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Eliminating 
Polyinstantiation 
Securely 
Ravi S. Sandhu and Sushi1 Jajodia 

Polyinstantiation has generated a great deal of controversy 

lately. Some have argued that pol~nstantia~on and integriry 

are fundamentally incompatible, and have proposed alterna- 

tives to polyinstantiation. Others have argued about the correct 

definition of polyinstantiation and its operational semantics. In 
this paper we provide a fresh analysis of the basic problem that 

we are rrying ro solve; that is, how can an honest database keep 

secrets? Our analysis leads us to the concept of restricted poly- 

instantiation wherein we show how to solve this problem with- 

out compromising on any of the following requirements: 
secrecy, integrity, availability-of-service, element-level labeling 

and high assurance. This is the first solution to meet all these 

requirements simultaneously. 

xiywordx: Multilevel security, Database management systems, 

Polyinstantiation. 

1. introduction 

w 
at distinguishes a multilevel database from 

ordinary single-level ones? in a multilcvcl 

world, as we raise a user’s clearance new facts 
emerge; conversely as we lower a user’s clearance 
some facts get hidden. Therefore users with differ- 
ent clearances see different versions of reality. 
Moreover, these different versions must be kept 
coherent and consistent-both individually and 

relative to each other-without introducing any 
downward signaling channels.’ 

The caveat of “no downward signaling channels” 
poses a major new problem in building multilevel 
secure database management systems (DBMSs) as 
compared to ordinary single-level DBMSs. This 
caveat is inescapable and absolute. WC must reject 
outri ht 

K 
“solutions” which tolerate downward 

signa ing channels. Solutions with such channels, 
for example as proposed in f I, 91, may well be 
acceptable as an enginee~ng compromise in par- 
ticular situations. Bur they are clearly not acccpt- 
able as gcncral-purpose solutions. This point needs 
to be cmphasizcd because security is usually the 

‘We deliberately use the term downward signaling channel 
rather than covert channel. A downward signaling channel is a 

means of downward information flow which is inherent in the 

data model and will thcreforc occur in every implementation 

of the model. A covert channel on the other hand is a property 

of a specific itnpleme~~tatio~~ and not a property of the data 

model. In other words, even if the data model is free of 
downward signaling channels, a specific implcmcntation may 
well contain covert chant& due to implcn~cntation quirks. 
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one to take the first hit in engineering trade-offs. It 
bchovcs us as security rescarchcrs to present solu- 
tions which avoid taking this hit while at the same 
time providing: 

o no downward signaling channels 

@ consistency and integrity of the database both 
within and across levels 

l flexibility for application semantics 

8 fine-grained classification of data (i.c. element- 

level labeling) 

* high assurance with minimal trusted code 

The central point of this paper is to demonstrate 
how these diverse goals can bc met in a multilevel 
relational DBMS without compromising security 

as part of the bargain. Our solution is simple in 
concept and almost obvious in retrospect. For the 
most part it uses standard concepts from the data- 
base arena. A key new idea is to introduce a special 
value called “restricted”, distinct from the normal 
data values of an attribute (or column), as well as 
distinct from “null”. The value “rcstrictcd” denotes 
that the particular field cannot be updated at the 
specified lcvcl. So long as the value of a field is not 
“restricted” our multilevel relations bchavc much 
as ordinary single-lcvcl relations do. Particular 
attention is required when a field is changed from 
unrestricted to rcstrictcd and vice versa. A notable 
property of our solution is that it can be imple- 
mented entirely by untrusted subjects, that is, sub- 
jccts which are not cxcmptcd from the simple 
security or *-properties.’ 

The rest of this paper is organized as follows. 
Section 2 reviews the concept of polyinstantiation 
from an intuitive point of view, with the objective 
of identifying the sources of polyinstantiation and 

‘The protocols of section 4 can bc simplified if trusted subjects 

which are exempted from these propcrtics arc allowed in 
selected situations. 
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alternatives to it. Section 3 informally introduces 
our solution of restricted polyinstantiation and 
illustrates it by examples. Section 4 formalizes and 
precisely defines our solution. It also provides addi- 
tional examples. Section 5 discusses how our solu- 
tion can provide the highest dcgrcc of assurance. 
Section 6 concludes the paper. 

2. Polyinstantiation 

The concept of polyinstantiation was explicitly 
introduced by Denning et al. [3] in connection with 
the SeaView project. Since then much has been 
written about this topic [l, 3-7. 9, for instance]. In 
this paper we will set aside all this previous theory, 
formalism and debate. Instead WC go back to first 
principles and consider by means of examples how 
polyinstantiation arises and therefore how it might 
be controlled. WC assume the rcadcr is familiar 
with basic relational notions and terminology. 

2.1. The Source of Polyinstantiation 

Polyinstantiation can occur in basically two diffcr- 
ent ways, which WC call polyh’$r and polylow, 
respectively, for mnemonic convcnicncc. 

(I) Polyhigh occurs when a high user3 attempts to 
insert data in a field which already contains low 
data. Overwriting the low data in ilace will result 
in a downward signaling channel. Thcrcforc the 

high data can bc inscrtcd only by creating a new 
instance of the field to store the high data. WC also 
have the option of rcjcctin the update altogether, 
with the attendant possibi ity of denial-of-service B 

to the high user. 

(2) Polylow occurs in the opposite situation, where 
a low user attempts to insert data in a field which 

already contains high data. In this case rejectin the 
update is not a viable option because it cstablis !I cs a 

downward signaling channel. That leaves us two 

?%icrly speaking WC should bc saying subject rather than user. 

For the most aart WC will loosclv LISC rhrsc i 
ably. Where ;bc distinction is important 

priately prrcisc. 

tcrm5 intcrchangc- 
WI’ will bc appro- 



alternatives. We can overwrite a high data in place 
which violates the integrity of the hi h data. Or WC 
can create a new instance of the fie d to store the H 

low data. 

In both cases note that we have identified “secure” 
alternatives to polyinstantiation. These alternatives 
are secure in the sense of secrecy and information 
flow. Unfortunately the alternatives have denial- 
of-scrvicc and integrity problems reiterated below. 
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(I) The alternative to polyhigh entails denial-of- 

service to high users by low users (i.e., once a low 
value has been entered in a field a high value can- 
not be entered until the low value has been nulli- 

fied by a low subject)! 

(2) The alternative to polylow entails destruction 
of high data by low users, which presents a serious 
integrity problem (i.e., the high data are over- 
written in place by low data). 

A naive implementation of these alternatives will 
create more real security problems than it solves. 
Our main contribution in this paper is to show 
how these alternatives to polyhigh and polylow can 

be employed in a careful, disciplined manner to 
achieve secrecy, availability-of-service and integrity 

with high assurance. 

It should be noted that there is an important diffcr- 
ence between polyhigh and polylow. Polyhigh can 
be completely prevented by reactive mechanisms at 
the cost of denial-of-service to entry of high data. 
This is likely to be a tolerable cost in many applica- 
tions. On the other hand, polylow cannot bc com- 
pletely prcvcnted by reactive mechanisms. At the 
moment of cnforccmcnt a reactive mechanism has 

lThis prorocol-of nullifying low data prior to enrry of high 

data-does not guarantee protection against denial-of-service. 

If a low value is nullified to enable entry of a high value thcrc 
remains the risk that a low Trojan horse can enter another low 
data value before the high subject has the opportunity to enter 

its high value. The solution described in rhis paper (see section 
3) eliminates this vulnerability. 

only the alternative of overwritin 
‘i 

high data by 

low data. This is likely to be into crable in most 
applications. Therefore polylow must-for all prac- 
tical purposes-be prevented by a proactive 
mechanism; that is, steps must be taken in advance 
of the problem’s occurrence to ensure that it can- 
not occur. 

2.2. Polyhigh Example 
Let us now consider a concrete example to make 
polyhigh and polyl ow clearer. Consider the follow- 

ing relation SOD where Starship is the apparent 
primary key: 

I 

Starship Objective Destination TC 

Enterprise U Exploration U null U U 

Here, as in all our examples, each attribute in a 
tuple not only has a value but also a classification. 
In addition there is a tuplc-class or TC attribute. 
This attribute is computed to be the least upper 
bound of the classifications of the individual data 
clcments in the tuple. 

Now consider the following scenario: 

(1) A U user updates the destination of the Entcr- 
prisc to bc Talos. The relation is therefore modified 

as follows: 

Starship Objective Destination TC I I 

Enterprise U Exploration U Talos U U 

(2) Next an S user attempts to modify the destina- 
tion of the Enterprise to be Rigcl. We cannot over- 
write the destination in place because that would 
create a downward signaling channel. We can 
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reject the update at the risk of denying entry of 
legitimate secret data. Or we can polyinstantiate 
and modify the relation to appear as follows, 
respectively, for U and S users. Note that U users 
see no change: 

Starship Objective Destination TC 

Enterprise U Exploration U null U U 

Starship Objective Destination TC Starship Obj cctive Destination TC 

Enterprise U Exploration U Tales U U Enterprise U Exploration U Rigel S S 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 
Enterprise U Exploration U Rigel S S 

What are we to make of this last relation given 
above? There are at least two reasonable interpreta- 
tions: 

l Cover story. The destination of Talos may be a 
cover story for the real destination of Rigel. In this 
cast the database is accurately mimicking the 
duplicity of the real world. Thcrc arc, however, 
other ways of incorporating cover stories besides 
polyinstantiation. For example, WC may have two 
attributes, one for cover-story destination and one 
for the real destination. Debate on the relative 
merits and demerits of these techniques is outside 
the scope of this paper. For thepurpose of thispuper we 
assume that polyinstantiation is not to be used for cover 
stories. We therefore rqect this alternative as a valid inter- 
pretation. 

l Temporary inconsistency. We have a temporary 
inconsistency in the database which needs to be 
resolved. For instance, the inconsistency may be 
resolved as follows: the S user who inserted the 
Rigel destination latter logs in at the U level and 
nullifies the Talos value, so thereafter the relation 
appears respectively as follows to U and S users: 

It is most important to understand that this schcmc 
does not create a downward signalin 

! 
channel 

from one subject to another. The nulli rcation of 
the destination at the U level is being done by a U 
subject. One might argue that them is a downward 
signaling channel with a human in the loop. The 
human is, however, trusted not to let the channel 
be exercised without good cause. Finally note that 
the U user who executed step 1 of the scenario may 
again try to enter Talos as the destination, which 
brings us within the scope of polylow. 

2.3. Polylow Example 
Our example for polylow is similar to the polyhigh 
example, with the differcncc that the two update 
operations occur in the opposite order. So again 
consider the following relation SOD where Star- 
ship is the apparent primary key: 

Starship Objcctivc Destination TC 

Enterprise U Exploration U null U U 

This time consider the following scenario. 

(1) An S user modifies the destination of the 
Enterprise to be Rigel. The relation is modified to 
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appear respectively as follows to U and S users. 
Note that U users see no change in the relation: Starship Objective Destination TC 

” I I I ! 1 

Starship Objective 

Enterprise U Exploration U null U U 

Starship Objective Destination TC 

Enterprise U Exploration U Rigel S S 

(2) A U user updates the destination of the Enter- 
prise to be Talos. We cannot reject this update on 
the grounds that a secret destination for the Enter- 
prise already exists, because that amounts to estab- 
lishing a downward signaling channel. We can 
overwrite the destination field in place at the cost 
of destroying secret data. This would give us rhe 
following relation for both U and S users: 

Starship Objective Destination TC 

Enterprise U Exploration U Tales U U 

For obvious reasons this alternative has not been 
seriously considered by most researchers. That 
leaves us the option of pol~nstan~a~on, which will 
modify the relation at the end of step 1 to the fol- 
lowing for U and S users, respectively: 

Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 

Enterprise U Exploration U 
Enterprise U Exploration U 

This is exactly the same relation as obtained at the 
end of step 2 in our polyhigh example. The pas- 

sible interpretations are therefore similar; that is, 
we either have a temporary inconsistency or a 
cover story (the latter alternative has already been 
rejected for our database). The temporary incon- 
sistency can be corrected by having a U subject 
(possibly created by an S user logged in at the U 
level) nullify the Tales destination. But the incon- 
sistency may recur again and again. 

3. Restricted Polyinstantiation 

In the previous section WC examined the source of 
polyinstantiation and identified polyhigh and poly- 
low as the two different ways in which polyinstan- 
tiation arises. In this section WC consider 
applications which have the following rcquirc- 
merits. 

(1) Downward signaling channels cannot bc toler- 
ated. 

(2) The simple security and *-properties must be 
enforced for all subjects; that is, no trusted code can 
be used. 

(3) Temporary inconsistcncics cannot be tolerated. 

(4) Denial of data entry service to high users can- 
not be tolerated. 

Moreover each of these rcquircments has equal 
importance and one cannot be sacrificed for 
another. The scenarios of the polyhigh and polylow 
examples of the previous section show that poly- 
instantiation by itself cannot meet these require- 
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ments simultaneously. One requirement or the 
other must give in some way. 

In this section we show how all four requirements 
identified above can be simultaneously met. We 
describe our solution as restricten polyinstantiation. 
The basic idea is to introduce a special symbol 
denoted by “restricted” as the possible value of a 
data element. The value “restricted” is distinct from 
any other value for that element and is also differ- 
ent from ‘?rull”. In other words the domain of a 
data element is its natural domain extended with 
“restricted” and “null”. We define the semantics of 
“restricted” in such a way that we are able to 
eliminate both polyhigh and polylow. “Null” has 
exactly the same semantics as any other data value 
and needs no special treatment. 

Let us now play out the polyhigh and polylow 
scenarios of the previous section to intuitively 
motivate our solution. A formal description of the 
update protocols is given in the next section. 

(2) Next an S user attempts to modify the dcstina- 
tion of the Enterprise to be Rigel. WC cannot poly- 
instantiate even temporarily, so we must rcjcct this 
update. Do we have denial-of-service to the S user? 
No, because the S user can obtain service as follows. 

Step 2~. The S user first logs in as a U subject and 
marks the destination of the Enterprise as 
restricted, giving us the following relation? 

1 Starship / 1 Objective Destination TC 

Enterprise U Exploration U restricted U U 

The meaning of restricted is that this field can no 
longer be updated by a U user. U users can thcre- 
fore infer that the true value of Enterprise’s 
destination is classified at some level not domi- 
nated by U. 

3.1. Polyhigh Example Revisited 

Consider again the following relation SOD where 
Starship is the apparent primary key: 

Step 2b. The S user then logs in as an S subject and 
enters the destination of the Enterprise as Rigel, 
giving us the following relations at the U and S 
levels, respectively: 

Starship Objective Destination TC Starship Objcctivc Destination TC 

Enterprise U Exploration U null U U Enterprise U Exploration U restricted U U 

Now consider the following scenario. 1 I 1 I I 
( Starship 1 Objective ( Destination 1 TCI 

(1) A U user updates the destination of the Enter- 
I I I 

prise to be Talos. The relation is thcreforc mod&d 
as follows: 

Enterprise U Exploration U Rigel S S 

Starship Objcctivc Destination TC 5Alternately rhe S user logs in at the U-level and requests some 
properly authorized U user to carry out this step. Communica- 

Enterprise U Exploration U Talos U U 
tion of this request from the S user to the U user may also 

occur outside of the computer system. by say direct personal 

communication or a sccurc telcphonc call. 
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How does this differ from the scenario of section 
2.2 (where the end result after cleaning up the 
temporary inconsistency was as above except that 
WC have null instead of restricted)? The main 
difference is that, after step 2a, U users are no 
longer able to update the destination of the Enter- 
prise. In particular, attempts by U users to rc-enter 
Talos as the destination of Enterprise will be 
rejected on the grounds that the field is restricted. 
Therefore the relation is guaranteed to be consis- 
tent till such time as the restricted value is climi- 
nated. Consideration of who should be allowed to 
enter and remove the restricted value is deferred 

for now. 

Does step 2a introduce a signaling channel? Yes, 
but this signaling channel is very similar to the one 
resulting from the nullification of Talos at the U 
level in the example of section 2.2. Both involve a 
trusted S user in the loop who presumably will 
ensure that the channel is not exercised wantonly, 

but rather that this inference is permitted only 
when the real-world situation is actually so. Such a 
channel with trusted humans in the loop can be 
exercised only by Trojan horses that are capable of 
manipulating the real world. This entails the 
manipulation of real trusted people making real 
decisions and not merely the manipulation of bits 
in a database. 

3.2. Polylow Example Revisited 

Now consider the two update operations in the 
opposite order. So again WC begin with the follow- 
ing relation SOD where Starship is the apparent 

primary key: 

Starship Objective Destination TC 

Enterprise U Exploration U null U U 

This time consider the following scenario. 

(I) An S user modifies the destination of the 

Enterprise to be Rigel. This update is rciectcd! 
Instead the S user is%ked to go through &ps 2a 
and 2b of section 3.1, giving us the following rcla- 
tions at the U and S levels, respectively: 

I I I I 1 

1 Starship 1 Objective 1 Destination 1 TC 1 
, I I , f 

I I I I I 

1 Enterprise U 1 Exploration U 1 restricted U I U I 
L I I I I 

Starship Objective Destination TC 
c I I 

Enterprise U Exploration U Rigcl 
S/S I 

(2) A U user updates the destination of the Enter- 
prise to be Talos. The update is rejcctcd on the 
grounds that the field is restricted. 

Note that there is no denial-of-service to the S 
user. What is happening is a denial of improper 
service; that is, thcrc is a protocol for entering high 
data which all S users arc required to follow. 
Failure to follow the protocol results in dcnial-of- 
service but this can hardly be considered a security 
breach. The denial-of-service to the U user is, of 
course, only appropriate in this situation. 

There is a crucial difference bctwccn this protocol 
and the one discussed in section 2.1. In both cases 
entry of high data is cnablcd by an action of a low 
subject. Our protocol rcquircs the low subject to 
cntcr the “rcstrictcd” value in the data element. In 

section 2.1 the suggestion was for the low subject 
to enter a “null” value. The key difference in the 
two cases is that a null value can be made non-null 
by a low Trojan horse, whereas the rcstrictcd value 
cannot be made unrestricted by a low Trojan horse. 
The latter operation rcquircs a special privilege 
whose distribution is carefully controlled by non- 
discretionary means. This privilcgc is available only 
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to selected low subjects who are trusted to exercise 
its use properly. 

4. The Prevent Protocols 

In this section we precisely define the collection of 
update protocols illustrated by example in the prc- 
vious section. We collectively call this collection 
the prevent protocols because they prevent poly- 
instantiation due to either polyhigh or polylow 
from occurring. These protocols can be implc- 
mcnted entirely by untrusted subjects, that is, sub- 
jects which are not exempted from the simple 
security or *-propcrtics. 

4.1. Multilevel Relations 

We begin by reviewing some basic concepts and 
notation for multilevel relations. Let A,, C,, A,, 
C2, . . . , A,, C,, denote the attributes (columns) of a 
multilevel relation R with element level labeling. 
Each A, is a data attribute and each Cj is the classijka- 
tion attribute for A,. A data attribute can take on 
values from its natural domain Di extended with 

two special values, “null” and “restricted”, whose 
meaning will be defined shortly. We assume that 
each C, can take on any value c in the security 
lattice6 We require that C, cannot be null. Finally 
R has a collection of relation instances R,, one for 
each access class c in the given lattice. 

Assume there is a user-specified primary key AK 
consisting of a subset of the data attributes A;. We 
call AK the apparent primary key of the multilevel 
relation scheme. In general AK will consist of 
multiple attributes. We have the following requirc- 
mcnt in analogy to entity integrity in the standard 
relation model. (The notation t[A,] dcnotcs the 
value of the A, attribute in tuple t, and similarly for 

Property 1 [Entity Integrity] Instance R, of R 
satisfies entity integrity iff for all PER,: (i) AK is 

“In practice of coursr it is desirable ro place appropriate upper 

and lower bounds on each C,. This will only require minor 
changes to the following discussion. 

uniformly classified in each tuple; that is, A,, A,E 
AK* t [ Ci] = t[ c, 1, and (ii) the classification of each 
non-key data attribute dominates the classification 

of the apparent key, that is, A,CK * 
where C,, is the classification of AK. 

The notions introduced thus far arc standard ones 
first introduced in the SeaVicw model [7]. Our 
next requirement severely limits polyinstantiation 
and distinguishes the approach of this paper from 
previous work on element-level labeling [j-7]. 

Property 2 [Key Integrity] R satisfies key 
integrity iff for every R, we have for all i: AK, 

C,,-A,, C,. 0 

This property stipulates that the user-specified 
apparent key AK, in conjunction with key classifi- 
cation C,4K, functionally dctcrmincs all other 
attributes. In other words R, cannot have more 
than one tuplc for a given combination of values 
for AK and C,,. That is, the real primary key of 
the relation is AK, C,,. The cffcct of key integrity 
is to rule out instances such as the following: 

Starship Objective Destination TC 

The reason for rejecting this instance is its incon- 
sistency in specifying two diffcrcnt destinations- 
one secret and one classified-for the Enterprise 
Recall our assumption that cover stories are not to 
bc incorporated by polyinstantiation, so inter- 
prctations such as discussed in [5] do not apply in 
this situation. Key intc rity dots allow instances 
such as the following, w a 
tion of the key: 

erc thcrc is polyinstantia- 
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Starship Objective Destination TC 

Enterprise U Exploration U Talos U U 
Enterprise S Spying S Rigel S S 

Starship Objective Destination TC 

Enterprise U Exploration U Rigel S S 

In this case we interpret the two tuples as describ- 
ing two distinct Starships which happen to have the 
same name. 

The next property is concerned with consistency 
between relation instances at different access 
classes. Here again WC depart from the analogous 
property defined in [j-7] .’ 

Property 3 [Inter-Instance Integrity] R satisfies 
inter-instance integrity iff for all c’ f c we have 
R,! = a(R,, c’) where the f;:lter function o produces 
the c’ instance R,, from R, as follows. 

(1) For every tuple t E R, such that t [CAK] G c’ there 
isstr~&‘~R: with t’[AK, CAK] = t[AK, CA,] and 

t[Ao C,l if t[C,] 6 c’ 
t’[A;. C!] = 

(restricted, c’) otherwise 

(2) There are no tuplcs in R,, other than those 
derived by the above rule. q 

The filter function maps a multilevel relation to 
different instances, one for each descending access 
class in the security lattice. Filtering limits each 
user to that portion of a multilevel relation for 
which he or she is cleared. For instance, filtering 
the following S instance of SOD 

‘The definition of the filter function given in [j-7] differs 
from the one given here in thar (restricted, c’) is replaced by 

(nuk ~]C+&. 

gives us the following U instance: 

Starship Objective Destination TC 

Enterprise U Exploration U restricted U U 

4.2. Update Protocols 
In section 4.1 we idcntifkd integrity properties for 
multilevel relations considered at some instant in 
time as static objects. We now consider the 
dynamic behavior of these relations by considering 
their update semantics. We emphasize that our 
protocols do not require any exception from the 
simple security or *-properties.’ There are three 
subcases to consider. as follows. 

4.2.1. Data Value Update 
By the term data value we mean any value other 
than Yrestricted.D Our first protocol addresses the 
case where the value of attribute t[A;] is changed 
from its previous data value to a new data value; 
that is, neither the previous value nor the new one 
can be “restricted.” “Null” does not need any 
special treatment in our protocols and is viewed as 
just another data value. WC have the following 
update protocol. 

sNote that the protocols can be simplified if trusted subjects 

which are exempted from these properties are allowed in 
selected situations. In particular, the protocol to change a 

restricted value to unrestricted (see section 4.2.3) would be con- 
siderably simphfted by using a trusted subject which is 

exempted from the ‘-property. 
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Protocol 1 t[Ai] can be changed from its previous 
data value to a new data value by a c-user only if 
f[Ci] = c. 

The effect of this update operation is defined as 
follows. 

(1) The value of t [A,] is changed to its new value 

in all relation instances I?,,, c’ B c. The value of t[C,] 
remains unchanged as c in all R,,, c’ 2 C. 

(2) All other instances of R remain unchanged.Cl 

Note that the precondition for this protocol is 
stated as a necessary condition (“only if”). It is thus 
a mandatory requirement. In addition to this 
mandatory pre-condition WC may, as usual, impose 

further mandatory and/or discretionary controls. 

To illustrate the protocol consider the following U 
and S instances of SOD, respectively: 

Starship Objective Destination TC 

Entcrprisc U Exploration U restricted U U 

Starship Objective Destination TC 

Enterprise U Exploration U Rigel S S 

An update by a U user to change the Objective 
from “Exploration” to “Mining” has the following 
effect: 

Starship Objective Destination TC 

Enterprise U Mining U rcstrictcd U U 

556 

Starship Objective Destination TC 

Enterprise U Mining u Rigel s s 

That is, the update takes effect at both the U and S 
levels. AII attempt by an S user to change the 
Objective attribute would be rejected. So would an 
attempt by a U user to change the Destination 
attribute. An S user may change the Destination 
attribute to say “Talos,” giving us the following U 
and S instances of SOD, rcspectivcly: 

Starship Objective Destination TC 

Enterprise U Mining U restricted U U 

Starship Objective Destination TC 

Enterprise U Mining U Tales S S 

To appreciate how “null” is treated just like any 
other data value, consider what happens if an S user 
null&s the Destination attribute. We get the 
following U and S instances of SOD, rcspcctivcly: 

Starship Objective Destination TC 

Enterprise U Mining U restricted U U 

Starship Objcctivc Destination TC 

Entcrprisc U Mining U null s s 
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The Destination attribute remains restricted for U 
users and the null value is shown only to S users. 
The classification of the null at S signifies that data 
in this field can only be entered by S users. If the 
Destination attribute has a null value at the U level 
then both U and S instances of SOD must be as 
follows: 

Starship Objective Destination TC 
I I 

Enterprise U Mining U null U U 

In this case U users are allowed to enter data for 
the Destination attribute, whereas S users are not 
permitted to do so. In order to enable S users to 
change the Destination of the Enterprise we must 
first restrict this field at the U level. This brings us 
to our next protocol. 

4.2.2. Update from Unrestricted to Restricted 

Let us first consider the case where the security 
lattice is totally ordered (i.e., there are no compart- 
ments). An update of attribute Ai in tuple t from 
some existing data value to “rcstrictcd” is per- 
formed as follows. 

Protocol 2 r [A,] can bc changed from its previous 
data value to “rcstrictcd” by a c 
f[Ci] = c. 

The effect of this update operation 
follows. 

(1) The value of t [Ai, Ci] is changed 
c) in the instance R,. 

user &only if 

is defined as 

to (restricted, 

(2) Let n(c) be the immediate prcdcccssor of c (i.c., 
n(c) > c and there is no c’ such that n(c) > c’ > c). 
The value of t[A,, C;] is changed to (null, n(c)) in 
all instances R,,, c’ > c. 

(3) All other instances of R remain unchangcd.0 

It suffices to have the pre-condition t [C,] = c for 
this operation because, in conjunction with the 
inter-instance integrity property, f (Ci] = c implies 

(WI[CJ Gc’ < c) t [A;, Cl] = (restricted, c’) in R,, 

In other words a data element can bc made 
restricted at level c only if its data value is currently 
classified at level c, which in turn implies that the 
data element is restricted at all relevant lcvcls 
below c. 

To illustrate the effect of such updates consider the 
following U instance of SOD (which is identical to 
the S instance): 

Starship Objective Destination TC 

Enterprise U Exploration U Rigcl U U 

A U user can change the destination of the Entcr- 
prisc to be “rcstrictcd,” giving us the following U 
and S instances: 

Starship Objective Destination TC 

Enterprise U Exploration U restricted U U 

Starship Objective D&nation TC 

Enterprise U Exploration U null S S 

Now let us consider the gcncral cast of a partially 
ordcrcd security lattice. The problem with partially 
ordcrcd labels lies in step 2 in defining the cffcct of 
protocol 2. In a partial ordering thcrc may bc 
multiple immcdiatc predcccssors of c so n(c) is no 
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longer uniquely defined. As part of the update 
operation we have to designate one of c’s imme- 
diate predecessors as the distinguished one which 
will remain unrestricted. All other immediate 
predecessors become restricted. Let n(c) denote the 
distinguished immediate predecessor. Step 2 of 
protocol 2 needs to be restated as follows. 

(2’) The value of t [A,, Ci] is changed as follows for 
all instances R,,, c' > c. 

(null, n(c)) if c’ > n(c) 
t[A;, C;] = 

(restricted, c’) if L’ & n(c) 

As an example consider a lattice with four labels, 
S, U, M, and M,; where M, and M, are both 
dominated by S and both dominate U, but M, and 
Mz are themselves incomparable. Suppose we have 
the following instance of SOD at all four levels: 

Starship Objective Destination TC 
I I 

Enterprise U Exploration U Rigel U U 

Let a U user make the Destination field of the 
Enterprise “restricted” while designating M, to be 
n(U) for this update The U, M,, M, and S 
instances of SOD will respectively become as 
follows: 

Starship Objective Destination TC 

Enterprise U Exploration U rcstrictcd U U 
1 I 

Starship Objective Destination TC 
I I 

Enterprise U Exploration U null M, M, 

Starship Objective Destination TC 

Enterprise U Exploration U 1 restricted M, 1 M, 1 
I I I I J 

I 1 I I I 

1 Starship 1 Objective 1 Destination 1 TC 1 
I I I I I 

Enterprise U Exploration U null M, M, 

4.2.3. Update from Restricted to Unrestricted 

Again for simplicity let us first consider the cast 
where the lattice is totally ordered. We have the 
following protocol for making a field unrestricted. 

Protocol 3 t [A,] can bc changed from its current 
value of “restricted” to a data value dv only by a c 
user. 

The effect of this update operation is defined as 
follows. 

(1) The value of t[A,, Ci] is changed to (dv, c) in all 
instances R,r, c' > c. 

(2) All other instances of R remain unchangcd.Cl 

The pm-condition for this update, that t[Ai, C,] = 
(restricted, c) in R,, is sufficient to ensure that [[A;, 
C,] =(restricted, c’) in all R:, c' < c (due to inter- 
instance integrity). 

The protocol will overwrite any existing data value 
for t[A,] in instances R:, cl > c. This operation 
thcrcforc has the potential for creating integrity 
problems by overwriting existing higher-level data. 
We have rejected this approach as a general solu- 
tion in section 2. Here we arc proposing to employ 
it for the specific purpose of converting a field 
from restricted to unrestricted. We require that 
this be a specially privileged operation so that we 
can be sure it is executed only when the real-world 
conditions warrant it. We will return to this point 
in the next section. 
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To illustrate this operation consider the following 
U and S instances of SOD: 

i.e., set t [A;] to “restricted” at all levels where tuple 
t is visible. 

(2) Update phase. Login at level c and set t[A,, 

C,] = (dv, c). Starship Objective Destination TC I I 

1 Enterprise U 1 Exploration U 1 restricted U 1 U 1 The net effect of this modified protocol is to set 

w, 4 in all R,,, ~'2 c 
@,, C,]= 

(rcstrictcd, c’) in all R,,, c'$ c Starship Objective Destination TC 

Enterprise U Exploration U null SIS I For example, consider the following U, M, , M, and 
S instances of SOD, respectively, taken from the 
end of section 4.2.2: 

A suitably privileged U user can change the value 

of the Destination attribute in this tuple to be say 
“Talos,” giving us the following (identical) U and S 

instances of SOD: 

Starship Objective Destination TC I I 

Enterprise U Exploration U restricted U U 
I I 

Starship Objective Destination TC 
I I 

Starship Objective Destination TC 
I I Enterprise U Exploration U Talos UIU I 

Enterprise U Exploration U null M, M, 
I I 

Next let us consider the case of a partially ordered 
security lattice. The pre-condition of protocol 3 is 
no longer sufficient. Before a c user is allowed to 
change a restricted field to non-restricted we must 
ensure that field is restricted at all levels which do 
not dominate c. This includes levels which are 
dominated by c as well as levels incomparable with 
c. The latter requirement cannot be checked by a c 
user without violating simple security. We circum- 
vent this problem by requiring the update of pro- 
tocol 3 to occur in two phases, as follows. 

Starship Objective Destination TC 

Enterprise U Exploration U restricted M, M, 

Starship Objective 

Enterprise U Exploration U null M, 1 J% 1 
(1) Preparutoryplme. Login at level t [ C,,] and set 

The preparatory phase will give us the following U, 
M,, M2 and S instances of SOD, respectively: t [A,, Cl] = (restricted, c’) in all R,', c' 2 t [ CA,] 
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Starship Objective Destination / TC 1 1 Starship / Objective IDestination 1 TC / 

Enterprise U Exploration U restricted 
UIU I I 

Enterprise U Exploration U Rigel Mz/Mzj 

Starship Objective Destination TC 
Starship Objcctivc Destination TC 

Entcrprisc U Exploration U restricted M, M, 
Enterprise U Exploration U Rigel M, M, 

5. Assurance 

Starship Objective Destination TC In this section we briefly consider how the prevent 
protocols can be enforced. 

Enterprise U Exploration U restricted M, M, 

Starship Objective Destination TC 

Our first observation is that all our protocols 
adhere to both simple security and the *-property. 
They can therefore be cnforccd bv a DBMS trusted 
com&.mng base (TCB) to the highest assurance 
standards without the use of subjects which arc 
exempt from simple security or the *-property. 

Enterprise U Exploration U restricted M2 M, 

In other words the preparatory phase restricts the 
Destination attribute of this tuple at all levels above 
U (which is the key class of the tuple). Sub- 
sequently, the update phase results in (say) the 
following U, M,, M2 and S instances of SOD, 
respectively: 

Starship Objcctivc Destination TC 

Enterprise U Exploration U rcstrictcd U U 
I I 

Starship Objective Destination TC 

Enterprise U Exploration U restricted M, M, 

Secondly, our protocols arc designed to achieve 
integrity and availability-of-service in addition to 
secrecy. The secrecy objective can bc enforced to 
Al standards by strict cnforccment of simple secur- 
ity and the *-p ro p ertics. In order to achieve the 
integrity and availability of service requirements 
we need controls beyond the traditional simple 
security and *-property. Let us consider each of the 
following three cases in turn. 

5.1. Data Value Update 

This is the simplest case, where our multilevel rela- 
tions behave much as conventional single-level 
relations do. It is obvious that in a high-integrity 
system updates must bc carefully controlled even 
within a single security lcvcl. Conventional data- 
bases USC mechanisms such as well-formed trans- 
actions and least privilcgc for this purpose [2, 81. 
The DBMS TCB must provide high-assurance 
support for such mechanisms. We do not need any 
additional mechanisms for multilevel DBMSs. The 
required mechanisms should anyway bc available 
in high-quality single-level DBMSs as discussed in 

PI. 
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5.2. Update from Unrestricted to Restricted 
Assigning a restricted value to a field with classifi- 
cation c requires a check that this field is already 
restricted at levels below t. This is feasible within 
the scope of simple security. In high-assurance 
systems this application-independent pre-condi- 
tion should be checked by the DBMS TCB. At 
lower levels of assurance the pre-condition may be 
tested by individual transactions rather than by 
the DBMS. 

The effect of restricting a field at the c level is 
dangerous in that it can cause denial-of-service to c 
users. So when the destinations of all our flights are 
made restricted, when they should not be, WC 
might end up grounding the entire fleet! Therefore 
the ability to mark a field as restricted should be a 

carefully controlled privilege. This privilege should 
be assigned to a few subjects who need to do this 
operation. We can ensure that this privilege cannot 
bc acquired except by some very special non- 
discretionary means such as involving intervention 
by a security officer. 

The general problem of incorrect data essentially 
exists whether or not we recognize restricted as a 

special value. For suppose a malicious program 
running at the U level, and obeying simple security 
and *-property, sets the destination of all flights to 
be Dayton, Ohio. Does the entire fleet converge on 
Wright Patterson Air Force Base? Presumably a 
high-integrity system has corrective measures to 
detect and recover from such errors. In principle, 
incorrectly restricted fields present a similar prob- 
lem except that recovery may be slightly more 
cumbersome. 

5.3. Update from Restricted to Unrestricted 
An update from restricted to unrestricted is diffcr- 
ent from the previous two cases because we cannot 
test the pre-conditions for this action within the 
confines of simple security. If we wish to prevent 
overwriting of high data by this operation WC have 
to check that no high data exist (i.e., no non-null 
high data exist). In view of simple security this is 
not feasible. Therefore we define the operation as 
potentially overwriting high data. It follows that we 

must strictly control the ability to make a restricted 
value unrestricted. The control in this case should 
be even stricter than in the case of update from 
unrestricted to restricted. Alternatively, WC can use 
a trusted subject for this operation. 

6. Conclusion 

In this paper we have shown how both the poly- 
high and polylow variations of polyinstantiation 
can be eliminated by our solution of restricted 
polyinstantiation. This allows us to avoid down- 
ward signaling channels, inconsistencies, denial of 
data entry to high users and the overwriting of 
high data by low subjects while providing elcment- 
level labeling. This is the first solution to meet all 
these requirements simultaneously. 

In conclusion we wish to note that restricted poly- 
instantiation makes a particular trade-off among 
conflicting objectives. It may be eminently suitable 
to most applications. Yet we would advise against 
having this as the only option. Databases are long 
lived and develop a great deal of inertia over their 
life. Moreover different applications may call for 
different trade-offs. For example, temporary incon- 
sistcncies may be prcfcrred to inconvenience in 
data entry. Gcncral-purpose multilevel secure 
DBMSs must cater to such applications too. Thcrc- 
fore our recommendation is that restricted poly- 
instantiation be available as one of several options 
that a multilevel secure DBMS supports. 
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