Computers & Security, 12 {1993) 285-303

A distributed
capability-based
architecture for the
Transform model

Ravi S. Sandhu and Gurpreet S. Suri

Center for Secure Information Systems, & Department of Information Systems and Systems
Engineering, George Mason University, Fairfax, VA 22030-4444, USA

The Transform model is based on the concept of transforma-
tion of access rights. It unifies a number of diverse access-
control mechanisms such as amplification, copy flags,
separation of duties and synergistic authorization. In this paper
we describe a distributed architecture for implementing Trans-
form. Our architecture is based on capabilities with identitics
of subjects buried in them. This cnsures unforgeability of
capabilities and cnables enforcement of non-discretionary con-
trols on propagation of capabilities from one subject to
another. The design provides for immediate, selective, partial
and complete revocation on a temporary as well as a permanent
basis. We also show that Transform has an efficient algorithm
tor safety analysis of the propagation of access rights (ie. the
determination of whether or not a given subject can ever
acquire access to a given object).

Keywords: Distributed systems, Secure architectures, Capabili-
tics, Safety.

1. Introduction

he Transform model unifies a varicty of

access-control mechanisms which deal with
diverse sccurity issucs. These mechanisms are
mostly taken from the existing licerature. Some
have been implemented in actual systems. They all
have merit and should certainly be supported, in
onc form or another, by any protection system
which claims to be of general applicability. How-
ever, considered in isolation these mechanisms are

diverse and most have been proposed indepen-
dently of cach other. Simply lumping them
together would result in a complex ad hoc model
in rotality. This is not only inclegant but also casts
doubts about prospects for safety analysis (i.c., for
determining whether or not a particular subject
can obtain a specific right for some given object).

The unifying concept of transformation of access rights
was proposed in [27] to abstract the common foun-
dation of these mechanisms. Transformation of
rights takes place in two different ways:

(1) Self transformation or internal transformation
allows a subject who possesses certain rights for an
object to obrain additional rights.

(2) Grant transformation or external transformation
occurs in the granting of access rights by onc sub-
ject to another. The gencral idea is that possession
of a right for an object by a subject allows that sub-
ject to give some other right for that object to
another subject.!

'If a subject can grant rransformed rights to itself external
cransformation implies internal transformation. In most appli-
cations there are addidonal controls to prevent such “self
granting.”

0167-4048/93/$6.00 © 1993, Elsevier Science Publishers Ltd. 285

1eded pesisjey

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

Internal transformations allow us to express con-
sistency in access-control policies such as the
requirement that write access implies append
access. The well-known technique of amplification
[3, 31] for supporting abstract data types and pro-
tected subsystems is another instance of internal
transformation. The case for abstract data types and
protected subsystems is well argued in several
classic papers [5, 14, 21, 31]. More recently it has
been argued [2] that the “access control triple”,
which is essendally similar in concepe, is necessary
for support of integrity policics.

Grant transformacdons allow us to accommodate
various kinds of integrity controls. For instance, we
can distinguish the ability to access an object from
the ability to grant access to that object. This dis-
tinction has been suggested as an essential part of
“commercial” access-control policics [19] and is
implemented in actual systems such as IBM's
RACF (Resource Access Control Facility). This dis-
tincton of coursc is onc form of scparation of
dutics. Another instance of grant transtormations
ariscs when operations on an object are constrained
to occur in a specific sequence. This has similarides
to the manner in which scparation of dutics is
enforced by transaction control expressions [26].

Our principal objective in this paper is to describe
an architecture and design outline for implemene-
ing Transform in a distributed environment. Our
architecture for Transform is strongly influenced
by the identity-based capability architecture pro-
poscd by Gong [7]. The concept of embedding the
identity of a subject in a capability in distributed
systems has been known for some time [4]. It
cnsurcs that capabilitics cannot be forged or propa-
gated from onc subject to another without inter-
vention of trusted software. Gong’s architecture is
based on the familiar client-server model of
scrvices in a distributed system. It includes
mechanisms for revocation which were missing in
carlier proposals such as [4]. We have cxtended
Gong’s proposal to accommodate Transform. In
particular the concept of strongly typed subjects

286

and objects, which is cssential to Transtorm, has
been incorporated.

The rest of the paper is organized as follows.
Section 2 discusses several examples of internal and
external transformation in an informal manner.
Section 3 develops the Transform modcl to unify,
and make precise, the common theme running
through these examples. This formalization in turn
suggests additional applications. Section 4 describes
our capability-based architecture and general
design for implementing Transform in a distri~
buted cnvironment. The protocols involved in
creation, propagation and revocation arce presented.
An cxample of the implementation is presented in
section 5. In section 6 we digress from the main
theme of the paper to discuss the safety implica-
tions of Transtorm and show that it has cfficienty
decidable safety. Section 7 concludes the paper.

2. Applications

The simplest example of transformation of rights
ariscs when onc right is treated as stronger than
another. Consider the typical read, write and
append operations on a file, respectively authorized
by the rlghts r, w and a. From the scmantics of
these operations it is clear that possession of w
should 1mply possession of a. The ability to obtain
a weaker right by virtue of possessing a stronger
onc allows a subject to work with the least privi-
lcgcs nceded at any given moment. In some cases
we require the stronger implication that w implices
a and both imply r.? The motivation is onc of
integrity in that a subject who writes a file should
be able to check whether the writng has been
carried out properly, which requires he be able to

rcad l'h(,‘ ﬁlL‘

We can generalize these examples somewhat b

allowing diffcrent implication relations for ditter-
ent types of files. For instance, we may detine two
types of files respectively with the two implication

*This is of course appropriate only in situations where non-
disclosure is not an issuc.

rclations discussed above and a third type of file
with no implied rights. However, so long as the
ability to obtain implicd rights is uniformly avail-
able to every subject, internal transformation pro-
vides only for consistency in authorization.

Significant power is added by restricting internal
transformation to certain subjects. The ampliﬁca—
tion operation in the Hydra system [3] works in
such a fashion, as the basis for implementing
abstract data types and protected subsystems. To
illustratc amplification consider the example of a
stack with push and pop opcrations implemented
in terms of a scgment with read and write opera-
tions. We need to enforce the following policy:

(1) Subjects other than the type manager for stacks
can only possess push and pop rights for a stack.

(2) The type manager for stacks reccives the righe
to push (or pop) a stack when a subject executes the
push (or pop) operation. The manager amplifics the
push (or pop) right to obtain r and w rights for the
segment containing the stack.

(3) Only the type manager for stacks can do such

internal transformation.

Predicating the ability to amplify on the type of
subject doing the internal transformation cnables
implementation of abstract data types. Pursuing the
example further, we may have stacks implemented
in terms of lists which in turn arc implemented in
terms of segments. Now we have two levels of
internal transformation. The first level from push
or pop rights (i.c., stack operadons) to the head, tail
or cons rights (i.e., list operations) can only be donc
by the type manager for stacks. The second level
from head, tail or cons rights (i.e, list operations) to
r and w rights (i.c., segment operations) can only be

done by the type manager for lists.

Next consider grant transformations. A simple
form of grant transformation occurs with the copy
flag, which distinguishes between the ability to
access an object and the ability to grant access for

Computers & Security, Vol. 12, No. 3

that object to another subject. The concept goes
back to the carliest abstract models for access con-
trol [8, 12] and is a fundamental aspect of dis-
cretionary access controls. The idca is that
possession of a right x authorizes access to the
object, whercas possession of xc authorizes the
ability to grant access to that object to another sub-
jeet. The xc right is typically made available to the
creator of cach object. In many models [8, 12, 15,
for instance]| the ability to grant access is treated as
stronger than the ability to perform access; that is,
possession of xc implies possession of x. Let us for
the moment make this assumption (which of
course is another example of internal transforma-
tion). Now considcr the following policies:

(1) A user who posscsses the xc right for an object
can grant the x right for that object to another user.

(2) A uscr who possesses the xc right for an object
can grant the xc or x right for that object to
another uscr.

These are both examples of grant transformations.
In the first casc the xc right is transformed to the x
right as part of the grant operation. In the second
case there is a choice in the transformation, pre-
sumably at the volition of the subject doing the
granting. The choice is between the identity crans-
formation of xc to itsclf or an attenuating transfor-
mation of xc to x.

Let us call the copy flag in the first case the one-step
copy flag, denoted xc', and in the second casc
the unlimited copy flag, denoted xc*. Both these copy
flags were proposed in the original access-matrix
papers [8, 12]. The interpretation is that xc* can be
transtormed to xc*, xc¢! or x during a grant, whercas
xc' can only be transformed to x. This idca can
casily be generalized to allow for n-step copy flags by
allowmg the grant transformanon of xc" to any onc
of x¢" ™!, x¢"™4,...,xc" or x. The interpretation of
copy flags can also be made to depend on the types
of subjects and objects involved in a grant opera-
tion. For instance, the copy flag can be interpreted
as a onc-step flag for sensitive documents, whereas

287

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

for non-sensitive documents it is an unlimited flag.
As another example, say we distinguish members of
a dcpartment from outsiders with the policy that
the copy flag for grants between members is trans-
formed as an unlimited flag, whercas for grants
from a member to an outsider it is transformed as a
one-step flag. These arc very rcasonable policies. It
1s clear that the possibilities are endless, partcularly
in large systems with lots of subject and object

types.

Next we introduce a new kind of copy flag, called
the separation copy flag, by dropping the assumption
that possession of xc implies possession of x. In this
way we draw a clear scparation between the ability
to grant access and the ability to perform access.
This scparation has been suggested by Moffett and
Sloman [19] as a fundamental aspect of “commer-
cial” access-control policics. They note such
scparation is implemented in actual systems, citing
the example of IBM’s RACE. In our framework this
scparation is casily achicved as an instance of grant
transformation where xc can only be transformed
to x. Now if a subject is allowed to grant to itself
the intent of the scparation is defeated, since then
posscssion of xc implies possession of x by a grant
to onsclf. We can prevent this by predicating the
grant transformation on the types of subjects
involved. Say we distinguish security-officers from
users. The transformation of xc¢ to x is allowed in a
grant from a sccurity-officer to a user. However, in
a grant from a sccurity-officer to a sccurity-officer
the transformation is from xc to null. This is the
policy suggested in [19]. There is the further ques-
tion of how the ability to grant is obtained in the
first place by sccurity-officers. Following [19], this
itself can be obtained by grant transformation. The
idca is that some user owns the object in question.
By possessing the own righe for that object the user
is authorized to grant xc (by transformation) to a
sccurity-officer. That is, the owner of an object can
delegate the ability to grant access to sccurity-
officers. We can play this game again and ask how
ownership is acquired. It should be clear by now
that this in turn can be achicved by grant transfor-
mation if so desired. Alternatively it can be ded to

288

creation of the object or be determined at system
initialization.

Morc general notions of scparation of dutics can
also be viewed as cxamples of grant transforma-
tions to some extent. These relate to sequences of
operations on an object which must occur in a pre-
scribed order and must be cxccuted by different
types of subjects. For example, consider a policy in
which a check is prepared by a clerk, approved by a
supgrvlsor and issucd by a cashicr. This is scpara-
tion of dutcs in that the different steps are to be
exceuted by users with different roles (types). We
can cnforce this policy by transforming the prepare
right into an approve right in the clerk-to-super-
visor grant, and again transforming the approve
right to an issue right in the supervisor-to-cashicr
grant.?

3. The Transform model

It is apparcent from the foregoing discussion that
there is a common theme underlying the several
cxamples we have seen. Our objective in this
secton is to make this intuition precisc by means
of a formal model called Transform.

The notion of type is fundamental to most
cxamples we have considered. In fact much of the
power of transtormation derives from predicating
the ability to transform on the types of subjects and
objects involved. We therefore assume that subjects
and objects are classified into types. Object types
identify classes of objects which are treated differ-
ently for transformation of rights. Subject types
similarly idendfy classes of subjects which have
varying ability to transform rights. Subject types
also abstract the concept of roles often used in the
litcraturc [19, 26, 30, for instance].

*Note that scparation of dutics achicved in this way is limited
to scparation among roles. Consider the modified policy that
the check be issued by a clerk, rather than a cashier, with the
stipulation that the issuing clerk be different from the one who
prepared the check. Controls based solely on types of subjects
and objects cannot handle such cases. Sce [26, 28] for a
mechanism which also deals with ntra-type scpararion.

We define the sets TS and TO for subject types
and object types respectively. Each subject is an
instance of some subject type and cach object an
instance of some object type. We assume strong
typing in that the type of subject or object is deter-
mined when it is created and does not change
thereafter.

Before considering transformation of rights Iet us
first dcal with creation. It is clear subjects need to
create objects. There are two issucs involved in
creation. Firstly, subjects nced authorization to
creatc objects. Sccondly, the rights obtained as a
result of creation also need to be specified.

In Transform we authorize creation of objects by
means of a can-create function as follows:*

cc: TS — 270

The interpretation of cc(u)={0,,0,,...,0,} is that
subjects of type u arc authorized to create objects
of types 0,,0,,...,0;.

The cffect of creation is defined by create-rules of
the following form, where R is the set of rights:

cr: TSXTO — 2k

The interpretation is that when subject U of type u
creates an object O of type o the creator U obtains
the rights ¢r(u,0) for O. For cxample, if
cc(user)={file} and cr(user,file)={own,r,w} the
creator of a file gets the own, r and w rights for it.
For rcadability we usually drop the set parentheses
around singlcton sets, for instance cc(user) = file.

Now consider the authorization for internal trans-
formation. As discussed carlier, internal transfor-
mation of rights for an object in a subject’s domain
involves consideration of their types. So what we
need is an internal transformation function of the

The notation 2 denotes the power set of X, i.c., the sct of all
subscts of X. In other words ¢c is a function which maps cach
subject type to a subset of the object types.

Computers & Security, Vol. 12, No. 3

following form:
itrans: TS X TOXR — 2R

The interpretaton of ifrans(u,0,x) ={x,,...,x,} is
that a subject of type u who has the x right for an
object of type o can obtain the x,,...,x, rights for
that object by internal transformation. For
example, the policy that write implies append and
both imply rcad can be stated in cither of the

following ways:
(a) itrans(uscr,tile,w)={a,r}

itrans(uscr, file,a) =r

itrans(user,file,r) = ¢

itrans(user, file,a)=r

(
(
(b) itrans(user,file,w)=2
(
(

itrans(uscr, file,r) = ¢

In (a) the transformation from w to r is achicved
dirccdy, whereas in (b) it is done indircetly in two
steps. We allow for cither formulation in the
model. The amplification cxample of a stack
implemented by a list which in turn is imple-
mented by a segment can be specified as follows:

itrans(stack-manager, stack, pop) = {hcad, tail}

itrans(stack-manager, stack, push)=cons

itrans(list-manager, stack, head)={r, w|
itrans(list-manager, stack, tail) ={r, w}

itrans(list-manager, stack, cons) = {r, w}
All other valuces of itrans arc cmpty

Here the ability to amplify push and pop to head,
tail or cons is restricted to the stack manager; while
amplification from hcad, tail and cons to r and w is
restricted to the list manager. Realistically of course
these would be fragments of a larger specification
involving additional types.

289

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

The internal transformation function generalizes in
an obvious way as follows to amplify scts of rights

(as opposed o single rights):
itrans: TSX TO x 21t — 2K

The interpretation of itrans(u,0,4x,....x,) =1{y,...,
v, is that a subject of type u who has all the x,
rights specified on the left-hand side for an object
of type o can obtain the rights y,,...,y, for that
object by internal transformation. This is useful in
situations described as synergistic authorization in
[17] and as command authorization in [9]. For
instance, consider a situation where a scientist
(abbreviated as sci) needs approvals from a sccurity-
officer and a patent-officer before he can release a
document (abbreviated as doc) for publication. Say
these two approvals arce respectvely signified by
possession of the a, and a, rights. We can express
this policy as follows

itrans(sci,doc,jown,a,,a, }) = releasc

P
A scicntist then needs to be the owner of a docu-
ment and must possess the two approvals before he
can obtain the right to release the document. The
synergy in this internal ransformation occurs only
if we can guarantee that the a, and a, rights arc
obtained from two independent sourcgs As we will
sec, this can be achicved by grant transformations.

Grant transformations can be modeled as a grant
function ot the following form:

grant: TSX TSXTOXR — 28

The interpretation of grant(u,v,0,x)={x,,....x,} is
that a subject of type u who has the x right for an
object of type o can grant one or more of the x,,...,x,
rights for that object to a subject of type v. The
unlimited copy flag xc* and the one-step copy flag
xc' of section 2 can then be specified as follows:

grant(uscr, uscr, file, xc*)={xc*, xc', x|
grant(uscr, uscr, file, xc')=

grant(uscr, uscr, file, x)= ¢

290

The extension to n-step copy flags is obvious.
There arc actually several ways of specifying cven
this rather simple policy. For instance, we could
combine grant and intcrnal transformations to
achieve the same net effect as follows:

grant(uscr, uscr, file, xc*) = {xc*, xc'{

itrans(user, file, xc*)=xc!

grant(user, uscr, file, x¢') =

grant(user, uscr, file, x) = ¢

This property of multlplc cquivalent specifications
appears to be inevitable in any sophisticated sccur-
ity model. We cannot realistically hope to have a

unique, or cven a best, specification for a particular
policy in a general model.

The separation copy flag of section 2 is also casily
specified as follows:

grant(user, sccurity-officer, file, own)=xc¢
grant(sccurity-officer, user, file, xc) =
itrans(sccurity-officer, file, xc)= ¢

That is, a user who owns a file can delegate the
authority to grant acccss to that file to a security-

officer. The sccurity-officer can grant access to that
file to other users but cannot himself access it.

Next let us go back to the example of a sciendst
who nceded multiple approvals for releasing a
document for publication. We had mentioned that
consideration of grants is required for a complete
statement. One possibility is shown below:

grant(sci, sccurity-officer, doc, own) =review

grant(sci, patent-officer, doc, own) =review

SWe generally assumec that all values of grant and itrans which
are not explicitly defined are cmpty. In chis case we have expli-
citly shown that itrans (security-otficer, file, xc)= ¢ because of
its importance in specitying this policy.

grant(sccurity-officer, sci, doc, review)=a,

grant({patent-officer, sci, doc, review) = a,

itrans(sci, doc, {own, a, a,f) = releasc

As the owner of a document a scientist can request
it be reviewed by a sccurity-officer and a patent-
officer by granting them the review right. In turn
they can grant the scientist who gave them the
review right appropriate approval rights. Finally the
scientist can internally transform these rights to
acquire the release right.

Consider a slight modification to the above policy.
Say that we require further scparation of dutics
regarding release of a document. A scientist is
responsible for gathering the necessary approvals.
The actual release, however, must be donce by a
librarian who is responsible for cataloging informa-
tion about the document before releasing it. To
achicve this we can replace the internal transfor-
mation above by the following grant transforma-
tion:

grant(sci, librarian, doc, {own, a,, ap}) =rclease

To do so we can gencralize grant as follows in the
samc way that itrans was generalized:

grant: TSX TS X TO x 2k — 2R

The interpretation of grant(uv,0,{x,,....x,) ={y,...,
Y. is that a subject of type u who has all the x,
rights specificd on the left-hand side for an object
of type o can grant one or more of the rights y,,...,y,,
for that object to a subject of type v.

To summarize, we have the following definition
for Transform.

Definition 1 A policy for transformation of rights
is stated in Transform by specifying the following
(finite) components:

(1) Disjoint scts of subject types TS and object
types TO.

Computers & Security, Vol. 12, No. 3

(2) Asctofrights R.

(3) A can-create function ¢c: TS — 270,
(4) Create-rules ¢r: TSxTO — 2K,
(5

) An internal transformation function itrans:
TSXTO x 2t — 2R,

(6) A grant transformation function grant: TS X
TSXTO x 2k — 2R

This completes our description of Transform.

4. Implementation of Transform

In this section we describe an architecture and
design outline for implementing Transform in a
distributed environment. Our architecture is capa-
bility based. We begin with a brief review of dis-
tributed capability systems, following which we
describe our architecture and protocols in detail.

4.1. Distributed capability systems

Capability-based architcctures have had a strong
appcal ever since the concept was first proposed [5].
They arc viewed as providing a sound and com-
mon basis for providing both reliability and secur-
ity [14]. In the context of conventional centralized
systems a number of such machines have been
buile [13]. Some even achicved moderate commer-
cial success. Nevertheless today’s popular CPUs are
not capability based. In retrospect one can arguc
that using capabilitics to solve the memory protec-
tion problem is an overkill. The marginal advan-
tages of capabilitics over memory scgmentation
and protection rings, which arc available in the
latest gencration of microprocessors such as the
Intcl 80386, do not justify the cxtra costs and per-
formance penalties. In other words the initial appli-
cation of capabilitics was at too low a level.

[t is expected by many rescarchers that in the 1990s
distributed operating systems will dominate the
computing cnvironment. These systems will appear
to users as a single centralized system with com-

291

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

plete location transparency. To achieve this, relia-
bility and sccurity will have to be addressed as part
of the basic design of these systems. Actempts o
graft sccurity features later in the design cycle will
surcly fail much as they arc failing in conventional
centralized systems. The capability-based frame-
work continucs to offer an attractive approach to
these problems. In a distributed operating system
capabilitics are introduced at a much higher level
than memory addressing. Capabilitics need to be
incorporated into the remote procedure call
mechanism rather than the memory addressing
mechanism. This offers the hope that the addi-
tional overhecad will not kill performance. Capa-
bilities can morcover be integrated into the basic
client=server structurc of distributed systems to
provide transparency.

There are three basic issues which must be con-
fronted by the designer of a distributed capability-
based system. Thesc issucs are complicated relative
to conventional centralized capability-based
systems because capabilities are dispersed in indi-
vidual workstations and can no longer be assumed
to be under tight control of a centralized security
kernel.

(1) Unforgeability. It must be guarantced that
capabilitics cannot be modified or manufactured
by subjects. This requires some form of crypto-

graphic scaling.

(2) Propagation. It must be guarantced that capa-
bilitics cannot be copied from onc subject to
another. This requires some means of embedding
the identity of a subject in a capability.

(3) Revocation. It must be guarantced that capa-
bilities which have been granted can be withdrawn
or revoked in a timely manner. This requires some
means of invalidating cxisting capabilides and
accounting for cascaded revocation.

Various solutions to onc or more of these problems

have been proposed in the literature. For instance,
Amocba [20] uscs “sparsc capabilitics” with crypto-

292

graphic protection to ensurc unforgeability. Unfor-
tunately Amocba doces not address propagation or
rcvocation. Davies [4] discusses mechanisms to
embed the identity of a subject in a capability. This
cnsures that capabilities cannot be forged or propa-
gated from one subject to another without inter-
vention of trusted software. Davies, however, docs
not address the revocation issuc. Gong's proposed
architecture [7] is the first atcempt to address all
three issucs in a distributed context. It is based on
the familiar client-server model of services in dis-
tributed systems and therefore is a suitable founda-
tion for us to build upon. However, Gong docs not
incorporatc the notion of types which is basic to
Transform. His architecture therefore needs to be
extended for chis purpose.

4.2. Basic architecture for Transform

We assume that objects arc cncapsulated within
object scrvers. The basic computation model is that
of remote procedure calls involving the following
sequence of events: (i) a client sends a request to a
server to manipulate one or more objects, (ii) the
scrver accepts and services the request, and (iii) the
server sends back a reply. The object server runs on
a trusted host which guarantees that the server can-
not be bypassed. For case of exposition we visualize
cach object server as running on a separate host.
However, we allow muldple object servers on the
same trusted host provided the security kernel on
the host can cenforce scparation among these
servers. If we have sufficient confidence in the
sccurity kernel we can also allow untrusted clients
to coexist with object servers on a single trusted
host.

Each object server acts as the reference monitor (or
access mediator) for the st of objects it manages. In
other words the object server is part of the Trusted
Computing Basc [0]. The object server is respon-
sible not only for access mediadon but also for
ensuring semantic correctness of the objects with
respect to the abstract operations exported from
the server. The object server itself has the ability to
access all objects within its control. We emphasize

Computers & Security, Vol. 12, No. 3

that the object server is not a subject in the system
but is rather a part of the Trusted Computing Base.

For simplicity, we require that cach object server
manage cxactly one type of object. In practice this
rule would probably be relaxed to allow a single
scrver to manage multiple object types, pardcularly
if they are closcly related. On the other hand the
same type of object may be managed by multiple
objcct servers. For instance, a given system may
have numerous file servers. An individual file
server manages some subset of the total collection
of files in the system. We assume there is no repli-
cation of files; that is, cach file resides at exactly one
file server.

Finally we assume there is an Access Decision
Facility which can be consulted by object servers to
determine the sccurity policy. In the context of
Transtorm the Access Decision Facility will be
consulted by object servers for finding out appro-
priate values of ¢, ¢r, grant and itrans. Picces of the
Access Decision Facility may actually reside at cach
object server while other picces are remotely
accessed. The reason for this is to allow quick local
access to well-established and relatively static
aspects of the policy while at the same time allow-
ing for new types ete. to be introduced.

4.3. Identity and type

Each subject or object in the system has a globally
unique idendfier. Each subject or object also has a
unique type which is determined when that subject
or object is created. Therecafter the type cannot
change. We assume the type of a subject or object
is embedded in its identifier. Hencetorth we refer
to a subject identifier by sid and an object idendfier
by oid. These idendfiers have the following
structurc:

type | identifier

The type ficld denotes the type of the object while
the identifier ficld uniquely identifics cach subject
or object among instances of the same type. Note

that sid’s and oid’s can be gencrated at will by users
and have no guarantee of unforgeability. We refer
to the individual ficlds of a sid by sid.type and
sid.identifier, and similarly for oid’s. Note that the
sid’s and oid’s must be globally unique, for which
purposc it suffices that their identifier ficlds are
unique within instances of the same type.

4.4. Capability seeds

A capability sced is a sceret random number asso-
ciated with cach oid. The sced is known only to the
object server which manages the object identified
by oid. We can visualize this association by the
following pair:®

oid | seed

The purposc of the seed is to facilitate revocation
and prevent against replay of revoked capabilities,
as will be discussed later.

4.5. Capabilities
A capability has the following structurc:

oid | rights | scal

where the scal is computed using a publicly known
one-way function f as follows:

scal = f(sid, oid, rights, sccd)

The oid and rights components of a capability arc
exactly as one would expect, even in a conventional
centralized system. The scal cryprographically
embeds the subject identifier (sid) in the capability
using the sccret capability sced for that purposc.

*Gong [7] calls this pair an “internal capability.” We feel the
name “incernal capabilicy™ is a misnomer and prefer to call the
secret random number a capability seed, because its principal
use is in cryptographically scaling capabilitics exported from
the object server.

293

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

4.6. Access mediation

Access mediation must be incorporated into the
RPC (Remote Procedure Call) mechanism of the
client-server architecture. The object server must
authenticate the source of cvery RPC request. For
this purpose, we assume that cach subject has the
means to place its digital signature on cvery RPC
communication to an object server. The RPC also
carries within it the relevant capabilities for the
operation being requested. The object server first
verifics that the sid on cach capability is authent-
cated by the digital signature, otherwise the RPC is
immediately rejected. Then the object server looks
up the capability sced for oid, computes the scal
using the above formula and compares the com-
puted scal with the scal submitted by the subject. If
these match, the capability is known to be authen-
tic and the opcration is performed, provided the
rights arc sufficient to authorize it.

l)lgltal signatures for the reverse communication
from object servers to subjects can also be incor-
porated. The details of these protocols are beyond
the scope of this paper and can rLadily be found in
the standard literature [1]. We envisage an imple-
mentation similar to the interface function box of
Amocba [20] which is placed between cach pro-
cessor module and the network.

4.7. Creation

For object creation the object server consults the
Access Decision Facility to determine whether or
not such creation is authorized by ec(sid.type). If
the creation is authorized a new object is created
with a new oid and a new capability sced. The
rights to be entered on the capability are deter-
mined from er(sid.type, oid.cype). Finally the capa-

bility is scaled and returned to the subject.
4.8. Internal transformation

Let subject sid request the following internal trans-
formation for object oid:

itrans(0,0,4X ... X,) ={y v Yol

The object server must, of course, be a manager

294

tor objects of type o. The server checks that
sid.type =u and oid.type =o. It also checks that the
RPC request includes a capability (or capability list)
for object oid with the rights x,....,x,. This check
is performed by comparing the computed seal with
the scal on the capability as discussed in section +.0.
Finally the object server creates a new capability
scaled for sid with rights x,,...,x,, y,,...,y,,. This
capability is returned to the subject sid. Note that
the original capability continucs to be valid. It is,
however, redundant and can be discarded by the
subject.

4.9. Grant transformation
Let subject sid1 request the following grant trans-
formation for object oid to subject sid2:

erant(a,v,0,4x,...,x, =1y ,....y,.i

The object server should again be a manager for
objects of type o. The scrver checks that
sidL.type = u, sid2.typec=v and oid.typc=o. It also
checks that the RPC request includes a capability
(or capability list) for object oid with the rights
X,,...,X,. If the check is successtul the object server
creates a new capability scaled for sid2 with righes
Yiseees Y, This capability is returned to the subject
sid1, who can then pass it on to subject sid2. (Aleer-
natively it can be communicated to sid2 directly.)

4.10. Revocation

Revocation has always been a problem in capabil-
ity-based systems. In distributed systems the
problem is compounded, since the subjects arc
completcly autonomous, with no centralized
authoritics enforcing sccurity. There are various
issucs with respect to which implementations of
revocation can be compared [29]:

(1) Partial or Complete: whether it is possible to
revoke a specific right or whether all righes in a
capabili?r have to be revoked to get any sort of
denial of access in the system?

(2) Immediate or Delayed: if the implementation
exccutes revocation immediately or it comes into

force only the next time the subject tries to access
the object?

(3) Sclective or General: does the revocation pro-
cess affect all users or a select group of uscrs having
access over the object?

(4) Temporary or Permanent: is access to be denied
permancntly or, if once it is revoked, is it retriev-

able?

We provide revocation by a revocation list and a
count field appended to the seed as shown below:

oid | sced | count | revocation list

The revocation list contains entrics of sids for
whom the rights for that particular oid have been
revoked. The list specifies for cach sid which of its
rights have been revoked. When the validity of the
capability is checked during access mediation, the
revocation lists are checked in parallel as well. Since
access mediation is performed on cvery operation
revocation is immediate. The owner of an oid
always has the option to revoke pardally or com-
pletely the capability of a sid for that oid. Partal or
complete revocation of a sid in no way interferes
with the access rights of other sids.

The count is a measure that determines the num-
ber of valid capabilities for that sced. The count is
incremented during creation and propagation, but
decremented during complete revocation (i,
when all the rights of a subject for that object arc
revoked). Temporary or permancent revocation is
carried out, depending on the valuc of the count. If
the count is smaller than a threshold the object
server goes ahcad with permancent revocation. The
server deletes the sced associated witch that oid,
computes a new one and sends new recomputed
capabilitics to other associated sids. This of course
requirces that the object server keep a log of propa-
gation of capabilities. However, if the count is
above the threshold the object server goes ahead
with temporary revocation. In this case the object

Computers & Security, Vol. 12, No. 3

server appends the revocation information onto the
revocation list associated with that oid. The value
of the threshold is sct by the system administrator.

5. Implementation of an example

The scientist and the security-officer example dis-
cussed carlier in section 3 is illustrated here using
the protocols described above. A scientist (say Joc)
creates a document (say SDI) on his workstation,
but before he can release it he nceds to have
approval from a sccurity-officer (say Sam) and a
patent-officer (say Pat). The following is the
sequence of protocols needed to complete the task.

(1) Joc asks the server to create a document called
SDIL This RPC is made by the kernel of Joc’s work-
station to the appropriate dacmon responsible for
that host’s actions. RPC contains the action
requested and the sid of the requester together
signed under Joc’s digital signaturc. In this case the
sid=sci.Joc and the request is to creatc a new
document of type doc with specified contents. On
receiving the request, server checks the digital sig-
naturc to authenticate Joe. The server then checks
the cc policy, taking into account sid.type. If it is in
the affirmative it checks the ¢r policy, by which it
determines what rights Joe gets for the document
he is creating. The document server generates a
new oid for the document being created (say
doc.SDI) as well as a new sced (say sced1) for that
document. The server sets the count to 1 and the
initial revocation list to empty and storces the infor-
mation in its internal tables with the following
association.

doc.SDI | scedl | 1

The revocation list field is empty as there are no
entrics for it and we shall not show it dll it is
needed. So from here on it can be assumed that the
revocation list, if missing, is cmpty.

Then the object server manufactures the following
capability and sends it to Joe (strictly speaking to

295

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

the kernel of Joe’s workstation):

doc.SDI | own, read | seall

where seall = f{(sci. Joe, doc.SDI, {own, read}, sced1).
(2) Now Joc is ready to releasc the document. His
workstation sends the propagation requests to the

server on his behalf. The RPC looks like this:

grant(sccurity-officer.Sam, review)

doc.SDI | own, read | scall

The host, when framing the RPC, appends to it the
capability that Joe possesses for SDI and signs the
request under Joc’s digital signature. The server on
receiving the request decrypts the digital signaturc
and authenticates Joe. Then the server checks the
validity of the capability by retrieving the secd of
SDI (ic., seed1) from its internal tables, and com-
puting the seal using the one~-way function f. Then
it extracts seal1 from the capability provided by Joc
and if the two scals match the validity of the capa-
bility is confirmed. The request is then checked
against the grant funcdon. When the server deter-
mines Joe has sufficient rights (i.c., own) for SDI, it
proceeds with the grant. In its internal tables the
count is updated to 2, which looks like this:

doc.SDI | seedl | 2

The server then computes the capability for the
sccurity-officer Sam to have the review right for

SDLI. The capability

doc.SDI | review | seal2

where seal2 = f (sccurity-officer.Sam, doc.SDI,
review, seed1)

296

is sent to Joc. Joe then forwards this capability to
Sam. Sam now has the capability for oid =doc.SDI
with the review right. With this capability he can
only access the document to review it. If Sam tries
to get additional rights by internal transformadon,
the server will turn down his request because the
set of rights, namely review, is an insufficient sct
for any internal transformation. Sam now reviews
the document, and if he approves of the action to
release SDI he requests the server to grant Joe the

approval (a,) right.

doc.SDI | review | scal2

grant(sci.Joe, a,)

The scrver, as before, updates the count in the
internal table to 3

doc.SDI { scedl | 3

and then computes the following capability and
sends it back to Sam, who in turn sends it to Joc:

doc.SDI | a, | seal3

wherc scal3 ={(sci.Joe, doc.SDI, a,, sced1).

(3) Exactly similar protocol steps are exccuted to
get the approval (a,) from the patent-officer Pat. At

the end of this session the internal table looks like
this:

doc.SDI |[seedl | 5

And Joe possesscs the following capability:

doc.SDI |a_ | scal4

where scal4 = f{sci. Joe, doc.SDJ, a,, scedl).

(4) Now the scientist Joe possesses the capabilities
giving him the approval to get the release right by

internal transformation. Joe presents these capa-
bilities to the server with the following request:

|doc.SDIown, read | seall |

doc.SDI a, scal3

S

itrans(releasc)

doc.SDI a, scal4

Like before, the server carrics out the authentica-
tion and the validity tests on the capabilities
presented to it by Joc. Then the server checks that
Joe has the rights own, a_ and a, for SDI which are
required to get the additional release right. Count
is not updated during internal transformation. The
server scnds him a new capability:

doc.SDI | own, read, a_, a_, releasc | seal5

P’

where scal5 = f(sci. Joc, doc.SDI, {own, rcad, a,, a,
rclease, secd1).

To exemplify revocation let us augment the grant
function of the document release example of
scction 3, which we illustrated above, with

grant(sci, sci, doc, release) =read

That is, the rclease right allows the scientist to let
other sciendsts read the document. Now assumc
that Joc grants scientist Jill (sid =sci. Jill) the read
right for SDI. The protocols are the same as above.
The signed RPC request is as follows:

grant(sci. Jill, read)

doc.SDI | own, read, a, a_, rclease | scal5

P

In response to this request the server updates the
count in the internal tables to 6:

doc.SDI | seedl | 6

Computers & Security, Vol. 12, No. 3

And then the server computes the following capa-
bility and passes it to Joc, who in turn passes it to

Jill:

doc.SDI | read | sealo

where seal6 = f(sci. Jill, doc.SDI, rcad, sced1).

This capability gives Jill the authorization to rcad
SDIL

Now if at a latcr time Joe wants to revoke the read
privilege of Jill, he requests the server to execute

the following action:

rev(sci. Jill, read)

doc.SDI | own, read, a, 2, relcase | scal5

The scrver performs the various tests on the capa-
bility to check its authenticity and validity. Then
the server looks at the value of the count in its
internal tables for scedl. Let us assume threshold to
determine the type of revocation (i.c., permanent or
temporary) is 7. The scrver compares the value of
the count with that of the threshold and decides
with permanent revocation, as the value of the
count (6) is less than the threshold. For each com-
plete revocation the server decrements the count
by one. So in this case the count will decrease to 5,
as only onc complete revocation is requested. The
server then recomputes new capabilities for the
doc.SDI with a new sced2 and the old ones arc
purged. This new association is shown below:

doc.SDI | sced2 | 5

And the new recomputed capability sent to Joc
looks like this:

doc.SDI | own, rcad, a, Ay rclease | scal?

297

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

where scal7 = f(sci. Joe, doc.SDI, {own, read, a,, a,
releasc}, sced2).

In similar fashion new recomputed capabilitics are
sent to all subjects which posscss a capability for
SDI. For this purposc the scrver maintains a list of
all subjects who possess capabilitics for SDI. All the
scals on these new capabilides will be computed as
before, except they will be a function of seed2
instcad of sced1. With this all previous capabilities
for SDI arc invalidated and should be purged. And
if Jill trics to access SDI with the capability she
possesses her request will fail since the capability
she possesses for SDI will fail the validity test.

To illustratc temporary revocation let us assume
that the threshold is set ac 4 and the count is 6. Joc
requests revocation in a similar fashion as before
and similarly the server compares the value of the
threshold (4) to the count (6). The server decides
with temporary revocation as the value of count is
grcater than the value of the threshold. For
temporary revocation, the server adds the sid of the
revoked subject with the revoked right to the
revocation list in the internal table. The count is
not decremented in temporary revocation. The
internal table now contains the following associa-
tion:

doc.SDI | scedl | 6 | sci. Jill{rcad}

On all tuture access mediations by Jill, when the
server would check the revocation list for SDI it
will find her sid along with the list of revoked
rights and thus deny read access.

Our cxamples demonstrate that fairly complicated
policics arisc in cven rather simple situations. The
examples have used a few types of subjects and
objects. Realistically in large organizations we
would have hundreds of types. The complexity will
rapidly muldply. We believe that authorization
policics will necessarily be formulated in terms of
local and incremental considerations of the kind

298

we have discussed. In such situations safety analysis
is very important.

6. Safety analysis of Transform

The safety question for access control poses the
following question: is it possible for a given subject
to ever acquire access to a given object? It is well
known that in general this question is undecidable
[10], even for monotonic systems [11].

In this section we show that Transform has cffi-
ciently decidable safety. We do this by demonstrac-
ing that Transform is an instantdation of SPM
(Schematic Protection Modecl) [24]. Our construc-
ton cstablishes that Transform can be simulated in
SPM within SPM’s cfficiently decidable cases for
safety.

Onc difficulty in reducing Transform to SPM is
that the SPM copy opcration is attenuating,
whereas the Transform grant and itrans operations
may be amplifying (i.c., new rights may be created
rather than simply being copied from onc subject
to another). Section 6.1 shows that the grant opera-
tion in Transform can be assumed, without loss of
generality, to be attenuating. Scction 6.2 then
shows how amplitying itrans operations can be
simulated 1n SPM. It also contains a brief review of
SPM.

6.1. Attenuating Transform

We now show that amplifying grant can be
climinated from the Transtorm model without any
loss of expressive power.

It is clear that internal transformatons arc uscful
only it they are amplifying in the sense that new
rights arc obtained. That is, we can assume without
loss of generality,

itrans(u,0,R)=R; = RN R;= ¢
Now consider the grant transformation grant(u,v,

o,R;)=R;. That is, posscssion of R; rights cnables
transfer of R rights. Clearly if R CR; such a grant

is attenuating or non-amplifying in that the source
subject cannot give away rights that he does not
posscss. But note that the source subject may be
able to internally amplify the R; rights, so in defin-
ing attenuation we need also to consider implied
rights. Now implied rights can be obtained directly
by one application of itrans or indircctly by several
applications. This leads us to the following dcfini-
tion.

Definition 2 Let itrans* be the reflexive transidve
closure of itrans. A grant transformation is attenuat-

ing provided
grant(u,v,0,R,) = R, = RC itrans*(u,0,R;)
Otherwisc it is amplifying.

For example, grant(user, user, file, x)=x is trivially
attenuating. On the other hand for grant(uscr, user,
file, xc)=x wc nced to consider the interpretation
of the copy flag. With the assumption that xc is
strictly stronger than x, ic., itrans(uscr, file, xc)=x,
the latter grant is attenuating. However for the
scparation copy flag, where we have ifrans(user, file,
xc) = ¢, this grant is amplifying. This is clcarly con-
sistent with the intuitive concepts of amplification
and attcnuation.

One can take issuc with this definition in that we
are ignoring implied rights in the destination
domain. That is, what we rcally need is the follow-
ing requirement:

grant(u,v,0,R)) = R,

=> itrans*(v,0,R J-) Citrans*(u,0,R,)

Let us call such grants strictly attenuating. This
requirement is very strong and will not allow for
the grants required to support abstract data types or
protected subsystems, as illustrated by our stack
cxample. These features arc of such fundamental
importance that it is clear we cannot limit our-
selves to strictly attenuating grants in the frame-
work of Transform.

Computers & Security, Vol. 12, No. 3

The question therefore is whether or not we can
limit oursclves to attenuating grants. In other
words, do amplifying grants add any power not
alrcady available with amplitying internal transfor-
mations? The answer turns out to be no; that is,
grant amplifications can be built out of internal
amplifications. To sce the redundancy of amplify-
ing grants consider the separation copy flag speci-
fied carlier as follows:

grant(uscr, sccurity-officer, filc, own)=xc
grant(sccurity-officer, user, file, xc) =x

These grants are clearly amplifying. An cquivalent
policy with attenuating grants is achieved by intro-
ducing new right symbols as follows:

itrans(uscr, file, own)= dclegatc

grant(uscr, sccurity-officer, file, delegate) = delegate
itrans(sccurity-officer, filc, delegate) =xc
itrans(security-officer, file, xc) = cando-x
grant(security-officer, uscr, file, cando-x) = cando-x

itrans(uscr, file, cando-x) = x

The two amplitying grants of the original policy
arc respectively simulated by the two sequences
above. The general principle is cvident from this
cxample. Each amplitying grant is simulated by an
internal amplification at the source, followed by a
grant with the trivial and attenuatng identity
transformation, finally followed by another inter-
nal transformation ar the destination.

A general construction can be outlined as follows.
Let r€grant(u,v,0,R)) and r&itrans*(u,0,R;). That
is, r makes this grant amplifying. Modify the given

Transform specification as follows:

(1) Define the new right ruv.oR;. The entre
symbol significs a single right. The components in
this symbol emphasize that we need a new right for
cach combination of the components.

299

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

(2) Modity itrans(u,0,R;) to include ru.v.o.R;.

(3) Modity grant(u,v,0,R)) by replacing r with
ru.v.o.R;.

(4) Decfinc itrans(v,0,r.u.v.oR)=r.

It is clear that r no longer makes this moditied
grant(u,v,0,R;) amplitying. By repeating this pro-
cedure we can therefore get rid of all amplitying
grants. Sincc new rights are introduced for cach
itcration of this procedure there is no interaction
beeween different amplifications removed in this
way. The original amplifying grants are then
simulated as follows:

r € grant(u,v,0,R))

itrans(u,0,R;) = r.uv.o.R;
<> < ruv.o.REgrant(u,v,0,R))

itrans(v,0,ruv.0.R) =r

The correctness of this construction is self-cvident.
A formal inductive proof can be given showing
every reachable state with the former policy has an
cquivalent counterpart with the modificd policy,
and vice versa. The details are tedious and shed
little insight.

6.2. Reduction of Transform to SPM

The previous subsection has shown that we can
assume, without loss of generality, that all grant
transformations arc attcnuating. Attcnuating grant
transformations arc casily simulated by the links
and fileer functions of SPM. It remains to consider
how internal transformations—attenuating — or
amplifying—can be simulated by SPM copy opera-
tions. We first give a bricf review of SPM, followed
by the reduction of Transtorm to SPM.

6.2.1. The schematic protection model

We begin with a review of SPM. Our review is
necessarily bricf and to the point. Motivatdon for
defining SPM in this manner and its resulting
expressive power arc discussed at length in [23-25].

300

The dynamic privileges in SPM arce tickets of the
form Y/x, where Y identifics some unique entity
(subject or object) and x is a right. SPM subjects
and objects arc strongly typed. The type of a tcket
is determined by the type of entity it addresses and
the right symbol it carries; that is, type(Y/x) is the
ordered pair type(Y)/x. Tickets arc acquired in
accordance with rules which comprise the scheme,
which is defined by specifying the following (finite)

components. These arc briefly explained below:

(1) Disjoint scts of subject types TS and object
types TO. Let T=TSUTO,

(2) A sct of rights R. The set of tcket types is
thereby T X R.

(3) A can-create function cc: TS— 2T,

(4) Create-rules of the following form for cach
vEa(u) o (uv)=¢R UpR,, and e (uyv)=
/R, U p/R,.

(5) A collection of link predicates {link;}.

(6) A filter funcdon f: TSXTS—2"" for cach
predicate link;.

There are only two operations in SPM: crcate and
copy. These arc controlled by the scheme as
follows.

The create operation

Subjects of type u can create entities of type v if
and only if v&€ cc(u). Tickets introduced as the side
effect of creaton are specified by a (different)
create-rule for every (u,v) such that v€ ¢c(u). Each
crcate-rule has two components shown above,
where p and ¢ respectively denote parent and child
and the Rys arce subsets of R. When subject U of
type u creates entity V of type v the parcnt U gets
the tickets V/R, and U/R,. The child V similarly
gets the tickets V/R; and U/R,. For example,
file € ce(uscr) authorizes users to create files. And
cr (user, file)=c/rw and cr (uscr, file)= ¢ gives the

4 .
crcator r and w tickets for the created file.

The copy operation

A copy of a ticket can be transterred from one sub-
ject to another, leaving the original ticket intact.
SPM has a copy flag built in which we denote as k
to distinguish it from the copy flags of Transform.
Posscession of Y/xk implics possession of Y/x but
not vice versa. Let dom(U) signify the set of tickets
possessed by U. Let x:k denote x or xk, with
multiple occurrences in the same context cither all
rcad as x or all as xk. Three independent picces of
authorization arc required to copy Y/x:k from U
toV:

(1) Y/xk€dom(U); that is, U must posscss Y/xk
for copying cither Y/xk or Y/x.

(2) There is a link from U to V. Links are estab-
lished by tickets for U and V in the domains of
U and V. The predicate link;(U,V) is defined as a
conjunction or disjunction, but not negation, of
one or more of the following terms for any z€R:
U/zE€dom(U), U/z€dom(V), V/z&dom(U),
V/z&dom(V), and true. Some cxamples of link
predicates from the literature are given below:

link[g(U,V) =V/gEdom(U)V U/t€ dom(V)
link (U,V)=U/t€dom(V)
link,,(U,V)=V/s€dom(U) AU/rEdom(V)
link, (U, V)= true

The first example is from the take-grant model
[15], where the t and g rights arc respectively read
as take and grant. The next cxample retains only
the take rlght [16]. The fourth example is from the
send-receive mechanism [18, 22] where the s and r
control rights are rcspcctlvcly read as send and
receive. The last case is unique in that it requires no
tickets for a link to exist.

(3) The final condition is defined by the fileer
tunctions f: TSXTS—2TR onc per predicate
link;. The value of f,(u,v) specifies types of tickets
that may be copied from subjects of type u to sub-

jects of type v over a link;,. Example values are

Computers & Security, Vol. 12, No. 3

TxR, TOXR and ¢, respectively, authorizing all
tickets, object tickets and no tickets to be copied.

In short, Y/x:k can be copied from U to V if and
only if

Y/xk€dom(U) A (link;)[link,(U,V) A y/x:kEf(u,v)]

where the types of U, V and Y are respectively u, v
and y. Notc that f; determines whether or not the
copied ticket can have the copy flag. This com-
pletes our review of SPM.

6.2.2. Simulation of Transform in SPM

As noted carlicr, attcnuating grant transformations
arc casily simulated by the links and filter functions
of SPM. It remains to consider how internal trans-
formations—attenuating or amplifying—can be
simulated by SPM copy operations.

Consider itrans*(u,0,R;) = R;. Let U be a Transtorm
subject of type u and O a Transform object of type
0. Thesc are respectively modeled as SPM suchcts
of types u and o respectively. Let the posscssion of
O/R; by U set up a linkg, from O to U. The i 1ntcr—
nal transformatlon is effected by defining fi (u,0) to
be o/R;. The scheme ensurcs that the only tickets
that O can ever possess are tickets for itself, so the
copy operation authorized in this manner has pre-
ciscly the same effect as the internal transforma-
tion. The SPM copy flag is irrelevant to the
construction and we assume it is allowed to be
carried along by cvery filter function we define.

This construction is formally cxprcsscd by the
following SPM scheme for a given instance of
Transform, which is assumed (without loss of
generality) to have attenuating grant’s:

(1) TS =TSUTO, TO'= ¢
(2) R'={x:k|xER]

(3) Forall u€TS: cc'(u) = cc(u)
For all o€TO: ¢c'(0) = ¢

301

R. S. Sandhu & G. S. Suri/Distributed capability-based architecture

(4) er/(u,0)= /R, where cr(u,0) =R,

cr/(u,0)=c/R'
(5) Dcfine the following link predicates:

link,(U,V)=true
link, (O,U)=0O/R,Edom(U), for all R ER

(6) Let Rjk denote {xk|xERj}

Define fi (o,u)=0/Rik, where itrans*(u,0,R;) =
R,

!

Define f, (u,v)={o/Rk|(3R,) grant(u,v,0,R;)=
R/
All other values of the filter funcdons arc

cmpty
The simulation can be summarized as follows:

itrans*{u,0,R) = R

link, (O,U) = O/R,Edom(U)
Jifo,u)=0/Rik

r € grani(u,v,0,R;)

link, (U,V) = true
o/tkEf,(u,v)

An internal transformation is replaced by a subject
copying the transformed tickets from the object’s
domain. For grant transformations we have carlier
shown that we can assume r€R; so they are
reduced to copying a ticket over the universal link.
Formal correspondence between the original
Transform policy and the constructed SPM scheme
can be cstablished by a straightforward inductive
proof that the reachable states in both cases arc
cquivalent.

It remains to argue that this construction cstab-
lishes that safety 1s cfficiently decidable for Trans-

302

form. This follows from the result for SPM [24]
that safety is decidable provided cc is acyclic in the
following scnsc: the dirccted graph with cdges
{(u,v)|[vE€cc(u)} is acyclic. Since the only edges in
this graph for ¢’ arc from types in TS to types in
TO, ¢’ is trivially acyclic. Morcover this graph for
' is sparse, which guarantees that the decision
procedure is cfficient [24] (ic., has low-degree
polynomial complexity).

7. Conclusion

To summarize, we have described a wide variety of
access—control mechanisms from the literature
with the common theme of transformation of
access rights. We have unified these mechanisms in
a simplc model called Transtorm.

We have described a distributed capability-based
architecture for implementing Transtorm. The
architecture is based on object servers who act as
access-mediators on any attempt by a subject to
create, use, acquire, grant or revoke capabilitics.
Each object server runs on a trusted host which
guarantees that the server cannot be bypassed and
therefore is a reference monitor for the objects that
it manages. The object server is not a subject in the
system but is rather a part of the Trusted Comput-
ing Basc.

The basic computation model is that of remote
procedure calls involving the following sequence of
cvents: (i) a client sends a request to a scrver to
manipulate onc or more objects; (ii) the server
accepts and services the request; and (iii) the server
sends back a reply. We assumc a digital signature
facility which authenticates the originating subject
on cach remote procedure call. The capabilitics are
cryptographically scaled to tic together the identity
of the subject, the identity of the object, the rights
and a sccret cryptographic sced. Strong typing of
subjects and objects has also been incorporated.

Finally we have shown that Transform has cffi-
ciently decidable safety analysis of the propagation
of access rights, that is, the determination of

whether or not a given subject can ever acquire
access to a given object.

References

(1l
2]

B3l

[+l

S. G. AKkl, I)igiral signatures: a tutorial survey, Computer,
16 (2) (1983) 15-24.

D. D. Clark and D. R. Wilson, A comparison of commer-
cial and military computer security policies, IEEE Sympo-
sium on Security and Privacy, 1987, pp. 184-194.

E. Cohen and D. jefferson, Protection in the Hydra
operating system, Sth ACM Symposium on Operating Systems
Principles, 1975, pp. 141-1060.

D. W. Davics, Protection, in B. W. Lampson, M. Paul and
H. |. Sicgerrt (cds.), Distributed Systems: An Advanced Course.
Springer-Verlag, Berlin, 1981, pp. 211-245.

[5] J. B. Dennis and F. C. Van Horn, Programming semantics

(]

|7

18]

for multiprogrammcd computations, Cotmmun. ACM, 9
{3) (19006) 143-155.

Department of Defense Trusted Computer Systems Evaluation
Criteria, DoD> 5200.28-STD, Department of Defense
National Computer Sccurity Center, 1985.

L. Gong, A securc identity-based capability system, IEEE
Symposium on Security and Privacy, 1989, pp. 56-63.

G.S. Graham and P. J. Denning, Protection: principles and
practice, AFIPS Spring Joint Computer Cmgfi’rcna’. 40, 1972,
pp. +17-429.

W. Harkness and P. A. Pittelli, Command authorization as
a component of information integrity, Computer Security
Foundations Workshop, 1988, pp. 219-220.

M. H. Harrison, W. L. Ruzzo and J. D. Ullman, Protection
in operating systems, Commun. ACM, 19 (8) (1976)
461-471.

M. H. Harrison and W. L. Ruzzo, Monotonic protection
systems, in R. A, DeMillo, . P. Dobkin, A. K. Jones and
R. J. Lipton (cds.), Foundations of Secure Computations,
Academic Press, New York, 1978.

B. W. Lampson, Protection, 3th Princeton Symposium on
Injbrmation Science and Systems, 1971, pp. 437-443.
Reprinted in ACM Operating Systemns Rev,, 8 (1) (1974)
pp. 18-24.

H. M. Levy, Capability-Based Cowmputer Systems, Digital
Press, Bedtord, MA, 1984,

T. A, Linden, Operating system structures o support
sccurity and reliable sofeware, ACM Computing Surveys, 8
(#) (1976) 409-445.

R. J. Lipton and L. Snyder, A lincar time algorithm for
deciding subject sccurity, J. ACM, 24 (3) (1977) 455-404.

Computers & Security, Vol, 12, No. 3

[l()]

(7]

(18]

A. Lockman and N. Minsky, Unidirectional transport of
rights and take-grant control, IEEE Trans. Software Eng.,
SE-8 (6) (1982) 597-004.

N. Minsky, Synergistic authorization in databasc systems,
7th International Conference on Very Large Data Bases, 1981,
pp- 343-552.

N. Minsky, Selective and locally controlled transport of
privilcgcs, ACM Trans. Programming Languages and Systems,
6 (4) (1984) 573-602.

[19] J. D. Moftetr and M. S. Sloman, The source of authority

[20]

for commercial access control, IEEE Computer, 21 (2)
{1988) 59-69.
S. J. Mullender, G. van Rossum, A. S. Tanenbaum, R, van
Renesse and H. van Staveren, Amocba: a distributed
operating system for the 1990s, IEEE Computer, 23 (5)
(1990) 44-53,

[21] J. H. Saltzer and M. D. Schroeder, The protection of infor-

29

[30]

[31]

mation in computer systems, Proc. IEEE, 63 (9) (1975)
1278-1308.

R. S. Sandhu, Design and Analysis of Protection Schemes Based
on the Send-Receive Transport Mechanism, PhD chesis,
Rutgers University, 1983

R. S. Sandhu and M. E. Share, Some owner based schemes
with dynamic groups in the schematic protection model,
IEEE Symposium on Sccurity and Privacy, 1980, pp. 61-70.

R. S. Sandhu, The schemaric protection model: its defini-
tion and analysis for acyclic atcenuating schemes, J. ACM,
35 (2) (1988) 404-432.

R. S. Sandhu, Expressive power of the schematic protec-
tion model, Computer Security Foundations Workshop, 1988,
pp- 188-193.

R. S. Sandhu. Transaction control expressions for separa-
tion of dutics, 4th Acrospace Computer Security Applimtionx
Conference, 1988, pp. 282-286.

R. S. Sandhu, Transtormation of access rights, IEEE
Symposium on Security and Privacy, 1989, pp. 259-208.

R. S. Sandhu, Scparation of dutics in computerized infor-
mation systems, in S. Jajodia and C. E. Landwchr (eds.),
Database Sccurity 1V: Status and Prospecis, North-Holland,
Amsterdam, 1991, pp. 179-189.

A. Silberscharz, J. Peterson and P. Galvin, Operating System
Concepts. Addison Wesley, Reading, MA, 1991,

Report of the Invitational Workshop on Integrity Policy
in Computer Information Systems (WIPCIS), Bentley
College, MA, October 1987.

W. Waulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C.
Pierson and F. Pollack, Hydra: the kernel of a muldi-
processor operating system, Commun. ACM, 17 (6) (1974
337-345.

303

