
42 NOVEMBER • DECEMBER 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

A
d

H
oc

 a
nd

 P
2P

 S
ec

ur
it

y

Xinwen Zhang,
Songqing Chen,
and Ravi Sandhu
George Mason University

Enhancing Data
Authenticity and 
Integrity in P2P Systems

Peer-to-peer systems let users share information in distributed environments

because of their scalability and efficiency. However, existing P2P systems are

vulnerable to numerous security attacks and lack a mechanism to ensure shared

information’s authenticity and integrity. A proposed general architecture enhances

these aspects by leveraging trusted computing technology, which is built on a

trusted platform module and provides a mechanism for building trust into the

application layer.Preliminary experimental results show that the proposed scheme

can ensure data authenticity and integrity in P2P systems with acceptable

performance overhead.

Peer-to-peer systems have gained
considerable attention because of
their global scalability and high effi-

ciency. Although P2P systems are useful
for content distribution (Napster, KaZaa,
and BitTorrent), computing capability
sharing (SETI@home), and collaborative
network systems (Friend Troubleshooting
Network1), various possible attacks
threaten these systems.2,3 At the network
level, for example, structured P2P over-
lay networks are prone to malicious rout-
ing.3 Gnutella and other systems have
suffered from denial-of-service (DoS)
attacks due to inherent weaknesses in the
protocols. Attacks can be easily mounted
at the application level and thus are hard
to prevent. For example, in content-
sharing systems, a peer can maliciously

return false data, or two peers can collude
to break the systems’ anonymity.

With this article, we focus on the spe-
cific problems of data authenticity and
integrity instead of discussing P2P secu-
rity in general. We propose a general
architecture that enhances the authentic-
ity and integrity of data shared in these
systems by using trusted computing (TC)
technologies. (See the “Related Work in
Trusted Computing” sidebar for the other
work in this area.) Specifically, we pro-
pose a trusted reference monitor (TRM) in
the platform of each peer beyond neces-
sary trusted hardware and supporting
functions. A TRM can monitor and veri-
fy the information a peer provides to
ensure data authenticity. Using the cre-
dentials protected by the underlying



hardware, a TRM can digitally sign data from a
peer and provide verification mechanisms for a
remote site. Preliminary evaluation results show
that our proposed scheme introduces acceptable
overhead to achieve the security goals.

Case Examples
The distinguishing concept in P2P systems is shar-
ing, by contributing to and benefiting from the
peer community.4 A fundamental problem in P2P
systems is how to ensure and verify the authentic-
ity and integrity of shared data or communicated
information in open and highly distributed envi-
ronments. Most existing P2P applications don’t
have mechanisms to address these problems, as
these examples demonstrate:

• Case 1: Configuration attack in the Friend Trou-
bleshooting Network. Microsoft developed the
Friend Troubleshooting Network (FTN1) as a P2P
system to diagnose misconfiguration on a sick
machine by querying correct configuration infor-
mation from a network consisting of friends’
machines. A malicious peer can contribute either
fake configuration information to make the diag-
nosis fail or generate some configuration infor-
mation to compromise the sick machine.

• Case 2: DoS attack in Gnutella. In Gnutella
(www.gnutella.com), a peer sends a query mes-
sage to all its neighbors, which in turn send it
to their neighbors. When a peer with the target

object is reached, it responds to the message
and builds a connection to the original peer. If
a malicious peer exists in the middle of the net-
work, it can capture many queries and simply
respond to each one that the target object is
available in a victim peer. Then, all the queries’
source peers will try to build connections to the
victim peer and flood it. The fundamental prob-
lem with this DoS attack is that a malicious
peer can reply to a query with the peer ID of
another peer (the victim) — that is, a peer can
return some inauthentic information.

• Case 3: Pollution attack in BitTorrent-like P2P
systems. BitTorrent (BT) is an efficient Internet-
based content-distribution system.5 In BT, an
object is split into many pieces (for example,
each piece might be 256 Kbytes). To distribute
an object, its owner first makes a meta-info file
(.torrent file), which includes the object’s infor-
mation (file name, length, and so on) and a
tracker site’s URL — meta-info is the original
name used in BT for metadata. Each object’s
meta-info also includes a string of Secure Hash
Algorithm, version 1.0, (SHA1) hash values of
the pieces. The tracker site maintains a list of
active peers in the network. When a peer tries
to download an object, it first gets the meta-
info file (available from a public server) and
queries the tracker site. The tracker site res-
ponds with a list of peers where the pieces are
available. The downloader then connects to

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2005 43

Enhancing Data Authenticity

Related Work in Trusted Computing

With this article,we propose an archi-
tecture in the application layer with

abstract underlying trusted computing (TC)
technology. Previous work has proposed
developing various underlying architectures
and improving TC’s primitive functions. For
example, Ahmad-Reza Sadeghi and Christ-
ian Stuble propose1 a trusted platform
architecture, in which a micro kernel is
applied on top of trusted hardware such as
a trusted platform module. Other work2

proposes a secure-kernel-based approach
to enforce fine-grained attestations between
applications. Also, researchers have pre-
sented a virtual-machine-based attestation
to capture a remote entity’s behavior, while
the language-based virtual machine itself is
attested by signed-hash mechanism.3 All

these approaches can be applied as concrete
underlying TC mechanisms in our approach.

A TC application for protecting
entertainment products against pirates in
peer-to-peer (P2P) content distribution
networks is also available.4The main idea is
to use remote attestation to control a
peer’s joining the network and publishing
content.Only certified platforms and appli-
cations that the peers in the network trust
can use a P2P system’s resources. Although
the trust is built on the P2P application in
our work, we use TRM as a common and
compact component, which makes our
approach more practical.

References
1. A. Sadeghi and C. Stuble, “Taming Trusted Plat-

forms by Operating System Design,” Proc. 4th Int’l

Workshop on Information Security Applications, LNCS

2908, Springer-Verlag, 2003, pp. 286–302.

2. E. Shi, A. Perrig, and L.Van Doorn,“Bind:A Fine-

Grained Attestation Service for Secure Distributed

Systems,” Proc. IEEE Symp. Security and Privacy, IEEE

CS Press, 2005, pp. 154–168.

3. V. Haldar, D. Chandra, and M. Franz, “Semantic

Remote Attestation: A Virtual Machine Directed

Approach to Trusted Computing,” Proc. 3rd Virtual

Machine Research and Technology Symp., Usenix

Assoc., 2004, pp. 29–41.

4. S. Schechter, R. Greenstadt, and M. Smith,“Trust-

ed Computing, Peer-to-Peer Distribution, and

the Economics of Pirated Entertainment,” Proc.

2nd Int’l Workshop Economics and Information Secu-

rity, 2003; www.eecs.harvard.edu/%7Estuart/

papers/eis03.pdf.



selected active peers from this list and down-
loads pieces. Each peer reports to the tracker
site periodically with its downloaded pieces so
the site can update its tracking list and other
peers can download pieces from this peer.

If a malicious peer in the network modi-
fies the contents of a piece’s meta-info file
before sharing it with other peers, many peers
can download a piece from this peer at the same
time, and the faked pieces will be distributed
widely and quickly in the network. A peer can
verify a piece’s integrity with the hash value in
the meta-info file after completely download-
ing the piece, but it can’t figure out whether a
peer maliciously modified a piece or whether it
resulted from a transmission error. Also, a mali-
cious peer can upload incorrect content when

requested. A tracker site’s current implementa-
tion doesn’t enforce any mechanism to prevent
further distribution of compromised pieces. This
attack is more severe in a file distribution’s
starting period because BT uses a rarest-first
strategy for piece selection to speed up distrib-
ution. With this strategy, different peers down-
load different pieces of a file before the original
peer disappears from the network. If a malicious
peer modifies the pieces that are only available
on it, the object distribution will fail. Similar
pollution attacks also happen in other file-shar-
ing systems such as KaZaa.6 In KaZaa, a peer
searches the network to look for an object by
file name or keywords. A peer can publish fake
or junk files with the names or keywords of
some popular files, causing normal users to fre-
quently download the wrong files. This quick-
ly makes peers lose trust and interest in the
community.

The underlying problem in these examples is
that the systems can’t authenticate shared infor-
mation. The goal of authenticity is to ensure that
shared data or information from a peer is genuine

and that an attacker hasn’t maliciously modified it.
Generally, the authenticity of the information from
a peer depends on valid properties and behavior of
the peer or the P2P software running on the peer’s
machine. In P2P systems, most information shar-
ing and communications happen between peers at
the edge of the network, using general platforms
such as PCs, PDAs, and smart phones. Besides that,
a misconfigured system on a platform can cause a
P2P application’s unexpected behaviors, and delib-
erate software-based attacks on a client platform
present an increasing risk. Malicious software can
illegally read or modify sensitive data in persistent
storage, memory, and I/O buffers in these platforms
as well as change the request for information and
actions sent to other platforms. The lack of strong
security mechanisms on client platforms in gener-
al, and the push for an open environment on com-
puting devices, such as PDAs, smart phones, and
notebooks, leave the client extremely vulnerable to
software attacks. Due to the dynamics of a peer
with frequent arrivals and departures, these attacks
are hard to prevent in existing P2P systems.

In P2P systems, in addition to ensuring that
data is from a genuine peer and the content is
authentic, it’s also necessary to make sure that the
data hasn’t been modified or compromised during
transmissions. Generally, integrity verification
depends on a peer’s authentication. Unfortunate-
ly, in most existing P2P systems, no infrastructure
exists for identifying peers and providing them
with digital certificates.

TC and the 
Trusted Platform Module
The problem of attesting and verifying valid prop-
erties and runtime behavior for an entity (platform
or application) is related to the concept of trust,
which is motivated by emerging hardware-based
TC technologies. Software alone can’t provide an
adequate foundation for building a high-assur-
ance trusted platform. The quest for finding the
correct set of hardware primitives for TC was
shaped in the mainframe era of the 1970s by the
pioneering Multics system, followed by a number
of academic and commercial capability-based
computers. The most recent attempts to specify
hardware trust primitives began in the late 1990s
and continue to be pursued today. TC technolo-
gies seek to protect data’s creation, processing,
storage, and transfer primarily by only exposing
the cryptographic secrets required to access the
data to software with a verifiable chain of trust,

44 NOVEMBER • DECEMBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Ad Hoc and P2P Security

Given the open and distributed
computing architecture of P2P
applications,TC has great potential
to enhance security in P2P systems.



be it on a single computer or across multiple com-
puters. Modern TC primitives are designed for a
distributed and dynamic open environment in
which we can execute and protect trusted appli-
cation software from interference from other soft-
ware on the same platform. Thus, the trust
mechanisms provide for greater security for soft-
ware execution within a single platform. In addi-
tion, direct support exists for platform-to-platform
propagation of trust. Reliance on appropriate
application software to actually enforce the secu-
rity policy is an integral part of this approach.
Given the open and distributed computing archi-
tecture of P2P applications, TC has great potential
to enhance security in P2P systems.

The Trusted Computing Group (TCG) defines a
set of specifications aiming to provide hardware as
the root of trust and a set of primitive functions to
achieve trust in high-level software and applica-
tions. The root of trust in TCG is a hardware com-
ponent on a platform’s motherboard called the
trusted platform module (www.trustedcomputing
group.org). A TPM provides protected data (secrets
and arbitrary data) by never releasing a root stor-
age key outside the TPM. In addition, TPM pro-
vides some primitive cryptographic functions, such
as random number generation, RSA key genera-
tion, and asymmetric key algorithms. Most impor-
tantly, a TPM provides a mechanism for
measuring, storing, and reporting a platform’s
integrity, from which we can achieve strong pro-
tection capabilities and attestations. 

A TPM contains a set of platform configuration
registers (PCRs) that store the integrity measure-
ments of a platform’s running code, from system
bootup to loading the OS to launching applica-
tions. A measurement of protected data or program
code represents the measured object’s properties
and characteristics, such as integrity, a process’
running states, and configurations. The specific
PCR’s value is updated by applying a SHA1 oper-
ation to its current value concatenated with a
newly measured value.

A TPM includes a set of credentials, of which
the TPM protects the private keys and never releas-
es them, and the public key is certified by corre-
sponding certificate authorities (CAs). The TPM
manufacturer issues the endorsement certificate,
which uniquely identifies the individual TPM batch
and its source. Another credential is a TPM’s attes-
tation identity, which a privacy CA certifies. The
privacy CA uses the endorsement key and other
information to verify that the platform has a gen-

uine TPM without releasing the TPM’s individual
identity. A TPM can have multiple attestation iden-
tity credentials certified by different CAs.

With the integrity measurement and storage
capability, a platform can generate an integrity
report and give it to another platform through a
challenge-response protocol called attestation. Dur-
ing attestation, a platform (challenger) sends an
attestation-challenge message to another platform
(an attestor). The attestor signs one or more PCR
values with its attestation identity key (AIK) and
gives them to the challenger, along with a list of
measurement events in the attestor. The challenger
verifies this attestation by verifying the signature
and comparing the integrity hash with expected
values. Attestation provides the authenticity of a
platform’s current integrity, state, or configurations.

TPM security enhancement protects sensitive
data (such as an application’s secrets or a user) with
integrity measurement values through sealed stor-
age. Not only is a key applied to encrypt the data,
but one or more PCR values are stored during the
encryption. A TPM releases such a protected object
only if the current PCR values are matched with
those stored with the protected object. Therefore, a
protected object can only be available when the
platform is in a particular known state. The TCG
specifications don’t require the TPM to be tamper
resistant. As such, TPM-based TC technologies only
address software-based attacks.

In addition to a TCG-compliant TPM, Intel’s
LaGrande Technology (LT; www.intel.com/
technology/security) includes an extended CPU
that enables software domain separation and pro-
tection as well as extended chipsets that enable
protected graphics and basic I/O devices (such as
a keyboard and mouse), which constructs trusted
channels between applications and these devices.
Beyond the hardware layer, a domain manager
supports protected running environments, includ-
ing separation of processes and memory pages. 

Proposed Architecture
Our proposed general trusted platform with a TRM
assumes a homogeneous environment — that is,
each platform is equipped uniformly with the nec-
essary TC hardware.

Figure 1 shows an abstract picture of our pro-
posed TC platform. The basic trusted component is
the trusted hardware including a TPM. A TRM is an
application or service component running in the
operating system’s user space, enforcing access con-
trol policies in general client-side platforms.7 The

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2005 45

Enhancing Data Authenticity



hardware, cooperating with the security kernel, pro-
vides necessary functions to the TRM, from basic
cryptographic functions to platform and program
attestation, and sealed storage for sensitive data.

In our abstract design, the secure kernel can be
separated from the operating system’s main ker-
nel, similar to Nexus in Microsoft’s Next-
Generation Secure Computing Base (NGSCB; www.
microsoft.com/resources/ngscb), or it can be a spe-
cial component of the main OS. The secure kernel
separates execution between upper layer applica-
tions. When an application or process (including a
TRM and P2P application) loads, the secure kernel
allocates an isolated memory space for it such that
no interference exists between any two separated
processes, preserving their runtime integrity. For
TRM, an isolated runtime environment also
ensures that sensitive information such as control
policies isn’t vulnerable to malicious processes in
the platform. A requirement of our trusted
platform is the secure communication between
processes, either implemented via the secure ker-
nel or directly by individual applications.

We abstract the underlying hardware and kernel
structure by simply assuming that we can achieve
these requirements and necessary TC functions by
using existing hardware technology (such as LT) and
operating systems (such as NGSCB) in a platform.
For example, in LT, we apply a TPM v1.2 in the
hardware layer with an extended CPU and chipset.
A domain manager layer between the kernel and
hardware separates application domains. The plat-

form’s integrity measurements, including the secure
kernel, are stored in specific PCRs in the TPM.

We assume that the following credentials and
corresponding certificate authorities are available
in our architecture:

• TPM storage key(s) to protect credentials and
sensitive data with sealed storage, such as
secrets and policies. This key must be either
from a TPM’s storage root key (SRK) or a key
protected by the SRK.

• TPM attestation identity key pair (PKAIK, SKAIK).
A TPM owner creates an AIK and uses it to sign
PCR values, present it to a challenger in an
attestation protocol, and sign the secure kernel’s
public key. Generally, the private part of an AIK
is protected by a TPM with a storage key and the
public key is certified by a trusted third party
such as a privacy CA to verify that the platform
has a genuine TPM without releasing the plat-
form’s information. A TPM can have numerous
AIKs with certificates from different CAs.

• Secure kernel asymmetric key pair (PKSK, SKSK)
for signature and encryption. The AIK of the
TPM certifies the public key, and the TPM pro-
tects the private key with a storage key.

• TRM asymmetric key pair (PKTRM, SKTRM). Each
TRM has this key pair for signature and
encryption. The private key is protected by the
TPM in the platform such that only the TRM on
this platform can use it (by checking the TRM’s
integrity value when using the private key). The
public key is in a certificate format signed by
an AIK of the TPM.

After booting the platform, the TPM measures
the integrity of the booting system and the secure
kernel in a platform and stores them in particular
PCRs. Before starting an application, the secure
kernel measures the application code’s integrity
and stores the hash value locally. The secure ker-
nel also generates a public-private key pair for the
TRM, in which the public key is certified by the
secure kernel (by signing with its private key) and
the private key is protected by the TPM. This key
pair is generated the first time when the TRM is
loaded into the platform. For attestation, the TPM
signs the values in the PCRs with its AIK key, and
the secure kernel signs the TRM’s integrity value
with its private key. Both are sent to a remote chal-
lenger. The challenger verifies both signatures and
the public key certificates of the TPM AIK and the
secure kernel. If all are valid, with the expected

46 NOVEMBER • DECEMBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Ad Hoc and P2P Security

Figure 1. A platform architecture with trusted hardware and a
secure kernel.We can verify the trust of TRM by measuring its
integrity before loading and running it in a protected environment.

Hardware

OS kernel space

OS user space

Application Secure channel

Sealed
storage

Secure kernel

Trusted
hardware

Trusted
platform
module

Trusted
reference
monitor

Protected
runtime environment



integrity values, the secure kernel and TRM are
trusted. Also, the TRM can seal and unseal sensi-
tive data (such as secrets and policy information)
with a set of PCR values the TPM provides.

Working Protocol
We can use the Friend Troubleshooting Network as
an example to explain our architecture and proto-
col. The policy a TRM enforces in FTN requires that
a peer’s contributed configuration information is
the real configuration entry in its local platform,
not fake or compromised information. As Figure 2
shows, the requestor is a sick platform that queries
some configuration information from the provider
platform. By assumption, each peer is equipped
with necessary trusted hardware. Before starting a
query, the requestor first sends a remote attesta-
tion challenge to the provider’s TRM to make sure
that the TRM is in a valid state to enforce the pol-
icy (A1). The TRM calls primitive functions pro-
vided by a secure kernel and TPM software service
to collect PCR values of the platform and the TRM
(A1�). The TPM signs the PCR values and the secure
kernel signs the integrity value of the TRM and
both are signed by the TPM’s AIK and returned to
the TRM (A2�). The TRM responds to the attesta-
tion challenge with this signed value, the TPM’s
AIK credential, and the secure kernel’s public-key
certificate (A2). The requestor verifies the signa-
ture and compares it with trusted values. If the
platform and TRM are trusted, the requestor sends
the policy information, such as a set of configura-
tion entries the requestor queries (A3).

After establishing trust for the provider’s TRM
and platform, the requestor sends its query to the
provider through the FTN P2P software just like the
normal P2P protocol (B1). The FTN software on the
provider collects the corresponding data and sends
it back to the requestor. The TRM at the provider
side captures the content sent out by the FTN, col-
lects corresponding configuration information, and
compares it with the content sent out by FTN soft-
ware to check the authenticity and integrity, accord-
ing to the original requested information received
in A3 (B2). If the data is valid, the TRM authorizes
the response from the provider to the requestor (B3).
The TRM can then sign the data (with the private
key of the provider’s TRM) to ensure integrity before
sending it out. The FTN software completes the
transaction by sending out the response (B4).

Mutual trust is necessary in some scenarios —
for example, to prevent a requestor from mali-
ciously collecting information on a target platform

and analyzing its configuration, which is general-
ly considered a platform owner’s private informa-
tion. For such cases, a provider also sends an
attestation challenge to the requestor’s FTN soft-
ware. The provider can contribute its configura-
tion information only if the requestor’s platform,
TRM, and P2P software are trusted and some prop-
erties are satisfied — for example, the FTN software
isn’t infected by a virus or compromised by mali-
cious processes in the requestor’s platform.

In some applications, the TRM needs to protect
the policy information. For example, in BT, a mali-
cious client software in a peer platform can mod-
ify the pieces and corresponding hash values in the
meta-info file to make the verification fail. A TRM
can seal this information with a set of PCR values
such that only the platform and TRM with a cor-
rect running state can unseal and access this infor-
mation. This state, in turn, ensures that this
information isn’t vulnerable to malicious software.

Authenticity Verification Mechanism
Corresponding to various P2P application systems,
there are different authenticity verification pro-
cesses in the TRM. Generally, authenticity verifi-
cation is performed by the TRM  via comparing the

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2005 47

Enhancing Data Authenticity

Figure 2. Working protocol to monitor shared data. Before sharing,
the requestor challenges the provider through an attestation
protocol between the TRMs. The provider’s TRM ensures the
authenticity of the shared data.

Hardware

OS kernel space

OS user space

A1 A2B1 A3

B3

B4

Requestor

Provider

Friend
troubleshooting

network

B2

Local machine
configuration
information

A1' A2'

Trusted
reference
monitor

Secure kernel

Trusted
hardware

Trusted
platform
module

Friend
troubleshooting

network

Trusted
reference
monitor



target object with known valid content or the tar-
get object’s integrity with a known integrity hash
or digital signature. We can show this with differ-
ent applications:

• In FTN, a requestor first informs the provider’s
TRM when configuration entries are queried
(A3). The TRM collects this information directly
from the local platform’s configurations. For
example, for the Windows operating systems, the
entries in the Windows registry are the valid
objects that a TRM must verify. We assume that
the local configuration information is authentic.

• We can apply a similar verification mechanism
in Gnutella. A peer’s TRM in Gnutella can
check the response message replied by this peer
to ensure that the target resource’s peer ID
(such as the IP address) is the same as this local
peer. This policy can be loaded to the TRM
whenever it joins the network.

• In BT (and BT-like P2P systems), a peer’s TRM
can obtain each piece’s SHA1 hash value from
the object’s meta-info file, which the object’s
owner makes publicly available (possibly on a
Web server). When BT client software at the
provider side shares a piece, it uploads to the
requestor side. The TRM intercepts the traffic
and generates the outgoing piece’s hash and
compares it with that in the meta-info file. If
the integrity is maintained, the TRM can allow
the upload. Generally, a piece is split into
several chunks, and the provider uploads to the
requestor chunk by chunk. Because a hash
value in the meta-info file corresponds to an
entire piece, the TRM verification at the pro-
vider side is an accumulative process that col-
lects all chunks of a piece before generating its
hash value. Because the piece length in a par-
ticular implementation of BT protocol is gen-
erally fixed (for example, 256 Kbytes), a TRM
can do this by checking outgoing IP packets’
header information.

Authenticity verification in KaZaa is different
than BT’s. In KaZaa, any peer can publish files in
the network, and a peer searches for an object with
file names or key words. Therefore, a shared
object’s authenticity depends on many aspects
other than a single hash value. Researchers have
proposed some mechanisms2 addressing this prob-
lem, such as expert-, voting-, and reputation-
based approaches. How trusted computing can
leverage these mechanisms is an open problem.

TRM’s Design and Trust
Instead of verifying the trust behavior of a peer
based on the P2P application software, our approach
leverages the TRM to enforce security policies. The
main motivation for this is that we can build the
TRM with minimum functions and a compact size
and can conduct software verification on it. This
ensures that a TRM’s behavior can be verifiable.

On the other hand, P2P applications are gener-
ally complicated and developed with various tech-
niques, in which the code verification is difficult
to conduct. Furthermore, as a common component
in client platforms, a TRM can enforce security
policies for various P2P applications. For trust ver-
ification, a TRM’s expected integrity value can be
certified by a trusted third party. In a collaborative
environment such as a P2P peer group, a group’s
owner or administrator can specify what state of
a TRM is acceptable and can enforce this through
attestation before a peer joins the group, for exam-
ple, through admission control.

Performance Evaluation
Our design introduces performance overhead from
two aspects: TRM’s integrity attestation between
two platforms and the data authenticity verifica-
tion between the TRM and P2P software on a local
platform. The attestation requires communication
between the TRM and the underlying operating
system. Unfortunately, no such equipment is avail-
able today. Therefore, we can’t quantify its
performance overhead. We conjecture that the
hardware-related operation doesn’t contribute sig-
nificant overhead because we use the signed-hash
mechanism inherent in TPM, which is a typical
function that related software services provide.

To study the security verification overhead
between the TRM and the P2P software on a local
platform, we implemented a simple prototype of
FTN using Microsoft Windows 2000 and the Java
2 Standard Edition (J2SE) version 1.4. In the sim-
ulation, the provider process (provider P2P appli-
cation) reads keys and corresponding values in
the local Windows registry. Before sending this
to a requestor process (requestor P2P application),
the provider process queries the TRM process with
the parameters of key names and values. The TRM
process reads the keys and values from the Win-
dows registry and compares them with the
received parameters. We implemented  the inter-
process communication between the TRM and
the provider process with Java Socket and car-
ried out the experiment on a desktop computer

48 NOVEMBER • DECEMBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Ad Hoc and P2P Security



with an Intel Pentium II 600 MHz CPU and 256
Mbytes of memory.

Figure 3 shows the time for an FTN provider to
respond to various queries from a requestor. The
figure shows that, without security verification, it
takes approximately three seconds to process 2,000
queries; with TRM verification involved, it takes
about 6.4 seconds (Case 1 in Figure 3), more than
double. This is reasonable because in addition to
communication and verification, the TRM process
does the same operation as the provider process
(collecting key values from the local Windows reg-
ister) and then compares them with the message
received from the provider. The experimental
results find similar trends for 500, 2,000, and 4,000
queries. In real applications, the TRM might have
the authentic data — for example, by caching a key
value that it collects beforehand — or the data’s
hash value to be verified (from a meta-info file in
BT). This saves the extra overhead of TRM. In this
case (Case 2 in Figure 3), the result shows that the
overhead is on average 25 percent more than with-
out verification. This demonstrates that our
approach doesn’t significantly degrade the origi-
nal P2P applications’ performance.

The work we discuss here is an initial exploration
of the role of TC in P2P systems. Because TC

can provide strong assurance in common client
platforms, it can enhance or complement tradi-
tional security policies and models. We plan to
explore general security considerations in P2P
with TC technologies, such as anonymity, account-
ability, and access control.

Acknowledgments
We thank Kumar Ranganathan, Carlos Rozas, and Michael J.

Covington of Intel for valuable discussion and input.

References

1. H.J. Wang et al., “Automatic Misconfiguration Trou-

bleshooting with Peerpressure,” Proc. Usenix Symp. Oper-

ating System Design and Implementation, Usenix Assoc.,

2004, pp. 245–258.

2. N. Daswani, H. Garcia-Molina, and B. Yang, “Open Prob-

lems in Data-Sharing Peer-to-Peer Systems,” Proc. 9th Int’l

Conf. Database Theory, LNCS 2572, Springer-Verlag, 2003,

pp. 1–15.

3. D.S. Wallach, “A Survey of Peer-to-Peer Security Issues,”

Proc. Int’l Symp. Software Security, LNCS 2609, Springer-

Verlag, 2002, pp. 42–57.

4. D. Milojicic et al., Peer-to-Peer Computing, tech. report

HPL-2002-57R1, HP Labs, 2002.

5. B. Cohen, “Incentives Build Robustness in Bittorrent,”

www.bittorrent.com/bittorrentecon.pdf.

6. J. Liang et al., “Pollution in P2P File Sharing Systems,”

Proc. IEEE Infocom, IEEE Press, 2005, pp. 1174–1185.

7, R. Sandhu and X. Zhang. “Peer-to-Peer Access Control

Architecture using Trusted Computing Technology,” Proc.

10th ACM Symp. Access Control Models and Technologies,

ACM  Press, 2005, pp. 147–158.

Xinwen Zhang is a PhD candidate in the Lab for Information

Security Technology (LIST), George Mason University’s

Department of Information and Software Engineering. His

research interests include access control models and tech-

nologies and security issues in distributed computing sys-

tems. Zhang has a masters in engineering from Huazhong

University of Science and Technology, China. Contact him

at xzhang6@gmu.edu.

Songqing Chen is an assistant professor in the Department of

Computer Science at George Mason University. His research

interests include resource management and security in

operating systems, high-performance computing and dis-

tributed systems, and Internet content distribution systems.

Chen has a PhD in computer science from the College of

William and Mary. Contact him at sqchen@cs.gmu.edu.

Ravi Sandhu is a professor in the Department of Information and

Software Engineering at George Mason University; director

of the Lab for Information Security Technology (LIST); and

chief scientist of TriCipher. His research areas are access con-

trol models, database security, network security, and distrib-

uted system security. Sandhu has a PhD in computer science

from Rutgers University. Contact him at sandhu@gmu.edu.

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2005 49

Enhancing Data Authenticity

Figure 3. Experimental study of applying our architecture to FTN.
The overhead with authenticity and integrity verification is 25
percent beyond that without verification.

0

2

4

6

8

10

12

500 1,000 2,000 4,000

Number of query requests

Se
co

nd
s

Without verification

With verification (Case 2)
With verification (Case 1)


