
Computers & Security, 11 (1992) 547462

Eliminating
Polyinstantiation
Securely
Ravi S. Sandhu and Sushi1 Jajodia

Polyinstantiation has generated a great deal of controversy

lately. Some have argued that pol~nstantia~on and integriry

are fundamentally incompatible, and have proposed alterna-

tives to polyinstantiation. Others have argued about the correct

definition of polyinstantiation and its operational semantics. In
this paper we provide a fresh analysis of the basic problem that

we are rrying ro solve; that is, how can an honest database keep

secrets? Our analysis leads us to the concept of restricted poly-

instantiation wherein we show how to solve this problem with-

out compromising on any of the following requirements:
secrecy, integrity, availability-of-service, element-level labeling

and high assurance. This is the first solution to meet all these

requirements simultaneously.

xiywordx: Multilevel security, Database management systems,

Polyinstantiation.

1. introduction

w
at distinguishes a multilevel database from

ordinary single-level ones? in a multilcvcl

world, as we raise a user’s clearance new facts
emerge; conversely as we lower a user’s clearance
some facts get hidden. Therefore users with differ-
ent clearances see different versions of reality.
Moreover, these different versions must be kept
coherent and consistent-both individually and

relative to each other-without introducing any
downward signaling channels.’

The caveat of “no downward signaling channels”
poses a major new problem in building multilevel
secure database management systems (DBMSs) as
compared to ordinary single-level DBMSs. This
caveat is inescapable and absolute. WC must reject
outri ht

K
“solutions” which tolerate downward

signa ing channels. Solutions with such channels,
for example as proposed in f I, 91, may well be
acceptable as an enginee~ng compromise in par-
ticular situations. Bur they are clearly not acccpt-
able as gcncral-purpose solutions. This point needs
to be cmphasizcd because security is usually the

‘We deliberately use the term downward signaling channel
rather than covert channel. A downward signaling channel is a

means of downward information flow which is inherent in the

data model and will thcreforc occur in every implementation

of the model. A covert channel on the other hand is a property

of a specific itnpleme~~tatio~~ and not a property of the data

model. In other words, even if the data model is free of
downward signaling channels, a specific implcmcntation may
well contain covert chant& due to implcn~cntation quirks.

0167-4048/92/$5.00 0 1992, Etsevier Science Publishers Ltd. 547

one to take the first hit in engineering trade-offs. It
bchovcs us as security rescarchcrs to present solu-
tions which avoid taking this hit while at the same
time providing:

o no downward signaling channels

@ consistency and integrity of the database both
within and across levels

l flexibility for application semantics

8 fine-grained classification of data (i.c. element-

level labeling)

* high assurance with minimal trusted code

The central point of this paper is to demonstrate
how these diverse goals can bc met in a multilevel
relational DBMS without compromising security

as part of the bargain. Our solution is simple in
concept and almost obvious in retrospect. For the
most part it uses standard concepts from the data-
base arena. A key new idea is to introduce a special
value called “restricted”, distinct from the normal
data values of an attribute (or column), as well as
distinct from “null”. The value “rcstrictcd” denotes
that the particular field cannot be updated at the
specified lcvcl. So long as the value of a field is not
“restricted” our multilevel relations bchavc much
as ordinary single-lcvcl relations do. Particular
attention is required when a field is changed from
unrestricted to rcstrictcd and vice versa. A notable
property of our solution is that it can be imple-
mented entirely by untrusted subjects, that is, sub-
jccts which are not cxcmptcd from the simple
security or *-properties.’

The rest of this paper is organized as follows.
Section 2 reviews the concept of polyinstantiation
from an intuitive point of view, with the objective
of identifying the sources of polyinstantiation and

‘The protocols of section 4 can bc simplified if trusted subjects

which are exempted from these propcrtics arc allowed in
selected situations.

548

alternatives to it. Section 3 informally introduces
our solution of restricted polyinstantiation and
illustrates it by examples. Section 4 formalizes and
precisely defines our solution. It also provides addi-
tional examples. Section 5 discusses how our solu-
tion can provide the highest dcgrcc of assurance.
Section 6 concludes the paper.

2. Polyinstantiation

The concept of polyinstantiation was explicitly
introduced by Denning et al. [3] in connection with
the SeaView project. Since then much has been
written about this topic [l, 3-7. 9, for instance]. In
this paper we will set aside all this previous theory,
formalism and debate. Instead WC go back to first
principles and consider by means of examples how
polyinstantiation arises and therefore how it might
be controlled. WC assume the rcadcr is familiar
with basic relational notions and terminology.

2.1. The Source of Polyinstantiation

Polyinstantiation can occur in basically two diffcr-
ent ways, which WC call polyh’$r and polylow,
respectively, for mnemonic convcnicncc.

(I) Polyhigh occurs when a high user3 attempts to
insert data in a field which already contains low
data. Overwriting the low data in ilace will result
in a downward signaling channel. Thcrcforc the

high data can bc inscrtcd only by creating a new
instance of the field to store the high data. WC also
have the option of rcjcctin the update altogether,
with the attendant possibi ity of denial-of-service B

to the high user.

(2) Polylow occurs in the opposite situation, where
a low user attempts to insert data in a field which

already contains high data. In this case rejectin the
update is not a viable option because it cstablis !I cs a

downward signaling channel. That leaves us two

?%icrly speaking WC should bc saying subject rather than user.

For the most aart WC will loosclv LISC rhrsc i
ably. Where ;bc distinction is important

priately prrcisc.

tcrm5 intcrchangc-
WI’ will bc appro-

alternatives. We can overwrite a high data in place
which violates the integrity of the hi h data. Or WC
can create a new instance of the fie d to store the H

low data.

In both cases note that we have identified “secure”
alternatives to polyinstantiation. These alternatives
are secure in the sense of secrecy and information
flow. Unfortunately the alternatives have denial-
of-scrvicc and integrity problems reiterated below.

Computers and Security, Vol. 7 7, No. 6

(I) The alternative to polyhigh entails denial-of-

service to high users by low users (i.e., once a low
value has been entered in a field a high value can-
not be entered until the low value has been nulli-

fied by a low subject)!

(2) The alternative to polylow entails destruction
of high data by low users, which presents a serious
integrity problem (i.e., the high data are over-
written in place by low data).

A naive implementation of these alternatives will
create more real security problems than it solves.
Our main contribution in this paper is to show
how these alternatives to polyhigh and polylow can

be employed in a careful, disciplined manner to
achieve secrecy, availability-of-service and integrity

with high assurance.

It should be noted that there is an important diffcr-
ence between polyhigh and polylow. Polyhigh can
be completely prevented by reactive mechanisms at
the cost of denial-of-service to entry of high data.
This is likely to be a tolerable cost in many applica-
tions. On the other hand, polylow cannot bc com-
pletely prcvcnted by reactive mechanisms. At the
moment of cnforccmcnt a reactive mechanism has

lThis prorocol-of nullifying low data prior to enrry of high

data-does not guarantee protection against denial-of-service.

If a low value is nullified to enable entry of a high value thcrc
remains the risk that a low Trojan horse can enter another low
data value before the high subject has the opportunity to enter

its high value. The solution described in rhis paper (see section
3) eliminates this vulnerability.

only the alternative of overwritin
‘i

high data by

low data. This is likely to be into crable in most
applications. Therefore polylow must-for all prac-
tical purposes-be prevented by a proactive
mechanism; that is, steps must be taken in advance
of the problem’s occurrence to ensure that it can-
not occur.

2.2. Polyhigh Example
Let us now consider a concrete example to make
polyhigh and polyl ow clearer. Consider the follow-

ing relation SOD where Starship is the apparent
primary key:

I

Starship Objective Destination TC

Enterprise U Exploration U null U U

Here, as in all our examples, each attribute in a
tuple not only has a value but also a classification.
In addition there is a tuplc-class or TC attribute.
This attribute is computed to be the least upper
bound of the classifications of the individual data
clcments in the tuple.

Now consider the following scenario:

(1) A U user updates the destination of the Entcr-
prisc to bc Talos. The relation is therefore modified

as follows:

Starship Objective Destination TC I I

Enterprise U Exploration U Talos U U

(2) Next an S user attempts to modify the destina-
tion of the Enterprise to be Rigcl. We cannot over-
write the destination in place because that would
create a downward signaling channel. We can

549

R. S. Sandhu and S. JajodialElimina ting Polyins tan tia tion

reject the update at the risk of denying entry of
legitimate secret data. Or we can polyinstantiate
and modify the relation to appear as follows,
respectively, for U and S users. Note that U users
see no change:

Starship Objective Destination TC

Enterprise U Exploration U null U U

Starship Objective Destination TC Starship Obj cctive Destination TC

Enterprise U Exploration U Tales U U Enterprise U Exploration U Rigel S S

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise U Exploration U Rigel S S

What are we to make of this last relation given
above? There are at least two reasonable interpreta-
tions:

l Cover story. The destination of Talos may be a
cover story for the real destination of Rigel. In this
cast the database is accurately mimicking the
duplicity of the real world. Thcrc arc, however,
other ways of incorporating cover stories besides
polyinstantiation. For example, WC may have two
attributes, one for cover-story destination and one
for the real destination. Debate on the relative
merits and demerits of these techniques is outside
the scope of this paper. For thepurpose of thispuper we
assume that polyinstantiation is not to be used for cover
stories. We therefore rqect this alternative as a valid inter-
pretation.

l Temporary inconsistency. We have a temporary
inconsistency in the database which needs to be
resolved. For instance, the inconsistency may be
resolved as follows: the S user who inserted the
Rigel destination latter logs in at the U level and
nullifies the Talos value, so thereafter the relation
appears respectively as follows to U and S users:

It is most important to understand that this schcmc
does not create a downward signalin

!
channel

from one subject to another. The nulli rcation of
the destination at the U level is being done by a U
subject. One might argue that them is a downward
signaling channel with a human in the loop. The
human is, however, trusted not to let the channel
be exercised without good cause. Finally note that
the U user who executed step 1 of the scenario may
again try to enter Talos as the destination, which
brings us within the scope of polylow.

2.3. Polylow Example
Our example for polylow is similar to the polyhigh
example, with the differcncc that the two update
operations occur in the opposite order. So again
consider the following relation SOD where Star-
ship is the apparent primary key:

Starship Objcctivc Destination TC

Enterprise U Exploration U null U U

This time consider the following scenario.

(1) An S user modifies the destination of the
Enterprise to be Rigel. The relation is modified to

550

appear respectively as follows to U and S users.
Note that U users see no change in the relation: Starship Objective Destination TC

” I I I ! 1

Starship Objective

Enterprise U Exploration U null U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

(2) A U user updates the destination of the Enter-
prise to be Talos. We cannot reject this update on
the grounds that a secret destination for the Enter-
prise already exists, because that amounts to estab-
lishing a downward signaling channel. We can
overwrite the destination field in place at the cost
of destroying secret data. This would give us rhe
following relation for both U and S users:

Starship Objective Destination TC

Enterprise U Exploration U Tales U U

For obvious reasons this alternative has not been
seriously considered by most researchers. That
leaves us the option of pol~nstan~a~on, which will
modify the relation at the end of step 1 to the fol-
lowing for U and S users, respectively:

Starship Objective Destination TC

Enterprise U Exploration U Talos U U

Enterprise U Exploration U
Enterprise U Exploration U

This is exactly the same relation as obtained at the
end of step 2 in our polyhigh example. The pas-

sible interpretations are therefore similar; that is,
we either have a temporary inconsistency or a
cover story (the latter alternative has already been
rejected for our database). The temporary incon-
sistency can be corrected by having a U subject
(possibly created by an S user logged in at the U
level) nullify the Tales destination. But the incon-
sistency may recur again and again.

3. Restricted Polyinstantiation

In the previous section WC examined the source of
polyinstantiation and identified polyhigh and poly-
low as the two different ways in which polyinstan-
tiation arises. In this section WC consider
applications which have the following rcquirc-
merits.

(1) Downward signaling channels cannot bc toler-
ated.

(2) The simple security and *-properties must be
enforced for all subjects; that is, no trusted code can
be used.

(3) Temporary inconsistcncics cannot be tolerated.

(4) Denial of data entry service to high users can-
not be tolerated.

Moreover each of these rcquircments has equal
importance and one cannot be sacrificed for
another. The scenarios of the polyhigh and polylow
examples of the previous section show that poly-
instantiation by itself cannot meet these require-

551

R. S. Sandhu and S. JajodialEliminating Polyinstantiation

ments simultaneously. One requirement or the
other must give in some way.

In this section we show how all four requirements
identified above can be simultaneously met. We
describe our solution as restricten polyinstantiation.
The basic idea is to introduce a special symbol
denoted by “restricted” as the possible value of a
data element. The value “restricted” is distinct from
any other value for that element and is also differ-
ent from ‘?rull”. In other words the domain of a
data element is its natural domain extended with
“restricted” and “null”. We define the semantics of
“restricted” in such a way that we are able to
eliminate both polyhigh and polylow. “Null” has
exactly the same semantics as any other data value
and needs no special treatment.

Let us now play out the polyhigh and polylow
scenarios of the previous section to intuitively
motivate our solution. A formal description of the
update protocols is given in the next section.

(2) Next an S user attempts to modify the dcstina-
tion of the Enterprise to be Rigel. WC cannot poly-
instantiate even temporarily, so we must rcjcct this
update. Do we have denial-of-service to the S user?
No, because the S user can obtain service as follows.

Step 2~. The S user first logs in as a U subject and
marks the destination of the Enterprise as
restricted, giving us the following relation?

1 Starship / 1 Objective Destination TC

Enterprise U Exploration U restricted U U

The meaning of restricted is that this field can no
longer be updated by a U user. U users can thcre-
fore infer that the true value of Enterprise’s
destination is classified at some level not domi-
nated by U.

3.1. Polyhigh Example Revisited

Consider again the following relation SOD where
Starship is the apparent primary key:

Step 2b. The S user then logs in as an S subject and
enters the destination of the Enterprise as Rigel,
giving us the following relations at the U and S
levels, respectively:

Starship Objective Destination TC Starship Objcctivc Destination TC

Enterprise U Exploration U null U U Enterprise U Exploration U restricted U U

Now consider the following scenario. 1 I 1 I I
(Starship 1 Objective (Destination 1 TCI

(1) A U user updates the destination of the Enter-
I I I

prise to be Talos. The relation is thcreforc mod&d
as follows:

Enterprise U Exploration U Rigel S S

Starship Objcctivc Destination TC 5Alternately rhe S user logs in at the U-level and requests some
properly authorized U user to carry out this step. Communica-

Enterprise U Exploration U Talos U U
tion of this request from the S user to the U user may also

occur outside of the computer system. by say direct personal

communication or a sccurc telcphonc call.

552

Computers and Security, Vol. I I, No. 6

How does this differ from the scenario of section
2.2 (where the end result after cleaning up the
temporary inconsistency was as above except that
WC have null instead of restricted)? The main
difference is that, after step 2a, U users are no
longer able to update the destination of the Enter-
prise. In particular, attempts by U users to rc-enter
Talos as the destination of Enterprise will be
rejected on the grounds that the field is restricted.
Therefore the relation is guaranteed to be consis-
tent till such time as the restricted value is climi-
nated. Consideration of who should be allowed to
enter and remove the restricted value is deferred

for now.

Does step 2a introduce a signaling channel? Yes,
but this signaling channel is very similar to the one
resulting from the nullification of Talos at the U
level in the example of section 2.2. Both involve a
trusted S user in the loop who presumably will
ensure that the channel is not exercised wantonly,

but rather that this inference is permitted only
when the real-world situation is actually so. Such a
channel with trusted humans in the loop can be
exercised only by Trojan horses that are capable of
manipulating the real world. This entails the
manipulation of real trusted people making real
decisions and not merely the manipulation of bits
in a database.

3.2. Polylow Example Revisited

Now consider the two update operations in the
opposite order. So again WC begin with the follow-
ing relation SOD where Starship is the apparent

primary key:

Starship Objective Destination TC

Enterprise U Exploration U null U U

This time consider the following scenario.

(I) An S user modifies the destination of the

Enterprise to be Rigel. This update is rciectcd!
Instead the S user is%ked to go through &ps 2a
and 2b of section 3.1, giving us the following rcla-
tions at the U and S levels, respectively:

I I I I 1

1 Starship 1 Objective 1 Destination 1 TC 1
, I I , f

I I I I I

1 Enterprise U 1 Exploration U 1 restricted U I U I
L I I I I

Starship Objective Destination TC
c I I

Enterprise U Exploration U Rigcl
S/S I

(2) A U user updates the destination of the Enter-
prise to be Talos. The update is rejcctcd on the
grounds that the field is restricted.

Note that there is no denial-of-service to the S
user. What is happening is a denial of improper
service; that is, thcrc is a protocol for entering high
data which all S users arc required to follow.
Failure to follow the protocol results in dcnial-of-
service but this can hardly be considered a security
breach. The denial-of-service to the U user is, of
course, only appropriate in this situation.

There is a crucial difference bctwccn this protocol
and the one discussed in section 2.1. In both cases
entry of high data is cnablcd by an action of a low
subject. Our protocol rcquircs the low subject to
cntcr the “rcstrictcd” value in the data element. In

section 2.1 the suggestion was for the low subject
to enter a “null” value. The key difference in the
two cases is that a null value can be made non-null
by a low Trojan horse, whereas the rcstrictcd value
cannot be made unrestricted by a low Trojan horse.
The latter operation rcquircs a special privilege
whose distribution is carefully controlled by non-
discretionary means. This privilcgc is available only

553

R. S. Sandhu and S. JajodialEliminating Folyins tan tia tion

to selected low subjects who are trusted to exercise
its use properly.

4. The Prevent Protocols

In this section we precisely define the collection of
update protocols illustrated by example in the prc-
vious section. We collectively call this collection
the prevent protocols because they prevent poly-
instantiation due to either polyhigh or polylow
from occurring. These protocols can be implc-
mcnted entirely by untrusted subjects, that is, sub-
jects which are not exempted from the simple
security or *-propcrtics.

4.1. Multilevel Relations

We begin by reviewing some basic concepts and
notation for multilevel relations. Let A,, C,, A,,
C2, . . . , A,, C,, denote the attributes (columns) of a
multilevel relation R with element level labeling.
Each A, is a data attribute and each Cj is the classijka-
tion attribute for A,. A data attribute can take on
values from its natural domain Di extended with

two special values, “null” and “restricted”, whose
meaning will be defined shortly. We assume that
each C, can take on any value c in the security
lattice6 We require that C, cannot be null. Finally
R has a collection of relation instances R,, one for
each access class c in the given lattice.

Assume there is a user-specified primary key AK
consisting of a subset of the data attributes A;. We
call AK the apparent primary key of the multilevel
relation scheme. In general AK will consist of
multiple attributes. We have the following requirc-
mcnt in analogy to entity integrity in the standard
relation model. (The notation t[A,] dcnotcs the
value of the A, attribute in tuple t, and similarly for

Property 1 [Entity Integrity] Instance R, of R
satisfies entity integrity iff for all PER,: (i) AK is

“In practice of coursr it is desirable ro place appropriate upper

and lower bounds on each C,. This will only require minor
changes to the following discussion.

uniformly classified in each tuple; that is, A,, A,E
AK* t [Ci] = t[c, 1, and (ii) the classification of each
non-key data attribute dominates the classification

of the apparent key, that is, A,CK *
where C,, is the classification of AK.

The notions introduced thus far arc standard ones
first introduced in the SeaVicw model [7]. Our
next requirement severely limits polyinstantiation
and distinguishes the approach of this paper from
previous work on element-level labeling [j-7].

Property 2 [Key Integrity] R satisfies key
integrity iff for every R, we have for all i: AK,

C,,-A,, C,. 0

This property stipulates that the user-specified
apparent key AK, in conjunction with key classifi-
cation C,4K, functionally dctcrmincs all other
attributes. In other words R, cannot have more
than one tuplc for a given combination of values
for AK and C,,. That is, the real primary key of
the relation is AK, C,,. The cffcct of key integrity
is to rule out instances such as the following:

Starship Objective Destination TC

The reason for rejecting this instance is its incon-
sistency in specifying two diffcrcnt destinations-
one secret and one classified-for the Enterprise
Recall our assumption that cover stories are not to
bc incorporated by polyinstantiation, so inter-
prctations such as discussed in [5] do not apply in
this situation. Key intc rity dots allow instances
such as the following, w a
tion of the key:

erc thcrc is polyinstantia-

554

Computers and Security, Vol. 11, No. 6

Starship Objective Destination TC

Enterprise U Exploration U Talos U U
Enterprise S Spying S Rigel S S

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

In this case we interpret the two tuples as describ-
ing two distinct Starships which happen to have the
same name.

The next property is concerned with consistency
between relation instances at different access
classes. Here again WC depart from the analogous
property defined in [j-7] .’

Property 3 [Inter-Instance Integrity] R satisfies
inter-instance integrity iff for all c’ f c we have
R,! = a(R,, c’) where the f;:lter function o produces
the c’ instance R,, from R, as follows.

(1) For every tuple t E R, such that t [CAK] G c’ there
isstr~&‘~R: with t’[AK, CAK] = t[AK, CA,] and

t[Ao C,l if t[C,] 6 c’
t’[A;. C!] =

(restricted, c’) otherwise

(2) There are no tuplcs in R,, other than those
derived by the above rule. q

The filter function maps a multilevel relation to
different instances, one for each descending access
class in the security lattice. Filtering limits each
user to that portion of a multilevel relation for
which he or she is cleared. For instance, filtering
the following S instance of SOD

‘The definition of the filter function given in [j-7] differs
from the one given here in thar (restricted, c’) is replaced by

(nuk ~]C+&.

gives us the following U instance:

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

4.2. Update Protocols
In section 4.1 we idcntifkd integrity properties for
multilevel relations considered at some instant in
time as static objects. We now consider the
dynamic behavior of these relations by considering
their update semantics. We emphasize that our
protocols do not require any exception from the
simple security or *-properties.’ There are three
subcases to consider. as follows.

4.2.1. Data Value Update
By the term data value we mean any value other
than Yrestricted.D Our first protocol addresses the
case where the value of attribute t[A;] is changed
from its previous data value to a new data value;
that is, neither the previous value nor the new one
can be “restricted.” “Null” does not need any
special treatment in our protocols and is viewed as
just another data value. WC have the following
update protocol.

sNote that the protocols can be simplified if trusted subjects

which are exempted from these properties are allowed in
selected situations. In particular, the protocol to change a

restricted value to unrestricted (see section 4.2.3) would be con-
siderably simphfted by using a trusted subject which is

exempted from the ‘-property.

555

R. S. Sandhu and S. JajodialElimina ting Polyins tan tia tion

Protocol 1 t[Ai] can be changed from its previous
data value to a new data value by a c-user only if
f[Ci] = c.

The effect of this update operation is defined as
follows.

(1) The value of t [A,] is changed to its new value

in all relation instances I?,,, c’ B c. The value of t[C,]
remains unchanged as c in all R,,, c’ 2 C.

(2) All other instances of R remain unchanged.Cl

Note that the precondition for this protocol is
stated as a necessary condition (“only if”). It is thus
a mandatory requirement. In addition to this
mandatory pre-condition WC may, as usual, impose

further mandatory and/or discretionary controls.

To illustrate the protocol consider the following U
and S instances of SOD, respectively:

Starship Objective Destination TC

Entcrprisc U Exploration U restricted U U

Starship Objective Destination TC

Enterprise U Exploration U Rigel S S

An update by a U user to change the Objective
from “Exploration” to “Mining” has the following
effect:

Starship Objective Destination TC

Enterprise U Mining U rcstrictcd U U

556

Starship Objective Destination TC

Enterprise U Mining u Rigel s s

That is, the update takes effect at both the U and S
levels. AII attempt by an S user to change the
Objective attribute would be rejected. So would an
attempt by a U user to change the Destination
attribute. An S user may change the Destination
attribute to say “Talos,” giving us the following U
and S instances of SOD, rcspectivcly:

Starship Objective Destination TC

Enterprise U Mining U restricted U U

Starship Objective Destination TC

Enterprise U Mining U Tales S S

To appreciate how “null” is treated just like any
other data value, consider what happens if an S user
null&s the Destination attribute. We get the
following U and S instances of SOD, rcspcctivcly:

Starship Objective Destination TC

Enterprise U Mining U restricted U U

Starship Objcctivc Destination TC

Entcrprisc U Mining U null s s

Computers and Security, Vol. 7 7, No. 6

The Destination attribute remains restricted for U
users and the null value is shown only to S users.
The classification of the null at S signifies that data
in this field can only be entered by S users. If the
Destination attribute has a null value at the U level
then both U and S instances of SOD must be as
follows:

Starship Objective Destination TC
I I

Enterprise U Mining U null U U

In this case U users are allowed to enter data for
the Destination attribute, whereas S users are not
permitted to do so. In order to enable S users to
change the Destination of the Enterprise we must
first restrict this field at the U level. This brings us
to our next protocol.

4.2.2. Update from Unrestricted to Restricted

Let us first consider the case where the security
lattice is totally ordered (i.e., there are no compart-
ments). An update of attribute Ai in tuple t from
some existing data value to “rcstrictcd” is per-
formed as follows.

Protocol 2 r [A,] can bc changed from its previous
data value to “rcstrictcd” by a c
f[Ci] = c.

The effect of this update operation
follows.

(1) The value of t [Ai, Ci] is changed
c) in the instance R,.

user &only if

is defined as

to (restricted,

(2) Let n(c) be the immediate prcdcccssor of c (i.c.,
n(c) > c and there is no c’ such that n(c) > c’ > c).
The value of t[A,, C;] is changed to (null, n(c)) in
all instances R,,, c’ > c.

(3) All other instances of R remain unchangcd.0

It suffices to have the pre-condition t [C,] = c for
this operation because, in conjunction with the
inter-instance integrity property, f (Ci] = c implies

(WI[CJ Gc’ < c) t [A;, Cl] = (restricted, c’) in R,,

In other words a data element can bc made
restricted at level c only if its data value is currently
classified at level c, which in turn implies that the
data element is restricted at all relevant lcvcls
below c.

To illustrate the effect of such updates consider the
following U instance of SOD (which is identical to
the S instance):

Starship Objective Destination TC

Enterprise U Exploration U Rigcl U U

A U user can change the destination of the Entcr-
prisc to be “rcstrictcd,” giving us the following U
and S instances:

Starship Objective Destination TC

Enterprise U Exploration U restricted U U

Starship Objective D&nation TC

Enterprise U Exploration U null S S

Now let us consider the gcncral cast of a partially
ordcrcd security lattice. The problem with partially
ordcrcd labels lies in step 2 in defining the cffcct of
protocol 2. In a partial ordering thcrc may bc
multiple immcdiatc predcccssors of c so n(c) is no

557

R. S. Sandhu and S. JajodialElimina ting Polyins tan tia tion

longer uniquely defined. As part of the update
operation we have to designate one of c’s imme-
diate predecessors as the distinguished one which
will remain unrestricted. All other immediate
predecessors become restricted. Let n(c) denote the
distinguished immediate predecessor. Step 2 of
protocol 2 needs to be restated as follows.

(2’) The value of t [A,, Ci] is changed as follows for
all instances R,,, c' > c.

(null, n(c)) if c’ > n(c)
t[A;, C;] =

(restricted, c’) if L’ & n(c)

As an example consider a lattice with four labels,
S, U, M, and M,; where M, and M, are both
dominated by S and both dominate U, but M, and
Mz are themselves incomparable. Suppose we have
the following instance of SOD at all four levels:

Starship Objective Destination TC
I I

Enterprise U Exploration U Rigel U U

Let a U user make the Destination field of the
Enterprise “restricted” while designating M, to be
n(U) for this update The U, M,, M, and S
instances of SOD will respectively become as
follows:

Starship Objective Destination TC

Enterprise U Exploration U rcstrictcd U U
1 I

Starship Objective Destination TC
I I

Enterprise U Exploration U null M, M,

Starship Objective Destination TC

Enterprise U Exploration U 1 restricted M, 1 M, 1
I I I I J

I 1 I I I

1 Starship 1 Objective 1 Destination 1 TC 1
I I I I I

Enterprise U Exploration U null M, M,

4.2.3. Update from Restricted to Unrestricted

Again for simplicity let us first consider the cast
where the lattice is totally ordered. We have the
following protocol for making a field unrestricted.

Protocol 3 t [A,] can bc changed from its current
value of “restricted” to a data value dv only by a c
user.

The effect of this update operation is defined as
follows.

(1) The value of t[A,, Ci] is changed to (dv, c) in all
instances R,r, c' > c.

(2) All other instances of R remain unchangcd.Cl

The pm-condition for this update, that t[Ai, C,] =
(restricted, c) in R,, is sufficient to ensure that [[A;,
C,] =(restricted, c’) in all R:, c' < c (due to inter-
instance integrity).

The protocol will overwrite any existing data value
for t[A,] in instances R:, cl > c. This operation
thcrcforc has the potential for creating integrity
problems by overwriting existing higher-level data.
We have rejected this approach as a general solu-
tion in section 2. Here we arc proposing to employ
it for the specific purpose of converting a field
from restricted to unrestricted. We require that
this be a specially privileged operation so that we
can be sure it is executed only when the real-world
conditions warrant it. We will return to this point
in the next section.

558

Computers and Security, Vol. 11, No. 6

To illustrate this operation consider the following
U and S instances of SOD:

i.e., set t [A;] to “restricted” at all levels where tuple
t is visible.

(2) Update phase. Login at level c and set t[A,,

C,] = (dv, c). Starship Objective Destination TC I I

1 Enterprise U 1 Exploration U 1 restricted U 1 U 1 The net effect of this modified protocol is to set

w, 4 in all R,,, ~'2 c
@,, C,]=

(rcstrictcd, c’) in all R,,, c'$ c Starship Objective Destination TC

Enterprise U Exploration U null SIS I For example, consider the following U, M, , M, and
S instances of SOD, respectively, taken from the
end of section 4.2.2:

A suitably privileged U user can change the value

of the Destination attribute in this tuple to be say
“Talos,” giving us the following (identical) U and S

instances of SOD:

Starship Objective Destination TC I I

Enterprise U Exploration U restricted U U
I I

Starship Objective Destination TC
I I

Starship Objective Destination TC
I I Enterprise U Exploration U Talos UIU I

Enterprise U Exploration U null M, M,
I I

Next let us consider the case of a partially ordered
security lattice. The pre-condition of protocol 3 is
no longer sufficient. Before a c user is allowed to
change a restricted field to non-restricted we must
ensure that field is restricted at all levels which do
not dominate c. This includes levels which are
dominated by c as well as levels incomparable with
c. The latter requirement cannot be checked by a c
user without violating simple security. We circum-
vent this problem by requiring the update of pro-
tocol 3 to occur in two phases, as follows.

Starship Objective Destination TC

Enterprise U Exploration U restricted M, M,

Starship Objective

Enterprise U Exploration U null M, 1 J% 1
(1) Preparutoryplme. Login at level t [C,,] and set

The preparatory phase will give us the following U,
M,, M2 and S instances of SOD, respectively: t [A,, Cl] = (restricted, c’) in all R,', c' 2 t [CA,]

559

R. S. Sandhu and S. JajodialEliminating Polyinstantiation

Starship Objective Destination / TC 1 1 Starship / Objective IDestination 1 TC /

Enterprise U Exploration U restricted
UIU I I

Enterprise U Exploration U Rigel Mz/Mzj

Starship Objective Destination TC
Starship Objcctivc Destination TC

Entcrprisc U Exploration U restricted M, M,
Enterprise U Exploration U Rigel M, M,

5. Assurance

Starship Objective Destination TC In this section we briefly consider how the prevent
protocols can be enforced.

Enterprise U Exploration U restricted M, M,

Starship Objective Destination TC

Our first observation is that all our protocols
adhere to both simple security and the *-property.
They can therefore be cnforccd bv a DBMS trusted
com&.mng base (TCB) to the highest assurance
standards without the use of subjects which arc
exempt from simple security or the *-property.

Enterprise U Exploration U restricted M2 M,

In other words the preparatory phase restricts the
Destination attribute of this tuple at all levels above
U (which is the key class of the tuple). Sub-
sequently, the update phase results in (say) the
following U, M,, M2 and S instances of SOD,
respectively:

Starship Objcctivc Destination TC

Enterprise U Exploration U rcstrictcd U U
I I

Starship Objective Destination TC

Enterprise U Exploration U restricted M, M,

Secondly, our protocols arc designed to achieve
integrity and availability-of-service in addition to
secrecy. The secrecy objective can bc enforced to
Al standards by strict cnforccment of simple secur-
ity and the *-p ro p ertics. In order to achieve the
integrity and availability of service requirements
we need controls beyond the traditional simple
security and *-property. Let us consider each of the
following three cases in turn.

5.1. Data Value Update

This is the simplest case, where our multilevel rela-
tions behave much as conventional single-level
relations do. It is obvious that in a high-integrity
system updates must bc carefully controlled even
within a single security lcvcl. Conventional data-
bases USC mechanisms such as well-formed trans-
actions and least privilcgc for this purpose [2, 81.
The DBMS TCB must provide high-assurance
support for such mechanisms. We do not need any
additional mechanisms for multilevel DBMSs. The
required mechanisms should anyway bc available
in high-quality single-level DBMSs as discussed in

PI.

560

Computers and Security, Vol. 11, No. 6

5.2. Update from Unrestricted to Restricted
Assigning a restricted value to a field with classifi-
cation c requires a check that this field is already
restricted at levels below t. This is feasible within
the scope of simple security. In high-assurance
systems this application-independent pre-condi-
tion should be checked by the DBMS TCB. At
lower levels of assurance the pre-condition may be
tested by individual transactions rather than by
the DBMS.

The effect of restricting a field at the c level is
dangerous in that it can cause denial-of-service to c
users. So when the destinations of all our flights are
made restricted, when they should not be, WC
might end up grounding the entire fleet! Therefore
the ability to mark a field as restricted should be a

carefully controlled privilege. This privilege should
be assigned to a few subjects who need to do this
operation. We can ensure that this privilege cannot
bc acquired except by some very special non-
discretionary means such as involving intervention
by a security officer.

The general problem of incorrect data essentially
exists whether or not we recognize restricted as a

special value. For suppose a malicious program
running at the U level, and obeying simple security
and *-property, sets the destination of all flights to
be Dayton, Ohio. Does the entire fleet converge on
Wright Patterson Air Force Base? Presumably a
high-integrity system has corrective measures to
detect and recover from such errors. In principle,
incorrectly restricted fields present a similar prob-
lem except that recovery may be slightly more
cumbersome.

5.3. Update from Restricted to Unrestricted
An update from restricted to unrestricted is diffcr-
ent from the previous two cases because we cannot
test the pre-conditions for this action within the
confines of simple security. If we wish to prevent
overwriting of high data by this operation WC have
to check that no high data exist (i.e., no non-null
high data exist). In view of simple security this is
not feasible. Therefore we define the operation as
potentially overwriting high data. It follows that we

must strictly control the ability to make a restricted
value unrestricted. The control in this case should
be even stricter than in the case of update from
unrestricted to restricted. Alternatively, WC can use
a trusted subject for this operation.

6. Conclusion

In this paper we have shown how both the poly-
high and polylow variations of polyinstantiation
can be eliminated by our solution of restricted
polyinstantiation. This allows us to avoid down-
ward signaling channels, inconsistencies, denial of
data entry to high users and the overwriting of
high data by low subjects while providing elcment-
level labeling. This is the first solution to meet all
these requirements simultaneously.

In conclusion we wish to note that restricted poly-
instantiation makes a particular trade-off among
conflicting objectives. It may be eminently suitable
to most applications. Yet we would advise against
having this as the only option. Databases are long
lived and develop a great deal of inertia over their
life. Moreover different applications may call for
different trade-offs. For example, temporary incon-
sistcncies may be prcfcrred to inconvenience in
data entry. Gcncral-purpose multilevel secure
DBMSs must cater to such applications too. Thcrc-
fore our recommendation is that restricted poly-
instantiation be available as one of several options
that a multilevel secure DBMS supports.

Acknowledgment

We are indebted to John Campbell, Jot Giordano,
and Howard Stainer for their support and
encouragement, making this work possible The
opinions cxprcssed in this paper arc of course our
own and should not be taken to represent the views
of these individuals.

The work of both authors was partially supported
by the U.S. Air Force, Rome Air Development
Center, through subcontract # C/UB-49; D.O. No.
0042 of prime contract # F-30602-88-D-0026,
Task B-0-3610 with CALSPAN-UB Research
Ccntcr.

561

R. S. Sandhu and S. JajodialElimina ting Polyins tan tia tion

4

References

[I] K. K. Burns, Rcfcrential secrecy, IEEE Syrup. on Security and
Privacy, Onkhd, C.-l, May 1990, pp. 133- 142.

[2] r). D. Clark and D. K. Wilson, A comparison of commer-

cial and military computer security policies, IEEE Symp. on
Secrrrify and Privacy, 1987, pp. 184- 194.

(31 D. E. Denning, T. F. Lunt, K. Ii. S&11, M. Heckman and

W. K. Shockley, A multilevel relational data model, IEEE
Symp. on Securify and Privacy, 1987, pp. 220-234.

[4] D. E. Denning, Lessons learned from modeling a secure

multilevel relational database system. In C. E. Landwchr

(ed.), Dafabase Securify: Sfafus and Prospecfs, North-Holland,

Amsterdam, 1988, pp. 35-43.

[5] S. Jajodia and K. S. Sandhu, Polyinstantiation integrity in

multilevel relations, IEEE Symp. on Semrify and Privacy,

Oakland, CA, May 1990, pp. IO4- 115.

[6] S. Jajodia, K. S. Sandhu and E. Sibley, Update semantics for

multilevel relations, Sisflr Arzru4al Cornpurer Senrrify App/i-
cafiotrs Couj:, Tucson, AZ, Decetrlber 1990, pp. 103- 1 12.

[7] T. F. Lunt, D. E. Denning, K. K. Schell, M. Heckman and

W. K. Shockley, The SeaView security model, IEEE Tram
Sojiware Erg., 16 (1990) 593-607.

[8] It. S. Sandhu and S. Jajodia, Integrity mechanisms in data-

base management systems, 13th NIST-NCSC Nafional
Computer Securify Con& Washgfon, DC, October 1990.

pp. 526-540.

[g] S. li. Wiseman, On the problem of security in data bases. In

D. L. Spooner and C. E. Landwehr (eds.), Dafabase Securify
III: Sfafus artd Prospecfs, North-Holland, Amsterdam, 1990,

pp. 143-l 50. Also available as Royal Signal and I<adar

Establishment, UK, Memo 4263.

Ravi Sandhu is an Associate Professor

of Information and Software Systems

Engineering ar the George Mason

University, Fairfax, Virginia. He is also

affiliated with the Center for Secure

Information Systems at GMU. He joined

GMU after serving as an Assistant Pro-
fessor of Computer and Information

Science at The Ohio State Universiry,

Columbus, Ohio. He held scvcral teach-

ing and research positions in New Delhi, India prior to coming

to the U.S.A. for his doctorate.

Dr. Sandhu received a Ph.D. in Compurer Science from
Ilutgers University, New Brunswick, New Jersey. He also holds

an M.S. degree in Computer Science from Rutgers Univcrsiry

and M.Tech. and B.Tech. degrees in Electrical Engineering

from the Indian Institutes of Technology in New Delhi and
Bombay respectively.

Dr. Sandhu’s principal research interest is in Information

Systems Security particularly in Database Management

Systems, Distributed Systems and Formal Models. He has

published more than 50 technical papers on computer security
in refereed journals and conference proceedings. Hc has served
on the Program Committee and been a rcvicwcr for several

computer security conferences. He has rcferecd computer

security papers for numerous journals. He is currently program
chairman of the 1992 IEEE Computer Security Foundations
Workshop and is on the editorial board of thc]olrrtta[ofCot+

pufersecurify. He is a Senior Member of rhe IEJZE and a member

of ACM.

Sushi1 Jajodia is currently Professor of

Information and Software Systems

Engineering and Director of Center for

Secure Information Systems at the

George Mason University, Fairfax,

Virginia. Hc joined GMU after serving

as the direcror of the Database and
Expert Systems Program within the

Division of Information, Roborics, and

Intelligent Systems at the National Sci-

ence Foundation. Before that hc was the head of the Database
and Distributed Systems Section in the Computer Science and

Systems Branch at the Naval Restarch Laboratory,

Washington. and Associate Professor of Computer Science and

Director of Graduate Studies at the University of Missouri,
Columbia. He has also been a faculty member at the University

of Wisconsin, Stevens Point and the University of Oklahoma.

Dr. Jajodia received a Ph.D. from the University of Oregon,

Eugene. His research interests include information systems

security, database management and distributed systems, and
parallel computing. Hr has published more than 80 technical

papers in the refcrccd journals and conference proceedings and

has co-edited four books.

Dr. Jajodia has served in different capacities for various journals

and conferences. He is the founding co-editor-in-chief of the

Jorrmal olfConrprrfer Security. He is on the editorial board of the

IEEE Trattsacfions on Ktrowiedqe and Data Engineering and the
I~~ferttatiortal Journal of Infe/&euf G Cooperafive InJbrmafiotz
Sysfems. He is a member of the IEEE Computer Society

Magazine Advisory Committee and served as the program

co-chair of the Fifth IFIP Working Group 11.3 Workshop on

Database Security. He is a senior member of the IEEE Com-
puter Society and a member of the Association for Computing

Machinery.

562

