Computers & Security, 11 (1992) 547-562

Eliminating

Polyinstantiation

Securely

Ravi S. Sandhu and Sushil Jajodia

Center ﬂ)rSe[ure Inﬁ)rmation Systems, and Department (yr Itrﬂmnation and ngtwmc Systems
Engineering, George Mason University, Fairfax, VA 22030, USA

Polyinstantiation has generated a great deal of controversy
lately. Some have argued that polyinstantiation and integrity
are fundamentally incompatible, and have proposed alterna-
tives to polyinstantiation. Others have argued abour the correct
definition of polyinstantiation and its operational semantics. In
this paper we provide a fresh analysis of the basic problem that
we are trying to solve; that is, how can an honest database keep
secrets? Our analysis leads us to the concept of restricted poly-
instantiation wherein we show how to solve this problem with-
out compromising on any of the following requirements:
secrecy, integrity, availability-of-service, element-level labeling
and high assurance. This is the first solution to meet all these
requirements simultaneously.

Keywords: Multilevel securiry, Database management systems,
Polyinstantiation.

1. Introduction
What distinguishes a muldlevel database from
o

rdinary single-level ones? In a muldlevel
world, as we raise a user’s clearance new facts
emerge; conversely as we lower a user’s clearance
some facts get hidden. Therefore users with differ-
ent clearances see different versions of reality.
Moreover, these different versions must be kept
coherent and consistent—both individually and

relative to each other—without introducing any
downward signaling channels.!

The caveat of “no downward signaling channels”
poses a major new problem in building multilevel
securc databasc management systems (DBMSs) as
compared to ordinary single-level DBMSs. This
caveat is inescapablc and absolute. We must reject
outright “solutions” which rtoleratc downward
signa%ing channels. Solutions with such channels,
for example as proposed in [1, 9], may well be
acceptable as an engincering compromisc in par-
ticular situatons. But they are clearly not accepe-
able as gencral-purposc solutions. This point needs
to be emphasized because sccurity is usually the

"We deliberately use the term downward signaling channel
rather than covere channel. A downward signaling channel is a
means of downward informarion flow which is inherent in the
data model and will therefore occur in every implementation
of the model. A covert channel on the other hand is a property
of a specific implementation and not a property of the data
model. In other words, even if the data model is free of
downward signaling channcls, a specific implementation may
well contain covert channels duc to implementation quirks.

0167-4048/92/$5.00 © 1992, Eisevier Science Publishers Ltd. 547

oy pesissey

‘Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

one to take the first hit in engineering trade-offs. It
behoves us as security rescarchers to present solu-
tions which avoid taking this hit while at the same
time providing:

® no downward signaling channels

® consistency and integrity of the database both
within and across levels

o flexibility for application semantics

® fine-grained classification of data (i.c. element-

level labeling)
@ high assurance with minimal trusted code

The central point of this paper is to demonstrate
how these diverse goals can be met in a muldlevel
relational DBMS without compromising security
as part of the bargain. Our solution is simple in
concept and almost obvious in retrospect. For the
most part it uses standard concepts from the data-
base arena. A key new idea is to introduce a special
value called “restricted”, distinct from the normal
data values of an attribute (or column), as well as
distinct from “null”. The value “restricted” denotes
that the partcular field cannot be updated at the
specified level. So long as the value of a field is not
“restricted” our mulalevel relations behave much
as ordinary single-level reladons do. Particular
attention is required when a field is changed from
unrestricted to restricted and vice versa. A notable
property of our solution is that it can be imple-
mented cntirely by untrusted subjects, that is, sub-
jects which are not exempted from the simple
security or *-propertics.?

The rest of this paper is organized as follows.
Scction 2 reviews the concept of polyinstantiation
from an intuitive point of view, with the objective
of identifying the sources of polyinstantiation and

*The protocols of section 4 can be simplified if trusted subjects
which are exempted from these properties are allowed in
selected situations.

548

alternatives to it. Section 3 informally introduces
our solution of restricted polyinstandation and
illustrates it by examples. Section 4 formalizes and
precisely defines our soludion. It also provides addi-
tional examples. Sccton 5 discusses how our solu-
tion can provide the highest degree of assurance.
Section 6 concludes the paper.

2. Polyinstantiation

The concept of polyinstantiation was cxplicitly
introduced by Denning et al. [3] in connection with
the SeaView project. Since then much has been
written about this topic [1, 3-7. 9, for instance]. In
this paper we will sct aside all this previous theory,
formalism and debate. Instead we go back to first
principles and consider by means of examples how
polyinstantiation arises and therefore how it might
be controlled. We assume the rcader is familiar
with basic relational notions and terminology.

2.1. The Source of Polyinstantiation

Polyinstantiation can occur in basically two differ-
ent ways, which we call poly/ugh and polylow,
respectively, for mnemonic convenience.

(1) Polyhigh occurs when a high user® attempts to
insert data in a ficld which alrcady contains low
data. Overwriting the low data in place will resule
in a downward signaling channel. Thercfore the
high data can be inscrted only by creating a new
instance of the field to store the high data. We also
have the option of rejecting the update altogether,
with the attendant possibIFty of denial-of-service
to the high user.

(2) Polylow occurs in the opposite situation, where

a low user attempts to insert dara in a ficld which
alrcady contains high data. In this case rejecting the
update is not a viable option becausc it cstabhs%xcs a
downward signaling channel. That leaves us two

SSerictly speaking we should be saying subject rather than user.
For the most part we will loosely use these terms interchange-
ably. Where the distinction is important we will be appro-
priately precise.

Computers and Security, Vol. 11, No. 6

alternatives. We can overwrite a high dara in place
which violates the integrity of the high dara. Or we
can create a new instance of the field to store the
low data.

In both cases note that we have identified “secure”
alternatives to polyinstantiation. These alternatives
are secure in the sense of secrecy and information
flow. Unfortunately the alternatives have denial-
of-service and integrity problems reiterated below.

(1) The alternative to polyhigh entails denial-of-
service to high users by low users (i.c.,, once a low
value has been entered in a field a high value can-
not be entered until the low value has been nulli-

fied by a low subject).*

(2) The alternative to polylow entails destruction
of high data by low users, which presents a serious
integrity problem (ie., the high data are over-
written in place by low data).

A naive implementation of these alternatives will
create more real security problems than it solves.
Our main contribution in this paper is to show
how these alternatives to polyhigh and polylow can
be employed in a careful, disciplined manner to
achieve sccrecy, availability-of-service and integriry
with high assurance.

It should be noted that there is an important differ-
ence between polyhigh and polylow. Polyhigh can
be completely prevented by reactive mechanisms at
the cost of denial-of-service to entry of high data.
This is likely to be a tolerable cost in many applica-
tions. On the other hand, polylow cannot be com-
pletely prevented by reactive mechanisms. At the
moment of enforcement a reactive mechanism has

*#This protocol—of nullifying low data prior to entry of high
data—does not guarantee protection against denial-of-service.
If a low value is nullified to enable entry of a high value there
remains the risk that a low Trojan horse can enter another low
data value before the high subject has the opportunity to enter
its high value. The soludon described in this paper (sce section
3) eliminates this vulnerability.

only the alternative of overwriting high data by
low data. This is likely to be into %crable in most
applications. Therefore polylow must—for all prac-
tical purposes—be prevented by a proactive
mechanism; that is, steps must be taken in advance
of the problem’s occurrence to ensure that it can-
not occur.

2.2. Polyhigh Example

Let us now consider a concrete example to make
polyhigh and polylow clearer. Consider the follow-
1ng relation SOD where Starshlp is the apparent
primary key:

Starship Objective Destination | TC

Enterprise U | Exploradon U | null Ul u

Herc, as in all our examples, cach attribute in a
tuple not only has a value but also a classification.
In addidon there is a tuple~class or TC attribute.
This attribute is computed to be the least upper
bound of the classifications of the individual data
elements in the tuple.

Now consider the following scenario:

(1) A U user updates the destination of the Enter-
prisc to be Talos. The relation is therefore modified
as follows:

Starship Objective Destination | TC

Enterprise U | Exploration U | Talos UlUu

(2) Next an S user attempts to modify the destina-
tion of the Enterprise to be Rigel. We cannot over-
write the destination in place because that would
crcate a downward signaling channcl. We can

549

spiY posisjey

‘Refereed Article:

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

reject the update at the risk of denying entry of
legitimate secret data. Or we can polyinstantiate
and modify the relation to appear as follows,
respectively, for U and S users. Note that U users
see no change:

Starship Objective Destination | TC

Enterprise U | Exploration U | null Ul U

Starship Objective Desdnation | TC

Starship Objective Destinadon | TC

Enterprise U | Exploration U | Talos U | U

Enterprise U | Exploradon U | Rigel S | S

Starship Objective Destinatdon | TC

Enterprise U | Exploration U | Talos U| U
Enterprise U | Exploration U | Rigel S

w

What are we to make of this last relation given
above? There are at least two reasonable interpreta-
tions:

® Cover story. The destination of Talos may be a
cover story for the real destination of Rigel. In this
casc the database is accurately mimicking the
duplicity of the real world. There arc, however,
other ways of incorporating cover stories besides
polyinstantation. For example, we may have two
attributes, one for cover-story destination and one
for the real destinadon. Debate on the reladve
merits and demerits of these techniques is outside
the scope of this paper. For the purpose of this paper we
assume that polyinstantiation is not to be used for cover
stories. We therefore reject this alternative as a valid inter-
pretation.

® Temporary inconsistency. We have a temporary
inconsistency in the database which nceds to be
resolved. For instance, the inconsistency may be
resolved as follows: the S user who inserted the
Rigel destination latter logs in at the U level and
nullifies the Talos value, so thereafter the relation
appears respectively as follows to U and S users:

550

It is most important to understand that this scheme
does not create a downward signaling channel
from one subject to another. The nulligcarion of
the destination at the U level is being done by a U
subject. One might argue that there 1s a downward
signaling channel with a human in the loop. The
human is, however, trusted not to let the channel
be exercised without good cause. Finally note that
the U user who executed step 1 of the scenario may
again try to enter Talos as the destination, which
brings us within the scope of polylow.

2.3. Polylow Example

Our example for polylow is similar to the polyhigh
example, with the difference that the two update
operations occur in the opposite order. So again
consider the following relation SOD where Star-
ship is the apparent primary key:

Starship Objective Destination | TC

Enterprisc U | Exploration U | null Ul U

This time consider the following scenario.

(1) An S user modifies the destination of the
Enterprise to be Rigel. The relation is modified to

Computers and Security, Vol. 11, No. 6

appear respectively as follows to U and S users.
Note that U users see no change in the relation:

Starship Objective Destinaton | TC

Starship Objective Destinaton | TC
Enterprise U | Exploraton U Talos U U
Enterprise U | Exploration U | Rigel SIS

Enterprise U

Exploration U

null U

U

Starship Objective Destination | TC

Enterprise U | Exploration U | Rigel SI1S

{2) A U user updates the destination of the Enter-
prise to be Talos. We cannot reject this update on
the grounds that a secret destination for the Enter-
prise alrcady exists, because that amounts to estab-
lishing a downward signaling channel. We can
overwrite the destination field in place at the cost
of destroying secret data. This would give us the
following relation for both U and S users:

Starship Objective Destination | TC

Enterprise U | Exploration U | Talos U|u

For obvious reasons this alternative has not been
seriously considered by most researchers. That
leaves us the option of polyinstantiation, which will
modify the reladon at the end of step 1 to the fol-
lowing for U and S users, respectively:

Starship Objectve Destination | TC

Enterprise U | Exploraton U | Talos U | U

This is exactly the same relation as obtained at the
end of step 2 in our polyhigh example. The pos-
sible interpretations are therefore similar; that is,
we ecither have a temporary inconsistency or a
cover story (the latter alternadve has alrcady been
rejected for our database). The temporary incon-
sistency can be corrected by having a U subject
(possibly created by an S user logged in at the U
level) nullify the Talos destination. But the incon-
sistency may recur again and again.

3. Restricted Polyinstantiation

In the previous section we examined the source of
polyinstantiation and identified polyhigh and poly-
low as the two different ways in which polyinstan-
tiation arises. In this scction we consider
applications which have the following require-
ments.

(1) Downward signaling channels cannot be toler-
ated.

(2) The simple security and *-properties must be
enforced for all subjects; that is, no trusted code can

be used.
(3) Temporary inconsistencies cannot be tolerated.

(4) Denial of data entry service to high users can-
not be tolerated.

Moreover cach of these requirements has equal
importance and onc cannot be sacrificed for
another. The scenarios of the polyhigh and polylow
examples of the previous section show that poly-
instantiation by itself cannot meet these require-

551

ooy pasisjey

Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

ments simultaneously. One requirement or the
other must give in some way.

In this section we show how all four requirements
identified above can be simultaneously met. We
describe our solution as restricted polyinstantiation.
The basic idea is to introduce a special symbol
denoted by “restricted” as the p0551blc value of a
data element. The value “restricted” is distinct from
any other value for that element and is also differ-
ent from “null”. In other words the domain of a
data clement is its natural domain extended with
“restricted” and “null”. We define the semantics of
“restricted” in such a way that we are able o
climinate both polyhigh and polylow. “Null” has
exactly the same semantics as any other data value
and needs no special treatment.

Let us now play out the polyhigh and polylow
scenarios of the previous section to intuitively
motivate our solution. A formal description of the
update protocols is given in the next section.

3.1. Polyhigh Example Revisited
Consider again the followmg reladon SOD where
Starship is the apparent primary key:

Starship Objective Destination | TC

Enterprise U | Exploraton U | null U|lU

Now consider the following scenario.

(1) A U user updates the destination of the Enter-
prise to be Talos. The relation is therefore modified
as follows:

Starship Objective Destination | TC

Enterprise U | Exploration U | Talos U| U

552

(2) Next an S user attempts to modity the destina-
tion of the Enterprise to be Rigel. We cannot poly-
instantiate cven temporarily, so we must reject this
update. Do we have denial-of-service to the S user?
No, because the S user can obtain service as follows.

Step 2a. The S user first logs in as a U subject and
marks the destdnadon of the Enterprise as
restricted, giving us the following relaton:®

Starship Objective Destination | TC

Enterprise U | Exploration U | restricted U | U

The meaning of restricted is that this ficld can no
longer be updated by a U user. U users can there-
fore infer that the truc valuc of Enterprise’s
destnadon is classified at some level not domi-
nated by U.

Step 2b. The S user then logs in as an S subject and
enters the destination of the Enterprise as Rigel,
giving us the following relations at the U and S
levels, respectively:

Desanation | TC

Starship Objective

Enterprisc U | Exploration U | restricted U | U

Starship Objecuve Destination | TC

Enterprise U | Exploration U | Rigel S1S

*Alternately the S uscr logs in at the U-level and requests some
properly authorized U user to carry out this step. Communica-
tion of this request from the S user to the U user may also
occur outside of the computer system, by say direct personal
communication or a sccure telephone call.

Computers and Security, Vol. 11, No. 6

How does this differ from the scenario of section
2.2 (where the end result after cleaning up the
temporary inconsistency was as above except that
we have null instead of restricted)? The main
difference is that, after step 2a, U users are no
longer able to update the destination of the Enter-
prise. In particular, atctempts by U users to re-enter
Talos as the destination of Enterprise will be
rejected on the grounds that the field is restricted.
Therefore the relation is guaranteed to be consis-
tent till such time as the restricted value is climi-
nated. Consideration of who should be allowed to
enter and remove the restricted value is deferred
for now.

Does step 2a introduce a signaling channel? Yes,
but this signaling channel is very similar to the one
resultng from the nullificadon of Talos at the U
level in the example of section 2.2. Both involve a
trusted S user in the loop who presumably will
ensure that the channel is not exercised wantonly,
but rather that this inference is permitted only
when the real-world situadon is actually so. Such a
channel with trusted humans in the loop can be
exercised only by Trojan horses that are capable of
manipulating the real world. This entails the
manipulation of real trusted people making rcal
decisions and not merely the manipulation of bits
in a database.

3.2. Polylow Example Revisited

Now consider the two update operations in the
opposite order. So again we begin with the follow-
ing relation SOD where Starship is the apparent
primary key:

Starship Objective Destinadon | TC

Enterprise U | Exploration U| null Uu|lU

This time consider the following scenario.

(1) An S user modifies the destination of the

Enterprise to be Rigel. This update is rejected!
Instead the S user is asked to go through steps 2a
and 2b of section 3.1, giving us the following rcla-
tions at the U and S levels, respectively:

Starship Objective Destination | TC

Enterprise U | Exploration U restricted U | U

Destnation | TC

Starship Objective

Enterprise U | Exploration U| Rigel SIS 1

(2) A U user updates the destination of the Enter-
prise to be Talos. The update is rejected on the
grounds that the field is restricted.

Note that there is no denial-of-service to the S
user. What is happening is a denial of improper
service; that is, there is a protocol for cntering high
data which all S users are required to follow.
Failure to follow the protocol results in denial-of-
service but this can hardly be considered a security
breach. The denial-of-service to the U user is, of
coursc, only appropriate in this situation.

There is a crucial difference between this protocol
and the one discussed in section 2.1. In both cascs
entry of high data is cnabled by an action of a low
subject. Our protocol requires the low subject to
enter the “restricted” value in the data element. In
section 2.1 the suggestion was for the low subject
to enter a “null” value. The key difference in the
two cases is that a null value can be made non-null
by a low Trojan horse, whereas the restricted value
cannot be made unrestricted by a low Trojan horse.
The latter operation requires a special privilege
whosc distribution is carcfully controlled by non-
discretionary means. This privilege is available only

553

oIy pesiesey

Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

to selected low subjects who are trusted to exercise
its use properly.

4. The Prevent Protocols

In this section we preciscly define the collection of
update protocols illustrated by example in the pre-
vious section. We collectively call this collection
the prevent protocols because they prevent poly-
instantiation due to either polyhigh or polylow
from occurring. These protocols can be imple-
mented entirely by untrusted subjects, that is, sub-
jects which are not exempted from the simple
security or *-propertics.

4.1, Multilevel Relations

We begin by reviewing some basic concepts and
notation for multilevel reladons. Let 4,, C,, A,,
C,, ..., 4,, C, denote the attributes (columns) of a
multilevel relation R with element level labeling.
Each A, is a data attribute and each C; is the classifica-
tion attribute for A,. A data attribute can take on
values from its natural domain D; extended with
two special values, “null” and “restricted”, whose
meaning will be defined shortly. We assume that
cach C; can take on any value ¢ in the security
lattice.® We require that C; cannot be null. Finally
R has a collection of relation instances R_, once for
cach access class ¢ in the given lattice.

Assume there is a user-specified primary key AK
consisting of a subset of the data attributes A;. We
call AK the apparent primary key of the muldlevel
rclatdon scheme. In general AK will consist of
multiple attributes. We have the following require-
ment in analogy to entity integrity in the standard
rcladon model. (The notation r[A4;] denotes the
value of the A, attribute in tuple ¢, and similarly for

([C])

Property 1 [Entity Integrity] Instance R, of R
satisfies entity integrity iff for all reR.: (i) AK is

°In practice of course it is desirable to place appropriate upper
and lower bounds on cach C,. This will only require minor
changes to the following discussion.

5564

uniformly classified in cach tuple; that is, A4,, A€
AK=t[C]=1|C], and (ii) the classification of cach
non-key data attribute dominates the classification
of the apparent key; that is, A,¢ AK=([C] 2 t[C,y],
where C; s the classification of AK.

The notions introduced thus far are standard ones
first introduced in the SeaView model [7]. Our
next requirement severely limits polyinstantiation
and disunguishes the approach of this paper from

previous work on element-level labeling [3-7].

Property 2 [Key Integrity] R sadsfics key
integrity iff for every R, we have for all i: AK,
Ci~4, C.0

This property stipulates that the user-specificd
apparent key AK, in conjunction with key classifi-
cation C,, functonally determines all other
attributes. In other words R, cannot have more
than onc tuple for a given combination of valucs
for AK and C. That is, the real primary key of
the relation is AK, Cy.. The effect of key integrity
is to rule out instances such as the following;

Starship Objective Destination | TC

Enterprise U | Exploraton U | Talos U
Enterprisc U | Exploraton U | Rigel S

e

The reason for rejecting this instance is its incon-
sistency in specifying two different destinations—
one secret and one classified—for the Enterprise.
Recall our assumption that cover stories are not to
be incorporated by polyinstantiation, so inter-
pretations such as discussed in [5] do not apply in
this situation. Key integrity does allow instances
such as the following, where there is polyinstantia-
tion of the key:

Computers and Security, Vol. 11, No. 6

Starship Objective Destination | TC

Starship Objective Destination | TC

Enterprise U | Exploradon U | Talos U
Enterprise S | Spying S | Rigel S

M

In this case we interpret the two tuples as describ-
ing two distinct Starships which happen to have the
same name.

The next property is concerned with consistency
between relation instances at different access
classes. Here again we depart from the analogous

property defined in [5-7]7

Property 3 [Inter-Instance Integrity] R satisfies
inter-instance integrity iff for all ¢'<c¢ we have
R.=0(R,, ¢') where the filter function o produces
the ¢’ instance R, from R, as follows.

(1) For every tuple t€R_ such that [C] <¢' there
is a tuple '€ R with 1'[AK, Cyk]=t[AK, Cyx} and
for A¢ AK

t{A,, C] ift|C] s
'[A, Cl=
(restricted, ¢') otherwise

(2) There are no tuples in R, other than those
derived by the above rule. O

The filter function maps a multilevel relation to
different instances, one for cach descending access
class in the sccurity lattice. Filtering limits each
user to that portion of a muldlevel reladon for
which he or she is cleared. For instance, filtering
the following S instance of SOD

"The definition of the filter function given in [5-7] differs
from the one given herc in that (restricted, ¢') is replaced by
(null, f{Cyx]-

Enterprise U | Exploraton U | Rigel S| S

gives us the following U instance:

Starship Objective Destination | TC

Enterprise U | Exploration U | restricted U | U

4.2. Update Protocols

In section 4.1 we identified integrity propertics for
multilevel relations considered at some instant in
time as static objects. We now consider the
dynamic behavior of these relations by considering
their update semantics. We emphasize that our
protocols do not require any exception from the
simple security or *-properties® There are three
subcases to consider, as follows.

4.2.1. Data Value Update

By the term data value we mean any value other
than “restricted.” Our first protocol addresses the
case where the value of attribute #[A4)] is changed
from its previous data value to a new data value;
that is, neither the previous value nor the new one
can be “restricted.” “Null” does not need any
special treatment in our protocols and is viewed as
just another data value. We have the following
update protocol.

8Note that the protocols can be simplified if trusted subjects
which are cxempted from these properties are allowed in
selected situations. In particular, the protocol to change a
restricted value to unrestricted (see section 4.2.3) would be con-
siderably simplified by using a trusted subject which is
exempted from the *-property.

555

a|o14y pesialey

Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

Protocol 1 t[A] can be changed from its previous
data value to a new data value by a c-user only if

t[Cl=c.

The cffect of this update operation is defined as
follows.

(1) The value of t]4,] is changed to its new value
in all relation instances R,, ¢’ 2 ¢. The value of {[C]
remains unchanged as cinall R, ¢ > ¢.

(2) All other instances of R remain unchanged.[]

Note that the preconditon for this protocol is
stated as a necessary condidon (“only if”). Ir is thus
a mandatory requirement. In addidon to this
mandatory pre-condition we may, as usual, impose
further mandatory and/or discretionary controls.

To illustrate the protocol consider the following U
and S instances of SOD, respectively:

Starship Objective Destination | TC

Enterprise U | Exploration U | restricted U | U

Starship Objective Destinadon | TC

Enterprisc U | Exploration U | Rigel SIS

An update by a U user to change the Objecdve
from “Exploration” to “Mining” has the following
effect:

Starship Objective Destinaton | TC

Enterprise U| Mining U | Rigel S| S

That is, the update takes effect at both the U and S
levels. An attempt by an S user to change the
Objective attribute would be rejected. So would an
attempt by a U user to change the Destination
attribute. An S user may change the Destinadon
attribute to say “Talos,” giving us the following U
and S instances of SOD, respectively:

Starship Objective Desdnaton | TC

Enterprisc U | Mining U | restrictedU | U

Starship Objective Destination | TC

Enterprisc U | Mining U | Talos S| S

To appreciate how “null” is treated just like any
other data value, consider what happens if an S user
nullifics the Destination attribute. We get the
following U and S instances of SOD, respectively:

Starship Objective Destinadon | TC

Enterprise U | Mining U | restrictedU | U

Starship Objectve Destinaton | TC

Destinaton | TC

Starship Objective

Enterprisc U| Mining U | restrictedU | U

Enterprisc U | Mining U | null SIS

556

Computers and Security, Vol. 11, No. 6

The Destination ateribute remains restricted for U
users and the null value is shown only to S users.
The classification of the null at S signifies that data
in this field can only be entered by S users. If the
Destnaton attribute has a null value ac the U level
then both U and S instances of SOD must be as
follows:

Starship Objective Destinadon | TC

Enterprise U | Mining U | null U| U

In this case U users are allowed to enter data for
the Destination artribute, whereas S users are not
permitted to do so. In order to enable S users to
change the Destination of the Enterprise we must
first restrict this field at the U level. This brings us
to our next protocol.

4.2.2. Update from Unrestricted to Restricted

Let us first consider the case where the security
lattice is totally ordered (i.c.,, there are no compart-
ments). An update of attribute A; in tuple ¢ from
some existing data value to “restriceed” is per-
formed as follows.

Protocol 2 t[A,] can be changed from its previous
data valuc to “restricted” by a ¢ user only if

t[Cl=c.

The eftect of this update operation is defined as
follows.

(1) The value of 1[4;, C] is changed to (restricted,
¢) in the instance R,.

(2) Let 7(c) be the immediate predecessor of ¢ (ic.,
7(¢)> ¢ and there is no ¢’ such that 7(c)> ¢’ >¢).
The value of t[{A,, C] is changed to (null, 7(c)) in
all instances R, ¢’ > <.

(3) All other instances of R remain unchanged.[]

It suffices to have the pre-condition ([C]=c for
this operatlon because, in conjunction with the
inter-instance integrity property, ¢[C;] = ¢ implies

(Ve':t[Cyx] < ¢ <o)t[A;, C)=(restricted, ¢’y in R,

In other words a data element can be made
restricted at level ¢ only if its data value is currently
classified at level ¢, which in turn implics that the
data element is restricted at all relevant levels
below ¢.

To illustrate the cffect of such updates consider the
following U instance of SOD (which is identical to
the S instance):

Starship Objective Destination | TC

Enterprise U | Exploradon U | Rigel Uu| U

A U user can change the destinaton of the Enter-

) g o :
prisc to be “restricted,” giving us the following U
and S instances:

Starship Objective Destination | TC

Enterprise U | Exploration U | restricted U | U

Starship Objective Destinadon | TC

Enterprise U | Exploration U | null S| S

Now let us consider the general case of a pardally
ordered security lattice. The problem with partially
ordered labels lies in step 2 in defining the effect of
protocol 2. In a partial ordering there may be
multiple immediate predecessors of ¢ so 7(c) 1s no

557

ejoIy paalesey

Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

longer uniquely defined. As part of the update

operation we have to designate one of ¢’s imme-
diate predecessors as the distinguished one which
will remain unrestricted. All other immediate

- predecessors become restricted. Let 77(c) denote the

distinguished immediate predecessor. Step 2 of
protocol 2 needs to be restated as follows.

(2') The value of t[A,, C|] is changed as follows for
all instances R,, ¢ > c.

(null, m(c)) if "2 7(c)
t[A, Cl=
(restricted, ¢') if ¢’ # 7(c)

As an example consider a lattice with four labels,
S, U, M, and M,; where M, and M, are both
dominated by S and both dominate U, but M, and
M, are themselves incomparable. Suppose we have
the following instance of SOD at all four levels:

Destinadon | TC

Starship Objective

Enterprisc U | Exploration U | Rigel Ul U

Let a U user make the Destination field of the
Enterprise “restricted” while designating M, to be
7(U) for this update. The U, M|, M, and S
instances of SOD will respectively become as
follows:

Starship Objective Desanaton | TC

Enterprise U | Exploration U | restricted M, | M,

Starship Objective Destination | TC

Enterprise U | Exploration U | restricted U | U

Starship Objective Destination | TC

Enterprise U | Exploration U | null M, | M,

558

Starship Objective Destnation TC

Enterprise U | Exploration U | null M, | M,

4.2.3. Update from Restricted to Unrestricted

Again for simplicity let us first consider the case
where the lattce is totally ordered. We have the
following protocol for making a field unrestricted.

Protocol 3 t[A,] can be changed from its current
value of “restricted” to a data value dv only by a ¢
user.

The effect of this update operatdon is defined as
follows.

(1) The value of t[A;, C] is changed to (dv, ¢) in all

instances R, ¢' = c.

(2) All other instances of R remain unchanged.[]

The prc—condition for this update, that 1[4, C]=
(restricted, ¢) in R, is sufﬁaent o ensure that ({4,
C] =(restricted, ¢’) in all R, '<c (due to inter-
instance integrity).

The protocol will overwrlte any existing data value
for t[A;] in instances R., ¢'>c This opcratlon
therefore has the potential for creating integrity
problems by overwriting existing higher-level data.
We have rqcctcd this approach as a general solu-
tion in scction 2. Here we are proposmg to employ
it for the specific purpose of converting a field
from restricted to unrestricted. We require that
this be a specially privileged operation so that we
can be sure it is executed only when the real-world
conditions warrant it. We will return to this point
in the next section.

Computers and Security, Vol. 11, No. 6

To illustrate this operation consider the following
U and S instances of SOD:

Starship Objective Destination | TC

Enterprise U | Exploration U | restricted U | U

Starship Objective Destnaton | TC

Enterprise U | Exploration U | null S| S

A suitably privileged U user can change the value
of the Destination attribute in this tuple to be say
“Talos,” giving us the following (identcal) U and S
instances of SOD:

Le, set t[A;] to “restricted” at all levels where tuple
t is visible.

(2) Update phase. Login at level ¢ and set t[A,
C={dv,c).

The net effect of this modified protocol is to set

{dv, ¢) inall R, ' > ¢
t[Ai’ Cl] = ,
(restricted, ¢/) inallR., ¢ #¢

For example, consider the following U, M|, M, and
S instances of SOD, respectively, taken from the
end of section 4.2.2:

Starship Objective Destination | TC

Enterprise U | Exploraton U restricted U | U

Starship Objective Destinadon | TC

Entcrprisc U | Exploration U | Talos U| U

Next let us consider the case of a partially ordered
security lattice. The pre-condition of protocol 3 is
no longer sufficient. Before a ¢ user is allowed to
change a restricted field to non-restricted we must
ensure that field is restricted at all levels which do
not dominate ¢. This includes levels which are
dominated by ¢ as well as levels incomparable with
¢. The latter requirement cannot be checked by a ¢
user without violating simple security. We circum-
vent this problem by requiring the update of pro-
tocol 3 to occur in two phases, as follows.

(1) Preparatory phase. Login at level t[C,x] and sct

t[A,, C]=restricted, ') inall R/, ¢' 2 ([Ck]

Starship Objective Destination | TC

Enterprise U | Exploration U | null M, | M,

Starship Objective Dcstination TC

Enterprisc U | Exploradon U restricted M, [M,

Starship Objective Destnation TC

Enterprise U | Exploration U| null M, | M,

The preparatory phase will give us the following U,
M,, M, and S instances of SOD, respectively:

559

BJ9IY PesIBseY

Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

Starship Objective Destinadon | TC

Starship Objective Destination TC

Enterprise U | Exploration U] restricted U | U

Enterprise U | Exploration U |Rigel M, | M,

Starship Objective Destinadon | TC

—
Enterprise U | Exploration U| restricted M, | M,

Starship Objective Destination | TC

Enterprise U | Exploration U] restricted M, | M,

Starship Objectve Desanatdon | TC

Enterprise U | Exploration U restricted M, | M,

In other words the preparatory phase restricts the
Destination attribute of this tuple at all levels above
U (which is the key class of the tuple). Sub-
sequently, the update phase results in (say) the
following U, M,, M, and S instances of SOD,
respectively:

Starship Objective Destination | TC

Enterprisc U | Exploration U | restricted U | U

Starship Objective Destinadon | TC

Enterprise U | Exploradon U | restricted M, | M,

560

Starship Objective Destination | TC

Enterprise U | Exploration U |Rigel M, I M,
r r tel 2 Z

5. Assurance

In this section we briefly consider how the prevent
protocols can be enforced.

Our first observation is that all our protocols
adhere to both simple security and the *-property.
They can therefore be enforced by a DBMS trusted
computing base (TCB) to the highest assurance
standards without the use of subjects which are
exempt from simple security or the *-property.

Secondly, our protocols arc designed to achieve
integrity and availability-of-service in addition to
secrecy. The secrecy objective can be enforced to
A1 standards by strict enforcement of simple secur-
ity and the *-propertics. In order to achieve the
integrity and availability of scrvice requirements
we need controls beyond the tradidonal simple
security and *-property. Let us consider cach of the
following three cases in turn.

5.1. Data Value Update

This is the simplest case, where our muldlevel rela-
tions behave much as conventional single-level
relations do. It is obvious that in a high-integrity
system updates must be carcfully controlled even
within a single security level. Conventional data-
bases use mechanisms such as well-formed trans-
actions and lcast privilege for this purpose [2, 8].
The DBMS TCB must provide high-assurance
support for such mechanisms. We do not need any
additional mechanisms for multilevel DBMSs. The
required mechanisms should anyway be available
in high-quality single-level DBMSs as discussed in
8]

Computers and Security, Vol. 11, No. 6

5.2. Update from Unrestricted to Restricted
Assigning a restricted value to a field with classifi-
cation ¢ requires a check that this field is already
restricted at levels below ¢. This 1s feasible within
the scope of simple security. In high-assurance
systems this applicaton-independent pre-condi-
tion should be checked by the DBMS TCB. At
lower levels of assurance the pre-condition may be
tested by individual transactons rather than by
the DBMS.

The cffect of restricting a ficld at the ¢ level is
dangerous in that it can cause denial-of-service to ¢
users. So when the destinations of all our flights are
made restricted, when they should not be, we
might end up grounding the entire fleet! Thercfore
the ability to mark a field as restricted should be a
carefully controlled privilege. This privilege should
be assigned to a few subjects who need to do this
operation. We can ensure that this privilege cannot
be acquired except by some very special non-
discretionary means such as involving intervention

by a security officer.

The general problem of incorrect data essendally
exists whether or not we recognize restricted as a
special value. For suppose a malicious program
running at the U level, and obeying simple security
and *-property, sets the destination of all flights to
be Dayton, Ohio. Does the entire fleet converge on
Wright Patterson Air Force Base? Presumably a
high-integrity system has corrective measures to
detect and recover from such errors. In principle,
incorrectly restricted fields present a similar prob-
lem except that recovery may be slighty more
cumbersome.

5.3. Update from Restricted to Unrestricted

An update from restricted to unrestricted is differ-
ent from the previous two cases because we cannot
test the pre-conditions for this action within the
confines of simple security. If we wish to prevent
overwriting of high data by this operation we have
to check that no high data exist (ie, no non-null
high data exist). In view of simple security this is
not feasible. Therefore we define the operation as
potendally overwriting high data. It follows that we

must strictly control the ability to make a restricted
value unrestricted. The control in this case should
be even stricter than in the case of update from
unrestricted to restricted. Alternadvely, we can use
a trusted subject for this operation.

6. Conclusion

In this paper we have shown how both the poly-
high and polylow variations of polyinstantiation
can be eliminated by our solution of restricted
polyinstantiation. This allows us to avoid down-
ward signaling channels, inconsistencies, denial of
data entry to high uscrs and the overwriting of
high data by low subjects while providing clement-
level labeling. This is the first solution to meet all
these requirements simultaneously.

In conclusion we wish to note that restricted poly-
nstantiation makes a particular trade-off among
conflicting objectives. It may be cminently suitable
to most applications. Yet we would advise against
having this as the only option. Databases are long
lived and develop a great deal of incrtia over their
life. Moreover different applications may call for
different trade-offs. For example, temporary incon-
sistencies may be prcfcrred to inconvenience in
data cntry. General-purposc multlevel secure
DBMSs must cater to such applications too. There-
fore our recommendation is that restricted poly-
instantiation be available as one of scveral options
that a muldlevel sccure DBMS supports.

Acknowledgment

We are indebted to John Campbell, Joe Giordano,
and Howard Stainer for their support and
encouragement, making this work possible. The
opinions cxpressed in this paper arc of course our
own and should not be taken to represent the views
of these individuals.

The work of both authors was partially supported
by the US. Air Force, Rome Air Development
Center, through subcontract # C/UB-49; D.O. No.
0042 of prime contract # F-30602-88-D-0026,
Task B-O-3610 with CALSPAN-UB Rescarch
Centcr.

561

301y pasl 9498

Refereed Article

R. S. Sandhu and S. Jajodia/Eliminating Polyinstantiation

References

[1] R. K. Burns, Referential secrecy, IEEE Symp. on Security and
Privacy, Oakland, CA, May 1990, pp. 133-142.

[2] D. D. Clark and D. R. Wilson, A comparison of commer-
cial and military computer security policies, IEEE Syntp. on
Security and Privacy, 1987, pp. 184-194.

[3] D. E. Denning, T. F. Lunt, R. R. Schell, M. Heckman and
W. R. Shockley, A muldilevel relational data model, IEEE
Symp. on Security and Privacy, 1987, pp. 220-234.

[4] D. E. Denning, Lessons lcarned from modeling a secure
muldilevel relational database system. In C. E. Landwehr
{ed.), Database Security: Status and Prospects, North-Holland,
Amsterdam, 1988, pp. 35-43.

[5] S. Jajodia and R. S. Sandhu, Polyinstantiation integrity in
multilevel relations, IEEE Symp. on Security and Privacy,

Oakland, CA, May 1990, pp. 104-115.

[6] S. Jajodia, R. S. Sandhu and E. Sibley, Update semantics for
multilevel reladons, Sixth Annual Computer Security Appli-
cations Co;y‘f, Tucson, AZ, December 1990, pp. 103-112.

[7] T. F. Lung, D. E. Denning, R. R. Schell, M. Heckman and
W. R. Shockley, The SeaView sccurity model, IEEE Trans.
Software Eng., 16 (1990) 593-607.

[8] R.S. Sandhu and S. Jajodia, Integrity mechanisms in data-
base management systems, 13th NIST-NCSC National
Computer Security Conf,, Washington, DC, October 1990,
pp. 526-540.

[9] S. R. Wiseman, On the problem of security in darta bases. In
D. L. Spooner and C. E. Landwehr (eds.), Database Security
III: Status and Prospects, North-Holland, Amsterdam, 1990,
pp- 143-150. Also available as Royal Signal and Radar
Establishment, UK, Memo 4263.

Ravi Sandhu is an Associate Professor
of Information and Software Systems
Engincering at the George Mason
University, Fairfax, Virginia. He is also
affiliated with the Center for Secure
Information Systems at GMU. He_joined
iy GMU after serving as an Assistant Pro-
fessor of Computer and Information
T‘ Science at The Ohio State University,
Columbus, Ohio. He held several teach-
ing and research positions in New Delhi, India prior to coming
to the US.A. for his doctorate.

Dr. Sandhu received 2 Ph.D. in Computer Science from
Rurtgers Universiry, New Brunswick, New Jersey. He also holds
an MS. dcgree in Computer Science from Rutgers University
and M.Tech. and B.Tech. degrees in Electrical Engincering
from the Indian Insticutes of Technology in New Delhi and
Bombay respectively.

Dr. Sandhu’s principal research interest is in Information
Systems Sccurity pardicularly in Database Management
Systems, Distributed Systems and Formal Models. He has
published more than 50 technical papers on computer security
in refereed journals and conference proceedings. He has served
on the Program Committec and been a reviewer for several
computer security conferences. He has refereed computer
security papers for numerous journals. He is currently program
chairman of the 1992 IEEE Computer Security Foundations
Workshop and is on the editorial board of the journal of Com-
puter Security. He is a Senior Member of the IEEE and a member
of ACM.

562

Sushil Jajodia is currently Professor of
Information and Software Systems
Engineering and Director of Center for
Secure Information Systems at the
George Mason University, Fairfax,
Virginia. He joined GMU after serving
as the director of the Database and
Expert Systems Program within the
¢ Division of Information, Robotics, and
- - U ¢ Ineelligene Systems at the National Sci-
ence Foundation. Before that he was the head of the Database
and Distributed Systems Section in the Computer Science and
Systems Branch at the Naval Research Laboratory,
Washington, and Associate Professor of Computer Science and
Director of Graduate Studies at the University of Missouri,
Columbia. He has also been a faculty member at the University
of Wisconsin, Stevens Point and the University of Oklahoma.

Dr. Jajodia reccived a Ph.D. from the University of Orcgon,
Eugene. His rescarch interests include information systems
security, database management and distributed systems, and
parallel computing. He has published more than 80 technical
papers in the refereed journals and conference proceedings and
has co-edited four books.

Dr. Jajodia has served in different capacities for various journals
and conferences. He is the founding co-cditor-in-chief of the
Journal of Computer Security. He is on the editorial board of the
IEEE Transactions on Knowledge and Data Engineering and the
International _Journal of Intelligent & Cooperative Information
Systems. He is a member of the IEEE Computer Society
Magazine Advisory Conmmittee and served as the program
co-chair of the Fifth IFIP Working Group 11.3 Workshop on
Database Security. He is a senior member of the IEEE Com-
puter Society and a member of the Association for Computing
Machinery.

