sense the user’s perception of the
subgroup relation will always be an ntree.

4. DYNAMIC REFINEMENT

It is not possible to correctly anticipate all protection needs in advance and a
facility for adding new groups to an ntree is definitely desirable. For example, as
new projects are undertaken we can introduce new groups for these; or, perhaps,
new task groups need to be introduced as the project life cycle matures. The
mechanism for adding new groups will be greatly simplified if we can do so by
assigning lr-values to the new groups while leaving the lr-values of existing groups
unchanged. In this section we present two methods for doing so. To achieve
this effect we propose to limit additions to an ntree to the refinement of an
existing group. We will shortly demonstrate that this is a reasonable restriction
although at the cost of requiring some additional care and foresight at each
refinement step.

By dynamic refinement we mean that a group is refined after the system has
been in operation for a while. The two methods for dealing with dynamic
refinement differ in that the first and simpler method cannot guarantee that the
group with the name of the exploded group gets the same lr-values as the exploded
group had. The second method is able to guarantee this property at the cost of
some additional bookkeeping.

A dynamic refinement step presents two important questions regarding its
immediate effect. First, what is the status of resources that were explicitly
available to the exploded group? An obvious suggestion is that each resource
should now become available to one or more of the groups in the refining ntree.
The second question is what happens to members of the exploded group? By
definition of refinement, indirect members of the exploded group become indirect
members of each group in the refining ntree. For the direct members, an obvious
suggestion is to assign each one as a direct member of one or more of the groups
in the refining ntree.

We propose a simple default answer to both questions by insisting that one of
the groups in the ntree that replaces the exploded group should have the same
name as the exploded group. With this rule we can take the view that the
exploded group continues to exist after refinement. This provides a reasonable
default for both questions. That is, the resources explicitly available to the

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 211

d&i d&Ph

a a

(4 (b)

l ph l i

(cl

m

a

(d)

Fig. 7. Place holders for dynamic refinement.

exploded group continue to be explicitly available to the group in the refining
ntree that has the same name as the exploded group. Similarly, the direct
members of the exploded group become direct members of the group in the
refining ntree that has the same name as the exploded group. The other groups
introduced by refinement have no direct members and no resources explicitly
available to begin with.

Dynamic refinement requires some foresight and planning to be truly effective.
Since additions to the existing ntree are limited to those achievable by refinement
of an existing group, it is necessary to anticipate the need for future groups at
each refinement step. Consider the refinement sequence of Figure 5. Suppose we
wish to add a fourth area group i for international as shown in Figure 7(a) while
retaining all other refinement steps of Figure 5. If the refinement sequence of
Figure 5 has already been carried out it is too late to do so, since the groups d, g,
and c of Figure 5(a) have all been refined during this sequence. Refining any of
the groups in Figure 5(g) will not provide the desired result.

We can anticipate the need for a group such as i in the future by reserving a
place-holder at an appropriate step in the refinement sequence. In this case we
would begin the refinement sequence of Figure 5 with the ntree of Figure 7(b)

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

212 - Ravinderpal S. Sandhu

rather than Figure 5(a). The purpose of the place-holder group ph is precisely to
anticipate the need for a group such as i in the future. The refinement sequence
of Figure 5 modified in this manner will result in the ntree shown by bold lines
in Figure 7(d). This differs from the ntree of Figure 5(g) only by the place-holder
ph. The international group i can now be introduced by the dynamic refinement
of ph in Figure 7(d) into the ntree of Figure 7(c). This will result in i being
introduced into the ntree of Figure 7(d) as shown by the light-colored lines.
Additional area groups can be introduced by further dynamic refinement of ph
in this manner. Note that if the ph group is eliminated from Figure 7(d), the
resulting partial order is, of course, an ntree. The point is that this ntree cannot
be constructed from the ntree of Figure 5(g) by refinement. However, if we have
anticipated the need for additional area groups in the future by introducing ph
as a place-holder, this ntree can be constructed by refining the place-holder group
and then simply ignoring ph.

We can similarly modify the other refinement steps of Figure 5 to include
place-holders. For instance, when we refine n into the ntree of Figure 5(f) we
should include a place-holder to anticipate the need for more than three project
groups in the future. We see the role of place-holders as another advantage of
the successive refinement approach to developing a complex ntree. Along with
making the policy decisions regarding the current subgroup structure incremen-
tally, we can introduce place-holders incrementally to anticipate future needs of
the organization.

4.1 Quota Offset Numbering

We now turn to the all-important question of how dynamic refinement affects
the representation of the subgroup partial order. Consider an ntree on the set of
groups G with realizer L, R of size two. The technique suggested in Section 2 for
representing the ntree is to assign a pair of integers l[g], r[g] to each group
gEG where l[g] and r[g] are the positions of g in L and R, respectively, SO

that g 5 h if and only if l[g] 5 l[h] and r[g] zz r[h]. We refer to these numbers
individually as the l-values and r-values and jointly as the h-values. If g is
dynamically refined we must of course assign lr-values to each group that results
from g’s explosion. It is also necessary to assign new l-values and r-values to
each nonexploded group that occurs after g, respectively, in L and in R. This
may involve a large fraction of the nonexploded groups and is likely to be

l cumbersome. Moreover, as a general principle of system design, an operation
involving group g should not require a mechanism to deal with groups that have
been left unchanged.

We present a technique for assigning h-values to the groups in an ntree so
that after a dynamic refinement step there is no need to change the h-values of
nonexploded groups. The technique actually works for partial orders of any
dimension, but since our objective is to use it for ntrees we state it in terms of
ntrees. In Section 4.2 we modify the technique to guarantee that one of the
groups in the refining ntree will be assigned the same lr-values that the exploded
group had. This will extend our earlier rule that one of the groups in the refining
ntree should have the same name as the exploded group, to the property that the
lr-values of this group remain unchanged after refinement. This modification is

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups - 213

applicable only to ntrees and does not apply to arbitrary two-dimension partial
orders.

The basic idea is to assign a quota q[g] to each group g. The quota is a positive
nonzero integer specifying the maximum number of groups that g can be refined
into, be it in a single step or by a sequence of refinements. Since g already exists,
the minimum value of q[g] is 1. The maximum number of groups that can ever
exist is the sum of the quotas of currently existing groups. The use of quotas for
this purpose is no different in principle than the use of quotas for many other
resource allocation decisions in an operating system, such as quotas on disk
space, main memory, processor time, and so on. It appears to be a desirable
facility for the system administrators in any case, as a means of limiting the
number of groups that can be created at different places in an organizational
hierarchy.

By assigning a quota to each group we can determine how many integers to
allocate for groups that may result from future refinement steps. Let L and R be
linear orderings that comprise a size two realizer for the subgroup partial ordering.
The l-value of a group g is obtained by adding one to the sum of the quotas of all
groups that precede g in L. Similarly, the r-value of a group g is obtained by
adding one to the sum of the quotas of all groups that precede g in R. When a
group g is exploded as part of the refinement operation we partition g’s quota
among the groups in the refining ntree. Any partition whose sum equals q[g] is
acceptable. The l-values and r-values of groups in the refining ntree are then
computed in the same way as for the initial assignment, except that we begin
with l[g] and r[g], respectively, rather than beginning with 1. A formal statement
of this method is given in Figure 8. The method consists of an initial numbering
to be used when an ntree is first set up, and an incremental numbering to be
used when a group is exploded. Incremental numbering is identical to initial
numbering, except that we start with the lr-values of the exploded group
rather than 1.

The lr-values assigned by the initial numbering to the ntree of Figure 3(a) are
shown in Figure 9(a) for the quotas listed there. Consider the refinement of d
into the ntree of Figure 3(b). Let each of the new groups in Figure 3(b) be
allocated a quota of 6 each, with d retaining a quota of 24 out of its original quota
of 60. We then obtain the lr-values of Figure 9(b) for the resulting ntree of
Figure 3(c). The lr-values of nonexploded groups are of course unchanged. The
lr-values assigned to groups introduced by refinement are determined by the
structure of the refining ntree and the allocation of the quota for further
refinement. The lr-values of Figure 9(b) can be computed either by the initial
numbering of Figure 9(a) followed by the incremental numbering for the refine-
ment of d, or directly by the initial numbering of the ntree of Figure 3(c) with
the specified quotas.

The key idea in the quota offset method is that l-values and r-values in the
range [l[g], l[g] + q[g] - l] and [r[g], r[g] + q[g] - 11, respectively, are reserved
for groups to be introduced by a future refinement of g. We now prove the quota
offset method is correct.

THEOREM 6. The quota offset numbering method of Algorithm 1 is correct.

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

214 l Fiavinderpal S. Sandhu

Initial numbering

next := 1; next := 1;

while L is non-empty do while R is non-empty do
x := head(L); x := head(R);
11x1 := next; r[x] := next;
next := next + six]; next := next + q[x];
L := tail(L); R := tail(R);

end; end;

Incremental numbering on explosion of group g

next := l[g]; next := r[g];
while L is non-empty do while R is non-empty do

x := head(L); x := head(R);
I[x] := next; r[x] := next;
next := next + q!x]; next := next + qjx];
L := tail(L); R := tail(R);

end; end;

Fig. 8. Algorithm 1: Quota offset numbering method.

PROOF. To prove the correctness of this method we show that after any
sequence of refinements the following are true.

(1) l[g] I I[h] A r[g] 5 r[h] H g 5 h

(2) No group other than g itself has an l-value in the range [l[g], l[g] +
q[g] - l] or an r-value in the range [r[g], r[g] + q[g] - 11.

The first property guarantees that the current ntree is correctly represented by
the lr-values. The second guarantees that g can continue to be refined within the
limits of its quota. We prove these properties by induction on the number of
refinement operations. For the basis case, let this number be 0, so lr-values are
assigned by the initial numbering. The two properties are obviously true since
increasing l-values and r-values are assigned to successive groups in L and R,
respectively, and next is incremented by q[x] on every iteration. Assume both
properties are true after n refinement operations and let u be refined in the
n + lst refinement step into the ntree N, so groups in N are assigned lr-values
by the incremental numbering and lr-values of nonexploded groups are un-
changed. Let q[u], l[u], and r[u] be the quota and the lr-values of u before this
refinement. By definition, the sum of the quotas of groups in N equals q[u]. It
follows that the l-values and r-values assigned to groups in N are, respectively,
in the range [l[u], l[u] + q[u] - 11, and [r[u], r[u] + q[u] - 11. Since next is
incremented by q[x] on every iteration, the second property is true for groups in
N. Therefore, by induction hypothesis, the second property is true for all groups
after the incremental numbering. After the n + lSt refinement the first property
continues to be true for the nonexploded groups since their lr-values are un-
changed. Let v be a group in the refining ntree N and w be a nonexploded group.
Since the lr-values of w are outside the range [l[u], l[u] + q[u] - 11, and
WI, r.[ul + dul - l] while the lr-values of v are in this range, the relation

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 215

5 1
15 6
15 21
60 36

5 96

1
81
66

6
96

-

(a) L: abcde, R: adcbe

q 1 r
-

a 5 1 1
b 15 6 81

ii
15 21 66
24 48 36

e 5 96 96
f 6 36 30

g 6 42 24
h 6 72 60
i 6 78 6

j 6 84 18
k 6 90 12

-

(b) L: abcfgdhijke, R: aikjgfdhcbe

Fig. 9. Quota offset numbering for Figure 3.

between the h-values of w and v is exactly the same as the relation between the
h-values of w and the old lr-values of u. So the lr-values assigned to v by the
incremental numbering correctly represent the subgroup relation between the
nonexploded groups and the groups in the refining ntree N. It remains to show
that the lr-values assigned to groups in N correctly represents the subgroup
relation between these groups. This follows, since increasing l-values and r-values
are assigned to successive groups in L and in R, respectively. 0

To summarize, the quota offset numbering method allows us to assign lr-values
in such a way that on refining group g we need only compute lr-values for groups
in the refining ntree while the lr-values of nonexploded groups remain unchanged.
The method also provides a simple mechanism for enforcing a quota on the
number of groups that may arise from refining an existing group as well as for
allocating this quota for further refinement.

4.2 Conservative Quota Offset Numbering

The quota offset numbering method has the property that in general the
lr-values of the exploded group will no longer be a valid pair of lr-values after
refinement. For instance, the pair of lr-values assigned to d in Figure 9(a) does
not occur in Figure 9(b). We have earlier argued that naming one of the groups
in the refining ntree to have the same name as the exploded group is desirable
as a default rule, so that in effect the refined group continues to exist after

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1966.

216 l Ravinderpal S. Sandhu

refinement. The possibility of inconsistency and integrity problems will be
reduced if this group has the same lr-values as the exploded group did. A
numbering method that achieves this is said to be conservative.

In order to modify the quota offset numbering method to be conservative we
need some additional restrictions in the refinement steps. So far we have allowed
a group to be refined into an arbitrary ntree, the only restriction being that the
number of groups in the refining ntree cannot exceed the exploded group’s quota.
Now the groups introduced by refinement of a group g can be classified into three
disjoint categories: up-groups, which are subgroups of g; down-groups, of which
g is a proper subgroup; and split-groups, which are incomparable with g. To
facilitate conservative numbering we partition the quota q[g] of each group g
into the up-quota q,[g], the down-quota qd[g], and the split-quota q,[g], which
specify the maximum number of groups in the corresponding categories. The
total-quota q[g] is the sum of these three components. Recall that q[g] includes
a count of 1 for group g itself. By our definitions, this is counted as part of the
up-quota of each group. So if q[g] = 1, which is the minimum value, we have
q&l = 1 and qdkl = q&l = 0.

This partitioning of the total-quota gives us the additional information needed
to achieve conservative numbering. After refinement of g, g’s total-quota is
allocated among the groups introduced by refinement. The sum of the total-
quotas assigned to the up-groups, down-groups, and split-groups is subtracted
from q,[g], qd[g], and q,[g], respectively. For instance, consider the quotas of
Figure 10(a) for the ntree of Figure 3(a). When d is refined into the ntree of
Figure 3(b), as before let the total-quota of all new groups be 6 each. Since f and
g are up-groups, q,[d] is reduced from 20 to 8. The only down-group is h, so qd[d]
is reduced from 10 to 4. The split groups i, j, and k reduce q,[d] from 30 to 12.
The total-quota of 6 allocated to each new group can be arbitrarily partitioned
into the three components, and this partitioning is of no consequence for
reduction of d’s quotas.

Consider what happens when g is exploded into an ntree with realizer L, R.
The up-groups of g must precede g in both L and R while the down-groups must
follow g. To ensure that g retains its lr-values after refinement we need infor-
mation about where the split-groups occur in L and R. Each split-group
must either follow g in L and precede g in R or vice versa. To achieve
conservative numbering we impose the following restriction on the realizer for
the refining ntree.

Definition 7. A realizer L, R is a left-most realizer for group g if the split-
groups of g all occur after g in L and before g in R.

For example the realizer of Figure 2(a) is left-most for a, b, and e, while the
realizer of Figure 2(b) is left-most for i, d, and a. For two-dimension partial
orders in general, a left-most realizer may not exist. For instance, consider the
partial order of Figure 11 with the size two realizer shown there. The algorithm
of [lo] shows that the incomparability graph of this partial order has exactly
two transitive orientations, leading to two possible realizers: the one shown in
Figure 11 and the other obtained by interchanging L and R. By inspection,
neither of these is a left-most realizer for c.
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups l 217

r

1 1

;m
90
75
55

(a) L: abcde, R: adcbe

a
b

d”
e
f
g
h
i
j
k

q”

1
5
5
8
5
2
2
1
3
1
1

s,
4
5
5
4
0
2
2
5
3
2
5

%I -

0

5
5

12
0
2
2
0
0
3
0

1

1
10
25
55

100
47
53
72
80
84
90

1

1

r
-

1
90
75
55
00
43
37
60
18
31
22
-

(b) L: abcfgdhijke, R: aikjgfdhcbe

Fig. 10. Conservative quota offset numbering for Figure 3.

a e

L: ached
R: ecdab

Fig. 11. A partial order with size two realizer.

It turns out that for ntrees a left-most realizer is guaranteed to exist. Every
tree and inverted tree has a left-most realizer easily obtained by rearranging the
tree so the group of interest ends up being left-most. Since ntrees are constructed
from these basic partial orders, we can ensure that at each refinement step we
use a left-most realizer for the group of interest. Formally, we have the following
result.

THEOREM 8. For any ntree and any group g in the ntree there exists a left-most
realizer L, R for g.

PROOF. For any ntree there exists a refinement sequence Z where at each step
the refining ntree is a rooted tree, an inverted rooted tree, or an empty partial

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

218 l Ravinderpal S. Sandhu

order; that is, all distinct groups are pairwise incomparable. This follows from
our observation in the proof of Theorem 5 that every ntree can be constructed
by a refinement sequence where each refinement is into a forest of rooted and
inverted rooted trees. Such a forest can obviously be constructed by refining the
groups in an empty partial order into trees and inverted trees, as appropriate.
We prove the theorem by induction on the number of refinement steps in Z.

For the basis case, let the number of refinement steps be 0 so the ntree is a
rooted tree, inverted rooted tree, or is empty. For a rooted tree, a left-most
realizer for g is obtained by rearranging the tree so that g is on the left-most path
from the root and computing the realizer L, R as the left-to-right and right-to-
left preorder traversals, respectivley. For an inverted rooted tree, a left-most
realizer for g is obtained by rearranging the tree so that g is on the right-most
path to the root, and reversing the left-most realizer for the corresponding rooted
tree obtained by the vertical reflection of the inverted tree. Finally, the empty
partial order has a left-most realizer for g, since any linear ordering and its
reverse are a realizer and we can select g to be the first group in L.

At each refinement step let the realizer L”, R” for the resulting ntree be
obtained by respectively substituting the realizer L’, R’ for the refining ntree in
place of the exploded group in the realizer L, R of the existing ntree. Assume the
theorem is true for n refinement steps and consider the n + lst refinement. If g
is left-most in L, R and is not exploded in the n + lst step, it obviously continues
to be left-most in L”, R”. If g is exploded in the n + lat step, by our argument for
the basis case, we can construct L’, R’ to be left-most for g. But then g obviously
continues to be left-most in L”, R”. El

In conjunction with our discussion above regarding the partial order of Fig-
ure 11, this theorem also demonstrates that ntrees are a proper subset of
two-dimension partial orders.

It follows from Theorem 8 that if we construct ntrees by limiting ourselves to
a forest of rooted and inverted rooted trees at each refinement step, we will
always be able to come up with a left-most realizer. This is a reasonable restriction
on how to go about doing refinement. The more general question of how to
construct a left-most realizer for an arbitrary group in an arbitrary ntree without
being given the refinement sequence is beyond the scope of this paper, although
we conjecture there is an efficient method for doing so.

The importance of a left-most realizer for the refining ntree is that we then
know how many integers to allocate below l[g] for the up-groups and above l[g]
for the down-groups and split-groups that may result from future refinement.
Similarly, we know how many integers to allocate below r[g] for the up-groups
and split-groups and above r[g] for the down-groups that may result from future
refinement. As in the quota offset method, we reserve a consecutive range of q[g]
l-values and r-values for future refinement of g. These ranges for the l-values
and r-values are, respectively, [l[g] - q,[g] + 1, l[g] + qd[g] + qJg]], and
[rkl - q&l - q&d + 1, rIgI + qdklk If q&l = 1 and q&l = 0, these ranges

are the same as those for the quota offset method.
These observations lead us to the conservative quota offset numbering method

of Figure 12. As in the quota offset method of Algorithm 1, there is an initial
numbering beginning from 1 and an incremental numbering beginning with the
ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1966.

The NTree: A Two Dimension Partial Order for Protection Groups l 219

Initial numbering

next := 1; next := 1;
while L is non-empty do while R is non-empty do

x := head(L); x := head(R);
I[x] := next + qu[x] - 1;
next := next + q[x];

r[x] := next + qu[x] + qJx] - 1;
next := next + q[x];

L := tail(L); R := tail(R);
end; end;

Incremental numbering on explosion of group g

next := l[g] - qO,[g] + 1; next := rlgl - qO,[gl - $%I + 1;
while L is non-empty do while R is non-empty do

x := head(L); x := head(R);
I[x] := next + q,[x] - 1;
next := next + q[x];

r[x] := next + qu[x] + qS[x] - 1;
next := next + q[x];

L := tail(L); R := tail(R);
end; end;

Fig. 12. Algorithm 2: Conservative quota offset numbering method.

lower end of the range of lr-values reserved for g’s refinement. In the incremental
numbering the superscript o on the quotas of g indicates that the old values of
the quotas before refinement are to be used. The method requires that the realizer
for the incremental numbering be left-most for the exploded group g. The
lr-values assigned by this method to the ntree of Figure 3(a) are shown in
Figure 10(a) for the quotas listed there. Consider the refinement of d into the
ntree of Figure 3(b), which fortuitously happens to have a left-most realizer for
d shown there. The incremental numbering gives the lr-values of Figure 10(b)
for the quotas listed there. Now suppose the groups d and k in Figure 3(b) are
interchanged. By inspection we can rearrange this refining ntree so that d is left-
most as shown in Figure 13(a) with the realizer shown there. With this left-most
realizer and same quotas as earlier, we obtain the lr-values of Figure 13(b).

Note that the conservative quota offset method is equivalent to the quota
offset method if q,[g] = 1, qd[g] = q[g] - 1, and q,[g] = 0. It remains to prove
the correctness of the conservative quota offset method.

THEOREM 9. The conservative quota offset numbering method of Algorithm 2 is
correct if the realizer for the incremental numbering is left-most for the exploded
group.

PROOF. To prove the correctness of this method we show that after any
sequence of refinements the following are true:

(1) l[g] 5 l[h] A r[g] 5 r[h] ti g 5 h.
(2) No group other than g itself has an l-value in the range [l[g] - qU[g] + 1,

l[g] + q.JgJ + q,[gl - 11 or an r-value in the range [r[gl - q&l - q,[gl + 1,
rkl + qdkl - lla

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1988.

220 l Ravinderpal S. Sandhu

i

d j

-
a 4 0
b 5 5

d"
5 5

10 0
e 0 0
f 2 2

g 2 2
h 5 0
i 3 0

j 2 3
k 5 0

-

qu
1
5
5

14
5
2

2
1
3
1
1

f

Y
9

k

hl
(a)

1 1
10 90
25 75
55 55

100 100
37 33
43 27

72 60
80 8

84 21

90 12

(b) L: abcfgdhijke, R: aikjgfdhcbe

Fig.13. Rearrangingthe refining ntree.

1 r

L: idjfgkh
R: gfkhijd

(3) The h-values of all exploded groups are unchanged by the incremental
numbering.

As in the proof of Theorem 6, the first property guarantees that the current ntree
is correctly represented by the lr-values while the second guarantees that g can
continue to be refined within the limits of its quota. The proof of the first two
properties is essentially the same as their proof in Theorem 6. The third property
gives us conservative numbering on refinement. By assumption, the realizer for
the refining ntree used in incremental numbering is left-most for the exploded
group g. Let the superscript o denote the lr-values and quotas of g before
refinement and the superscript n denote these values after refinement. The
groups that precede g in L are the up-groups of g. From the incremental
numbering it is evident that

l”[gl = l”[gl - q:[gl + 1 + z q[xl + $[gl - 1

where x ranges over the up-groups of g, not counting g itself. By the allocation
of quotas, we have qZ[g] = Z q[x] + qC[g], so the l-value of g is unchanged.
Similarly, the groups that precede g in R are the up-groups and split-groups of g.
From the incremental numbering it is evident that

fYg1 = fkl - q:kl - Gkl + 1 + 2 4x1 + 2 q[yl + q:kl + GM - 1
where x ranges over the up-groups of g, not counting g itself, and y ranges over
the split-groups of g. By the allocation of quotas, we have qz[g] = z q[x] + q,“[g]
and qZ[g] = Z q[y] + qt[g], so the r-value of g is unchanged. Cl

ACM Transactions on Computer Systems,Vol. 6, No. 2,May 1988.

The NTree: A Two Dimension Partial Order for Protection Groups 221

5. CONCLUDING REMARKS

To summarize, we have defined the ntree as a two-dimension partial order
suitable for the subgroup relation between protection groups. The ntree is a
useful and substantial generalization of the rooted tree and inverted rooted tree
partial orders. We have shown how to develop complex ntrees incrementally in
a top-down manner by successive refinement. We have proposed a representation
for ntrees on the basis of their dimension as partial orders and have argued that
the ntree is most likely the only useful application of dimension theory in the
context of the subgroup relation, particularly in that using some small integer
bigger than two as an upper bound on dimension is not going to be of much
additional value. Since ntrees have dimension less than or equal to two, we can
assign a pair of integers called lr-values to each group so that g is a subgroup of
h if and only if l[g] 5 l[h] and r[g] 5 r[h]. Each l-value or r-value requires log,(m)
bits where m is the maximum number of groups that can ever exist and we can
represent the ntree using 2*log,(m) bits per group. We have shown how to assign
lr-values and quotas so that groups can be dynamically refined without changing
the lr-values assigned to nonexploded groups. Moreover, we have shown how to
guarantee that the lr-values of the exploded group will be assigned to one of the
refined groups by partitioning the quota into up, down, and split components.

We have defined the subgroup relation as a reflexive partial order. Clearly, our
representation allows us to determine whether a group is a proper subgroup of
another group or whether the two groups in question are identical. This allows
us to distinguish whether a user who is known to the access-control mechanism
as a direct member of group g is thereby a direct or indirect member of group h.
The usefulness of ntrees can be enhanced by distinguishing access based on
direct membership from access based on indirect membership. This allows a
degree of privacy in that the direct members of a group can share resources that
are inaccessible by indirect members. For instance, the direct members of project
team p1 in the ntree of Figure 7(d) can share files not available to the direct
members of m, or m,.

It is worth noting that a group with lr-values, both 1, will correspond to a
super-group (i.e., a highly privileged group) whose members are thereby members
of every group. Because the super-group naturally turns out to have these special
lr-values, we can build special rules into the access-control mechanism for these
values. For instance, the distinction between direct and indirect membership may
be ignored so a direct member of the super-group is considered to be a direct
member of every group. Also, note that if m is the maximum number of groups
allowed, a group with lr-values both equal to m will correspond to a public-group
of which every group is a subgroup. Once again we can build special rules for
these extreme values, although it is probably less useful to do so for the public-
group as compared to the super-group.

Finally, we note that we have not addressed several important issues, such as
how users are made direct members of groups and exactly who is authorized to
refine an existing group. There are numerous possibilities here, the simplest and
typical one being to centralize such authority in a system administrator. A more
interesting alternative would be to decentralize this authority by perhaps nomi-
nating some distinguished members of a group to add new members to the group,

ACM Transactions on Computer Systems, Vol. 6, No. 2, May 1986.

222 ’ Ravinderpal S. Sandhu

and perhaps even allowing this notion of distinguished membership to be inher-
ited via the subgroup partial ordering. These issues are beyond the scope of this
paper. We do wish to emphasize that these must be addressed and resolved in an
implementation.

ACKNOWLEDGMENT

The author gratefully acknowledges several valuable comments made by the
referees, which have improved not only the presentation of the paper but also its
substance.

REFERENCES

1. DENNING, D. E. A lattice model of secure information flow. Commun. ACM 19, 5 (May 1976),
236-243.

2. DENNING, D. E., AND DENNING, P. J. Data security. ACM Comput. Suru. 11, 3 (Sept. 1979),
227-249.

3. DUSHNIK, B., AND MILLER, E. W. Partially ordered sets. Am. J. Math. 63 (1941), 600-610.
4. FISHBURN, P. C. Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. John

Wiley & Sons, New York, 1985.
5. GOLUMBIC, M. C. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York,

1980.
6. HIRUGACHI, T. On the dimension of partially ordered sets. Science Rep. Kanazuwa Uniu. 1

(1951), 77-94.
7. HIRUGACHI, T. On the dimension of orders. Science Rep. Kanazawa Uniu. 4 (1955), l-20.
8. KOMM, H. On the dimension of partially ordered sets. Am. J. Math. 70 (1948), 507-520.
9. LANDWEHR, C. E. Formal models for computer security. ACM Comput. Sure. 13,3 (Sept. 1981),

247-278.
10. PNUELI, A., LEMPEL, A., AND EVEN, S. Transitive orientation of graphs and identification of

permutation graphs. Can&m J. Math. 23 (1971), 160-175.
11. RITCHIE, D. M., AND THOMPSON, K. The UNIX time-sharing system. Commun. ACM 17, 7

(July, 1974), 365-375.
12. SALTZER, J. H. Protection and the control of information sharing in MULTICS. Commun.

ACM 17, 7 (July 1974), 388-402.

Received October 1986; revised June 1987; accepted July 1987

ACM Transactions on Computer Systems, Vol. 6, NO. 2, May 1988.

