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The benefits of providing access control with groups of users rather than with individuals as the unit 
of granularity are well known. These benefits are enhanced if the groups are organized in a subgroup 
partial order. A class of such partial orders, called ntrees, is defined by using a forest of rooted trees 
or inverted rooted trees as basic partial orders and combining these by refinement. Refinement 
explodes an existing group into a partially ordered ntree of new groups while maintaining the same 
relationship between each new group and the nonexploded groups that the exploded group had. 
Examples are discussed to show the practical significance of ntrees and the refinement operation. It 
is shown that ntrees can be represented by assigning a pair of integers called lr-u&es to each group 
so that g is a subgroup of h if and only if l[g] I l[h] and r[g] 5 r[h]. Refinement allows a complex 
ntree to be developed incrementally in a top-down manner and is useful for the initial definition of 
an ntree as well as for subsequent modifications. To make the latter use of refinement practical, a 
method is presented for assigning lr-values to the new groups introduced by refinement so lr-values 
assigned to nonexploded groups need not be changed. It is also shown how to guarantee that the lr- 
values of the exploded group will get assigned to one of the new groups. 

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General-systems 
specification methodology; C.2.0 [Computer-Communication Networks]: General-security and 
protection; D.2.0 [Software Engineering]: General-protection mechanisms; D.4.6 [Operating 
Systems]: Security and Protection-access controls; security kernels; H.l.O [Models and Princi- 
ples]: General; H.2.0 [Database Management]: General-security, integrity, and protection; K.6.m 
[Management of Computing and Information Systems]: Miscellaneous-security 

General Terms: Design, Management, Security, Theory 

Additional Key Words and Phrases: Access control lists, authorization, hierarchies, partial orders, 
protection groups. 

1. INTRODUCTION 

The ability to share files and other resources among the users of a system has 
obvious benefits. It is convenient for both the users and the system administrators 
to have the facility to specify access based on groups of users as a unit. 
Membership in a group is presumably determined by the need to share resources 
and information, so the group provides a suitable unit for an individual user’s 
access decisions. A user can make a file available to an entire group without 
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having to explicitly provide access to every member. Similarly, a file’s availability 
can be revoked from a group without explicitly revoking each member’s access. 
Also, new users can be made members of appropriate groups, thereby obtaining 
access to a number of files and resources. Some systems, such as the popular 
UNIX [ll], allow for access control only in terms of groups. Even the more 
sophisticated systems, such as Multics [12], which have provision for specifying 
access at the level of individual users, recognize the advantages of protection 
groups and provide facilities for specifying access in terms of groups. 

In practice, it is often desirable that groups bear some relationship to each 
other. For instance, consider a project divided into several independent tasks 
assigned to different teams. We can define a group for each task team so its 
members have common access to resources relevant to the task. Since some 
resources may pertain to the entire project, we can define a project group such 
that members of the individual task groups are thereby also members of the 
project group. The project-wide resources are then made explicitly available to 
the project group alone. This is certainly more convenient than having to 
explicitly make such resources available to every task group, even if it were 
possible to do so. It is also more convenient than explicitly making every member 
of a task group a member of the project group. By allowing membership in a 
group to automatically imply membership in some other groups, we can reduce 
the number of explicit access decisions that need to be made by the users, as well 
as reduce the number of groups to which a user must explicitly belong. 

Let G be a set of groups and let g 5 h signify that group g is a subgroup of 
group h, in the sense that every member of g is thereby also a member of h. Note 
that members of g have more privileges than members of h. We require that the 
subgroup relation is a partial ordering of G, i.e., 5 is reflexive, transitive, and 
asymmetric. The reflexive property is obviously required since every member of 
g is already a member of g. Transitivity is certainly an intuitive and reasonable 
assumption and perhaps even inevitable. After all, if g 5 h and h 5 k, then every 
member of g is a member of h and so should also be a member of k. Once the 
reflexive and transitive requirements are accepted, the asymmetric requirement 
merely eliminates redundancy by excluding groups that would otherwise be 
equivalent. If g is a proper subgroup of h we write g < h; that is, g I h and 
gf h. 

We say a user is a direct member of g if the user is explicitly designated as a 
member of g and thereby is an indirect member of every h such that g < h. The 
intention is that a user will be a direct member of a small number of unrelated 
groups, perhaps just one, but will thereby obtain indirect membership in a larger 
number of groups. We say that a tile or other resource is explicitly available to 
group g if the access control information associated with the file (perhaps in an 
access-control list) makes explicit mention of group g. The file is thereby implicitly 
available to every proper subgroup h of g. Again the intention is that a tile will 
be explicitly available to a small number of unrelated groups, but implicitly 
available to a larger number of groups. 

Consider again the project example mentioned earlier. Let tl and tz be task 
groups and p the project group. If there is no group organization we have 
essentially two methods for solving the protection and sharing problem. We can 
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make the project resources explicitly available to both t1 and tz and ignore p. We 
say this solution is based on resource and file assi&ment. The other solution is 
to explicitly make every member of tl and every member of tz a member of p. We 
say this solution is based on user assignment. Both solutions have the undesirable 
property of introducing redundancy. In the latter case, whenever a new member 
is added to a task team we will need to also add him or her to the project group. 

In the former case, suppose a new task group t3 is created. The protection 
information associated with all project files will need to be modified to explicitly 
mention t3. There is also the possibility of keeping all project files in a single 
directory and treating the protection attributes of the files as a property of the 
directory, so the protection information to be modified is in one place. This 
approach shifts the redundancy problem from files to directories, which may be 
more manageable, at the cost of lost flexibility in assigning protection attributes 
of individual files. 

On the other hand, if a subgroup relation can be defined, we can specify that 
task groups are subgroups of the project group and the redundancy problem 
disappears. For this reason many contemporary systems offer a facility for 
defining group organization. It appears that two basic approaches have been used 
thus far. One approach, which we call explicit group organization, is to enumerate 
the subgroups of a group. TOPS-20 is a well known example of this approach. 
To define a group we need to enumerate the user identifiers of the direct members 
anyway, and it is reasonable to also enumerate the identifiers of subgroups. If 
only the immediate subgroups are explicitly enumerated and transitivity is 
handled by the access control mechanism by following the chains of subgroups, 
we have a low redundancy solution. However, the mechanism may have to chase 
several chains of subgroups before arriving at an access decision. If all subgroups 
are explicitly enumerated we simplify the access control mechanism but rein- 
troduce redundancy. 

The second approach for implementing a subgroup relation is based on implicit 
group organization and requires that groups be named so the group organization 
is reflected in the group names [12]. In our project example we might name the 
task groups as p/t1 and p/t2 while the project group is named as p/p. By use of 
wildcards we can identify all three groups by p/*, for instance. The access control 
information for project files can contain explicit mention of p/*, meaning that 
access is available to all groups that match this pattern. This is a low-redundancy 
solution, since task group p/t3 can be created and its members will immediately 
have access to the project files. Also, a new member of a task group need only be 
assigned to that task group. The biggest drawback of this approach is the need 
to set up group names with great care so the wildcard facility can accommodate 
the group organization. Another drawback is that the users must keep the naming 
conventions in mind when defining the protection attributes of their files. We 
feel this is an unreasonable burden for the users. Moreover, we may need several 
fields in the group names to achieve this effect. For instance, in a rooted tree 
hierarchy we would need a different field for each level of the tree. 

In this paper we propose a class of partial orders, called ntrees, which have a 
very simple implicit representation and yet appear to cover a large variety of 
practical situations. We show that ntrees can be represented by assigning a pair 
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of integers called Zr-ualues to each group so that g < h if and only if l[g] < l[h] 
and r[g] < r[h]. We also show that new groups can be introduced in ntrees in 
certain natural ways without affecting the lr-values of existing groups. 

NTrees are a method for implicit group organization that can be efficiently 
implemented and that directly solve a large class of common protection problems. 
By their very nature, complex ntrees can be incrementally constructed in a top- 
down manner, using simple ntrees at each step. We are well aware that ntrees 
do not solve all practical problems directly. Subgroup hierarchies outside the 
direct scope of ntrees must be handled by an explicit group organization in 
addition to the implicit ntree structure, or by user or resource assignment. We 
recommend that deviations from an ntree be handled by explicit group organi- 
zation or by user assignment rather than by file assignment, if possible. This 
puts the responsibility for the subgroup organization on the security administra- 
tor, where it properly belongs. 

To summarize our position, in general, protection problems must be solved by 
a combination of implicit and explicit group organization and user and resource 
assignment. Solutions based on resource assignment are undesirable since they 
place excessive burden on the user. It is no doubt desirable that flexibility in file 
assignment be available to the users, but it is inappropriate to expect users to 
understand complicated conventions for solving their protection and sharing 
requirements. NTrees are a powerful technique for implicit group organization 
that support many commonly occurring hierarchies directly. The issue of mapping 
an arbitrary partial order into an ntree by additional explicit group organization 
and user assignment is an important one, but it is outside the scope of this paper. 
These issues cannot even be addressed until the implicit group organization is 
defined. In this sense, the implicit group organization problem is more funda- 
mental, and is the one discussed in this paper. 

2. TWO DIMENSION PARTIAL ORDERS 

We begin by reviewing the mathematical basis for ntrees and their implicit 
representation by lr-values. Partial orderings are conventionally depicted by 
Hasse diagrams as shown in Figure 1, for instance. The partial order represented 
by a Hasse diagram is obtained by directing the edges downwards; for example, 
from a to b in Figure l(a), indicating that a is a subgroup of b, and taking the 
transitive and reflexive closure of the resulting directed graph. 

Every partial order P on a set of elements G can be extended to a linear 
ordering of G, by the familiar procedure of topological sorting. In general there 
will be more than one linear extension of P. Let I’(P) be the collection of all 
linear extensions of P. The intersection of linear orderings L1, Lp, . . . , Lk 
is defined as the set of ordered pairs ((u, v) ] (u, v) E L1 A (u, v) E L2 . a . A 
(u, v) E LkJ. A realizer of P is a subset of I’(P) whose intersection equals P. It is 
easy to see that P(P) is a realizer of P, so a realizer always exists. The dimension 
of a partial order P, written as dim(P), is the size of the smallest realizer of P 
[3]. A partial order has dimension one if and only if it is a linear ordering. The 
partial order of Figure l(a) has a size two realizer consisting of the linear orderings 
abed and acbd, so its dimension is two. Similarly, the partial order of Figure l(b) 
has dimension two because it has a realizer abed and cadb. The partial order of 
Figure l(c) has dimension three. The results of dimension theory cited in this 
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a 

(4 lb) 

Fig. 1. Hasse diagrams. 

(c) 

paper are all available in the books by Fishburn [4] and Golumbic [5], often with 
simpler proofs than the original source. 

In this paper we restrict the subgroup relation 5 to be a partial order with 
dimension two or less. We now motivate this restriction. If dim(s) Sk we can 
represent the subgroup partial ordering on a set of groups G by assigning a k- 
tuple of integers to each group in G as follows. Let L1, LZ, . . . , Lk be a realizer 
of 5. The ith component of the k-tuple assigned to g is the position of g in the 
linear ordering Li. It follows that g 5 h if and only if each component of the k- 
tuple assigned to g is less than or equal to the corresponding component of the 
k-tuple assigned to h. We can then determine whether one group is a subgroup 
of another by a component-wise comparison of fixed size tuples of integers. This 
representation will be useful if k is much smaller than ] G ] (the size of G). It is 
known that for every set G of size six or more, there exists a partial ordering on 
G with dimension Ll/2 ] G ] 1 [7]. If we fix the upper bound on dim(<) at some 
small value while permitting a large number of protection groups, it follows that 
we cannot allow 5 to be an arbitrary partial order. An upper bound of one 
amounts to assuming that 5 is a linear ordering, which is not very useful. So the 
smallest useful upper bound on dim(s) is two. 

It turns out that the class of partial orders with dimension less than or equal 
to two includes several cases of practical importance. A partial order whose Hasse 
diagram is a rooted tree, as in Figure 2(a) for instance, has dimension two. A size 
two realizer for a rooted tree is easily computed by a left-to-right preorder 
traversal L and a right-to-left preorder traversal R as demonstrated in Figure 2. 
This tree can then be represented by assigning the pair of integers (1, 1) to a, 
(2, 6) to b, and so on. By a component-wise comparison of these pairs we can 
determine for instance that a i g, whereas c and g are incomparable. Similarly, 
a partial order whose Hasse diagram is an inverted rooted tree, as in Figure 2(b) 
for example, has dimension two. A size two realizer for an inverted rooted tree is 
easily computed by reversing the size two realizer for the corresponding rooted 
tree. A proof of these observations follows. 

THEOREM 1. A partial order whose Hasse diagram is a rooted tree or an inverted 
rooted tree has a realizer of size two. 

PROOF. By the above discussion it suffices to consider the case of a rooted 
tree. Let T be a rooted tree, with left-to-right preorder traversal L and right-to- 
left preorder traversal R. If (u, v) E T, then clearly u precedes v in both L and 
R, SO (u, v) E L n R. If (u, v) @ T, without loss of generality, let the path in the 
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L: abefgcdhi 
R: adihcbgfe 

(a) 

e f h 

a 

L: ihdcgfeba 
R: efgbchida 

(b) 

Fig. 2. A tree and an inverted tree. 

tree from the root to u be to the left of the path from the root to v. But then u 
precedes v in L and follows v in R, so (u, v) 4 L n R. q 

More generally, a partial order whose Hasse diagram consists of a forest of 
mutually disjoint trees and inverted trees has a realizer of size two, as will be 
proved shortly. The partial orders of Figures l(a) and l(b) are examples of 
dimension two partial orders with Hasse diagrams other than trees. 

There are partial orders of practical importance that have dimension greater 
than two. For instance, in Figure l(c) the a, b, and c groups might represent 
project teams while the d, e, and f groups represent different categories of 
resources. Figure l(c) is a particular case of the more general situation where 
Pit **-9 pn are project groups, rl, . . . , r,, are resource groups, each project group 
needs resources in all but one of the resource groups, and it so happens that 
project pi needs resources in groups rj, j # i. The resulting subgroup relation is 
((pi, rj) ] i # j). For n 2 3 the dimension of this partial order is n [3]. Another 
situation of practical importance with possibly high-dimension partial orders 
arises in military security policies [l, 2, 91. Let S be the set of compartments 
whose subsets determine the categories and let 2’ be the power set of S, that is, 
the set of all subsets of S. The dimension of the set inclusion partial order on 2’ 
is ] S ] [a]. Since this partial order can be represented using ] S ] bits for each 
subset of S, the dimension approach is clearly not useful for this case. 

Although some of the theory we develop (Section 4.1 in particular) is applicable 
to partial orders of arbitrary dimension, we are skeptical about whether the use 
of an upper bound such as three or four will provide substantially greater benefit 
than our proposal of limiting the dimension to two. There will remain practical 
cases where the need for a higher dimension can be argued. As discussed in the 
Introduction, our objective is to develop an implicit group organization that can 
be efficiently implemented and that directly solves a large class of commonly 
occurring situations. We are proposing the class of ntrees for this purpose, which 
are a proper subset of the two-dimension partial orders. We reiterate that ntrees 
do not solve all practical requirements for protection groups directly and 
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deviations from the ntree organization must be handled by additional explicit 
group organization or by user assignment. 

A major advantage of two-dimension partial orders is that their theory is well 
understood and quite simple. One of the significant results is that two-dimension 
partial orders can be efficiently recognized and a size two realizer can be 
efficiently computed by the following procedure. The incomparability graph of a 
partial order has an undirected edge connecting g and h if g and h are incompa- 
rable. A partial order has dimension less than or equal to two if and only if its 
incomparability graph is transitively orientable [3]. A polynomial algorithm for 
recognizing transitively orientable graphs and computing the orientation exists 
[lo], from which a size two realizer is easily obtained. An efficient method is also 
known for determining all possible realizers of size two [5]. For dimension three 
and higher, it is not even known whether we can efficiently determine the 
dimension of a partial order without enumerating all possible realizers [5]. 

The rest of the paper is organized as follows. In Section 3 we review the 
operation of refinement by which a node in a Hasse diagram is replaced by 
another Hasse diagram. The significant property is that refinement allows us to 
develop complex Hasse diagrams in a top-down fashion without increasing the 
dimension. This leads us to define the class of partial orders called ntrees that 
are constructed by refinement using a forest of rooted trees or inverted rooted 
trees at each step so the dimension is no greater than two. We discuss examples 
to show the practical importance of ntrees for protection groups. In Section 4 
we discuss how the subgroup partial order can continue to be developed by 
refinement even after the system has been in operation for a while. The important 
consideration is that this should require only an incremental change in represen- 
tation of the subgroup partial ordering. The representation developed in 
Section 4.1 is actually applicable to partial orders of any dimension, while the 
representation of Section 4.2 applies only to ntrees. Section 5 concludes the 
paper. 

3. NTREES 

A fundamental result of dimension theory allows us to construct new partial 
orders from existing ones without increasing the dimension [6]. Let P and Q be 
partial orders on disjoint sets G and H, respectively. Consider some u E G. The 
refinement of u in P into Q is the partial order P’ on the set (G - (u)) U H 
formed by the union of the following sets of ordered pairs. 

(1) {(x, x’) I (x, x’) E P for all x, x’ E G - (u)) 

(2) Hx, Y) I b, u) E P for all x E G - (u), y E H] 

(31 ((Y, x) I h xl E P for all x E G - {u), y E HI 

(4) I(Y, Y’) I (Y, Y’) E Q for all (y, y’) E HJ 

Figure 3(c) shows the result of refining d in the partial order of Figure 3(a) into 
the partial order of Figure 3(b). 

Informally, the refinement of u in P into Q is the partial order whose Hasse 
diagram is obtained by substituting Q’s Hasse diagram in place of u in P’s Hasse 
diagram. We say that u is the group that is refined or exploded and that Q is the 
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L: abcde 
R: adcbe 

L: fgdhijk 
R: ikjgfdh 

b 
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L: abcfgdhijke 
R: aikjgfdhcbe 

e 

(c) 

Fig. 3. Refinement. 

refining partial order. We think of refinement as exploding an existing group into 
a partially ordered set of new groups while maintaining the same relationship 
between the new groups and other previously existing groups that the exploded 
group had. Refinement is a natural method for incrementally developing more 
detail in a top-down manner. It is particularly important because of the following 
result. 

THEOREM 2. [6] Let P and Q be partial orders on disjoint sets G and H, 
respectively. Let u E G. If P’ is the refinement of u in P into Q, then dim(P’) ‘= 
max(dim(P), dim(Q)). 

PROOF. Let d = dim(P’) and e = max(dim(P), dim(Q)}. By assumption there 
are realizers Li, . . . , L, and J1, . . . , J, for P and Q, respectively. For i = 1 . . . e, 
refine u in Ji into Li, obtaining the linear ordering J[. Then J;, . . . , J,’ is a 
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realizer for P’. So d 5 e. Conversely, by assumption, there is a realizer Mi, . . . , 
Md for P’. Select an arbitrary member v of H. In every Mi replace v by u and 
drop all other elements of H to obtain the linear ordering Mf . By definition, v 
has the same relationship in P’ to the elements of G - (u) that u does in P. So 
M:,..., MA is a realizer for P and e 5 d. Cl 

Clearly, if P and Q have dimension less than or equal to two so does P’. It is now 
easy to prove our earlier claim regarding a forest of mutually disjoint trees and 
inverted trees. 

COROLLARY 3. A partial order whose Hasse diagram consists of a forest of 
mutually disjoint rooted trees and inverted rooted trees has a realizer of size two. 

PROOF. An empty partial order, where all distinct elements are pairwise 
incomparable, has a size two realizer obtained by any linear ordering of the 
elements and its reverse. A forest of rooted trees and inverted trees can be 
obtained by refining the elements of an empty partial order one at a time into a 
rooted tree or inverted rooted tree, as appropriate. The corollary follows from 
Theorems 1 and 2. Cl 

From Hirugachi’s theorem it follows that so long as we confine ourselves to 
partial orders of dimension less than or equal to two, we can repeatedly apply 
the refinement operation to generate new partial orders whose dimension will 
not exceed two. We call this the successive refinement procedure. The simplest 
dimension two partial orders are the rooted tree and inverted rooted tree. These 
represent important relationships between groups that have practical applica- 
tions. Rather than allowing arbitrary dimension two partial orders in the process 
of successive refinement, we propose that only trees and inverted trees be used. 
This leads us to the following definition. 

Definition 4. 

(1) A partial order whose Hasse diagram is a forest of mutually disjoint rooted 
trees and inverted rooted trees is an ntree. 

(2) A partial order obtained by refining a node in an ntree into another ntree is 
an ntree. 

(3) Nothing else is an ntree. 

The n in the name ntree is intended as a mnemonic both for inverted and for 
nested in the sense of refinement. Clearly, the dimension of an ntree is less than 
or equal to two. The partial orders of Figures l(a), 2, and 3 are ntrees, whereas 
the partial orders of Figure l(b) and l(c) are not. 

To illustrate the usefulness of ntrees in a practical context, consider a project 
divided into three independent tasks with each task assigned to a team. We can 
define groups tl, tP, and tS for the tasks and a group s for the project supervisors 
related as in Figure 4(a), so the supervisors are members of each task team but 
not vice versa. This allows the information and resources, such as working 
documents for each task group, to be kept separate and inaccessible from other 
task groups while a supervisor can access all of these. Alternatively, we can define 
a single group p related to the task groups as shown in Figure 4(b). With this 
structure the task teams can share information and resources of common interest 
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Fig. 4. NTrees for a project. 

(for instance, the final design produced by a task team) while keeping working 
documents and such within each task group. Finally, the tree and inverted tree 
are not only useful by themselves but can occur together as in Figure 4(c). The 
partial order of Figure 4(c) is an ntree. One method of constructing this ntree by 
refinement is to begin with two groups, s for supervisors and w for workers, as 
in Figure 4(d). Then refine w into the three task groups and project group of 
Figure 4(b) to obtain the ntree of Figure 4(c). 

The ntree of Figure 4(c) embodies three important aspects of a protection 
policy: 

(1) Separation: The three task groups tl, tz, and t3 are pairwise incomparable 
with respect to the subgroup ordering. 

(2) Sharing: The three separate task groups are all subgroups of a common 
group p that allows sharing of information and resources. 

(3) Oversight: The three separate task groups all have s as a common subgroup 
to facilitate oversight and coordination. 

Independent groups that are pairwise incomparable provide support only for 
separation. A tree supports separation and oversight while an inverted tree 
supports separation and sharing. The ntree supports all three aspects. Moreover, 
since ntrees can be nested by refinement, these three basic policy aspects 
are available at every level of detail. For instance, if it turns out that task t3 of 
Figure 4(c) should really be two distinct tasks, we can refine it into tl and t5 
of Figure 4(e). Alternately, if t3 is complex enough to justify treating it as a 
subproject we may refine it into the partial order of Figure 4(f). Note that the 
separation between incomparable groups in an ntree is not absolute but is 
intended to model the logical situation. For instance, task teams tl and tz may 
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Fig. 5. A sequence of refinements. 

actually have some common members. A user who is a member of both teams 
will have to be explicitly made a direct member of tl and of tz. The task groups 
are logically separate in that membership in one does not imply membership in 
the other, and as such are incomparable in the ntree. 

Repeated application of refinement allows us to construct large and complex 
ntrees from simple ones while making policy decisions incrementally. This 
facilitates top-down dekign of an organization’s subgroup structure. A sequence 
of refinements is illustrated in Figures 5(a) through 5(f) with the end result 
shown in Figure 5(g). At the top level of design, we begin with the subgroup 
ordering of Figure 5(a), which shows m, for top management overseeing three 
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area groups d, g, and c for defense, government, and commercial, respectively. 
These three independent area groups are subgroups of the all-inclusive group a. 
This ntree is isomorphic to the ntree of Figure 4(c) but occurs at a high level in 
the organization. The three area groups d, g, and c in Figure 4(a) are then refined 
independently into different ntrees. The defense group d is refined into the ntree 
of Figure 5(b) with three subareas ar, af, and n for army, air force, and navy, 
respectively, each with its own management group. It is convenient and useful to 
allow the name of the exploded group to occur as the name of one of the groups 
in the refining ntree. Formally, we can think of this as a renaming of one of these 
groups after refinement has been done. Figure 5(b) indicates that the name d 
will be used after refinement for a group to facilitate sharing among the three 
subareas. Proceeding in this manner, the government group g is refined into the 
ntree of Figure 5(c) with two subareas s and f for state and federal, respectively, 
with a management group mp for oversight and g retained as a group for sharing. 
Then mg is refined into the ntree of Figure 5(d) with two management subareas 
mh for hardware and m, for software with mg itself being retained for oversight 
of these two management subareas. The commercial group is refined into the 
ntree of Figure 5(e) with a management group m, and c being retained. Finally, 
to illustrate how individual projects can be factored in, we show the navy group 
n in Figure 5(b) being refined into the ntree of Figure 5(f) with three project 
groups pl, p2, and p3, and n being retained as a group for sharing among the 
three projects. 

The sequence of refinements outlined above results in the ntree of Figure 5(g). 
There is ample opportunity for further refinement of this structure. For instance, 
ar, af, s, f, and c can be refined into projects as was done for n. Or the project 
groups pl, p2, and p3 can be refined into tasks and subprojects along the lines of 
Figure 4. The successive refinement approach allows policy decisions to be made 
incrementally and independently by different people in the organization. For 
example, top management need only be concerned about the high-level structure 
of Figure 5(a) and leave it to lower-level managers to decide the refinement of 
the d, g, and c groups. The persons responsible for refining d need not be 
concerned about the refinement of g or c. Similarly, the refinement of a project 
group can be the responsibility of the project manager independent of what other 
project managers may do. Thus policy outlines can be decided at a high level 
while details are determined at appropriate lower levels. 

It is possible that successive refinement, or any other method for developing 
the subgroup partial order, may result in some groups that are unlikely to be 
used. For instance, it may turn out on further consideration that group g in the 
ntree of Figure 5(g) is not required because the s and f groups can achieve all the 
sharing needed by means of group a; or, perhaps the mh and m, groups turn out 
to be unnecessary. In such cases we can drop these unneeded groups while 
inducing the subgroup partial ordering on the remaining groups as shown in 
Figure 6. It turns out that inducing an ntree on a subset of the groups results in 
another ntree. 

Formally, let P be a partial order on G and let G’ be any subset of G. The 
partial order P’ obtained by inducing P on G’ is ((u, u) 1 (u, u) E P A u, u E G’). 
By restricting the linear orderings in a realizer of P to the elements of G’ we 
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Fig. 6. An induced ntree. 

obtain a realizer for P’. So dim(P’) is less than or equal to dim(P). For ntrees 
we can make a stronger statement, as follows. 

THEOREM 5. Let 5 be an ntree on the set of groups G and let G’ C G. The 
partial order 5 obtained by inducing 5 on G’ is an ntree. 

PROOF. From the definition of ntree it is evident that any ntree can be obtained 
by a refinement sequence that at each step refines a group into a forest of disjoint 
rooted trees and inverted rooted trees (rather than into an arbitrary ntree). Let 
z = UlU2 . . . un be such a refinement sequence the end result of which is 5. 
Assume, without loss of generality, that there is no renaming during the refine- 
ment steps. Each step ui in this sequence refines some group hi into a forest Fi of 
rooted and inverted rooted trees on a set of groups Hi. Let G” = G’ - G; that is, 
G” is the set of groups removed when inducing 5 on G’. Note that G” cannot 
include groups that are refined at any of the refinement steps of 2. Obtain FT by 
inducing Fi on the set of groups Hi - G”. Clearly FT is a forest of rooted and 
inverted rooted trees. For each gi in 2 define the refinement step a* as the 
refinement of hi into FF. Let <* be the ntree that results from the modified 
refinement sequence Z* = a: az* . . . u,*. 

We show that 5 ’ = j*. If u 5’ v there is a refinement step ui in Z that refines 
some hi into a forest Fi with (u, v) E Fi. The corresponding refinement step a* 
in Z* refines hi into Ff with (u, v) E FF. So u s* v. Conversely, if u ZZ* v 
there is a refinement step a* in Z* that refines some hi into a forest FF with 
(u, v) E FT. But then the corresponding refinement step ui in Z refines hi into a 
forest Fi that includes (u, v). SO u 5’ v. 0 

Because of this result we can eliminate unneeded groups at any stage in the 
successive refinement procedure by inducing the current ntree on the subset of 
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groups that we wish to retain, thereby obtaining another ntree. This is useful 
both during the initial design of an ntree as well as during the life of a system. 
For instance, when tasks and projects get completed the corresponding groups 
can be removed. 

Another consequence of Theorem 5 is that the result of inducing 5 on a subset 
of groups that are of interest to a particular user is an ntree. Recall that a user 
is a direct member of g if the user is explicitly designated as a member of g and 
thereby is an indirect member of every h such that g 5 h. Let G’ be the set of 
groups of which a given user is a direct or indirect member. The subgroup relation 
induced on G’ is an ntree, so the groups to which a user belongs form an ntree. 
As another example let G’ be the set of groups that are comparable with respect 
to 5 with one or more of the groups to which a user belongs directly. That is G’ 
is the set of groups with which this user can share resources. Again the subgroup 
relation induced on G’ is an ntree. In this sense the user’s perception of the 
subgroup relation will always be an ntree. 

4. DYNAMIC REFINEMENT 

It is not possible to correctly anticipate all protection needs in advance and a 
facility for adding new groups to an ntree is definitely desirable. For example, as 
new projects are undertaken we can introduce new groups for these; or, perhaps, 
new task groups need to be introduced as the project life cycle matures. The 
mechanism for adding new groups will be greatly simplified if we can do so by 
assigning lr-values to the new groups while leaving the lr-values of existing groups 
unchanged. In this section we present two methods for doing so. To achieve 
this effect we propose to limit additions to an ntree to the refinement of an 
existing group. We will shortly demonstrate that this is a reasonable restriction 
although at the cost of requiring some additional care and foresight at each 
refinement step. 

By dynamic refinement we mean that a group is refined after the system has 
been in operation for a while. The two methods for dealing with dynamic 
refinement differ in that the first and simpler method cannot guarantee that the 
group with the name of the exploded group gets the same lr-values as the exploded 
group had. The second method is able to guarantee this property at the cost of 
some additional bookkeeping. 

A dynamic refinement step presents two important questions regarding its 
immediate effect. First, what is the status of resources that were explicitly 
available to the exploded group? An obvious suggestion is that each resource 
should now become available to one or more of the groups in the refining ntree. 
The second question is what happens to members of the exploded group? By 
definition of refinement, indirect members of the exploded group become indirect 
members of each group in the refining ntree. For the direct members, an obvious 
suggestion is to assign each one as a direct member of one or more of the groups 
in the refining ntree. 

We propose a simple default answer to both questions by insisting that one of 
the groups in the ntree that replaces the exploded group should have the same 
name as the exploded group. With this rule we can take the view that the 
exploded group continues to exist after refinement. This provides a reasonable 
default for both questions. That is, the resources explicitly available to the 
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Fig. 7. Place holders for dynamic refinement. 

exploded group continue to be explicitly available to the group in the refining 
ntree that has the same name as the exploded group. Similarly, the direct 
members of the exploded group become direct members of the group in the 
refining ntree that has the same name as the exploded group. The other groups 
introduced by refinement have no direct members and no resources explicitly 
available to begin with. 

Dynamic refinement requires some foresight and planning to be truly effective. 
Since additions to the existing ntree are limited to those achievable by refinement 
of an existing group, it is necessary to anticipate the need for future groups at 
each refinement step. Consider the refinement sequence of Figure 5. Suppose we 
wish to add a fourth area group i for international as shown in Figure 7(a) while 
retaining all other refinement steps of Figure 5. If the refinement sequence of 
Figure 5 has already been carried out it is too late to do so, since the groups d, g, 
and c of Figure 5(a) have all been refined during this sequence. Refining any of 
the groups in Figure 5(g) will not provide the desired result. 

We can anticipate the need for a group such as i in the future by reserving a 
place-holder at an appropriate step in the refinement sequence. In this case we 
would begin the refinement sequence of Figure 5 with the ntree of Figure 7(b) 
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rather than Figure 5(a). The purpose of the place-holder group ph is precisely to 
anticipate the need for a group such as i in the future. The refinement sequence 
of Figure 5 modified in this manner will result in the ntree shown by bold lines 
in Figure 7(d). This differs from the ntree of Figure 5(g) only by the place-holder 
ph. The international group i can now be introduced by the dynamic refinement 
of ph in Figure 7(d) into the ntree of Figure 7(c). This will result in i being 
introduced into the ntree of Figure 7(d) as shown by the light-colored lines. 
Additional area groups can be introduced by further dynamic refinement of ph 
in this manner. Note that if the ph group is eliminated from Figure 7(d), the 
resulting partial order is, of course, an ntree. The point is that this ntree cannot 
be constructed from the ntree of Figure 5(g) by refinement. However, if we have 
anticipated the need for additional area groups in the future by introducing ph 
as a place-holder, this ntree can be constructed by refining the place-holder group 
and then simply ignoring ph. 

We can similarly modify the other refinement steps of Figure 5 to include 
place-holders. For instance, when we refine n into the ntree of Figure 5(f) we 
should include a place-holder to anticipate the need for more than three project 
groups in the future. We see the role of place-holders as another advantage of 
the successive refinement approach to developing a complex ntree. Along with 
making the policy decisions regarding the current subgroup structure incremen- 
tally, we can introduce place-holders incrementally to anticipate future needs of 
the organization. 

4.1 Quota Offset Numbering 

We now turn to the all-important question of how dynamic refinement affects 
the representation of the subgroup partial order. Consider an ntree on the set of 
groups G with realizer L, R of size two. The technique suggested in Section 2 for 
representing the ntree is to assign a pair of integers l[g], r[g] to each group 
gEG where l[g] and r[g] are the positions of g in L and R, respectively, SO 

that g 5 h if and only if l[g] 5 l[h] and r[g] zz r[h]. We refer to these numbers 
individually as the l-values and r-values and jointly as the h-values. If g is 
dynamically refined we must of course assign lr-values to each group that results 
from g’s explosion. It is also necessary to assign new l-values and r-values to 
each nonexploded group that occurs after g, respectively, in L and in R. This 
may involve a large fraction of the nonexploded groups and is likely to be 

l cumbersome. Moreover, as a general principle of system design, an operation 
involving group g should not require a mechanism to deal with groups that have 
been left unchanged. 

We present a technique for assigning h-values to the groups in an ntree so 
that after a dynamic refinement step there is no need to change the h-values of 
nonexploded groups. The technique actually works for partial orders of any 
dimension, but since our objective is to use it for ntrees we state it in terms of 
ntrees. In Section 4.2 we modify the technique to guarantee that one of the 
groups in the refining ntree will be assigned the same lr-values that the exploded 
group had. This will extend our earlier rule that one of the groups in the refining 
ntree should have the same name as the exploded group, to the property that the 
lr-values of this group remain unchanged after refinement. This modification is 
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applicable only to ntrees and does not apply to arbitrary two-dimension partial 
orders. 

The basic idea is to assign a quota q[g] to each group g. The quota is a positive 
nonzero integer specifying the maximum number of groups that g can be refined 
into, be it in a single step or by a sequence of refinements. Since g already exists, 
the minimum value of q[g] is 1. The maximum number of groups that can ever 
exist is the sum of the quotas of currently existing groups. The use of quotas for 
this purpose is no different in principle than the use of quotas for many other 
resource allocation decisions in an operating system, such as quotas on disk 
space, main memory, processor time, and so on. It appears to be a desirable 
facility for the system administrators in any case, as a means of limiting the 
number of groups that can be created at different places in an organizational 
hierarchy. 

By assigning a quota to each group we can determine how many integers to 
allocate for groups that may result from future refinement steps. Let L and R be 
linear orderings that comprise a size two realizer for the subgroup partial ordering. 
The l-value of a group g is obtained by adding one to the sum of the quotas of all 
groups that precede g in L. Similarly, the r-value of a group g is obtained by 
adding one to the sum of the quotas of all groups that precede g in R. When a 
group g is exploded as part of the refinement operation we partition g’s quota 
among the groups in the refining ntree. Any partition whose sum equals q[g] is 
acceptable. The l-values and r-values of groups in the refining ntree are then 
computed in the same way as for the initial assignment, except that we begin 
with l[g] and r[g], respectively, rather than beginning with 1. A formal statement 
of this method is given in Figure 8. The method consists of an initial numbering 
to be used when an ntree is first set up, and an incremental numbering to be 
used when a group is exploded. Incremental numbering is identical to initial 
numbering, except that we start with the lr-values of the exploded group 
rather than 1. 

The lr-values assigned by the initial numbering to the ntree of Figure 3(a) are 
shown in Figure 9(a) for the quotas listed there. Consider the refinement of d 
into the ntree of Figure 3(b). Let each of the new groups in Figure 3(b) be 
allocated a quota of 6 each, with d retaining a quota of 24 out of its original quota 
of 60. We then obtain the lr-values of Figure 9(b) for the resulting ntree of 
Figure 3(c). The lr-values of nonexploded groups are of course unchanged. The 
lr-values assigned to groups introduced by refinement are determined by the 
structure of the refining ntree and the allocation of the quota for further 
refinement. The lr-values of Figure 9(b) can be computed either by the initial 
numbering of Figure 9(a) followed by the incremental numbering for the refine- 
ment of d, or directly by the initial numbering of the ntree of Figure 3(c) with 
the specified quotas. 

The key idea in the quota offset method is that l-values and r-values in the 
range [l[g], l[g] + q[g] - l] and [r[g], r[g] + q[g] - 11, respectively, are reserved 
for groups to be introduced by a future refinement of g. We now prove the quota 
offset method is correct. 

THEOREM 6. The quota offset numbering method of Algorithm 1 is correct. 
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Initial numbering 

next := 1; next := 1; 

while L is non-empty do while R is non-empty do 
x := head(L); x := head(R); 
11x1 := next; r[x] := next; 
next := next + six]; next := next + q[x]; 
L := tail(L); R := tail(R); 

end; end; 

Incremental numbering on explosion of group g 

next := l[g]; next := r[g]; 
while L is non-empty do while R is non-empty do 

x := head(L); x := head(R); 
I[x] := next; r[x] := next; 
next := next + q!x]; next := next + qjx]; 
L := tail(L); R := tail(R); 

end; end; 

Fig. 8. Algorithm 1: Quota offset numbering method. 

PROOF. To prove the correctness of this method we show that after any 
sequence of refinements the following are true. 

(1) l[g] I I[h] A r[g] 5 r[h] H g 5 h 

(2) No group other than g itself has an l-value in the range [l[g], l[g] + 
q[g] - l] or an r-value in the range [r[g], r[g] + q[g] - 11. 

The first property guarantees that the current ntree is correctly represented by 
the lr-values. The second guarantees that g can continue to be refined within the 
limits of its quota. We prove these properties by induction on the number of 
refinement operations. For the basis case, let this number be 0, so lr-values are 
assigned by the initial numbering. The two properties are obviously true since 
increasing l-values and r-values are assigned to successive groups in L and R, 
respectively, and next is incremented by q[x] on every iteration. Assume both 
properties are true after n refinement operations and let u be refined in the 
n + lst refinement step into the ntree N, so groups in N are assigned lr-values 
by the incremental numbering and lr-values of nonexploded groups are un- 
changed. Let q[u], l[u], and r[u] be the quota and the lr-values of u before this 
refinement. By definition, the sum of the quotas of groups in N equals q[u]. It 
follows that the l-values and r-values assigned to groups in N are, respectively, 
in the range [l[u], l[u] + q[u] - 11, and [r[u], r[u] + q[u] - 11. Since next is 
incremented by q[x] on every iteration, the second property is true for groups in 
N. Therefore, by induction hypothesis, the second property is true for all groups 
after the incremental numbering. After the n + lSt refinement the first property 
continues to be true for the nonexploded groups since their lr-values are un- 
changed. Let v be a group in the refining ntree N and w be a nonexploded group. 
Since the lr-values of w are outside the range [l[u], l[u] + q[u] - 11, and 
WI, r.[ul + dul - l] while the lr-values of v are in this range, the relation 
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Fig. 9. Quota offset numbering for Figure 3. 

between the h-values of w and v is exactly the same as the relation between the 
h-values of w and the old lr-values of u. So the lr-values assigned to v by the 
incremental numbering correctly represent the subgroup relation between the 
nonexploded groups and the groups in the refining ntree N. It remains to show 
that the lr-values assigned to groups in N correctly represents the subgroup 
relation between these groups. This follows, since increasing l-values and r-values 
are assigned to successive groups in L and in R, respectively. 0 

To summarize, the quota offset numbering method allows us to assign lr-values 
in such a way that on refining group g we need only compute lr-values for groups 
in the refining ntree while the lr-values of nonexploded groups remain unchanged. 
The method also provides a simple mechanism for enforcing a quota on the 
number of groups that may arise from refining an existing group as well as for 
allocating this quota for further refinement. 

4.2 Conservative Quota Offset Numbering 

The quota offset numbering method has the property that in general the 
lr-values of the exploded group will no longer be a valid pair of lr-values after 
refinement. For instance, the pair of lr-values assigned to d in Figure 9(a) does 
not occur in Figure 9(b). We have earlier argued that naming one of the groups 
in the refining ntree to have the same name as the exploded group is desirable 
as a default rule, so that in effect the refined group continues to exist after 
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refinement. The possibility of inconsistency and integrity problems will be 
reduced if this group has the same lr-values as the exploded group did. A 
numbering method that achieves this is said to be conservative. 

In order to modify the quota offset numbering method to be conservative we 
need some additional restrictions in the refinement steps. So far we have allowed 
a group to be refined into an arbitrary ntree, the only restriction being that the 
number of groups in the refining ntree cannot exceed the exploded group’s quota. 
Now the groups introduced by refinement of a group g can be classified into three 
disjoint categories: up-groups, which are subgroups of g; down-groups, of which 
g is a proper subgroup; and split-groups, which are incomparable with g. To 
facilitate conservative numbering we partition the quota q[g] of each group g 
into the up-quota q,[g], the down-quota qd[g], and the split-quota q,[g], which 
specify the maximum number of groups in the corresponding categories. The 
total-quota q[g] is the sum of these three components. Recall that q[g] includes 
a count of 1 for group g itself. By our definitions, this is counted as part of the 
up-quota of each group. So if q[g] = 1, which is the minimum value, we have 
q&l = 1 and qdkl = q&l = 0. 

This partitioning of the total-quota gives us the additional information needed 
to achieve conservative numbering. After refinement of g, g’s total-quota is 
allocated among the groups introduced by refinement. The sum of the total- 
quotas assigned to the up-groups, down-groups, and split-groups is subtracted 
from q,[g], qd[g], and q,[g], respectively. For instance, consider the quotas of 
Figure 10(a) for the ntree of Figure 3(a). When d is refined into the ntree of 
Figure 3(b), as before let the total-quota of all new groups be 6 each. Since f and 
g are up-groups, q,[d] is reduced from 20 to 8. The only down-group is h, so qd[d] 
is reduced from 10 to 4. The split groups i, j, and k reduce q,[d] from 30 to 12. 
The total-quota of 6 allocated to each new group can be arbitrarily partitioned 
into the three components, and this partitioning is of no consequence for 
reduction of d’s quotas. 

Consider what happens when g is exploded into an ntree with realizer L, R. 
The up-groups of g must precede g in both L and R while the down-groups must 
follow g. To ensure that g retains its lr-values after refinement we need infor- 
mation about where the split-groups occur in L and R. Each split-group 
must either follow g in L and precede g in R or vice versa. To achieve 
conservative numbering we impose the following restriction on the realizer for 
the refining ntree. 

Definition 7. A realizer L, R is a left-most realizer for group g if the split- 
groups of g all occur after g in L and before g in R. 

For example the realizer of Figure 2(a) is left-most for a, b, and e, while the 
realizer of Figure 2(b) is left-most for i, d, and a. For two-dimension partial 
orders in general, a left-most realizer may not exist. For instance, consider the 
partial order of Figure 11 with the size two realizer shown there. The algorithm 
of [lo] shows that the incomparability graph of this partial order has exactly 
two transitive orientations, leading to two possible realizers: the one shown in 
Figure 11 and the other obtained by interchanging L and R. By inspection, 
neither of these is a left-most realizer for c. 
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Fig. 10. Conservative quota offset numbering for Figure 3. 
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L: ached 
R: ecdab 

Fig. 11. A partial order with size two realizer. 

It turns out that for ntrees a left-most realizer is guaranteed to exist. Every 
tree and inverted tree has a left-most realizer easily obtained by rearranging the 
tree so the group of interest ends up being left-most. Since ntrees are constructed 
from these basic partial orders, we can ensure that at each refinement step we 
use a left-most realizer for the group of interest. Formally, we have the following 
result. 

THEOREM 8. For any ntree and any group g in the ntree there exists a left-most 
realizer L, R for g. 

PROOF. For any ntree there exists a refinement sequence Z where at each step 
the refining ntree is a rooted tree, an inverted rooted tree, or an empty partial 
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order; that is, all distinct groups are pairwise incomparable. This follows from 
our observation in the proof of Theorem 5 that every ntree can be constructed 
by a refinement sequence where each refinement is into a forest of rooted and 
inverted rooted trees. Such a forest can obviously be constructed by refining the 
groups in an empty partial order into trees and inverted trees, as appropriate. 
We prove the theorem by induction on the number of refinement steps in Z. 

For the basis case, let the number of refinement steps be 0 so the ntree is a 
rooted tree, inverted rooted tree, or is empty. For a rooted tree, a left-most 
realizer for g is obtained by rearranging the tree so that g is on the left-most path 
from the root and computing the realizer L, R as the left-to-right and right-to- 
left preorder traversals, respectivley. For an inverted rooted tree, a left-most 
realizer for g is obtained by rearranging the tree so that g is on the right-most 
path to the root, and reversing the left-most realizer for the corresponding rooted 
tree obtained by the vertical reflection of the inverted tree. Finally, the empty 
partial order has a left-most realizer for g, since any linear ordering and its 
reverse are a realizer and we can select g to be the first group in L. 

At each refinement step let the realizer L”, R” for the resulting ntree be 
obtained by respectively substituting the realizer L’, R’ for the refining ntree in 
place of the exploded group in the realizer L, R of the existing ntree. Assume the 
theorem is true for n refinement steps and consider the n + lst refinement. If g 
is left-most in L, R and is not exploded in the n + lst step, it obviously continues 
to be left-most in L”, R”. If g is exploded in the n + lat step, by our argument for 
the basis case, we can construct L’, R’ to be left-most for g. But then g obviously 
continues to be left-most in L”, R”. El 

In conjunction with our discussion above regarding the partial order of Fig- 
ure 11, this theorem also demonstrates that ntrees are a proper subset of 
two-dimension partial orders. 

It follows from Theorem 8 that if we construct ntrees by limiting ourselves to 
a forest of rooted and inverted rooted trees at each refinement step, we will 
always be able to come up with a left-most realizer. This is a reasonable restriction 
on how to go about doing refinement. The more general question of how to 
construct a left-most realizer for an arbitrary group in an arbitrary ntree without 
being given the refinement sequence is beyond the scope of this paper, although 
we conjecture there is an efficient method for doing so. 

The importance of a left-most realizer for the refining ntree is that we then 
know how many integers to allocate below l[g] for the up-groups and above l[g] 
for the down-groups and split-groups that may result from future refinement. 
Similarly, we know how many integers to allocate below r[g] for the up-groups 
and split-groups and above r[g] for the down-groups that may result from future 
refinement. As in the quota offset method, we reserve a consecutive range of q[g] 
l-values and r-values for future refinement of g. These ranges for the l-values 
and r-values are, respectively, [l[g] - q,[g] + 1, l[g] + qd[g] + qJg]], and 
[rkl - q&l - q&d + 1, rIgI + qdklk If q&l = 1 and q&l = 0, these ranges 

are the same as those for the quota offset method. 
These observations lead us to the conservative quota offset numbering method 

of Figure 12. As in the quota offset method of Algorithm 1, there is an initial 
numbering beginning from 1 and an incremental numbering beginning with the 
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Initial numbering 

next := 1; next := 1; 
while L is non-empty do while R is non-empty do 

x := head(L); x := head(R); 
I[x] := next + qu[x] - 1; 
next := next + q[x]; 

r[x] := next + qu[x] + qJx] - 1; 
next := next + q[x]; 

L := tail(L); R := tail(R); 
end; end; 

Incremental numbering on explosion of group g 

next := l[g] - qO,[g] + 1; next := rlgl - qO,[gl - $%I + 1; 
while L is non-empty do while R is non-empty do 

x := head(L); x := head(R); 
I[x] := next + q,[x] - 1; 
next := next + q[x]; 

r[x] := next + qu[x] + qS[x] - 1; 
next := next + q[x]; 

L := tail(L); R := tail(R); 
end; end; 

Fig. 12. Algorithm 2: Conservative quota offset numbering method. 

lower end of the range of lr-values reserved for g’s refinement. In the incremental 
numbering the superscript o on the quotas of g indicates that the old values of 
the quotas before refinement are to be used. The method requires that the realizer 
for the incremental numbering be left-most for the exploded group g. The 
lr-values assigned by this method to the ntree of Figure 3(a) are shown in 
Figure 10(a) for the quotas listed there. Consider the refinement of d into the 
ntree of Figure 3(b), which fortuitously happens to have a left-most realizer for 
d shown there. The incremental numbering gives the lr-values of Figure 10(b) 
for the quotas listed there. Now suppose the groups d and k in Figure 3(b) are 
interchanged. By inspection we can rearrange this refining ntree so that d is left- 
most as shown in Figure 13(a) with the realizer shown there. With this left-most 
realizer and same quotas as earlier, we obtain the lr-values of Figure 13(b). 

Note that the conservative quota offset method is equivalent to the quota 
offset method if q,[g] = 1, qd[g] = q[g] - 1, and q,[g] = 0. It remains to prove 
the correctness of the conservative quota offset method. 

THEOREM 9. The conservative quota offset numbering method of Algorithm 2 is 
correct if the realizer for the incremental numbering is left-most for the exploded 
group. 

PROOF. To prove the correctness of this method we show that after any 
sequence of refinements the following are true: 

(1) l[g] 5 l[h] A r[g] 5 r[h] ti g 5 h. 
(2) No group other than g itself has an l-value in the range [l[g] - qU[g] + 1, 

l[g] + q.JgJ + q,[gl - 11 or an r-value in the range [r[gl - q&l - q,[gl + 1, 
rkl + qdkl - lla 
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i 

d j 

- 
a 4 0 
b 5 5 

d" 
5 5 

10 0 
e 0 0 
f 2 2 

g 2 2 
h 5 0 
i 3 0 

j 2 3 
k 5 0 

- 

qu 
1 
5 
5 

14 
5 
2 

2 
1 
3 
1 
1 

f 

Y 
9 

k 

hl 
(a) 

1 1 
10 90 
25 75 
55 55 

100 100 
37 33 
43 27 

72 60 
80 8 

84 21 

90 12 

(b) L: abcfgdhijke, R: aikjgfdhcbe 

Fig.13. Rearrangingthe refining ntree. 

1 r 

L: idjfgkh 
R: gfkhijd 

(3) The h-values of all exploded groups are unchanged by the incremental 
numbering. 

As in the proof of Theorem 6, the first property guarantees that the current ntree 
is correctly represented by the lr-values while the second guarantees that g can 
continue to be refined within the limits of its quota. The proof of the first two 
properties is essentially the same as their proof in Theorem 6. The third property 
gives us conservative numbering on refinement. By assumption, the realizer for 
the refining ntree used in incremental numbering is left-most for the exploded 
group g. Let the superscript o denote the lr-values and quotas of g before 
refinement and the superscript n denote these values after refinement. The 
groups that precede g in L are the up-groups of g. From the incremental 
numbering it is evident that 

l”[gl = l”[gl - q:[gl + 1 + z q[xl + $[gl - 1 

where x ranges over the up-groups of g, not counting g itself. By the allocation 
of quotas, we have qZ[g] = Z q[x] + qC[g], so the l-value of g is unchanged. 
Similarly, the groups that precede g in R are the up-groups and split-groups of g. 
From the incremental numbering it is evident that 

fYg1 = fkl - q:kl - Gkl + 1 + 2 4x1 + 2 q[yl + q:kl + GM - 1 
where x ranges over the up-groups of g, not counting g itself, and y ranges over 
the split-groups of g. By the allocation of quotas, we have qz[g] = z q[x] + q,“[g] 
and qZ[g] = Z q[y] + qt[g], so the r-value of g is unchanged. Cl 
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5. CONCLUDING REMARKS 

To summarize, we have defined the ntree as a two-dimension partial order 
suitable for the subgroup relation between protection groups. The ntree is a 
useful and substantial generalization of the rooted tree and inverted rooted tree 
partial orders. We have shown how to develop complex ntrees incrementally in 
a top-down manner by successive refinement. We have proposed a representation 
for ntrees on the basis of their dimension as partial orders and have argued that 
the ntree is most likely the only useful application of dimension theory in the 
context of the subgroup relation, particularly in that using some small integer 
bigger than two as an upper bound on dimension is not going to be of much 
additional value. Since ntrees have dimension less than or equal to two, we can 
assign a pair of integers called lr-values to each group so that g is a subgroup of 
h if and only if l[g] 5 l[h] and r[g] 5 r[h]. Each l-value or r-value requires log,(m) 
bits where m is the maximum number of groups that can ever exist and we can 
represent the ntree using 2*log,(m) bits per group. We have shown how to assign 
lr-values and quotas so that groups can be dynamically refined without changing 
the lr-values assigned to nonexploded groups. Moreover, we have shown how to 
guarantee that the lr-values of the exploded group will be assigned to one of the 
refined groups by partitioning the quota into up, down, and split components. 

We have defined the subgroup relation as a reflexive partial order. Clearly, our 
representation allows us to determine whether a group is a proper subgroup of 
another group or whether the two groups in question are identical. This allows 
us to distinguish whether a user who is known to the access-control mechanism 
as a direct member of group g is thereby a direct or indirect member of group h. 
The usefulness of ntrees can be enhanced by distinguishing access based on 
direct membership from access based on indirect membership. This allows a 
degree of privacy in that the direct members of a group can share resources that 
are inaccessible by indirect members. For instance, the direct members of project 
team p1 in the ntree of Figure 7(d) can share files not available to the direct 
members of m, or m,. 

It is worth noting that a group with lr-values, both 1, will correspond to a 
super-group (i.e., a highly privileged group) whose members are thereby members 
of every group. Because the super-group naturally turns out to have these special 
lr-values, we can build special rules into the access-control mechanism for these 
values. For instance, the distinction between direct and indirect membership may 
be ignored so a direct member of the super-group is considered to be a direct 
member of every group. Also, note that if m is the maximum number of groups 
allowed, a group with lr-values both equal to m will correspond to a public-group 
of which every group is a subgroup. Once again we can build special rules for 
these extreme values, although it is probably less useful to do so for the public- 
group as compared to the super-group. 

Finally, we note that we have not addressed several important issues, such as 
how users are made direct members of groups and exactly who is authorized to 
refine an existing group. There are numerous possibilities here, the simplest and 
typical one being to centralize such authority in a system administrator. A more 
interesting alternative would be to decentralize this authority by perhaps nomi- 
nating some distinguished members of a group to add new members to the group, 
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and perhaps even allowing this notion of distinguished membership to be inher- 
ited via the subgroup partial ordering. These issues are beyond the scope of this 
paper. We do wish to emphasize that these must be addressed and resolved in an 
implementation. 
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