
Computers & Security, 12 (1993) 285-303

A distributed
capability-based
architecture for the
Transform model
Ravi S. Sandhu and Gurpreet S. Suri
Center&w Secure Information Systems, GLlepatimenr of Injkmation Systems and Systems
Engineering, George Mason University, FairJhx, VA 22030-4444, USA

The Transform model is based on the concept of transforma-

tion of access rights. It unifies a number of diverse acccss-

control mechanisms such as amplification, copy flags,
separation of duties and synergistic authorization. In this paper

we describe a distributed architecture for implementing Trans-

form. Our architecture is based on capabilities with identities

of subjects buried in them. This ensures unforgeability of

capabilities and enables enforcement of non-discretionary con-

trols on propagation of capabilities from one subject to

another. The design provides for immediate, selective, partial

and complete revocation on a temporary as well as a permanent

basis. We also show that Transform has an efficient algorithm
for safety analysis of the propagation of access rights (i.e., the

determination of whether or not a given subject can ever

acquire access to a given object).

Kcyword.s: IXstributcd systems, Sccurc architccturcs, Capabili-

tics, Safety.

1. Introduction

‘p he Transform model unifies a varictv of
I access-control mechanisms

divcrsc security issues. Thcsc
mostly taken from the existing
have been implcmcntcd in actual
have merit and should certainly

which deal ‘with
mechanisms arc
litcraturc. Sonic
systems. They all
bc supported, in

one form or another, by any protcctlon system
which claims to bc of gcncral applicability. How-
cvcr, considcrcd in isolation thcsc mechanisms arc

divcrsc and most have been proposed indcpcn-
dcntly of each other. Simply lumping them
togcthcr would result in a complex ad hoc model
in totality. This is not only inclcgant but also casts
doubts about prospects for safety analysis (i.c., for
dctcrmining whcthcr or not a particular subject
can obtain a specific right for some given object).

The unifying concept of transformation ojhccess r@s
was proposed in [27] to abstract the common foun-
dation of thcsc mechanisms. Transformation of
rights takes place in two diffcrcnt ways:

(1) Self transformation or internal transformation
allows a subject who posscsscs certain rights for an
object to obtain additional rights.

(2) Grant transjhmath or external tran~$rmation
occurs in the granting of access rights by one sub-

jcct to another. The gcncral idea is that possession
of a right for an object by a subject allows that sub-
jcct to give some other right for that object to
another subject.’

‘If a subject can grant transformed rights to itself external

transformation implies internal transforlllation. In most appli-

cations thcrc are additional controls to prcvcnt such “self
granting.”

0167-4048/93/$6.00 0 1993, Elsevier Science Publishers Ltd. 285

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

Internal transformations allow us to cxprcss con-
sistcnc y in access-control politics such as the
rcquircmcnt that write access implies append
access. The well-known technique of amplification
[3, 3 1] for supporting abstract data types and pro-
tected subsystems is another instance of internal
transformation. The cast for abstract data types and
protected subsystems is well argued in several
classic papers [5, 14, 2 1, 311. Marc recently it has
been argued [2] that the “access control triple”,
which is csscntially similar in concept, is ncccssary
for support of integrity policies.

Grant transformations allow us to accommodate
various kinds of integrity controls. For instance, WC
can distinguish the ability to access an object from
the ability to grant access to that object. This dis-
tinction has been suggcstcd as an essential part of
“commercial” access-control policies [I V] and is
implcmentcd in actual systems such as IBM’s
RACF (Kesourcc Access Control Facility). This dis-
tinction of course is one form of separation of
duties. Another instance of grant transformations
arises when operations on an object are constrained
to occur in a specific scqucncc. This has similaritics
to the manner in which separation of duties is
cnforccd by transaction control expressions [261.

Our principal objcctivc in this paper is to dcscribc
an architecture and design outline for implcmcnt-
ing Transform in a distributed cnviromiicnt. Our
architccturc for Transform is strongly influcnccd
bv the idcntitv-based capability architccturc pro-
p&d by Goni 171. Tl 1 ’

1

IC concept of cmbcdding the
idcntitv of a subicct in a cauabilitv in distributed
syst& has b& known f& so& time [4]. It
cnsurcs that capabilities cannot bc forged or propa-
gated from one subject to another without intcr-
vcntion of trusted software. Gong’s architccturc is
based on the familiar client-scrvcr model of
scrviccs in a distributed system. It includes
mechanisms for revocation which wcrc missing in
earlier proposals suc11 as [4]. WC have cxtcndcd
Gong’s proposal to accommodate Transform. In
particular the concept of strongly typed subjects

and objects, which is csscntial to Transform, has
been incorporated.

The rest of the paper is organized as follows.
Section 2 discusses scvcral cxamplcs of internal and
cxtcrnal transformation in an informal manner.
Section 3 dcvclops the Transform model to unify,
and make prccisc, the common theme running
through thcsc cxamplcs. This formalization in turn
suggests additional applications. Section 4 dcscribcs
our capability-based architecture and gcncral
design for implcmcnting Transform in a distri-
butcd cnvironmcnt. The protocols involved in
creation, propagation and revocation arc presented.
An cxamplc of the implcmcntation is prcscntcd in
section 5. In section o WC‘ digress from the main
thcmc of the paper to discuss the safety implica-
tions of Transform and show that it has cffciently
dccidablc safety. Section 7 concludes the paper.

2. Applications

The simplest cxamplc of transformation of rights
arises when one right is trcatcd as stronger than
another. Consider the typical read, write and
append operations on a tilt, rcspcctivcly authorized
by the rights r, w and a. From the semantics of
thcsc operations it is clear that possession of w
should imply possession of a. The ability to obtain
a wcakcr right by virtue of possessing a stronger
one allows a subject to work with the least privi-
leges needed at any given moment. In some casts
WC’ require the stronger implication that w implies
a and both imply r.’ The motivation is one of
integrity in that a subject who writes a file should
bc able to cheek whcthcr the writing has been
carried out properly, which requires hc bc able to
t-cad the file.

WC can gcncralizc thcsc cxamplcs somewhat by
allowing diffcrcnt implication relations for differ-
cnt types of f&s. For instance, WC may define two
types of f&s rcspectivcly with the two implication

286

Computers &I Security, Vol. 72, No. 3

relations discussed above and a third type of file
with no implied rights. Howcvcr, so long as the
ability to obtain implied rights is uniformly avail-
able to every subject, internal transformation pro-
vidcs only for consistency in authorization.

Significant power is added by restricting internal
transformation to certain subjects. The amplifica-
tion operation in the Hydra system [3] works in
such a fashion, as the basis for implcmcnting
abstract data types and protected subsystems. To
illustrate amplification consider the example of a
stack with push and pop operations implemcntcd
in terms of a segment with read and write opera-
tions. We need to enforce the following policy:

(1) Subjects other than the type manager for stacks
can only possess push and pop rights for a stack.

(2) The type manager for stacks reccivcs the right

to push (or pop) a stack when a subject cxecutcs the

push (or POP) P tl o era ‘on. The manager amplifies the
push (or pop) right to obtain r and w rights for the
scgmcnt containing the stack.

(3) only the typ c manager for stacks can do such
internal transformation.

Predicating the ability to amplify on the type of
subject doing the internal transformation cnablcs
implementation of abstract data types. Pursuing the
cxamplc further, WC may have stacks implemented
in terms of lists which in turn arc implcmcnted in
terms of segments. Now we have two levels of
internal transformation. The first lcvcl from push

or pop rights (i.e., stack operations) to the head, tail
or cons rights (i.e., list operations) can only be done
by the type manager for stacks. The second lcvcl

from head, tail or cons rights (i.e., list operations) to
r and w rights (i.e., segment operations) can only be
done by the type manager for lists.

Next consider grant transformations. A simple
form of grant transformation occurs with the copy
flag, which distinguishes between the ability to
access an object and the ability to grant access for

that object to another subject. The concept goes
back to the earliest abstract models for access con-
trol [8, 121 and is a fundamental aspect of dis-
cretionary access controls. The idea is that
possession of a right x authorizes access to the
object, whereas possession of xc authorizes the
ability to grant access to that object to another sub-
ject. The xc right is typically made available to the
creator of each object. In many models [8, 12, 15,
for instance] the ability to grant access is treated as
stronger than the ability to perform access; that is,
possession of xc implies possession of x. Let us for
the moment make this assumption (which of
course is another example of internal transforma-
tion). Now consider the following policies:

(1) A user who posscsscs the xc right for an object
can grant the x right for that object to another user.

(2) A user who possesses the xc right for an object
can grant the xc or x right for that object to
another user.

These arc both examples of grant transformations.
In the first case the xc right is transformed to the x
right as part of the grant operation. In the second
case thcrc is a choice in the transformation, prc-
sumably at the volition of the subject doing the
granting. The choice is bctwecn the identity trans-
formation of xc to itself or an attenuating transfor-
mation of xc to x.

Let us call the copy flag in the first case the one-step
copy jlag, denoted xc’, and in the second cast
the unlimited copyjag, d enotcd xc*. Both thcsc copy
flags wcrc proposed in the original access-matrix
papers [8, 121. Th c interpretation is that xc* can be
transformed to xc*, xc’ or x during a grant, whcrcas
xc’ can only be transformed to x. This idea can
easily be generalized to allow for n-step copyJag by
allowing the grant transformation of xc” to any one
of xc”ml, xc”-I ,...,xc’ or x. The intcrprctation of
copy flags can also be made to depend on the types
of subjects and objects involved in a grant opcra-
tion. For instance, the copy flag can be intcrprcted
as a one-step flag for sensitive documents, whereas

287

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

for non-sensitive documents it is an unlimited flag.
As another example, say we distinguish members of
a dcpartmcnt from outsiders with the policy that
the copy flag for grants between members is trans-
formed as an unlimited flag, whcrcas for grants
from a member to an outsider it is transformed as a
one-step flag. These arc very rcasonablc policies. It
is clear that the possibilities arc endless, particularly

in large systems with lots of subject and object

types.

Next we introduce a new kind of copy flag, called
the separation copyjlq, by dropping the assumption
that possession of xc implies possession of x. In this
way WC draw a clear separation bctwcen the ability
to grant access and the ability to perform access.
This separation has been suggcstcd by Moffctt and

Sloman [191 as a fundamental aspect of “commer-
cial” access-control policies. They note such
separation is implcmcntcd in actual systems, citing
the example of IBM’s RACF. In our framework this
separation is easily achicvcd as an instance of grant
transformation whcrc xc can only be transformed
to x. Now if a subject is allowed to grant to itself
the intent of the separation is dcfcated, since then

possession of xc implies possession of x by a grant
to onself. WC can prcvcnt this by predicating the
grant transformation on the types of subjects
involved. Say WC distinguish security-off&-s from
users. The transformation of xc to x is allowed in a
grant from a security-off&r to a user. However, in
a grant from a security-off&r to a security-officer
the transformation is from xc to null. This is the
policy suggested in [191. There is the further qucs-
tion of how the ability to grant is obtained in the
first place by security-officers. Following [191, this
itself can be obtained by grant transformation. The
idea is that some user owns the object in question.
13y possessing the own right for that object the user
is authorized to grant xc (by transformation) to a
security-off&-. That is, the owner of an object can
dclcgate the ability to grant access to sccurity-
officers. WC can play this game again and ask how
ownership is acquired. It should bc clear by now
that this in turn can be achicvcd by grant tran&r-
mation if so dcsircd. Altcrnativcly it can bc tied to

creation of the object or be determined at system
initialization.

More general notions of separation of duties can
also bc viewed as examples of grant transforma-
tions to some extent. These relate to sequences of
operations on an object which must occur in a prc-
scribed order and must be executed by different
types of subjects. For example, consider a policy in
which a cheek is prepared by a clerk, approved by a
supervisor and issued by a cashier. This is scpara-
tion of duties in that the different steps are to be
cxccutcd by users with different roles (types). WC
can cnforcc this policy by transforming the prepare
right into an approve right in the clerk-to-super-

visor grant, and again transforming the approve
right to an issue right in the supervisor-to-cashier
grant.3

3. The Transform model

It is apparent from the foregoing discussion that
thcrc is a common theme underlying the several
examples we have seen. Our objective in this
section is to make this intuition precise by means
of a formal model called Transform.

The notion of type is fundamental to most
cxamplcs WC have considered. In fact much of the
power of transformation derives from predicating
the ability to transform on the types of subjects and
objects involved. We therefore assume that subjects
and objects arc classified into types. Object types
identify classes of objects which are treated diffcr-
cntly for transformation of rights. Subject types
similarlv identify classes of subiects which have , _I

varying ability to transform rights. Subject types
also abstract the conceDt of roles often used in the
literature [19, 26, 30, fir instance].

288

Computers & Security, Vol. 12, No. 3

WC define the sets TS and TO for subject types
and object types rcspcctivcly. Each subject is an
instance of some subject type and each object an
instance of some object type. We assume strong
typing in that the type of subject or object is dctcr-
mined when it is crcatcd and does not change
thcrcaftcr.

Before considering transformation of rights let us
first deal with creation. It is clear subjects need to
crcatc objects. Tl lcrc arc two issues involved in
creation. Firstly, subjects need authorization to
create objects. Secondly, the rights obtained as a
result of creation also need to be specified.

In Transform WC authorize creation of objects by
means of a can-create function as follows:4

cc: l-s - 2T”

The interpretation of CC(U) = {o,,o~,...,o~} is that
subjects of type u arc authorized to create objects
oftypesoI,oz ,..., ok.

The effect of creation is defined by create-rules of
the following form, where R is the set of rights:

cr: TS x TO - 2”

The interpretation is that when subject U of type u
crcatcs an object 0 of type o the creator U obtains
the rights cr(u,o) for 0. For cxamplc, if
cc(uscr) = {file} and cr(uscr,filc) = { own,r,w} the
creator of a file gets the own, r and w rights for it.
For readability we usually drop the set parcnthcscs
around singleton sets, for instance rc(uscr) = file.

Now consider the authorization for internal trans-
formation. As discussed earlier, internal transfor-
mation of rights for an object in a subjcc?s domain
involves consideration of their types. So what we
need is an internal transformation function of the

following form:

itruns: TS x TO X R -+ 2’(

The interpretation of itranr(u,o,x) = {x, ,.. .,x,,} is
that a subject of type u who has the x right for an
object of type o can obtain the x ,,..., x,, rights for
that object by internal transformation. For
cxamplc, the policy that write implies append and
both imply read can be stated in either of the
following ways:

(a) itruns(uscr,filc,w) = (a,r)

itruns(uscr,filc,a) = r

itrans(user,f&,r) = #

(b) itruns(user,f&,w) = a

ifruns(uscr,filc,a) = r

itruns(uscr,file,r) = #

In (a) the transformation from w to r is achieved
directly, whereas in (b) it is done indirectly in two
steps. We allow for either formulation in the
model. The amplification cxamplc of a stack
implcmcntcd by a list which in turn is implc-
mcnted by a scgmcnt can be spccificd as follows:

itruns(stack-manager, stack, pop) = {head, tail}

ifrans(stack-manager, stack, push) = cons

itruns(list-manager, stack, head) = {r, w}

itruns(list-manager, stack, tail) = {r, w}

itruns(list-manager, stack, cons) = {r, w}

All other values of itruns arc empty

Hcrc the ability to ampliEj push and pop to head,
tail or cons is rcstrictcd to the stack manager; while
amplification from head, tail and cons to r and w is
restricted to the list manager. Realistically of course
thcsc would bc fragments of a larger specification
involving additional types.

289

R. S. Sandhu & G. S. SkIDistributed capability-based architecture

The internal transformation function generalizes in
an obvious way as follows to amplify sets of rights
(as opposed to single rights):

itruns: TS x TO X 2” - 2”

The interpretation of ifruns(u,o,{x ,,..., x,,}) = { y ,,.. .,
ylll} is that a subject of type u who has all the x,
rights spccificd on the left-hand side for an object
of type o can obtain the rights y ,,..., y,), for that
object by internal transformation. This is useful in
situations described as synergistic authorization in
[171 and as command authorization in [!?I. For
instance, consider a situation where a scientist
(abbreviated as sci) needs approvals from a sccurity-

officer and a patent-officer bcforc he can rclcase a
document (abbreviated as dot) for publication. Say
these two approvals are respectively signified by
possession of the a, and aF rights. WC can express
this policy as follows:

i~runs(sci,doc,{own,a,,aI,}) = release

A scientist then needs to be the owner of a docu-
mcnt and must possess the two approvals before he
can obtain the right to rclcasc the document. The
synergy in this internal transformation occurs only
if WC can guarantee that the a, and a,, rights arc
obtained from two indcpcndcnt sources. As WC will
SK, this can be achieved by grant transformations.

Grant transformations can be modeled as a punt
function of the following form:

pant: TS X TS X TO X 1I - 2”

The interpretation of cqrunf(u,v,o,x) = {x, , . . ,x,,} is
that a subject of type LI who has the x right for an
object of type o can grant O~IP or mre of the x, , . . ,x,,
rights for that object to a subject of type v. The
unlimited copy flag xc* and the one-step copy flag
xc’ of section 2 can then be specified as follows:

pu7t(uscr, user, file, xc*) = (xc*, xc’, x}

grclrzt(uscr, user, file, xc’) = x

,qr0r11(uscr, user, file, x) = 4

The cxtcnsion to n-step copy flags is obvious.
There arc actually several ways of specifying even
this rather sitnple policy. For instance, we could
combine grant and internal transformations to
achieve the same net cffcct as follows:

grunt(user, user, file, xc*) = {xc*, xc’}

itruns(user, file, xc*) = xc’

grunt(uscr, user, file, xc’) = x

XruM(uscr, user, file, x) = 4

This property of multiple equivalent specifications
appears to bc incvitablc in any sophisticated sccur-
ity model. WC camlot realistically hope to have a
unique, or even a best, specification for a particular
policy in a general model.

The separation copy flag of section 2 is also easily
specified as follows:5

xrflnf(user, security-officer, file, own) = xc

grunt(sccurity-officer, user, file, xc) = x

ilruns(sccurity-officer, file, xc) = 4

That is, a user who owns a file can delegate the
authority to grant access to that file to a sccurity-
officer. The security-officer can grant access to that
file to other users but cannot himself access it.

Next let us go back to the example of a scientist
who needed multiple approvals for rclcasing a
document for publication. We had mentioned that
consideration of grants is rcquircd for a complete
statement. One possibility is shown below:

grant(sci, security-officer, dot, own) = review

<frant(sci, patent-officer, dot, own) = rcvicw

290

Computers & Security, Vol. 72, No. 3

~~runt(sccurity-officer, sci, dot, rcvicw) = a,

gmnt(patcnt-officer, sci, dot, rcvicw) = at,

(2) A set of rights R.

(3) A can-crcatc function cc: TS -- 2To.

itrans(sci, dot, {own, a,, a,,}) = release
(4) Create-rules cr: TS X TO - 2”.

As the owner of a document a scientist can request
it be rcvicwcd by a security-officer and a patcnt-
officer by granting them the rcvicw right. In turn
they can grant the scientist who gave them the
review right appropriate approval rights. Finally the
scientist can internally transform these rights to
acquire the release rig&.

(5) An internal transformation function itrans:
l-S x TO x 2” - 2’(.

(6) A grant transformation function pmt: TS x
TS x TO x 2” - 2’(.

This completes our description of Transform.

Consider a slight modification to the above policy.
Say that WC rcquirc further separation of duties
regarding release of a document. A scientist is
rcsponsiblc for gathering the ncccssary approvals.
The actual rclcasc, howcvcr, must bc done by a
librarian who is responsible for cataloging informa-
tion about the document bcforc releasing it. To
achicvc this WC can rcplacc the internal transfor-
mation above by the following grant transforma-

4. Implementation of Transform

In this section WC describe an architccturc and
design outline for implcmcnting Transform in a
distributed cnvironmcnt. Our architecture is capa-
bility based. W c b cgin with a brief rcvicw of dis-
tributcd capability systems, following which WC
dcscribc our architecture and protocols in detail.

tion:

gmnt(sci, librarian, dot, {own, a,, a,,}) = rclcase

To do so we can gcncralizc grunt as follows in the
same way that itruns was generalized:

grunt: TS x TS x TO x 2” - 2”

The intcrprctation of,crunt(u,v,o,{x, ,..., x,,}) = {y ,,...,
y,,,} is that a subject of type u who has all the x,
rights spccificd on the left-hand side for an object
of type o can grant one or more of the rights y,, . . . , y,,,
for that object to a subject of type v.

To summarize, WC have the following definition
for Transform.

Definition 1 A policy for transformation of rights
is stated in Transform by specifying the following
(finite) components:

(1) Disjoint sets of subject types TS and object
types TO.

4.1. Distributed capability systems
Capability-based architectures have had a strong
appeal cvcr since the concept was first proposed [5].
They arc viewed as providing a sound and com-
mon basis for providing both reliability and sccur-
ity [lb]. In the context of conventional ccntralizcd
systems a number of such machines have been
built [131. Some cvcn achicvcd moderate commcr-
cial success. Ncverthclcss today’s popular CPUs arc
not capability based. In retrospect one can argue
that using capabilities to solve the memory protcc-
tion problem is an overkill. The marginal advan-
tages of capabilities over memory scgmcntation
and protection rings, which arc available in the
latest generation of microprocessors such as the
Intel 80386, do not justify the extra costs and pcr-
formance penalties. In other words the initial appli-
cation of capabilities was at too low a lcvcl.

It is cxpcctcd by many rcscarchcrs that in the I wos
distributed operating systems will dominate the
computing cnvironmcnt. Thcsc systems will appear
to users as a single ccntralizcd system with com-

291

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

plctc location transparency. To achicvc this, rclia-
bility and security will have to bc addrcsscd as part
of the basic design of thcsc systems. Attempts to
graft security fcaturcs later in the design cycle will
surely fail niuch as they arc failing in conventional
ccntralizcd systems. The capability-based framc-
work continues to offer an attractive approach to
thcsc problems. In a distributed operating system
capabilities arc introduced at a nluch higher lcvcl
than nmnory addressing. Capabilities need to bc
incorporated into the rctnotc proccdurc call
mechanism rather than the memory addressing
mcchanisn~. This offers the hope that the addi-
tional ovcrhcad will not kill pcrformancc. Capa-
bilitics can morcovcr bc intcgratcd into the basic
client-server structure of distributed systems to
provide transparency.

Thcrc arc three basic issues which must be con-
fronted by the dcsigncr of a distributed capability-
based system. Thcsc issues arc complicated rclativc

to conventional ccntralizcd capability-based
systems bccausc capabilities arc dispcrscd in indi-
vidual workstations and can no longer bc assumed
to bc under tight control of a centralized security
kcrncl.

(1) Unjhpabili~y. It must bc guaranteed that
capabilities cannot bc modified or nlanufacturcd
by subjects. This rcquircs some form of crypto-
graphic scaling.

(2) Propuption. It must bc guaranteed that capa-
bilitics cannot bc copied from one subject to
another. This rcquircs some means of embedding
the identity of a subject in a capability.

(3) ~rvocation. It must bc guaranteed that capa-
bilities which have been granted can bc withdrawn
or rcvokcd in a timely manner. This rcquircs some
means of invalidating existing capabilities and
accounting for cascaded revocation.

Various solutions to one or nlorc of these problems
have been proposed in the litcraturc. For instance,
Amoeba [IN] LISCS “sparse capabilities” with crypto-

graphic protection to cnsurc unforgcability. Unfor-
tunatcly Amoeba dots not address propagation or
revocation. Davies [a] discusses mechanisms to
cmbcd the identity of a subject in a capability. This
cnsurcs that capabilities cannot be forged or propa-
gatcd from one subject to another without intcr-
vcntion of trusted software. I)avics, howcvcr, dots
not address the revocation issue. Gong’s proposed
architccturc [7] is the first attempt to address all
three issues in a distributed context. It is based on
the familiar client-scrvcr model of services in dis-
tributcd systems and thcrcforc is a suitable founda-
tion for us to build upon. Howcvcr, Gong does not
incorporate the notion of types which is basic to
Transform. His architccturc thcrcfore needs to bc
cxtcndcd for this purpose.

4.2. Basic architecture for Transform

WC assume that objects arc cncapsulatcd within
object scrvcrs. The basic computation model is that
of rcmotc proccdurc calls involving the following
scqucncc of cvcnts: (i) a client sends a rcqucst to a
scrvcr to manipulate one or nlorc objects, (ii) the
scrvcr accepts and scrviccs the rcqucst, and (iii) the
scrvcr sends back a reply. The object scrvcr runs on
a trusted host which guarantees that the scrvcr can-
not bc bypassed. For cast of exposition WC visualize
each object scrvcr as running on a scparatc host.
However, WC allow lnultiplc object servers on the
same trusted host provided the security kcrncl on
the host can cnf&c separation among thcsc
scrvcrs. If WC have sufficient confidcncc in the

sccuri ty kcrncl WC can also allow untrusted clients
to coexist with object scrvcrs on a single trusted
host.

Each object scrvcr acts as the rcfcrcncc monitor (or
access mediator) for the set of objects it manages. In
other words the object scrvcr is part of the Trusted
Computing Base [o]. Tl K object scrvcr is respon-
sible not only for access mediation but also for
ensuring scnlantic corrcctncss of the objects with
rcspcct to the abstract operations exported from
the scrvcr. The object scrvcr itself has the ability to
access all objects within its control. WC cmphasizc

292

Computers & Security, Vol. 12, No. 3

that the object server is not a subject in the system
but is rather a part of the Trusted Computing Base.

For simplicity, we require that each object scrvcr
manage exactly one type of object. In practice this
rule would probably b c rclaxcd to allow a single
scrvcr to manage multiple object types, particularly
if they are closely rclatcd. On the other hand the
same type of object may bc managed by multiple
object scrvcrs. For instance, a given system may
have numerous file servers. An individual file
server manages some subset of the total collection
of files in the system. WC assmiic there is no rcpli-
cation of files; that is, each file resides at exactly one
file server.

Finally WC assume there is an Access Decision
Facility which can be consulted by object servers to
determine the security policy. In the context of
Transform the Access I>ccision Facility will be
consulted by object scrvcrs for finding out appro-
priate values of cc, cr, pmt and itruns. Pieces of the
Access Decision Facility may actually reside at each
object scrvcr while other picccs are rcmotcly
accessed. The reason for this is to allow quick local
access to well-established and relatively static
aspects of the policy while at the same time allow-
ing for new types etc. to be introduced.

4.3. Identity and type

Each subject or object in the system has a globally
unique idcntif~er. Each subject or object also has a
unique type which is dctcrmincd when that subject
or object is created. Thereafter the type cannot
change. We assume the type of a subject or object
is embedded in its idcntificr. Hcnccforth WC refer
to a subject identifier by sin and an object identifier

bY ,,in. These idcntificrs have the following
structure:

The type field denotes the type of the object while
the identifier field uniquely identifies each subject
or object among instances of the same type. Note

that sid’s and oid’s can be gencratcd at will by users
and have no guarantee of unforgcability. We rcfcr
to the individual fields of a sid by sid.typc and
sid.identificr, and similarly for oid’s. Note that the
sid’s and oid’s must bc globally unique, for which
purpose it suffices that their idcntificr fields arc
unique within instances of the same type.

4.4. Capability seeds
A capability seed is a secret random number asso-
ciatcd with each oid. The seed is known only to the
object server which manages the object idcntificd
by oid. WC can visualize this association by the
following pair?

The purpose of the seed is to facilitate revocation

and prevent against replay of revoked capabilities,
as will bc discussed later.

4.5. Capabilities

A capability has the following structure:

j

where the seal is computed using a publicly known
one-way function f as follows:

seal = f(sid, oid, rights, seed)

The oid and rights components of a capability arc
exactly as one would cxpcct, even in a conventional
centralized system. The seal cryptographically
embeds the subject idcntificr (sid) in the capability
using the secret capability seed for that purpose.

293

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

4.6. Access mediation

Access mediation must be incorporated into the
RPC (Remote Proccdurc Call) mechanism of the
client-scrvcr architccturc. The object scrvcr must
authenticate the source of cvcry RPC rcqucst. For
this purpose, WC assume that each subject has the

means to place its digital signature on cvcry RPC
communication to an object scrvcr. The RPC also
carries within it the rclcvant capabilities for the
operation being rcquestcd. The object scrvcr first
vcrifics that the sid on each capability is authcnti-
catcd by the digital signature, otherwise the RPC is
immcdiatcly rcjcctcd. Then the object scrvcr looks
up the capability seed for oid, computes the seal
using the above formula and compares the com-
puted seal with the seal submitted by the subject. If
thcsc match, the capability is known to be authcn-
tic and the operation is pcrformcd, provided the
rights arc sufficient to authorize it.

IIigital signatures for the revcrsc communication
from object scrvcrs to subjects can also bc incor-
porated. The details of thcsc protocols arc beyond
the scope of this paper and can readily bc found in
the standard litcraturc [I]. WC cnvisagc an implc-
mCntation similar to the intcrfacc function box of
Amoeba [20] which is placed bctwccn each pro-
ccssor module and the network.

4.7. Creation

For object creation the object server consults the
Access I)ccision Facility to dcterminc whcthcr or
not such creation is authorized by cc(sid.typc). If
the creation is authorized a new object is crcatcd
with a new oid and a new capability seed. The
rights to bc cntcrcd on the capability arc dctcr-
mined from cr(sid. type, oid. type). Finally the capa-
bility is sealed and rcturncd to the subject.

4.8. Internal transformation

Let subject sid rcqucst the following internal trans-
formation for object oid:

irrnns(u,o,{x,,...,x,,})=i y,,...,y,,,j

The object server must, of course, bc a manager

for objects of type o. The scrvcr cheeks that
sid.typc = u and oid.typc = o. It also cheeks that the
RPC rcqucst includes a capability (or capability list)
for object oid with the rights x, , . . . , x,,. This cheek
is pcrformcd by comparing the computed seal with
the seal on the capability as discussed in section -CL).
Finally the object scrvcr creates a new capability
scaled for sid with rights x ,,..., xI,, y ,,..., y!,,. This
capability is rcturncd to the subject sid. Note that
the original capability conti~lucs to be valid. !t is,
howcvcr, redundant and can bc discarded by the

subject.

4.9. Grant transformation

Let subject side quest the following grant trans-
formation for object oid to subject sid2:

The object scrvcr should again bc a manager for
objects of type o. The server cheeks that
sid I .typc = u, sid2.typc = v and oid.type = o. It also
cheeks that the RPC request includes a capability
(or capability list) f or object oid with the rights
x I,...) x,,. If the cheek is successful the object scrvcr
crcatcs a new capability scaled for sid2 with rights

Yl,...,Y,,,. This capability is rcturncd to the subject
sid I, who can then pass it on to subject sid2. (Altcr-
natively it can bc communicated to sid2 directly.)

4.10. Revocation

Revocation has always been a problem in capabil-
ity-based systems. In distributed systcnns the
problem is compounded, since the subjects arc
complctcly autonomous, with no ccntralizcd
authorities enforcing security. Thcrc arc various
issues with rcspcct to which implcmcntations of
revocation can be compared 1291:

(I) Partial or Complctc: whcthcr it is possible to
revoke a specific right or whcthcr all rights in a
capabili

?
have to be revoked to get any sort of

denial o access in the system?

(2) Immediate or Dclaycd: if the implementation
cxccutcs revocation immcdiatcly or it comes into

Computers & Security, Vol. 12, No. 3

force only the next time the subject tries to access
the object?

(3) Sclectivc or General: does the revocation uro-

server appends the revocation information onto the
revocation list associated with that oid. The value
of the threshold is set by the system administrator.

\ I

cess affect all users or a sclcct group of users habing
access over the object?

5. implementation of an example

(4) Temporary or Permanent: is access to be denied
permanently or, if once it is rcvokcd, is it retricv-
able?

We provide revocation by a revocation list and a
count field appended to the seed as shown below:

The scientist and the security-offccr cxamplc dis-
cussed carlicr in section 3 is illustrated hcrc using
the protocols described above. A scientist (say Joe)
creates a document (say SDI) on his workstation,
but before he can release it he needs to have
approval from a security-officer (say Sam) and a
patent-officer (say Pat). The following is the
sequence of protocols needed to complctc the task.

oid seed count revocation list

The revocation list contains cntrics of sids for
whom the rights for that particular oid have been
revoked. The list specifies for each sid which of its
rights have been revoked. When the validity of the
capability is checked during access mediation, the
revocation lists arc checked in parallel as well. Since
access mediation is pcrformcd on every operation
revocation is immediate. The owner of an oid
always has the option to revoke partially or com-
pletely the capability of a sid for that oid. Partial or
complctc revocation of a sid in no way intcrfcrcs
with the access rights of other sids.

The count is a measure that determines the num-
bcr of valid capabilities for that seed. The count is
incremcntcd during creation and propagation, but
dccrcmcnted during complete revocation (i.e.,
when all the rights of a subject for that object are
revoked). Temporary or pcrmancnt revocation is
carried out, depending on the value of the count. If
the count is smaller than a threshold the object
server goes ahcad with permanent revocation. The
server dclctes the seed associated with that oid,
computes a new one and sends new recomputed
capabilities to other associated sids. This of course
rcquircs that the object server keep a log of propa-
gation of capabilities. However, if the count is
above the threshold the object server goes ahcad
with temporary revocation. In this cast the object

(1) Jot asks the server to create a document called
SDI. This RPC is made by the kernel ofJoc’s work-
station to the appropriate dacmon responsible for
that host’s actions. RPC contains the action
rcqucstcd and the sid of the requester togcthcr
signed under Joe’s digital signature. In this case the
sid= sci.Joc and the rcqucst is to create a new
document of type dot with spccificd contents. On
receiving the rcqucst, scrvcr checks the digital sig-
nature to authenticate Joe. The scrvcr then checks
the cc policy, taking into account sid.typc. If it is in
the affirmative it checks the cr policy, by which it
determines what rights Joe gets for the document
he is creating. The document server generates a
new oid for the document being crcatcd (say
doc.SDI) as well as a new seed (say sccdl) for that
document. The server sets the count to 1 and the
initial revocation list to empty and stores the infor-
mation in its internal tables with the following
association.

doc.SDI sccdl 1

The revocation list field is empty as thcrc are no
entries for it and WC shall not show it till it is
needed. So from hcrc on it can bc assumed that the
revocation list, if missing, is empty.

Then the object server manufactures the following
capability and sends it to Joe (strictly speaking to

295

R. S. Sandhu & G. S. SkIDistributed capability-based architecture

the kernel of Joe’s workstation):

dot SD1 own, read seal1

where seal1 = f(sci.Joc, doc.SDI, {own, read}, sccdl).

(2) Now Jot is ready to rcleasc the document. His
workstation sends the propagation rcqucsts to the
server on his behalf. The RPC looks like this:

grunt(sccurity-officcr.Sam, review)

doc.SDI own, read stall

The host, when framing the RPC, appends to it the
capability that Joe posscsscs for SD1 and signs the
request under Joe’s digital signature. The server on
receiving the request decrypts the digital signature
and authenticates Joe. Then the server checks the
validity of the capability by retrieving the seed of
SD1 (i.c,, secdl) from its internal tables, and com-
puting the seal using the one-way function f. Then
it extracts seal1 from the capability provided by Joe
and if the two seals match the validity of the capa-
bility is confirmed. The request is then checked
against the grunt function. When the server deter-
mines Joe has suffcicnt rights (i.e., own) for SDI, it
proceeds with the grant. In its internal tables the
count is updated to 2, which looks like this:

The server then computes the capability for the
security-officer Sam to have the review right for
SDI. The capability

1 doc.SDI 1 review 1 seal2 1

where seal2 = f(security-offlcer.Sam, doc.SDI,
review, seed 1)

is sent to Jot. Joe then forwards this capability to
Sam. Sam now has the capability for oid=doc.SDI
with the review right. With this capability hc can
only access the document to review it. If Sam tries
to get additional rights by internal transformation,
the server will turn down his request because the
set of rights, namely review, is an insufficient set
for any internal transformation. Sam now reviews
the document, and if hc approves of the action to
release SD1 he requests the server to grant Jot the
approval (a,) right.

grunt(sci. Joe, a,) doc.SDI rcvicw seal2

The server, as before, updates the count in the
internal table to 3:

1 doc.SDI / sccdl 1 3 1

and then computes the following capability and
sends it back to Sam, who in turn sends it to Jot:

(doc.SDI 1 a, 1 seal3 1

where seal3 = f(sci. Joe, doc.SDI, a,, seed 1).

(3) Exactly similar protocol steps arc cxccutcd to
get the approval (a,) from the patent-offccr Pat. At
the end of this session the internal table looks like
this:

(doc.SDI 1 seed1 (5 1

And Joe posscsscs the following capability:

(1

where seal4 = f(sci. Joe, doc.SDI, ap, seed I).

(4) Now the scientist Joe posscsscs the capabilities
giving him the approval to get the release right by

296

Computers & Security., Vol. 12, No. 3

internal transformation. Joe presents these capa-
bilities to the server with the following request:

doc.SDI own, read seal1

itruns(release) doc.SDI a, scal3

doc.SDI aP seal4

Like before, the server carries out the authentica-
tion and the validity tests on the capabilities
presented to it by Joe Then the server checks that
Joe has the rights own, a, and ap for SD1 which arc
required to get the additional release right. Count
is not updated during internal transformation. The
server sends him a new capabiliry:

doc.SDI own, read, a,, a,,, release seal5

where scal5 = f(sci. Jot, doc.SDI, {own, read, a,, a,,
release}, seed 1).

To exemplify revocation let us augment the grant
function of the document rclcase example of
section 3, which we illustrated above, with

grant(sci, sci, dot, release) = read

That is, the release right allows the scientist to let
other scientists mad the document. Now assume
that Joe grants scientist Jill (sid = sci. Jill) the read
right for SDI. The protocols are the same as above.
The signed RPC request is as follows:

grant(sci. Jill, read)

doc.SDI own, read, a,, ap, release seal5

In response to this request the server updates the
count in the internal tables to 6:

doc.SDI scedl 6

And then the server computes the following capa-
bility and passes it to Joe, who in turn passes it to
Jill:

doc.SDI read seal6

where seal6 = f(sci. Jill, doc.SDI, read, sccdl).

This capability gives Jill the authorization to read
SDI.

Now if at a later time Joe wants to revoke the read
privilege of Jill, he requests the server to execute
the following action:

rev(sci. Jill, read)

doc.SDI own, read, as, ap, release seal5

The server performs the various tests on the capa-
bility to check its authenticity and validity. Then
the server looks at the value of the count in its
internal tables for seed 1. Let us assume threshold to
determine the type of revocation (i.e., permanent or
temporary) is 7. The server compares the value of
the count with that of the threshold and decides
with permanent revocation, as the value of the
count (6) is less than the threshold. For each com-
plete revocation the server decrements the count
by one. So in this case the count will dccrcase to 5,
as only one complete revocation is requested. The
server then rccomputcs new capabilities for the
doc.SDI with a new sccd2 and the old ones arc
purged. This new association is shown below:

[]

And the new recomputed capability sent to Joe
looks like this:

doc.SDI own, read, a,, a,,, rclcase seal7

297

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

whcrc seal7 = f(sci.Joc, doc.SDI, {own, read, a,, ap,
rclcasc}, seed2).

In similar fashion new rccomputcd capabilities arc
sent to all subjects which possess a capability for
911. For this purpose the server maintains a list of

all subjects who possess capabilities for SDI. All the
seals on thcsc new capabilities will bc computed as
bcforc, except they will bc a function of seed2
instead of sccdl . With this all previous capabilities
for SD1 arc invalidated and should be purged. And
if Jill tries to access SD1 with the capability she

posscsscs her request will fail since the capability
she possesses for SD1 will fail the validity test.

To illustrate temporary revocation let us assume
that the threshold is set at -C and the count is 6. Jot
requests revocation in a similar fashion as bcforc
and similarly the scrvcr compares the value of the
threshold (4) to the count (6). The scrvcr decides
with temporary revocation as the value of count is
grcatcr than the value of the threshold. For
temporary revocation, the scrvcr adds the sid of the
revoked subject with the rcvokcd right to the
revocation list in the internal table. The count is
not decrcmcntcd in temporary revocation. The
internal table now contains the following associa-
tion:

doc.SDI seed 1 6 sci. Jilljrcad}

On all future access mediations by Jill, when the

scrvcr would check the revocation list for Sl>l, it
will find her sid along with the list of rcvokcd
rights and thus deny read access.

Our examples demonstrate that fairly complicated
policies arise in even rather simple situations. The
cxamplcs have used a few types of subjects and
objects. Realistically in large organizations WC
would have hundreds of types. The complexity will
rapidly multiply. WC bclicve that authorization
politics will ncccssarily bc formulated in terms of
local and incrcmcntal considerations of the kind

WC have discussed. In sucl~ situations safety analysis
is very important.

6. Safety analysis of Transform

The safety question for access control posts the
following question: is it possible for a given subject
to ever acquire access to a given object? It is well
known that in gcncral this question is undccidablc
[101, cvcn for monotonic systems [111.

In this section WC show that Transform has cff-
cicntly decidable safety. We do this by dcmonstrat-
ing that Transform is an instantiation of SPM
(Schematic Protection Model) [%I. Our construc-
tion cstablishcs that Transform can be simulated in
SPM within SPM’s efficiently decidable casts for
safety.

One difficulty in reducing Transform to SPM is
that the SPM copy operation is attenuating,
whcrcas the Transform pant and itruns operations
may bc amplifying (i.c., new rights may bc crcatcd
rather than simply being copied from one subject
to another). Section 6.1 shows that the grunt opcra-
tion in Transform can be assumed, without loss of
gcncrality, to be attenuating. Section 0.2 then
shows how amplifying itrans operations can bc
simulated in SPM. It also contains a brief review of
SPM.

6.1. Attenuating Transform

WC now show that ampli@ing grmr can bc
climinatcd from the Transform model without any
loss of cxprcssivc power.

It is clear that internal transformations arc useful
only if they arc amplifying in the scnsc that new
rights arc obtained. That is, we can assume without
loss of generality,

itrms(u,o,R,) = I$ - R, n K, = 9

Now consider the grant transformation Xrunt(u,v,
o,R,) = 5. That is, possession of R, rights enables
transfer of R, rights. Clearly if 5 G R, such a grant

298

Computers & Security, Vol. 12, No. 3

is attenuating or non-amplifying in that the source
subject cannot give away rights that he does not
possess. But note that the source subject may bc
able to internally amplify the R, rights, so in defin-
ing attenuation we need also to consider implied
rights. Now implied rights can be obtained directly
by one application of itruns or indirectly by several
applications. This leads us to the following dcfini-
tion.

Definition 2 Let itruns* bc the reflexive transitive

closure of itruns. A grant transformation is attenttut-

ing provided

grunt(u,v,o,R,) = R, ==+ R, G itruns*(u,o,R,)

Otherwise it is umplfifng.

For example, grunt(uscr, user, file, x) =x is trivially
attenuating. On the other hand for grunt(uscr, user,
file, xc) =x WC need to consider the interpretation
of the copy flag. With the assumption that xc is
strictly stronger than x, i.e., itruns(uscr, file, xc) =x,
the latter grant is attenuating. Howcvcr for the
separation copy flag, whcrc WC have itrans(user, file,
xc) = 4, this grant is amplifying. This is clearly con-
sistent with the intuitive concepts of amplification
and attenuation.

One can take issue with this definition in that we
are ignoring implied rights in the destination
domain. That is, what WC really need is the follow-
ing requirement:

~frun~(u,v,o,K,) = R,

=+ ifruns*(v,o,li,)L itruns*(u,o,R,)

Let us call such grants strictly uffentluting. This
rcquircment is vcni strong and will not allow for

I ,

the grants required to support abstract data types or
motected subsvstcms. as illustrated bv our stack
I

example. Thesd features arc of such f;ndamcntal
importance that it is clear WC cannot limit our-
selves to strictly attenuating grants in the framc-
work of Transform.

The question thcrcforc is whcthcr or not we can
limit oursclvcs to attenuating grants. In other
words, do amplieng grants add any power not

already available with amplifying internal transfor-
mations? The answer turns out to be no; that. is,
grant amplifications can bc built out of internal
amplifications. To XC the redundancy of amDli& , I

ing-grants consider the separation copy flag spch-
fied earlier as follows:

grunt(uscr, security-officer, file, own) = xc

C~runt(sccurity-officer, user, file, xc) =x

Thcsc grants are clearly amplif$ng. An equivalent
policy with attenuating grants is achieved by intro-
ducing new right symbols as follows:

itruns(uscr, file, own) = dclcgatc

Cqwzt(uscr, security-officer, file, delegate) = delegate

itruns(sccurity-officer, file, delegate) = xc

itruns(security-officer, file, xc) = cando-x

grunt(security-officer, user, file, cando-x) = cando-x

itruns(uscr, file, cando-x) = x

The two amplifying grants of the original policy
arc rcspcctivcly simulated by the two scqucnccs
above. The general principle is evident from this
example. Each amplifying grant is simulated by an
internal amplification at the source, followed by a
grant with the trivial and attenuating identity
transformation, finally followed by another intcr-
nal transformation at the destination.

A general construction can be outlined as follows.
Let r Egrunt(u,v,o,RJ and r4 itrurzs*(u,o,K,). That
is, r makes this grant amplifying. Modify the given
Transform specification as follows:

(1) Define the new right r.u.v.o.R,. The entire
symbol sign&s a single right. The components in
this symbol emphasize that we need a new right for
each combination of the components.

299

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

(2) Modify ‘t (I runs u,o,R,) to include r.u.v.o.R,.

(3) Modify ,k wn u,v,o,H,) t(by replacing r with
r.u.v.o.R, .

(4) Dcfinc itruns(v,o,r.u.v.o.R,) = r.

It is clear that r no longer makes this mod&cd
Cqrunt(u,v,o,R,) amplifying. By rcpcating this pro-
ccdurc WC can thcrcfore ect rid of all amplifying

” I , ”

grants. Since new rights arc introduced for each
iteration of this proccdurc thcrc is no interaction
bctwccn different amplifications rcmovcd in this

way. The original amplifying grants arc then
simulated as hollows:

i

itrdns(u,o,RJ = r.u.v.o.R,

* r.u.v.o.R,E~~ruflt(u,v,o,R$

itrans(v,o,r.u.v.o.RJ = r

The corrcctncss of this construction is self-cvidcnt.
A formal inductive proof can be given showing
cvcry reachable state with the former policy has an
cquivalcnt counterpart with the modified policy,
and vice versa. The details arc tedious and shed
little insight.

6.2. Reduction of Transform to SPM

The previous subsection has shown that we can
assume, without loss of gcncrality, that all grant
transformations arc attenuating. Attenuating grant
transformations arc easily simulated by the links
and f&r functions of SPM. It remains to consider
how internal transformations-attenuating or
ampli$ing-can be simulated by SPM copy opcra-
tions. WC first give a brief rcvicw of SPM, followed
by the reduction of Transform to SPM.

6.2.1. The schematic protection model

We begin with a rcvicw of SPM. Our rcvicw is
ncccssarily brief and to the point. Motivation for
defining SPM in this manner and its resulting
cxprcssivc power arc discussed at length in [X-25].

The dynamic privilcgcs in SPM arc tickets of the
form Y/x, whcrc Y idcntifics sotnc unique entity
(subject or object) and x is a right. SPM subjects
and objects arc strongly typed. The type of a ticket
is dctcrmincd by the type of entity it addrcsscs and
the right symbol it carries; that is, typc(Y/x) is the
ordered pair typc(Y)/x. Tickets arc acquired in
accordance with rules which comprise the schcmc,
which is dcfincd by specifying the following (finite)
components. Thcsc arc briefly explained below:

(1) Disjoint sets of subject types TS and object
types TO. Let T = TS U TO.

(2) A set of rights R. The set of ticket types is
thcrcby T x R.

(3) A can-crcatc function cc: TS- 2’.

(4) Crcatc-rules of the following form for each

VE CC(L1): cr,,(u,v) = c,sR, U plRK,, and cr,(u,v) =

r/R, Up/R+.

(5) A collection of link prcdicatcs {link,}.

(6) A filter function J;: TS x TS- 2Tx” for each
prcdicatc link,.

Thcrc arc only two operations in SPM: create and
copy. Thcsc arc controlled by the schcmc as
follows.

The create operation

Subjects of type LI can crcatc cntitics of type v if
and only if v~cc(u). Tickets introduced as the side
cffcct of creation arc spccificd by a (different)
crcatc-rule for cvcry (u,v) such that vccc(u). Each
crcatc-rule has two components shown above,
whcrc p and c rcspcctivcly dcnotc parent and child
and the 11’s arc subsets of R. When subject U of
type u crcatcs entity V of type v the parent U gets
the tickets V/R, and U/R,. The child V similarly
gets the tickets V/R, and U/R,. For cxamplc,
filc~ccr(uscr) authorizes users to crcatc files. And
cr,(user, file) = c/rw and cr,(uscr, file) = # gives the
creator r and w tickets for the created file.

300

Computers & Security, Vol. 12, No. 3

The copy operation

A copy of a ticket can bc transfcrrcd from one sub-
jcct to another, leaving the original ticket intact.
SPM has a copy flag built in which WC dcnotc as k
to distinguish it from the copy flags of Transform.
Possession of Y/xk implies possession of Y/x but
not vice versa. Let dam(U) signify the set of tickets
possessed by U. Let x:k dcnotc x or xk, with
multiple occurrcnccs in the same context cithcr all
read as x or all as xk. Three indcpcndcnt pieces of
authorization arc rcquircd to copy Y/x: k from U
to v:

(1) Y/xkcdom(U); that is, U must possess Y/xk
for copying either Y/xk or Y/x.

(2) Them is a link from U to V. Links are estab-
lished by tickets for U and V in the domains of
U and V. The predicate link(U,V) is defined as a
conjunction or disjunction, but not negation, of
one or more of the following terms for any ZGR:
U/z E dam(U), U/z E dam(V), V/z E dam(U),
V/zE dam(V), and true. Some examples of link
predicates from the literature are given below:

link,,(U,V) = V/g E dam(U) V U/tG dam(V)

link,(U,V) = U/tE dam(V)

link,,(U,V) = V/s E dam(U) A U/r-c dam(V)

link,,(U,V) = true

The first example is from the take-grant model
[151, whcrc the t and g rights arc respectively read
as take and grant. The next example retains only
the take right [161. The fourth example is from the
send-rcccivc mechanism [18, 221 whcrc the s and r
control rights arc respcctivcly read as send and
rcccivc. The last case is unique in that it requires no
tickets for a link to exist.

(3) The final condition is defined by the filter
functions J: TS x TS- 2TxR, one per predicate
link,. The value off;(u,v) specifies types of tickets
that may be copied from subjects of type u to sub-
jects of type v over a link,. Example values are

TX R, TO X R and I, rcspcctivcly, authorizing all
tickets, object tickets and no tickets to bc copied.

In short, Y/x:k can be copied from U to V if and
only if

Y/xkEdom(U) A (3link,)[link,(U,V) A y/x:kcf;(u,v)]

where the types of L-J, V and Y arc rcspcctively u, v
and y. Note thatf; determines whcthcr or not the
copied ticket can have the copy flag. This com-
pletes our review of SPM.

6.2.2. Simulation of Transform in SPA4

As noted carlicr, attenuating grant transformations
arc easily simulated by the links and filter functions
of SPM. It remains to consider how internal trans-
formations-attenuating or amplifying-can bc
simulated by SPM copy operations.

Consider itrunS*(u,o,R,) = 5. Let U be a Transform
subject of type u and 0 a Transform object of type
o. These are respectively modeled as SPM subjects
of types u and o respectively. Let the possession of
O/R, by U set up a link,, from 0 to U. The intcr-
nal transformation is effected by definingf;,,(u,o) to
be o/R,. The scheme ensures that the only tickets
that 0 can ever possess are tickets for itself, so the
copy operation authorized in this manner has pre-
cisely the same effect as the internal transforma-
tion. The SPM copy flag is irrelevant to the
construction and WC assume it is allowed to bc
carried along by every filter function we d&c.

This construction is formally cxprcsscd by the
following SPM scheme for a given instance of
Transform, which is assumed (without loss of
generality) to have attenuating grunt’s:

(1) TS’=TSUTO,TO’=$

(2) R’={x:klxER}

(3) For all u=TS: cc’(u) = CC(U)

For all OETO: cc’(o) = 4

301

R. S. Sandhu & G. S. SurilDistributed capability-based architecture

cr,,‘(u,o) = c/K,, whcrc cr(u,o) = l<,

uC’(u,o) = c/K’

D&c the following link predicates:

Iink,,(U,V) = true

link,,, (0,U) = O/l<, E dam(U), for all R,C R

Let “, k dcnotc (xk 1 x E R,)

D&c j;(, (0,~) = o/RJk, whcrc itrrlrzs*(u,o,R,) =

R

I$& f;,(u,v)= {o/F$kl(3R,) graanr(u,v,o,RJ =

1

All other values of the filter functions arc
Clllpty

The simulation can bc summarized as follows:

itrarls*(u,o,R,) = 11,

_ link,,, (0,U) = O/K, E dam(U)

.f;<, (0,~) = o/&k

_ link,, (U,V) = true

I o/rk ~.fi,(u,v)

An internal transformation is replaced by a subject
copying the tran&rmcd tickets from the object’s
domain. For grant transformations WC have earlier
shown that WC can assume rc 11 so they arc
rcduccd to copying a ticket over the universal link.
Formal corrcspondcncc bctwccn the original
Transform policy and the constructed SPM schcmc
can bc cstablishcd by a straightforward inductive
proof that the reachable states in both case arc
cquivalcnt.

It remains to argue that this construction cstab-
lishcs that safety is cfficicntly decidable for Trans-

form. This follows from the result for SPM [24]
that safety is dccidablc provided cc is acyclic in the
following scnsc: the dircctcd graph with edges
{(u,v)lv~ cc(u)} is acyclic. Since the only cdgcs in
this graph for cc’ arc from types in TS to types in
TO, cc’ is trivially acyclic. Moreover this graph for
cc’ is sparse, which guarantees that the decision
proccdurc is efficient [24] (i.e., has low-dcgrcc
polynomial complexity).

7. Conclusion

To summarize, we have described a wide variety of
access-control mechanisms from the litcraturc
with the common theme of transformation of
access rights. WC have unified these mechanisms in
a simple model called Transform.

WC have dcscribcd a distributed capability-based
architccturc for implcmcnting Transform. The
architccturc is based on object scrvcrs who act as
access-mediators on any attempt by a subject to
crcatc, USC, acquit-c, grant or revoke capabilities.
Each object scrvc‘r runs on a trusted host which
guarantees that the server cannot bc bypassed and

thcreforc is a rcfcrcncc monitor for the objects that
it manages. The object scrvcr is not a subject in the
system but is rather a part of the Trusted Comput-
ing Base.

The basic computation model is that of rcmotc
proccdurc calls involving the following scqucncc of
cvcnts: (i) a client sends a rcqucst to a scrvcr to
manipulate one or more objects; (ii) the scrvcr
accepts and scrviccs the request; and (iii) the scrvcr
sends back a reply. WC assume a digital signature
facility which authcnticatcs the originating subject
on each rcmotc procedure call. The capabilities arc
cryptographically scaled to tic togcthcr the identity
of the subject, the identity of the object, the rights
and a sccrct cryptographic seed. Strong typing of
subjects and objects has also been incorporated.

Finally WC have shown that Transform has cffi-
cicntly dccidablc safety analysis of the propagation
of access rights, that is, the dctcrmination of

302

Computers & Security, Vol. 12, No. 3

whether or uot a given subject can cvcr acquire
access to a given object.

References

1’1

PI

I31

151

Fl

PI

PI

I’(‘1

I’ ‘1

1’21

1’31

]“I

[Ii]

S. G. Akl, I)igital signatures: a tutorial survey. Com~utcr,
16 (2) (I 0X3) 15-24.
D. D. Clark and D. II. Wilson, A comparison of commer-

cial and military computer security policies, IEEE Sympo-
sium on Security and Privacy, 1987, pp. I&- 194.
E. Cohen and D. Jefferson, Protection in the Hydra

operating system, 5th ACMSymposium on Operafiq Systems
Principles, 1 Y75, pp. 111- 160.

r). W. Davies, Protection, in B. W. Lampson, M. Paul and
H. J, Siegert (cds.), Distributed Systrms: An Advanced Course.
Springer-Verlag, Herlin, I98 1, pp. 2 1 l-245.
J. 13. Dcntlis and F. C. Van Horn, Programming semantics

for n~ultipr~)gramt~~ed computations, Cortrulcrrr. /lCM. Y

(3) (I YOO) 145 155.
Departmmt oj Defense Trusted Computer Systems Evaluation
Criteria, rhn 5200.*X-STD, Dcpartmcnt of Defense

National (Iomputcr Security Ccntcr, 108.5.
L. Gong, A secure idcntiry-based capability system, IfXE

Symposium ou Security and Privacy, 1989, pp. X-63.

G. S. Graham and P. J. I>enning, Protection: principles and

practice, .4FII?)‘ Sprirt,qjoirrt Computer Cot~&rerrce, JO, 1072,
pp. 4 17-429.

W. Harkness and P. A. Pit& Command authorization as

a component of information integrity, Computer Security
Foutrdatiorrs Wor!&iop. 1988. pp. 21Y-226.

M. H. Harrison, W. L. Ruzzo and J. D. Ullman, Protection

in operating systems, Commun. ACM, 1Y (8) (1976)

‘+hl-471.

M. H. Harrison and W. L. Ruzzo, Monotonic protection

systems, in I<. A. DeMillo, 1). P. Dobkin, A. K. Jones and

I<. J. Lipton (4s.). hundations o/‘ Secure, Computations,
Acadclllic PI-C\\, New York. 107X.
13. W. Lampson, Protection, 5tlI Prirrcetou Symposium on
Inf;,rvla/ion Schce and Sys/ems, 1 Y7 I , pp. 437-443.

Reprint4 in AGZ/I OIperatiuy Systems Rev., 8 (I) (I Y74)

pp. 18-24.

H. M. Levy, <:apahi/ity-Based Compufer Sy.~rems. Digital

Arcs\, I~cdford. MA, l Y84.

T. A. Linden, Operating system structures to support

security and rehablc software, ACM Computit~g Survey.s, 8
(4) (I 076) .+OY)-us.

R. J. Lipton and L. Snyder, A linear time algorithm for

deciding subject security,]. ACM, 24 (3) (I 077) I.5.5-J&b.

1’61

1’71

1’81

I’“1

[N]

12’1

[“I

[23]

I’“1

[ZS]

[20]

PI

PI

[20]

1301

[3’1

A. Lockman and N. Minsky, Unidirectional transport of

rights and take-grant control, 1EEE 7i-nrls. S$ware EII,\I..
SE-8 (6) (I Y82) SY7-604.

N. Minsky, Synergistic authorization in database systems.

7fl1 lrrternafiona/ Co:cr,/&errce oft Very Lar;rlr Data Bases, 198 I,
pp. 543-.552.

N. Minsky, Sclcctivc and locally controlled transport of

privilcgcs, ACM 7’rans. Pro~rammirrg Languages arrd S’ys/ems,
h (4) (I Y84) 573~002.

J. I>. Moffett and M. S. Sloman, The source of authority

for commercial access control. IEEE Computer, 21 (2)
(1988) Y-09.
S. J. Mullendcr, G. van Rossum, A. S. Tancnbaum, 11. van
Ilenease and H. van Staveren, Amoeba: a distributed

operating system for the I YYOs, IEEE Compu/cr, 23 (5)

(IYYO) 11-53.

J. H. Saltzcr and M. D. Schroeder, The protection oiinfor-

mation in colnputer system,. I’n~c. IEEE, 03 (9) (I Y7i)

127% 1308.

II. S. Sandhu, II~G~~I arrd A rralysis ~lf‘l’rotrrtiorr .Sr/~cmts Based
ou fire SericikKrceive l’rarqwrt Meclra~li.im. 1’111) rhcsis,

Rutgers University, I Y83.
I<. S. Sandhu and M. E. Share, Sonic owner based schcmcs

with dynamic groups in the schematic ptotcction m~dcl,
~.&X Sympo~siunr ou Security arrd I’rivacy, I YSh, pp. o l-70.

I<. S. Sandhu, The schcluaric protcctiou model: its d&i-

tion and analysis for acyclic attenuating schcmrs,_~. AGI4,

35 (2) (I Y88) 404-432.

II. S. Sandhu, Exprcssivc power of the schematic protec-

tion model, Computer Security Ikmdations CZ’or!&op, I 088.
pp. 18%lY3.

I<. S. Sandhu. Transaction control cxprcssiom for scpara-

tion of duties. 4flr .-lcw.zyare Compu/er Serurity Appliratiotrs
Cor!f&wcc. 1088, pp. 282-280.

II. S. Sandhu. Transformation of acccs\ rightr, IEEE

Symposium w Security arid Privacy, 1 Y8Y, pp. 25Y-208.

II. S. Sandhu, Separation of duties in computerized infor-

Ination aystcms, in 5. Jajodia and C. E. Landwchr (cds.),

I>atabase Security IV: Status atrd lhspecfs, North-Holland,

Amrtcrdam, I YY I, pp. 17Y- 180.

A. Silbcrscharz.]. Prtcrson and P. Galvin, Operatiuq Systcru
Courc.pts. Addison W&y, Reading, MA, I YY I.

l<cport of the Invitational workshop on Integrity Policy

in Computer Information Sybtcms (WIPCIS), Ilcntlcy
Collcgc. MA, October I(JX7.

W. Wulf, E. Cohen, W. Co&n, A. Jones, H. Levin, C.

Pierson and F. Pollack, Hydra: the kcrncl of a multi-

processor opctating system, Glmntuw. ACM, I7 (6) (I 074)

337-34s.

303

