Syverson

phic Pro-
urity and
os, Cali-

ic. ACM

od Cliffs,

‘the 1992
omputer

. Formal

rotocols.

Y, pages
)91.

Journal of Computer Security 1 (1992), 335-383 335
I0S Press

THE EXTENDED SCHEMATIC PROTECTION
MODEL

Paul E. Ammann and Ravi S. Sandhu
Center for Secure Information Systems and
Department of Information and Software Systems Engineering

George Mason University
Fairfax, VA 22030
USA

Abstract

Access control models provide a formalism and framework for specifying control over
access to information and other resources in multi-user computer systems. Useful
access control models must balance expressive power with the decidability and com-
plexity of safety analysis (i.e. the determination of whether or not a given subject
can ever acquire access to a given object). The access matrix model as formalized
by Harrison, Ruzzo, and Ullman (HRU) has very broad expressive power. Unfor-
tunately, HRU also has extremely weak safety properties. Safety is undecidable for
most policies of practical interest, even in the monotonic version of HRU (which
only allows revocation which is itself reversible). Remarkably, an alternate formula-
tion of monotonic HRU yields strong safety properties. This alternate formulation
is called the Extended Schematic Protection Model (ESPM). ESPM is derived from
the Schematic Protection Model (SPM) by extending the creation operation to allow
multiple parents for a child, as opposed to the conventional create operation of SPM
which has a single parent for a child. Despite its equivalence to monotonic HRU,
ESPM retains tractable safety analysis for a large class of protection schemes that
are of practical interest. In this paper we first show that ESPM is formally equiv-
alent in expressive power to monotonic HRU. Then we give a complete analysis of
the safety properties of ESPM for acyclic can-create relations with attenuating loops
(i-e., can-create relations which are acyclic except for certain cycles of length one).

1. Introduction, Background and Motivation

The need for access controls arises in any computer system that provides for con-
trolled sharing of information and other resources among multiple users. Access
control models (or protection models) provide a formalism and framework for spec-
ifying, analyzing and implementing security policies in multi-user systems. These
models are typically defined in terms of the well-known abstractions of subjects,
objects and access rights, with which we assume the reader is familiar.

In this section, we first give a brief review of access control models, emphasizing
the fact that the conventional black and white distinction between mandatory and
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discretionary access controls is inadequate. We then argue that models based on
propagation of access rights actually transcend this distinction. This leads us to a
discussion of the safety problem of determining whether or not a given subject can
ever acquire access to a given object.

There is an essential conflict between the expressive power of an access con-
trol model and tractability of safety analysis. The principal contribution of this
paper is the formal demonstration that very general expressive power and strong
safety properties are simultaneously achieved by the Extended Schematic Protec-
tion Model (ESPM).

ESPM is derived from the Schematic Protection Model (SPM) [38] by extend-
ing the creation operation to allow multiple parents for a child, as opposed to the
conventional create operation of SPM which has a single parent for a child. We
establish the general expressive power of ESPM by showing its formal equivalence
to the monotonic access-matrix model as formalized by Harrison, Ruzzo, and Ull-
man [15, 16]. Despite this equivalence, ESPM retains tractable safety analysis for
a large class of protection schemes that are of practical interest. These results are
established and elaborated in the main body of the paper.

1.1. Access Control Models

The first access control models to be proposed [13, 18] were completely discre-
tionary, in that the creator of an object was vested with absolute freedom regard-
ing who may or may not access the object. The vulnerabilities of such completely
discretionary access controls (DAC) to Trojan Horse attacks is well known {12,
for instance]. This vulnerability led to reliance upon the so-called mandatory ac-
cess controls (MAC)T of the Bell and LaPadula model (BLP) [4]. Since then, the
MAC/DAC distinction has served as a basic principle for computer security. For

instance, it has been embodied in the TCSEC [11] (popularly known as the Orange
Book).

In recent times, it has become increasingly clear that useful access control
models must go beyond the traditional MAC/DAC distinction. Indeed, opinion on
this matter has changed so rapidly that what would have been considered heresy
a few years ago is now being accepted without controversy. There are several
major lines of argument that have together resulted in bringing about this rapid
conversion of opinion. We enumerate these below.

(1) Arguments based on secrecy policies. As might be expected, these arguments
have come from the military sector [14, 28]. In the main, they consist of the
demonstration that there are document-handling policies in the military—such
as ORCON (originator control) and NOFORN (no foreign)—which cannot
be readily expressed in BLP and are indeed not quite MAC or DAC in the
conventional sense. An abstract description of this requirement was earlier

given by Millen [33].

t The TCSEC [11] defines MAC as “A means of restricting access to objects based on

sensitivity (as represented by a label) of the information contained in the object and
the formal authorization (i.e. clearance) of subjects to access information of such
sensitivity”.
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2

(3)

(4)

Arguments based on integrily policies. The black and white MAC/DAC dis-
tinction of BLP was carried over to integrity by Biba [5]. An early attempt
by Lipner [23] to apply Biba’s model showed the need for additional con-
trols on program execution. Boebert and Kain [7] pointed out limitations of
Biba’s MAC and proposed the type-enforcement controls of LOCK. Attempts
by Lee [21] and Schockley [47] to implement the Clark and Wilson “com-
mercial” integrity policy [8] within the framework of Biba demonstrated that
either additional “mandatory” controls must be enforced, or the policy must be
emasculated by requiring certain aspects of it to be statically specified. Clark
and Wilson [9] have described a notion of mandatory controls which is derived
from their model. Collectively, the papers cited here make a compelling case
that the BLP and Biba notions of MAC are simply too limited for integrity
policies.

Arguments based on a more general notion of MAC. Sandhu [43, 45] has given
alternate definitions of “mandatory” which show that the conventional BLP
notion of MAC is but one special case of the general notion of access con-
trols based on properties of subjects and objects rather than their identities.
In the military non-disclosure context, these properties turn out to be best
expressed as partially-ordered labels. In other contexts, these properties are
more naturally obtained in other ways. For instance, the data type of an
object determines what operations can be executed on that object. Sandhu
argues that the real issue we need to focus on is whether or not the properties
on which our “mandatory” access controls are based are static or dynamic. He
also argues that attempts to define a notion of “mandatory” controls as some-
thing which lie “between” label-based mandatory and discretionary controls
should be dropped in favor of definitions, such as his, which treat label-based
mandatory controls as a special case of general “mandatory” controls. Similar
arguments have been made by other authors [1, 20, 34].

Arguments based on foundational inadequacies of BLP. The foundational in-
adequacies of the BLP notion of mandatory controls were demonstrated in a
series of papers by McLean [29, 30, 31, 32]. The thrust of McLean’s argument
is that if labels are considered to be changeable then the state-invariant proper-
ties of BLP can be preserved by changing labels, which in effect automatically
downgrades information on demand. He shows that the Basic Security Theo-
rem of BLP can be proved for such an obviously insecure system. The main
lesson from McLean’s work for our purpose here is that we must attend to the
dynamic aspects of access control.

We now draw attention to a line of research in access control models based on

the idea of controlling the propagation of access rights. The basic concept is that
the access-matrix is used not only to control access of subjects to objects, but also
to control the transport of access rights from one subject to another. The original
access matrix proposal of Lampson [18] contained a particular set of rules for this
purpose. These rules amount to giving the owner of an object complete discretion
regarding rights in the column corresponding to that object. Graham and Denning
[13] proposed a variety of copy flags by which this discretionary ability of the owner
could be granted to other subjects in various degrees. It became clear that many

different rules could be proposed for such purposes, and that no one set of rules
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could be argued to be the single universal policy which everyone should implement
in their systems. This led Harrison, Ruzzo and Ullman [15] to develop an access
control model, commonly called HRU, in which complex policies for propagation
of access rights could be easily stated. The BLP model is known to be a special
case of HRU [36], as is the completely discretionary access matrix of (13, 18].
Therefore HRU does indeed transcend the traditional MAC/DAC distinction and
could readily handle many of the concerns enumerated above. The problem with
HRU, however, is that it has weak safety properties, which we explain next. Before
doing so, we wish to emphasize and reiterate that our contribution in this paper is
the demonstration of a model, viz. ESPM, that is formally equivalent in expressive
power to monotonic HRU, and yet has strong safety properties.

1.2. The safety problem

As noted above, access control models not only specify the control of access to
resources by means of access rights, but also specify the propagation of such rights.
The safety problem for access control models is the determination of whether or
not a given subject can ever acquire access to a given resource. Thus protection
models must satisfy two conflicting requirements:

(1) The need for expressive power sufficient to conveniently describe security poli-
cies of practical interest.

(2) The need for tractable analysis of the safety problem.
1.2.1. Weak safely properties of HRU

The most general access control model, the access matrix model of Harrison, Ruzzo,
and Ullman [15] (HRU), has broad expressive power: unfortunately, it also has weak

safety properties. Harrison and Ruzzo [16] proved the following demarcation for
the decidability of safety analysis in HRU:

(1) Safety is undecidable for bi-conditional schemes; i.e., the condition part of
every command has at most two terms. In practical terms this means that
there is no general algorithm for deciding safety for systems which test two
cells of the access matrix.

(2) Safety is decidable for mono-conditional schemes; i.e., the condition part of
every command has at most one term.!

Mono-conditional systems are very restrictive and can accommodate only the
simplest security policies. At the same time, models such as take-grant [17], which
require bi-conditional commands, do have efficient safety analysis. Thus the de-
marcation of decidable safety in HRU is too pessimistic.

A restriction on expressive power that can have substantial benefits for safety
analysis is that of monotonicity: monotonic models do not allow the deletion of
access privileges. It must be noted that a strictly monotonic model is too restric-
tive to be of much practical use, since the ability to delete access privileges is an
important requirement. We are really interested in models which can be reduced

f This result has only been shown for monotonic schemes and for nonmonotonic schemes

with “Delete” but not “Destroy”. The decidability for the general nonmonotonic case
with “Destroy” remains open [16].
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to monotonic models for purpose of safety analysis. In particular, we can ignore
deletion of an access privilege P whenever the deletion can itself be undone by
regranting P. This is by far the most common form of revocation and it is indeed
fortunate that such revocation can be ignored for the purposes of worst case safety
analysis.

Since monotonic models do not permit the deletion of access privileges, back-
tracking in analysis can be avoided. However, monotonicity by itself is insufficient
for tractable safety analysis. The monotonic version of the access matrix model of
Harrison, Ruzzo, and Ullman [15] (HRU) retains broad expressive power; unfor-
tunately, despite its monotonicity, it also retains the weak demarcation of safety
cited above. Safety analysis remains undecidable even for monotonic bi-conditional
HRU schemes [16].

1.2.2. Strong safely properties of SPM

In response to the relatively weak safety properties of HRU, a variety of modelst
with more desirable safety properties have been proposed [6, 17, 25, 26, 27, 48].
However, a substantial gap in expressive power exists between these models and
HRU. Sandhu’s Schematic Protection Model (SPM) [38] was developed to fill this
gap in expressive power while sustaining efficient safety analysis. The various
models referenced above are all subsumed by SPM [39, 46]. SPM has remarkably
strong safety properties and has been shown to represent a wide variety of cases of
practical interest.

Despite SPM’s demonstrated expressive power [38, 39, 46], attempts to show
the equivalence of SPM to monotonic HRU have so far failed. We now have strong
reason {2, 3, 24] to believe that SPM is in fact theoretically less expressive than
HRU, although formal demonstration of this fact remains an important open ques-
tion.

For the purpose of demonstrating theoretical equivalence, and also for practical
reasons, SPM has been extended in a natural way. The single parent creation
operation in SPM has been redefined to allow multiple parents for a child. With
the joint creation operation, the new model, called ESPM, is shown here to be
precisely equivalent to monotonic HRU.

The question naturally arises as how safety analysis is affected by the increase
in expressive power provided by the joint creation operation. In this paper, we
present a safety analysis algorithm for a restricted subclass of ESPM schemes,
namely those schemes in which the create structure is acyclic with the possible
exception of attenuating loops (particular kinds of cycles of length one). The
algorithm given here is based upon the SPM algorithm presented in [38]. However,
the machinery of [38] is insufficient for ESPM schemes. Here we demonstrate that
the inclusion of a joint creation operation in the ESPM model still permits tractable
safety analysis for many cases of practical interest. We also offer guidelines for how
to employ the joint creation operation so as to minimize the computational effort
of the safety analysis.

' These models generally include the kind of revocation in which the revocation itself can
be undone. They are monotonic in the technical sense of being reducible to monotonic
operations for purpose of safety analysis.
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1.3. Outline of the Paper

The organization of the rest of this paper is as follows. In section 2 we provide
motivation for including a joint creation operation in an access control model by
describing the natural way in which it applies to well-known protection problems.
In section 3, we formally describe ESPM, which is SPM extended with the joint
creation operation, and give example implementations of the problems enumerated
in section 2. In sections 4 and 5, we demonstrate the equivalence of monotonic HRU
and ESPM. Section 4 gives a straightforward simulation of ESPM in monotonic
HRU. Section 5 gives the far more intricate simulation of monotonic HRU in ESPM.
In section 6, we present a safety analysis algorithm for ESPM schemes with acyclic
attenuating loops (i.e., schemes whose can-create relations are acyclic except for
certain cycles of length one). The computational complexity of analyzing such
schemes is given, and it is shown that the complexity is feasible for many cases of
practical interest. Section 7 contains a brief discussion, and section 8 concludes the
paper.

2. Motivation for joint creation

In this section we motivate the utility of a joint create operation from a prac-
tical point of view by showing how this operation naturally supports a range of
protection policies that have been proposed in the literature.

Our first example is that of mufual suspicion. This was one of the earliest
protection problems identified in the literature [13]. The problem arises whenever
two users, say A and B, who do not trust each other have to cooperate in achieving
some task. The task requires that B has the ability to exercise a subset of A’s
privileges, and vice versa. The standard solution to this problem [13] is as follows.

(i) A creates a subject A’; similarly, B creates a subject B'.
(ii) A gives A’ the privileges that B needs; similarly, B gives B’ the privileges that

A needs.

(iii) A gives B’ the indirect privilege for A’; similarly, B gives A’ the indirect

privilege for B’.

At this point A’ and B’ act as agents for A and B in achieving their cooperative
objective. The idea is that A’ can indirectly exercise the privileges of B’ and vice
versa.

This solution depends critically on indirect privileges and as such requires a
new concept and mechanism for its implementation. This concept is not particu-
larly easy to formalize; for example, we must consider whether or not the indirect
privilege can itself be indirectly exercised. The solution is correct only with the
specific assumption that chaining of indirection is disallowed. It is clear that weak
restrictions on the indirect privilege have disconcerting implications for access re-
view and safety analysis, but strong restrictions amount to building more policy
into our model than we really wish. Moreover, the algorithm described above does
not give B any unique access to A’, since A is free to send indirect privileges for
A’ to some other subject C.

On the other hand, the joint create operation provides an ideal solution for
the mutual suspicion problem. A and B can jointly create a subject C such that A
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and B become the joint owners of C. Any pattern of communication from A and

B to C and from C to A and B can then be specified. In the case of the mutual

suspicion problem, A and B can be allowed to contribute privileges to C freely, but

must be restricted in their ability to take privileges from C.

It is important to appreciate that once the joint create operation has occurred,
the restrictions needed to solve the mutual suspicion problem can all be stated in
terms of the operation that copies privileges from one subject to another. Since the
copy operation is one of the fundamental operations that any access control model
must support, the required ability to specify restrictions on the copy operation is
independent of the mutual suspicion problem and joint creation.

Our second application of joint creation is in solving the well-known protected
subsystem problem [10, 22]. In this problem we again have two parties A and B,
where A is a user and B is a service that A wishes to use for some purpose. We
model the invocation of B by A as the joint creation of subject C' by A and B.
Note that B is a passive participant in this act, while A and C are active subjects.
Our requirements are as follows:

(1) A can only give data to C and receive results from C. In particular, A cannot
obtain the rights to directly modify the internal data structures of C (i.e., we
have information hiding in the sense of data abstraction).

(2) C can obtain data and code from B.

This differs from our mutual suspicion problem only in regard to what ' can obtain

from A and B. That is, we no longer have a symmetry between A and B. Given

the ability to restrict the copy operation, it is a simple matter to specify these
constraints in a sufficiently general access control model.

The confinement problem as originally formulated by Lampson [19] gives us
our next application. This problem is actually a particularly stringent variation of
the protected subsystem problem with the following added requirement.

(3) C cannot leak to anyone the data given it by A.

Since the code executed by C can only be obtained from B, A is threatened by

Trojan Horses in B’s code that might leak A’s confidential data. To solve this

problem, we need to ensure that C' cannot write to any object other than its

internal data structures and objects provided by Al

From the joint creates perspective, the three examples above are all variations
of the same requirement. The joint child C' of A and B is restricted with respect to
privileges it can obtain from A or B as well as privileges A or B can obtain from it.
In general, the restrictions applied to parent A are different from those applied to
parent B. A key point is that these restrictions are specified in terms of the copy
operation to move privileges from one subject to another. The facility to specify
such restrictions on the copy operation should certainly be available in any access
control model that claims generality.

In these examples, the critical role of joint creation lies in binding C' to its
parents A and B at the moment of creation. The question naturally arises whether

t of course, we also need a covert channel analysis to achieve a high level of assurance.
In other words, we need to make sure that not only the explicit write operations but
also the implicit ones have been accounted for.
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or not joint creation can be reduced to more primitive operations. The reduction
given in section 5 of monotonic HRU to ESPM strongly indicates that joint creation
is fundamentally more powerful than the usual single-parent creation employed in
access-control models. To appreciate why this happens consider an attempt to
mimic the effect of joint creation of C' by A and B as follows.

(1) Let A create C (using the usual single-parent creation). This binds A and C
in a unique manner.

(2) Establish the B to C binding by copying privileges for C to B and/or vice
versa.
The problem with this approach is that the means to achieve step 2 inevitably
implies that a similar binding can also be established between C' and some other
subject D. In other words it appears impossible to uniquely bind C to B without
introducing some new mechanism, such as joint create, for this purpose. As is
shown in section 7, there are mechanisms other then joint create that can produce
the desired effect. However, joint creation appears to be the most natural choice.
Our final application of joint creation stems from the separation of duiies
concept of Clark and Wilson [8]. Joint creation turns out to be a particularly
effective way of specifying separation of duties with respect to creation of new
users. As noted in [35, 40] separation of duties is often best expressed in terms of
roles such as manager, security-officer, clerk, etc. For simplicity assume that each
user has a unique role in the system. The following rules show how joint creation
can specify the involvement of distinct users with different roles in the process of
enrolling new users in the system.
(1) A manager and a security-officer can jointly create a new clerk.
(2) A senior-manager and a security-officer can Jjointly create a new manager.
(3) Senior-managers and security-officers can only be created by the system-owner.
In this case, joint creation is more concerned with involving multiple parties in the
decision to effect the creation, in contrast to our earlier examples where the focus
was on the unique binding between the child and its multiple parents. Note that
while the joint creation operation offers an elegant solution for this last example, it
1s not strictly necessary. For example, the techniques described in [41] can be used

to achieve separation of duties within the conventional framework of single-parent
creation.

3. The ESPM model

In this section we define a formal model called ESPM (or extended SPM) that
includes a joint creation operation. The model is based on Sandhu’s Schematic
Protection Model [38] or SPM. ESPM differs from SPM precisely in having a multi-
parent create operation rather than the conventional single-parent creation of SPM.
By way of introduction, we first review the formal definition of SPM, and then
describe its extension to ESPM. For the sake of brevity motivational details and
examples have been kept to the bare essentials. Further motivation and a variety
of more complex examples are given in [38].

3.1. Review of SPM

SPM is based on the key principle of protection types, henceforth abbreviated as
types. SPM subjects and objects are strongly typed, i.e., the type of an entity
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(subject or object) is determined when the entity is created and does not change
thereafter. Types are an abstraction of the intuitive notion of properties that are
security relevant. An SPM scheme is, to a large extent, but not exclusively, defined
in terms of types. The dynamic privileges in SPM are tickets of the form Y/r where
Y identifies some unique entity and r is a right. The notion of type is extended to
tickets by defining type(Y/r) to be the ordered pair (type(Y), r). That is the type
of a ticket is determined by the type of entity it addresses and the right symbol it
carries.

SPM has only two operations for changing the protection state, viz., create
and copy.Jr These operations are authorized by rules which comprise the scheme
defined by specifying the following (finite) components.

(1) Disjoint sets of subject types T'S and object types TO. Let T = TS U TO.
(2) A set of rights R. The set of ticket types is thereby T x R.

(3) A can-create function cc: TS — 27T,

(4) Create rules of the form ery(u,v) = ¢/R1Up/ Ry and cr.(u,v) = ¢/R3Up/Ry.
(5) A collection of link predicates {link;}.

(6) A filter function f; : T'S x T'S — 2T* K for each predicate link ;.

The notation 2% denotes the power set of X, i.e. the set of all subsets of X.

An SPM scheme is itself static and does not change. It constrains the evolution
of the protection state which is changed by create and copy operations. We now
discuss these operations in turn.

The Create Operation. Creation is authorized exclusively by types. Subjects
of type u can create entities of type v if and only if v € cc(u). Tickets introduced as
the side effect of creation are specified by create-rules. Each create-rule has the two
components shown above, cry(u,v) = ¢/Ry Up/Ry and erc(u,v) = ¢/R3 U p/Ra,
where p and c respectively denote parent and child and the R; are subsets of R.
When subject U of type u creates entity V of type v, the parent U gets the tickets
V/Ry and U/R,. The child V similarly gets the tickets V/R3 and U/R4. For
example, file € cc(user) authorizes users to creates files. And crp(user, file)
= ¢/rw and cr.(user, file) = @ gives the creator r and w tickets for the created
file.

When an object is created, tickets for that object can only be placed in the
parent’s domain. The formalism expresses this in a straightforward manner by
requiring crp(u,v) = ¢/R; and er.(u,v) = @, when v is an object type. The
situation for subject creation is more complicated. The SPM formalism allows the
create rules to place tickets for the child subject in the child’s domain and/or the
parent’s domain. It is obvious that this is a useful feature of the model. The SPM
formalism also allows the create rule to place tickets for the parent subject in the
child’s domain and/or the parent’s domain.

It is easy to make a case for placing the parent’s tickets in the child’s domain.
For instance, this may be the only way to set up a parent to child link (see Copy
Operation) or vice versa as happens in the take-only and grant-only models of

t The original definition of SPM [38] included a third operation called demand that has
since been shown to be redundant [42].
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[27]. The placement of tickets for the parent in the parent’s own domain is a more
subtle issue. It is a theoretical device which allows us to define the notion of an
attenuating create rule as one in which each ticket for the child can be traced to
the corresponding ticket for its parent. Attenuating create rules play an important
role in safety analysis, as will be discussed in section 6. An alternative to this
artifice, which would allow us to achieve the same objective, is to let the effect of
the create rule depend on the current domain of the parent. This alternative was

rejected in SPM because it introduces additional complexity in the notation and
in safety analysis.

The Copy Operation. A copy of a ticket can be transferred from one subject

to another, leaving the original ticket intact. Permission to copy a ticket Y/r
depends in part on possession of the SPM copy flag, ¢, for that ticket, denoted
Y/rc. Possession of Y/rc implies possession of Y/r but not vice versa. It is possible
to copy Y/r only, or to copy Y/rc. In the former case, the ticket cannot be further
copled, whereas, in the latter case, it may be further copied. Let dom (U) signify
the set of tickets possessed by U/. Three independent pieces of authorization are
required to copy Y/r from U to V.

(1) Y/re € dom (U), i.e., U must possess Y/rc for copying either Y/rc or Y/r.
(2) There is a link from U to V. Links are established by tickets for U/ and V in

3)

the domains of U and V. A link predicate takes two subjects, say X and Y, as
arguments and evaluates to true or false. If true, it establishes a connection
from X to Y that can be used to copy tickets from the domain of X to the
domain of Y. Its definition is in terms of the presence of some combination
of tickets for X and Y in the domains of X and Y. The idea is that the link
predicate should be evaluated by examining the domains of the two subjects
of concern only with respect to presence of tickets for these two subjects. We
emphasize this aspect by saying that link predicates are local. That the defi-
nition should depend only on the presence and not the absence of tickets is a
well-known principle for protection [37]. As a special case we also allow a link
predicate which is always true to be defined.

Formally we have the following definition: the predicate link i(U,V) is defined
as a conjunction or disjunction, but not negation, of one or more of the fol-
lowing terms for any r € R: U/r € dom (U), U/r € dom (V), V/r € dom (U),
V/r € dom(V), and true. Some examples of link predicates from the litera-
ture are given below [25, 27, 38, respectively]:

link ¢, (U, V) = V/g € dom (U) vV U/t € dom (V)
link (U, V) = U/t € dom (V)

link,,(U,V) = V/s € dom (U) AU/r € dom (V)
link , (U, V) = true

The last condition is defined by the filter functions fi, one per predicate link ;.
The value of f;(u, v) specifies types of tickets that may be copied from subjects
of type u to subjects of type v over link;. Also fi determines whether or not
the copied ticket can have the copy flag. Example values are ' x R, TO x R,
and @, respectively authorizing all tickets, object tickets and no tickets to be
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copied. Selectivity in the copy operation is controlled by the filter function
and specified entirely in terms of types. The filter functions are a powerful tool
for specifying policies. They impose mandatory controls which are inviolable
and confine the discretionary behavior of individual subjects.

In short Y/r can be copied from U to V iff there exists some link; such that:
Y/re € dom (U) Alink ;(U, V) Ay/r € fi(u,v)

where the types of U, V and Y are respectively u, v and y. To copy Y/re from U
to V, it must also be the case that y/rc € fi(u,v).

3.2. Adding Joint Creation to SPM

We extend the creation operation in the SPM model above to enable groups of
subjects to jointly create new subjects and objects. The practical motivation for
such an operation has been discussed earlier in section 2. We call the extended
model ESPM, and we refer to the extended creation operation as joint creation, or
simply creation in those cases where no confusion arises. Joint creation includes the
SPM creation operation as a special case. In all other respects, ESPM is identical
to SPM.

The (joint) can-create function for ESPM is a mapping:
ce : TS xTS x...xTS—2T

In ESPM, the domain of cc is an N-tuple of subject types, as opposed to a single
subject type in the SPM case. ESPM imposes no bound on the maximum value
of N, although for any given scheme this value is, of course, a constant. Further,
if type constraints are met, we allow a subject to redundantly participate as more
than one parent in a joint create operation. The option of forcing the parents
to be unique was rejected because it is contrary to the tone of the SPM copy
operation where the same subject can participate as the source, destination and
reference of the transported ticket. It also seems natural to follow the lead taken
in programming languages, where it is the usual practice to allow a single object
to replace multiple formal parameters.

It remains to extend the create rules cr, and cr. of SPM to describe the
distribution of tickets that results from joint creation. We have a variety of choices
as to which tickets parents are allowed to acquire as a result of a joint create
operation. The most general choice is to allow the cr, function to supply a parent
with arbitrary tickets, not only for itself and the child, but also for any other parent.
This option has the undesirable side effect of duplicating the functionality of the
links and filter functions. Since we do not want the joint create operation to be
a substitute for the copying of tickets, we restrict the cr, operation such that a
parent X does not acquire tickets of the form Y/r for any other parent Y.

With the above restriction in mind, the most general choice for specifying the
distribution of tickets as a result of creation is to give a separate cr, rule for each
parent-child pair and a single cr. rule that allows the child to acquire a different
set of tickets from each parent. Formally, we define N create rules of the form:

cp(tpystpas -« s tpnrte) = ¢/ RiUpi/Ry fori=1...N
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and one rule of the form:
ere(tpy tpss -y tpyste) = ¢/R3Up /Ry Upa/R2U...Upn/RY .

The t,, are the types of the N parents, and the ¢, is the type of the child. In all
of the create rules ¢ is the name of the jointly created entity and p; is the name
of the ith parent. For the ESPM create rules, note that the sets Ry, Ry, and Ry
from the SPM create rules have each been expanded into N sets, RY, Ri, and RY,
fori=1...N. The set R3 is unchanged.

This completes our definition of ESPM. To summarize, ESPM is identical
to SPM except for the create operation, which is extended in ESPM to allow

multi-parent creation, thus going beyond the conventional single-parent creation of
SPM.

3.3. Ezamples
We now outline ESPM solutions to the example problems posed in section 2.
3.3.1. Ezample 1

For the mutual suspicion problem, A and B have equal roles, and so we consider
them to be of the same type; let s be the type of A and B. The joint agent, C, need
not be of the same type as A and B; let ¢ be the type of C. We set cc(s,s) = ¢,
and define cry, (s,s,t) = crp,(s,s,t) = 0 and cre(s,s,t) = p1/xUps/z, where z is a
special right that is used to tie the parents A and B to the child C. We restrict right
z such that it cannot be acquired except through creation. Links that require the
parent child tie can then be used by A and B to transfer a limited set of privileges
to C.

3.3.2. Ezample 2

In the second example of the protected subsystem, the roles of A and B are no
longer symmetric. We reflect this by setting the types of A and B to r and s,
respectively. We now set cc(r, s) = t, and define crp,(r,s,t) = crp, (7, 5,t) = 0 and
cre(r, s,t) = p1/xUps/zy, where z is a right indicating permission to transmit data
values, and y is a right indicating permission to transmit access to code. Now, with
proper filters on the links connecting entities of types r, s, and ¢, A and C can
exchange data only; but C can receive data and code from B.

3.3.3. Ezample 3

In the third example of the confinement problem, joint creation is accomplished
with the same strategy as for Example 2. The filter functions can prevent C' from
leaking data to:

1) Any subject, regardless of type. The filter functions thus prevent any access
g
to C's data.

(2) Subjects of a specific type. The filter functions allow access to certain subjects
but deny (direct) access to others. Indirect access can be analyzed by safety
analysis, as will be discussed in section 6.
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The former case gives us total confinement while the latter gives partial confine-
ment.

3.3.4. Ezample J

In the fourth example of separation of duties, a solution using joint creation might
be developed as follows: Suppose that the types ¢, m, sm, so, and o represent clerks,
managers, senior-managers, security-officers, and system-owners, respectively. We
define the following cc functions:

(1) ec(m, so) = ¢: A manager and a security-officer can jointly create a new clerk.

(2) cc(sm, s0) = m: A senior-manager and a security-officer can jointly create a
new manager.

(3) cc(0) = {sm,so}: Senior-managers and security-officers can only be created
by the system-owner.

4. Reduction of ESPM to HRU

We now turn to a formal evaluation of the expressive power of ESPM. The most
general monotonic protection model to date is the monotonic access matrix model
of Harrison, Ruzzo, and Ullman [15], which we refer to as monotonic HRU. It
turns out that ESPM is precisely equivalent to monotonic HRU in its expres-
sive power. The equivalence result (stated in theorems 1 and 2 below) is estab-
lished by simulating monotonic HRU in ESPM and vice versa. In this section,
we carry out the relatively straight-forward task of implementing ESPM in mono-
tonic HRU. In the next section, we demonstrate the much more difficult reverse
construction.

4.1. Implementing ESPM in monotonic HRU

The key idea here is to encode ESPM types as rights in the HRU simulation. We
handle each aspect of the ESPM model in turn. Without loss of generality, we
ignore the distinction between subjects and objects in the simulation.

(1) Types. These are encoded as rights as described below. The basic idea is that
an entity X of type z will have the right # in the [X, X] cell of the access
matrix.

(2) Rights. The set of rights needed for the simulation is the set Rp from the
ESPM scheme augmented with a new right for each ESPM type. Call this
new set Rp. In addition, we need to represent the ESPM copy flag. For every
right in Rg, define another right to represent that right along with the copy
flag. Call this new set Rg.. We adjust the simulation such that whenever
a right from Rg. is entered into the access matrix, the corresponding right
from REg is entered as well. Thus, Ry = Rg U Rg.U Ry is the entire set of
rights.

(3) Single Parent Creation. Consider the cc function for each parent type t,,.
Recall that the definitions of the create rules are: erp(tp,t.) = ¢/R1 Up/Ry
and cr(t,,t.) = ¢/R3 U p/R4. For each t. that ¢, can create, define an HRU
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command as follows:

HRU;,: (X )Y)
if t, €[X,X] then
create Y
enter t.in [Y,Y]
/* for each r in Ry */
enter 7 in [X,Y]
/* for each r in Ry */
enter r in [X, X]
/* for each r in Rz */
enter 7 in [Y, Y]
/* for each r in Ry */
enter r in [Y, X]
end

(4) Multiple Parent Creation. Since an N-parent create can be implemented with
2-parent creates (as is formally shown in section 4.2 below), it is sufficient
to consider only 2-parent creation operations. Recall that the definitions of
the create rules for 2-parent creation are: crp, (tp,,tp,,t.) = ¢/R} U pi/R},
crpz(tpx ) thi tc) = C/R? Up?/R%’ and crc(tpwtpzr tc) = C/R3 Upl/R}l U pz/RZ.
Consider the cc function for each type pair ¢,,, t,,. For each t, that the pair
can jointly create, define an HRU command as follows:

HRU,, ., +(X,Y,2)
ift,, €(X,X]At,, €[Y,Y] then
create Z
enter ¢, in [Z, Z]
/* for each r in R} */
enter r in [X, Z]
/* for each r in R? */
enter 7 in [Y, 7]
/* for each r in R} */
enter r in [X, X]
/* for each r in R3 */
enter 7 in [Y,Y]
/* for each r in Rz */
enter r in [Z, Z]
/* for each r in R} */
enter r in [Z, X]
/* for each r in R2 */
enter r in [Z,Y]
end

‘ (5) Links and filters. First, translate the predicate, p;(X,Y), associated with
. each link ; into a form suitable for inclusion in the conditional part of an HRU
: command. This is easily done by rewriting each expression of the form Y/r €
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dom (X) as r € [X, Y]. Second, for the corresponding filter function, fi(tz,ty),
for each ticket type t;/rj € fi(tz,ty) define the following HRU command:

HRUIink.',t,,rj(nyv Z)
if pi(X,Y) Atz € [X, X]A Ly € [Y,YIAt, €[Z,Z)Arjc € [X, Z] then
enter r; in [Y, Z]
end

To allow for the copy flag in the filter function, define another HRU command
for each ticket type t./rjc € fi(ts, ty):

HRUlink.-,t,,rjc(XyY» Z)
if pi(X,Y) Atz € [X, X]ALy € Y,YIAL, €[Z,Z)Arjc € [X, Z] then
enter rjcin [Y, Z
enter r; in [Y, Z]
end

The initial state for the simulation is created as follows:

(1) A row and column of the access matrix is created for each ESPM entity. Let
the type of a given entity X be z. The right z is entered into the [X, X] cell
of the access matrix.

(2) For every ticket Py /r that a entity Px holds, enter r into the access matrix
cell [Px, Py].

The correctness of the construction is almost self-evident because there is

a simple one-to-one mapping from ESPM commands to HRU commands in the

simulation. A formal statement of correctness is given below.

Theorem 1. An ESPM subject X can hold a tickel of the form Y/r (or Y/[rc) in
the original ESPM system iff the access matriz cell [X,Y] can contain v (orrc) in

the original HRU system.

ProOOF. The proof follows from the construction. If X acquires the ticket Y/r (or
Y/rc) then it is possible for r (or rc) to appear in the [X,Y] cell of the access
matrix by mimicking each ESPM command by the corresponding HRU command.
Similarly, if r (or 7¢) € [X,Y] then it is possible for X to acquire the ticket Y/r (or
Y/rc) by mimicking each HRU command by the corresponding HRU command.

4.2. Equivalence of N-parent and 2-parent Joint Creates

As we demonstrate below, any multiple-parent creation can be implemented by a
set of 2-parent creations and the introduction of a fixed number of additional types,
rights, links and filter functions. Thus the N-parent creation operation technically
does not provide more expressive power than 2-parent creation; the N -parent form
of the operation can be simply regarded as a desirable convenience. In the current
context, the construction below demonstrates that simulating 2-parent ESPM in
HRU is sufficiently general to show that N-parent ESPM can be simulated in HRU.

We illustrate a construction for implementing N-parent creation with 2-parent
creation in fig. 1. For simplicity, we show the special case in which the parent

types and child types are all distinct. The construction can be extended to the
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Fig. 1. Implementing N-parent joint create with 2-parent joint create.

general case in which the parent and child types are not all distinct, but the re-
sult is substantially more intricate and tedious to describe. The key aspect of
the simulation is the manner in which 2-parent creates are chained together to
simulate creation with an arbitrary number of parents. In addition the simu-

lation requires detailed bookkeeping to ensure that creation tickets are properly
distributed.

In fig. 1, entities are represented by circles. The name of each entity appears
to the upper left of the entity, and the list inside the entity describes the tickets
that the entity acquires as a result of creation. Solid arrows point from parents to
children, and dashed arrows indicate the copying of the specified tickets. Labels
on the copied ticket indicate the link used to copy that ticket.

Suppose we are implementing the N-parent creation operation specified by
the can-create function, cc(p1,ps,...,pn) = Z, where Z is a subset of T, and
the create rules are of the form given above. Consider a particular child type
¢ € Z. As per our discussion above, we are assuming that the p; and ¢ are all
distinct.

Our construction requires that an additional N + 1 types be defined. We
name the types ai, as, ..., ay and s. The construction also requires an additional
right, ¢, that is used to tie parents and children together. In the construction,
each entity A; of type a; acts as an agent for the parent P;. Each A; eventu-
ally copies the tickets P;/RY to the child C'. The entity S of type s acts as an
agent for the child and eventually distributes the tickets C/Ri to the parents,
P;. The tickets C'/R3 are deposited directly into the child as a result of the cre-
ate operation, but, to avoid inconsistency, the tickets P; /R, must be withheld
from the parents until the entire joint create simulation is successful. To this
end, the P;/R} tickets are stored in the A; agents until the ticket A;/¢ is re-

turned to A; by its child A;41, thereby indicating successful creation of the child
entity.
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As can be seen from the solid arrows in fig. 1, the replacement can-create
functions are as follows:t

celpr) = ar
ce(pit1,a) = aj41, i< N
ce(an) = s

ce(s)=rc

The create rules are:

Crp(pl)al) = 0

crp, (Pit1, i, aiy1) =0
rp,(Pit1, @i, a41) = 0
crp(an,s) =0
crp(s,¢) = ¢/ Rte

cre(p1,a1) = p/Rtc

cre(piy1, ai, ai+1) = pi1/RtcUpy/tc

cre(an,s) = p/te
cre(s,¢) = ¢/R3

The creation rules arrange directly for the tickets ¢/ Rs to accrue to the child. Links
and filter functions are required to deliver the tickets ¢/R} and p;/R} to the ith
parent and p;/RY to the child. These links are indirectly activated by the creation
of the child entity.

For those links that require activation, the activation is represented by A/t €
dom (A), where A is an agent. The right ¢ is also used to identify an agent’s parent;
A/t € dom (A3) indicates that A; is a parent of A,. The links and filters are as
follows:

link ; (A4;, Ai—1) = A1/t € dom (Ai) filai,ai—1) = a;_1/t Uc/Rtc
/\A,‘/t € dom (A,)
link (S, Ax) = An/t € dom (S)
link 3(A;,C) = C/t € dom (4;)
link 4(A,', P,') = P;/t € dom (A,')
/\A,‘/t € dom (A,')

fa(s,an) = aN/.t Uce/Rte
fs(ai,c) = pi/ R ‘
fa(ai, pi) = ¢/ Ry Upi/ R}

In the 2-parent simulation, the parents and child receive exactly the tickets
that the N-parent operation specifies. In addition, the simulation arranges that
no tickets are delivered to the parents unless the creation of the child is successful.
Further note that the child cannot be created if any parent is absent. At worst,
extra agents of the type a; will be created, but these agents cannot interact with
any other ESPM entities, and are therefore harmless. Thus the simulation disallows
“partial” creation operations in the sense that nothing is effectively achieved unless
the entire operation is permitted and carried out.

t Technically, the definition of cc(p1) is incomplete since entities of type p1 may well
be able to create entities of type other than ay. Thus the definition of the can-create
function for p; should be read as being augmented with a;, not replaced by it.

+ . . . .

+ Note that these are templates for links. link; is a template for N — 1 links, ¢ €
1...N — 1. link 3 and link 4 are each templates for N links, t € 1... N. Also, in the

definitions of the filter functions, we adopt the convention that only nonempty f; are
explicitly given.
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5. Reduction of HRU to ESPM

We now complete the evaluation of the expressive power of ESPM begun in the
previous section. Below we show how an arbitrary protection scheme implemented
in HRU can be simulated by an equivalent ESPM scheme. This simulation is
inherently complicated because of the very local and incremental nature of the
primitive operations of ESPM. A single HRU command has the potential to test and
alter a large number of cells of the access matrix. These cells are not constrained
to fall into any regular pattern. In ESPM on the other hand a link predicate can
only test the domains of the two subjects at the end points of the link, and only
for rights for the source and destination subjects. In other words, the ESPM link
predicate can test exactly four cells of the access matrix. These are the [S,S], [S,D],
[D,S] and [D,D] cells where S is the source subject and D the destination subject.
Moreover the ESPM copy command can modify only one cell of the access matrix.
Similar remarks apply to creation in ESPM vis-a-vis creation in HRU. It therefore
takes considerable effort to simulate the wide-ranging tests and changes effected by

an HRU command in terms of the very local and incremental tests and changes of
ESPM commands.

In this section we first give the formal definition of the simulation. As the
construction proceeds, we establish various lemmas showing what each piece of the
construction achieves in the simulation. Once the construction is completed, we
have the necessary lemmas to show overall correctness. At the end of the section
we supply an example to illustrate the construction.

5.1. Overview

There are three basic problems in simulating monotonic HRU in ESPM. They
correspond to the various parts of the HRU command:

(1) Parameter List Generation. HRU commands are invoked with a particular
set of entities as parameters. For a valid simulation, it must be possible to
manipulate exactly the set of entities that correspond to any possible HRU
parameter list. Thus one task for any simulation of HRU is to mimic the
gathering of arbitrary existing HRU entities into ordered parameter lists of
the proper size. We conjecture that SPM is unable to provide this grouping
operation; hence, in comparing the expressive power of SPM to ESPM, this is
the key stage in the simulation of HRU. Clearly, the joint creation operation
of ESPM is ideally suited for the task.

(2) Validating the Conditional. The basic process of an HRU command is to per-
mit the various Create and Enter operations only if certain cells in the access
matrix contain specified rights. A mechanism is required to simulate the eval-
uation of the term corresponding to each cell. Another mechanism is required
for combining the values of the individual terms into an overall evaluation of
the conditional.

(3) Implementing Primitive HRU Operations. Simulating “Enter” operations is
straightforward in ESPM; it is easy to arrange that the ticket simulating the
right in question be copied only if the conditional evaluates to TRU E. How-
ever, “Create” operations are another matter. ESPM does not contain a con-

ditional creation operation. Therefore, in showing that an ESPM scheme can
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simulate an HRU scheme, we must simulate conditional creation. Simulating
conditional creation can be accomplished in various ways; we do it by augment-
ing the HRU scheme with an additional right that indicates that an entity is
“alive”. Thus, even though we cannot conditionally control the creation of
ESPM entities, we can conditionally control the presence of tickets indicating
liveness. We must also ensure that entities not marked as being alive do not
participate in changing the protection state. Again, various options are avail-
able; we choose to augment the conditional expression in an HRU command
to ensure that all relevant entities hold a “live” ticket. Since we are simulat-
ing monotonic HRU, we need not address the HRU “Delete” and “Destroy”
operations.

5.2. The monotonic HRU access matriz model

We now formally define the monotonic access matrix model that we simulate. We
denote the set of HRU rights by Ry. We consider I commands, each denoted
HRU;,1€11.. .I,T structured as follows.

HRUi(Py, ..., Py, Py, Pram)
T AT A ... ATy, then
9
C
Ci,
Ej
Ej

in which:

(1) The P;, where j € 1...J;, are formal parameters representing existing HRU
entities. The P;, where j € J;41 ...J;+ M;, are the names of entities that may
be created by the HRU command. Note that this ordering of existing entities
before to-be-created entities in the parameter list entails no loss of generality.

(2) The Ti, where k € 1...K;, are terms of the form “r € [Px, Py]”, where X and
Y are in the set 1...J;. The absence of disjunctions in the conditional entails
no loss of generality since disjunctions can be simulated with multiple HRU
commands. Note, however, that negation is disallowed in HRU. We define a
function, ti(k) : 1...K; — Ry, that describes which HRU right appears in
the term T} and functions, ti (k) : 1...K; — 1...J; and th(k):1...K; —
1...J;, that describe, respectively, the positions of the formal parameters that
assume the roles of Px and Py in term T,g.

(3) The C?,, where m € 1...M;, are HRU primitives of the form “Create Px”,
where X = J;+m. Since we consider only the monotonic access matrix model,

t The notation x...y is shorthand for the set, {1 : N|z < i<y}, where N is the set of
integers.
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there is no “Delete Px” operation, and we are free to order the HRU primitives
so that all “Create” operations precede all “Enter” operations. We define a
function, c’k (m) : 1...M; — Jiy1...Ji + M;, that describes the position of
the formal parameter X in C},.

The E:, where n € 1...N;, are HRU primitives of the form “Enter right r
in [Px,Py]”. X and Y are in the range 1...J; + M;. We define a function,
ei(n) : 1...N; — Ry, that describes which HRU right r appears in the
the enter command E?, and functions, €4 (n) : 1...N; — 1...J; + M; and
e (n) : 1...N; — 1...J; + M;, that describe, respectively, the positions of
the formal parameters that assume the roles of Px and Py in term E?.

For an illustration of these definitions, the reader is referred to the example given
in Section 5.6.

5.3.

ESPM scheme definition

Below, we define the types, rights, can-create function, creation rules, and links

and

filter functions required in the simulation of a given HRU scheme in ESPM.

The description of the links and filter functions is quite detailed and intricate.
For clarity, the presentation is broken up into discussions of the links required to
achieve various subgoals. Each subgoal is stated as a lemma.

Type definitions

The entities used in the ESPM simulation can be grouped into various categories.
Each category is used to mimic part of the evaluation of an HRU command. The
categories are defined below.

(1)

(2)

(4)

()

Entities thal mimic HRU entities. We call these entities proxies. The simu-
lation arranges that a proxy Px can hold a ticket of the form Py /r for some
HRU right = iff the HRU access matrix cell [X,Y] can contain r. The single
proxy type is p.

Entities to represent ezisting proxies in each possible parameter position of
a single HRU command. We call these entities agents. The number of types
of agents is Jmax, which is the maximum value over the J;, where i € 1...1.
The set of agent types is {a;|j € 1...Jmax}-

Entities to represent the collection of J; ezisting HRU entities tn the HRU;
command. We call these entities validators. The creation of validators is
the step that requires the joint creation operation. The validators assume a
coordinating role in the simulation; they are responsible first for overseeing the
simulation of HRU conditional evaluation, and then for enabling the simulation
of “Create” and “Enter” primitives. There are I types of validators, one for
each HRU command, HRU;. The set of validator types is {v'|[i € 1...1}.
Entities to collectively determine the iruth of the entire conditional expression
tn an HRU command by ezamining each conjunct of the conditional in turn.
We call these entities terms. For each command HRU;, there are K; types of
terms. The set of term typesis {t{|k€1...K;,ie1...1}.

Entities to tmplement the HRU primitive “Create Px”. We call these entities
creates. For each command HRU;, there are M; types of creates. The set
of create typesis {ci,lme1...M;, i€ l...1}.
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(6)

Entities to implement the HRU primitive “Enter r in [Px, Py]”. We call these
entities enters. For each command HRU;, there are N; types of enters. The
set of creates typesis {ei|[ne€1...N;,iel...1}.

In summary, the types required are T'S = {p, a;,v*,t},ci,, i} where the sub-

scripts and superscripts have the ranges indicated above. Without loss of generality,
we may ignore HRU objects and only consider HRU subjects, and thus set TO = 0.

Rights

The set of rights, R, in the ESPM model is the union of two subsets:

(1)

2)

Ry, the set of rights in the HRU model. We include in this set an activation
right @ which marks a proxy as being “alive”. Recall that the HRU conditional
is augmented with tests that ensure that each participating entity is alive, t.e.,
a € [Px, Px] for each parameter Px.

RE, the set of rights used in the simulation. Rp = {z,y,t} contains a right z
that marks a proxy (or some agent acting on behalf of a proxy) for the role of
Pyx in considering an access matrix cell [Px, Py]. Similarly, the right y marks
a proxy (or agent) to take the Py role. In addition, the ESPM rights include
a verification right, t. In the construction, ¢ plays two roles. First ¢ is used to
indicate validity as follows: If U/t € dom (U) for some ESPM entity U, then
the part of the simulation that U corresponds to can be considered to have
evaluated to true. Typically, links will be enabled by U/t € dom (U). Second,
the right ¢ is used as a tie between ancestors and descendants of entities. In
this case, links will be enabled by U/t € dom (V') for some parent or child V
of U.

Can-create function

The creation relations among the ESPM types is shown in fig. 2. Arrows in fig. 2
point from parent types to child types. Formally:

ce(p) = {a;l7 € 1... Jmax}

ce(ar, az,...,ay,) = {v'}, foriel...1

ce(v') = {tiu{c,Im € 1...M}u{ei|lnel...N;}, foriel...]
ce(th) = {tiy1}, for k< K;andi€l...]

ce(c,) ={p}, formel...Myandi€cl...l

Note that the joint create operation is only required for the construction of the
validators. Also note that the structure is cyclic; hence safety is, in general, out-
side the cases known to be decidable for ESPM schemes built via the construction.
This attribute is consistent with the weak safety properties of HRU. Observe that
proxies, which are the ESPM entities that model HRU entities, can only be cre-
ated by creates, which are the ESPM entities that correspond to HRU “Create”

operations.
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LY. 3
Fig. 2. Create and joint create graph

Creation rules

The create and joint create rules are:

crp(p, a;) = 0 , cre(p, a;) = p/Ri U {z, y}c

erp;(ar,a, ... a;,v) =0, jel...J; cr(ar,as,...,a5,v") = Ujer.s, pilzye
erp(vi, 83) = ¢/te cro(vi, 8) = p/tc

erp(th,ti ) =cftc ere(th,th, ) =10

erp(vi,ch) = ¢/zy ¢ ere(vt, i) =0

erp(vi,el) =0 ero(vi,el) = p/t

erp(ci,,p) = ¢/Rp U {z,y} ¢ ere(ct,,p) =0

Note that agents act as ticket sources for their proxies. FEach agent has proxy
tickets for all of the HRU rights plus the z and y marker rights. For newly created
entities, the appropriate create entity serves as the ticket source. The distribution
of tickets from creation is illustrated in fig. 3. Entities in fig. 3 are shown by circles,
and solid arrows point from parents to children. Tickets acquired through creation
are shown inside the relevant circle.

Links and filters

For evaluation of the conditional, we wish for a ticket V/tc (which starts out in
the T child of a validator V') to wend its way from one term to the next until
Tk, returns it to V iff the entire conditional is true. The links allow T} to copy
the ticket V/t ¢ on to its child Ty only if the conjunct that T} represents has
evaluated to true, a state which is represented by 7%/t € dom (T}). Entity Tk,
copies V/t back to V if the all of the conjuncts have evaluated to true. Once V
acquires the V/t ticket, it activates its enters, which proceed to mark new proxies
as existing and pass appropriate tickets to the proper proxies.

There are various subproblems in implementing this scheme. We describe each
of the subproblems in turn and supply the links necessary to solve that subproblem.
Each subproblem is illustrated with a figure. In the figures, entities are represented
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Ay I
Cu; Py ‘
P \'4
ATy ¢
Tl/tc
Ce/zyc
By

T Ty

A-Imax i
o\
Ty/tc o

Fig. 3. Distribution of tickets from creation.

by circles. Solid arrows in the figures point from parents to children. Dashed
arrows show the flow of the indicated ticket via the copy operation; ticket labels on
a dashed arrow are prefixed with the number of the relevant link. Thus “1: AX/z”
means that link ; is used to transfer the ticket Ax/l‘.t Relevant tickets that are in
the domain of an entity prior to the operation under discussion are shown inside

the corresponding circle. For each subproblem, we state and prove a lemma to
establish that the subproblem has been solved.

1 Note that each link link ; is in fact a template for a set of links, and not a single link.
The same comment, of course, applies to filters fi.
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Py
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N 1: Ax/z | 2: Ay/y Pid
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Fig. 4. Passing parameter tickets to T}.

N e
3: Px/z™ L7 4 Prly

Passing parameters to terms

The first subproblem is for a term to determine which proxies assume the roles
of Px and Py in simulating the access matrix cell [Px, Py]. Fig. 4 illustrates a
solution to this problem.

In fig. 4, V acquires the tickets A;/zy ¢, j € 1...J;, during the joint create
operation. The first task is to transfer the proper tickets Ax/x and Ay /[y to Tk.
The values of X and Y are determined by the formal parameters used in the kth
conjunct of the conditional in the HRU command. Recall that this information is
recorded in the functions t% (k) and t}, (k) (see Section 5.2). The next task is for T}
to obtain Px/z and Py/y from Ax and Ay, respectively. The formal definitions
of these parameter passing links are given below.

link 1(V, Tx) = V/t € dom (Tk) fl(vi,ti) = at&(k)/:c
link o(V, T}) = V/t € dom (T}) (v ) = g ) /y
link 3(Aj,Tk) = AJ/.’L' € dom (T)c) fg((lj,ti p/l‘

link 4(Aj,Tk) = Aj/y € dom (Tk)

)
f4(aj ) t;c) = p/y
This fragment of the ESPM scheme establishes the following property.

Lemma 5.1. term Ty receives tickets Px /z and Py /y iff in the simulated com-
mand, HRU;, the kth term in the conditional tests the access matrix cell [Px, Py].

PROOF. The “if” part of the proof is directly established by the construction above.
For the “only if” part, note that the functions t% (k) and ti (k) restrict the filter
functions to tickets from the desired agents. By inspection of the rest of the

scheme, it is clear that this is the only way for a term T} to receive tickets for
proxies.
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In subsequent lemmas, the “only if” part of the proof consists of the last two
sentences of this proof, appropriately modified to reflect the assertion of the lemma.
For sake of brevity we only state the “if” part of the proof in these lemmas.

Passing parameters to enters

Similar processing is needed for passing parameters to each enter. Some additional
complexity is introduced since new proxies as well as existing proxies can appear
in an HRU “Enter” command, and these two cases need to be treated slightly dif-
ferently. It turns out that for enters, Py /y is not needed in the domain of E,
since the agent ticket A;/y is sufficient. Thus only Px/z is copied to E,. The two
cases where Px is an existing proxy and a newly created proxy are illustrated
in fig. 5. We have the following definitions for the parameter passing links for
enters.

link 5(V, E,) = V/t € dom (E,)
AV/t € dom (V)
link ¢(V, E,) = V/t € dom (E,,)
AV/t € dom (V)
link 7(A4;, E,) = Aj/z € dom (Ey,)
link §(Ch, En) = Cpp/z € dom (Ey,)

fs(vi,el) = el (n) < Ji?
aek(n)/x : c:;,x(n)/:z:]L

fo(vi,eh) = el (n) < J;?
ae;,(n)/y : Ci;(n)/y

fr(aj, €)= p/x

fS(Cin»elr.z) =p/z

Note that link 5 and link ¢ remain disabled until V acquires the ticket V/t, which
ensures that the entire conditional has evaluated to true. This gives us the follow-

ing property.

Lemma 5.2. enter E,, receives tickets Px /z and Ay [y (Cy [y ifY > J;) iff in the
simulated command, HRU;, the nth Enter is into the access matrix cell [Px, Py]
and the conditional has evaluated to true.

ProoF. The distribution of Px/z and Ay/y (or Cy/y) in the “if” part of the
proof is shown by the above construction. That the distribution only occurs if
the conditional is true is ensured by the tests in link 5 and link ¢ on the predicate
V/t € dom (V). The predicate V/t € dom (V) holds iff the entire conditional
evaluates to true (see Lemma 5.4 below).

Evaluating terms

Another subproblem is for a term to determine the truth or falseness of the cor-
responding conjunct. Fig. 6 illustrates a solution to this subproblem. In fig. 6, the
task is to determine if a specific proxy Px holds a ticket Py /r for some specific
HRU right r. In fig. 6a, this property is discovered by joint cooperation between

TThe conditional expression notation b7¢q : e follows C semantics; i.e. if b evaluates to
true, then the entire expression has value eq, otherwise it has value e3. Note that in
this context the expression has the flavor of a macro expansion; the resulting ESPM
scheme is still static.
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s: Ax/x t 6: Ay/y xor
62

b) Px is a newly created proxy

Fig. 5. Passing parameter tickets to F,.

the validator V and its child 77. In fig. 6b, the joint cooperation is similarly
between the term T} and its child T¢ 1. It suffices to explain the latter case. First
Tk copies verification tickets Ti 41/t ¢ to all proxies. Ti4; then receives tickets of
the form P,/r from proxy Px for the specific right r determined by the function
ti(k+1) (see Section 5.2). Finally, T4 receives its verification ticket T} 41/t from
Py iff the ticket Py /r has been copied from Px to Ti4;. The links are defined as
follows:

link o(V, P) = true fo(vi,p)=1ti/te

link 10(Tk, P) = true flO(ti,P) =k < K;?
tho/te:0

link 11(P,Tx) = P/z € dom (T%) fu(p,t k) = p/t;(k)

link 12(P, T) = P/y € dom (T%) fiz(p, i) =t /t

AP/t (k) € dom (T%)
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Fig. 6. Evaluating terms in the conditional.

We have the following lemma.

Lemma 5.3. term T} receives the ticket Ty /t iff in the simulated command,
HRU;, the kth term in the conditional, ti(k) € [Px, Py], evaluates to true and all
previous terms (i.e. terms 1...k — 1 for k > 2) also evaluate to true.

ProoF. The acquisition of Ty /t by T is shown by construction. The requirement
that all prior terms evaluate to true is shown by inductively noting that T/t is not
released by Ti_; until T _; has itself received Ty _1/t, i.e. until Ty has evaluated
to true.
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Ty Tk,
' i
| 13: V/ic I 14: V)t
Tk 41 v 1%
a) Typical step in evaluation b) Last step in evaluation

Fig. 7. Evaluating the entire conditional.

Evaluating the conditional

In addition to having each successive term evaluate whether Py /r € dom (Px), it
Is necessary to accumulate these results to determine the value of the entire condi-
tional. This information is tracked by the V/t ticket, which passes each successive
term as it evaluates to {rue. The process is illustrated in fig. 7. Part a) of fig. 7
illustrates the process in the middle of the conditional; part b) illustrates the pro-
cess at the end. If a term T} acquires the ticket T} /¢, it is free to copy V/t ¢ on to

its child Tr44, or, if k = K;, copy V/t to V. This is achieved by the following link
definitions.

link 13(Tk, Tk+1) = Tk/t € dom (Tk) A T;c.}.l/t € dom (Tk) f13(t}:c, ti:-l;l) = '['}i/t c
link 14(Tk,, V) = Tk, /t € dom (Tk,) A V/t € dom (Tkx,) fra(ty,, v') = v* /t

These link predicates give us the following property.

Lemma 5.4. validator V receives the ticket V/t iff in the simulated command,
HRU;, the entire conditional evaluales to true.

PROOF. V/t can only pass from one term to the next if the term evaluates to
true. If each term evaluates to true, then the entire conditional evaluates to
true. The mechanics of delivering V/t to V are shown by construction.

Simulating the enter command

The final subproblem is for an enter to pass a ticket giving a proxy a particular
right to some other proxy. The task is for an enter to obtain an ticket Py/rec
and transmit it on to Px. Since Ay has all possible tickets for Py for existing
proxies, (Cy holds the corresponding tickets for new proxies), all that is required
is for the links and filters from Ay (or Cy) to E, to be restrictive enough to
obtain exactly the correct ticket. E, then forwards the ticket on to Px. Fig. 8a
illustrates a solution to this subproblem for the case in which the Py in the Enter
command corresponds to an existing proxy. Fig. 8b illustrates the case in which
Py corresponds to a newly created proxy. Activation of these links is taken care
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Px Py
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a) Existing Py
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\\ »716: Py/rc
\En P Py
-,

b) Newly created Py.
Fig. 8. Entering Py /r into Px.

of in the parameter passing links (see fig. 5), which are active only if the entire
conditional has evaluated to true. The definitions are:

link 15(A;, E,) = Aj/y € dom (E,) fis(aj,ei) = el (n) < Ji?p/er(n)c : 0
link 16(Cm, Ey) = Cn/y € dom (E,)  fre(ch,, €h) = el (n) < J;70 : p/ei(n)c
link 17(En, P) = P/z € dom (E,) fir(en, p) = p/ej(n)e

We have the following property.
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Lemma 5.5. enter E, passes tickel Py /7 to proxy Px iff in the simulated com-
mand, HRU;, the conditional evaluates to true and the nth Enter command puts
r in the matriz cell [Px, Py].

PROOF. The check on the conditional is provided by the predicate V/t € dom (V).
The transfer of the proper ticket is shown by construction.

5.4. Initial state of ESPM simulation

The initial state for the simulation is created as follows:

(1) An ESPM proxy of type p is created for each HRU entity in the initial state
of the (augmented) HRU model.

(2) For every right r in the access matrix location [Px, Py], a ticket Py /rec is
placed in the domain of the proxy corresponding to Px.

This completes our construction for simulating an HRU scheme in ESPM.

5.5. Correciness of the simulation

Correctness of the simulation has basically been established by the sequence of
lemmas established above. We need to show that the original HRU system and
its ESPM simulation constructed above are equivalent in the following sense: the
behavior of the HRU system can be mimicked in the ESPM system and vice versa.
We therefore have the following theorem.

Theorem 2. The access matrix cell [X,Y] can contain r in the original HRU
system iff a proxy Px can hold a ticket of the form Py /r for some HRU right r
in the ESPM simulation.

ProoF. The “if” part of the proof follows from the construction which guarantees
each HRU command is mimicked by a sequence of ESPM commands with the
following net result:

If the access matrix cell [Px, Py] in the HRU model can contain r, then there
is a sequence of ESPM commands resulting in proxies Px and Py such that
Py/’r‘ € dom (Px)
This fact is established for the initial state of the two systems by construction. The
“if” part of our lemmas establish that this property continues to be true after one
HRU command has been executed. By induction therefore any sequence of HRU
commands in the HRU system can be mimicked in the ESPM system.

For the “only if” part of the theorem our construction also guarantees the
converse property.

If there are proxies Px and Py such that r € Ry and Py /r € dom (Px) then

there is a sequence of HRU commands by which the access matrix cell [X,Y]

contains 7.
Again, this fact is true for the initial state of the two systems by construction.
Now consider a sequence of ESPM commands that enters Py /r in dom (Px). The
“only if” part of our lemmas establish that this can happen only if there is an
HRU command whose condition evaluates to true and whose body includes the
statement enter 7 in [X,Y]. This HRU command can therefore be executed in the
HRU system. Since the systems are monotonic, the sequence of execution of the
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HRU commands is not material. By induction, therefore, any sequence of ESPM
commands can be mimicked in the HRU system in so far as the effect on proxies
is concerned.

Theorem 2 is more complicated and subtle than theorem 1 because the mapping
from HRU commands to ESPM commands is one-to-many, whereas in theorem 1
the mapping from ESPM commands to HRU commands is one-to-one.

5.6. Ezample

To give a flavor for how the construction works, we use a simple HRU command
adapted from the take-grant model [25] and illustrate the ESPM simulation. Note
that much of the complexity is introduced by the generality of the construction, and,
in particular, implementing take-grant in SPM is quite straightforward. Specifi-
cally, the link link (P, P;) = P»/g € dom (Py) with filter fy(p,p) = p/r is suffi-
cient to allow granting of right r.

We consider the following HRU command, which is equivalent to the grant
command described above. Other HRU commands require similar constructions.

GRANT(P,, P,,Ps3)
ifre [P], Pz] ANg € [Pl, P3] then
enter r in [P3, P
end

We now consider the above command in terms of the definitions given in Sec-
tion 5.2.1 Since we are only simulating a single HRU command, we can, without
ambiguity, drop the superscript i. There are J = 3 existing parameters, P;, P; and
P3. There are M = 0 names of parameters to be created. There are K = 2 terms,
Ty and T3, in the conditional. The functions t, have the following definitions:

tr(1)=r
tx(l)=1
ty(l) =2
t(2) =g
tx(?) =1
ty(2) =3

Finally, there is N = 1 HRU “Enter” primitive, E;. The functions e, have the
following definitions:

e(l)y=r
ex(l) =3
ey(l) =2

According to the construction, the ESPM scheme requires the following sets
of rights: R = {g,7,z,y,t}. The g right is, of course, the grant right, and r is a

t Since no entities are being created, we can, for simplicity, ignore the activation right a.
When complete, the augmented conditional reads: if r € [Py, P)] A g € [P1,P3]Aa €
[Pi,Pi]]ANa € [Pz, Pz] A a € [P3, P3] then...
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generic HRU right. The other rights are the special rights used by the simulation.

The types needed are: T = {p, a1, az, az, v,t,1s,¢}.

We briefly recap the role of each type. A proxy of type p represents an HRU
entity. An agent of type a; represents proxies in parameter position j, j € 1...3.
A validator of type v represents collections of triples of proxies. A term of type
t1 evaluates r € [Py, P,], and a term of type ¢ evaluates g € [P,, Ps]. Finally, an
enter of type e implements “Enter g in [Py, P5]”. Since there are no HRU create

primitives, we do not need any creates of type c.
The creation relations among these types are:

ce(p) = {ai, az, az}
ce(ay, as, az) = {v}
ce(v) = {t1,€}
ce(ty) = {t2}

The create and joint create rules are:

crp(p,aj) =0 cre(p,a;) = p/{g,r,z,y}c, j € 1.3
crp,(a1,az,a3,v) =0, j€1...3 cre(ar,asz, a3,v) = Ujer..api/zye
Crp(”;tl) = C/t c crc(v,tl) = p/t c

erp(ty,ta) =cft c ere(ti,ta) =0

crp(v,e) =0 ere(v,e) = p/t

The following links and filter functions are required. Recall that the link
definitions given for link; in the construction are simply templates for a variety
of actual links. For simplicity, we do not separately identify links below; only the

template name is given.

link I(V, Tl) = V/t € dom (T])
link 1(V,T3) = V/t € dom (T3)
link z(V, T]) = V/t € dom (Tl)
link Z(V, Tz) = V/t € dom (Tz)
link 3(A1,T1) = Al/:!,‘ € dom (Tl)

link 3(A1,T2) = A]/.’E € dom (Tz)

link 4(A2, Tx) = Ag/y € dom (T])

link 4(A3, Tg) = A3/y € dom (Tz)

link 5(V, E) = V/t € dom (E) AV/t € dom (V)

link 6(V, E) = V/t € dom (E) A V/t € dom (V)

link 7(A3, E) = A3/z € dom (E)

link o(V, P) = true

link 10(71, P) = true

link 1,(P,T1) = P/z € dom (T})

link 11(P, TQ) = P/:l: € dom (Tz)

link 12(P, T1) = P/y € dom (T1) A P/r € dom (T})
link 15(P, T3) = P/y € dom (T2) A P/g € dom (T3)
link 13(T1,T2) = Tl/t € dom (T]) A Tg/t € dom (Tl)
link 14(T%, V) = T/t € dom (T3) A V/t € dom (T3)
link 15(A2, E) = Az/y € dom (E)

link 17(E, P) = P/z € dom (E)

fH(v,t) =ai/z
fl(’l),tz) = (l]/:l:
f2(v,t1) = az/y
f2(v,t2) = as/y
fa(a1,t1) = p/z
fa(ai, t2) = p/=
falaz, t1) = p/y
fa(as, t2) = p/y
fs(v,e) = as/z
fo(v,€) = ax/y
f7(113,€) :I’/35
fo(v,p) = t1/te
fro(t1,p) = ta/te
fulp,th) = p/r
hu(p,t2) =p/g
fia(p, th) =t /t
fia(p,tz) = ta/t
fla(tl,tg) = ’U/t c
f14(t2,v) = ’U/t
fis(az,e) =p/rc
fir(e,p) =p/rc
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As an example, consider the following initial state for the HRU model: Assume

1/ there are three entities, {X,Y, Z}, and that the cell [X,Y] contains r and the cell
1/ [X, Z] contain g. Executing the HRU command GRANT (X,Y,Z) results in the
2/y cell [Z,Y] acquiring right r.
3/y The corresponding initial state for the ESPM simulation is the same ini-
p/® tial three entities, X,Y, and Z, where the type of each entity is p. In addi-
p/z tion, the tickets Y/r ¢ and Z/g c are in the domain of X. Through the cre-
/Y ation of entities and the exercise of the links defined above, it is possible for
/Yy Z to acquire the ticket Y/r ¢. A sketch of the major events in this process is
[z shown in below. The entities resulting from this sequence of relations is shown in
; y fig. 9.
/:; A possible log of the seven required creations is:
)2/:6 X creates an agent X; of type a;
/g Y creates an agent Y3 of type a
1/t Z creates an agent Z3 of type a3
2/t X1,Y, and Z3 jointly create a validator V of type v
)v//tt ¢ V creates a term T3 of type t;
/1 ¢ V creates an enter E of type e

/r ¢ T, creates a term T3 of type {2
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A possible log of the 24 required copy operations is:

link1 :
link s :
link 3 :
link 4 :
linkg :
link 41 :
link 12 -
link 10 -«
link 13 -
link; :
link 5 :
link 3 :
link 4 :
link 11
link 15 :
link 14 -

link 5 :
linkg :

link 15 -+
link 17

V copies X /z to T}

V copies Yz /y to T}

X1 copies X/z to Ty

Y, copies Y/y to Ty

V copies T} /tc to X,Y, and Z

X copies Y/r to Ty
Y copies T/t to Ty

/* term Ty evaluates to true */

Ty copies Ty/te to X,Y, and Z

Ty copies V/tc to T,
V copies Xy /z to Ty
V copies Z3/y to Ty
X\ copies X/z to Ty
Z3 copies Z/y to Ty
X copies Z/g to Ty
Z copies Ty [t to Ty
T, copies V/t to V
V copies Z3/z to E
V copies Yo /y to E
Y copies Y/rc to E
E copies Y/re to Z

6. Safety analysis of espm

/* term T evaluates to true */
/* the entire conditional evaluates to true */

/* enter E; is implemented */

We now turn to analysis of the safety question, i.e. the determination of whether a
given subject can ever acquire access to a given resource. In terms of a particular
ESPM scheme, we wish to know if a given entity can ever acquire a particular
ticket. The fact that safety analysis is undecidable for arbitrary ESPM schemes is
immediate from either of the following two observations:

(1) As has been demonstrated above, ESPM is equivalent in expressive power to

HRU, and safety is undecidable for HRU (15, 16]

(2) ESPM is a generalization of SPM, and safety is known to be undecidable for

arbitrary SPM schemes [44].

However, relatively minor restrictions (from a practical point of view) on ESPM
schemes permit decidable and indeed tractable safety analysis. The safety anal-
ysis of ESPM presented here is modeled on Sandhu’s treatment of SPM in [38].
Although there are significant differences in the details, it turns out that, as in

SPM [38], the tractability of safety analysis for ESPM given here is determined by
the creation operation.

At a broad level, we adopt the following strategy for safety analysis:

(1) Starting with the given initial state, first create as many subjects as are nec-
essary to account for the worst-case behavior of the system with respect to
propagation of access rights. Call this the canonical state of the system.

(2) Given the canonical state, perform all copy operations until the state does not

change any further. Call this the mazrimal state of the system.
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(3) A specific safety question such as, “Can subject X obtain right r for object
Y?” is then answered by looking at the maximal state and seeing whether or
not X actually possesses the ticket Y/r in this worst-case state.

The second step in this procedure is guaranteed to terminate because the
canonical state has a finite number of subjects, objects, and rights, and therefore
the copy operations will eventually be unable to propagate any new privileges.
The problem lies in the first step, where we need some criteria to determine when
all the necessary create operations have occurred. In other words, we need to be
able to recognize a canonical state. The undecidability result of [44] shows that
it is impossible, in general, to recognize a canonical state. However, there are
reasonable restrictions on the can-create function of SPM which make construction
of the canonical state straightforward [38]. In particular, if can-create has no cycles,
or only has the so-called attenuating cycles of length one, the canonical state can
be constructed by an operation called unfolding. These restrictions on can-create
are eminently reasonable, as evidenced by the fact that no practical policy to date
has required non-attenuating cycles in can-create [38, 39, 46].

Before we apply the general approach given in [38] to ESPM, we first review
and summarize the analysis from [38] that is required as background. Section 6.1
presents the general concepts of maximal flow and maximal states employed in [38].
Section 6.2 reviews the proof that maximal states are finite and always exist, even
though they may not be recognizable.

The remaining sections describe how the analysis of [38] is modified and aug-
mented to apply to ESPM. In section 6.3 we define the analog of SPM’s acyclic
attenuating create operations in ESPM. This is a straightforward generalization,
and the restriction makes it possible to compute maximal states. Section 6.4 defines
the analog of SPM’s surrogate function in ESPM which we call the ID function.
This requires some care because of the multi-parent creation in ESPM. Section 6.5
defines the construction of a canonical state in ESPM by unfolding. Unlike in SPM,
we have to be careful regarding the sequence of creates to demonstrate that the
unfolding algorithm terminates for acyclic attenuating creates. Section 6.6 gives
a proof that the given construction answers the safety question, and section 6.7
discusses the complexity of safety analysis including some observations on how the
complexity can be kept manageable in practice.

6.1. Safety analysis from the mazimal state

In this section we develop the terminology and concepts required for analyzing
the safety of ESPM schemes. A change in state caused by a single copy or cre-
ate operation is called a lransition. A transition is legal provided there is proper
authorization for the operation causing it. A history is a sequence of legal transi-
tions. Histories are denoted by upper case letters and states by lower case letters
or special symbols. Unless otherwise mentioned, a history is applied to the initial
state. Any state that can be derived by a history is dertvable.

In analysis, we are interested in functions and relations which depend on the
state, e.g., dom and link ;. When appropriate, we qualify these with a superscript
to identify the state, e.g., dom”? and link? identify the context as state h. The
initial state is identified by the superscript 0. The set of subjects and entities in
state h are respectively denoted by SUB" and ENT". Both dom and link ; exhibit
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a monotonic property because of the absence of revocation and deletion, i.e., if g
is derived from A then link} C link{ and YA € SUB*, dom"(4) C dom‘(A).
Because the functions and relations used in analysis depend on the presence rather

than absence of tickets in domains, this monotonic property extends to all functions
and relations we consider.

The flow function expresses the authorization for copying tickets from one
subject to another in a given state, accounting for indirect as well as direct copying.
For every pair of subjects, its value is a set of ticket types determined by the state
and scheme. Its definition is based on the following notion: There is a path® from
A to B provided either one of the following conditions is true.

1) In state h, there is an enabled link directly from A to B. E.g. link ? A, B).
g i

(2) In state A, there is a directed sequence of enabled links indirectly connecting
A to B.

In the former case we say the path is single link, whereas in the latter case the path
is multi-link and traverses the intermediate entities.

Consider a multi-link path from A to B which traverses C1,Cy,...,Cp. Let
Y/zc € dom (A). Y/zc can be copied from A to B using this path provided Y/ze
can be copied across each link in the path. Further, Y/z can be copied from A4 to
B using this path provided Y/zc can be copied across each link in the path from
A to Cy, and Y/z copied from Cy, to B; that is the copy flag must be copied on all
except the last link. This leads to the following definition: the capacity of a path®
from A to B is as follows, where the types of A and B are respectively a and b.
(1) The capacity of a single-link path is f;(a, b).

(2) The capacity of a multi-link path is the intersection of the f; over each inter-

mediate link. In addition, the copy flag must be present in at least all but the
last link.

Note that only the types of entities involved in this definition are significant, not
their specific identities.

The concept of capacity readies us to define the flow function: For every state
h define the flow function flow” : SUB* x SUB" — 9TxR by ﬂowh(A, B) equal
to the union of the capacity of all paths in state h from A to B. By convention
ﬂow"(A,A) is T x R. Computation of flow” is straightforward in principle and
of polynomial complexity in |SUB”|. The operation is basically one of transitive
closure.

The fundamental issue in analysis is to predict behavior of the flow function.
This is especially so since create operations are authorized solely by the scheme,
whereas copy is authorized by both the scheme and the distribution of tickets.
Because flow® is monotonic, for a given pair of subjects it can only increase in
derived states. From this fact, we show in section 6.2 that there exists a derivable
state with the maximum value of flow” between all subjects in SUB?. We call
such a state a mazimal state.

Let flow" denote the flow function in a maximal state. By definition, flow*
specifies the ticket types that can be copied from A to B in the worst case, either
directly, or indirectly via some other subjects. We can then easily determine if
a specific ticket can be copied from A to B. The safety problem [15] poses the
question whether or not it is possible to have a derivable state with Y/z :cin
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dom (B)Jf The flow* function allows us to rewrite this question: is there any
subject A who possesses Y/zc in the initial state and type(Y)/z : c € flow™ (A, B)?
There typically are an unbounded number of maximal states. For example,
a system can continue to evolve indefinitely by creation of new subjects. The
important point is that this can no longer increase the flow between A and B. As
for SPM, the fundamental analysis question for ESPM is to compute a maximal
state. Before we consider this problem we first show that maximal states exist.

6.2. Ezistence and computation of mazimal states

The concept of maximal state is defined in terms of the initial set of subjects.
To focus on changes in flow with respect to subjects in SUB®°, we introduce the
following notions of reducibility and equivalence. A derivable state h is reducible
to a derivable state g written h < g if and only if VA, B € SUB° :ﬂowh(A, B) C
flow?(A, B).

For a given system two derivable states h and g are equivalent, written h = g,
if and only if h < g and g < h. Because of its focus on the initial set of sub-
jects, this equivalence relation partitions the derivable states into a finite collection
of equivalence classes. For every pair of subjects in SUB®, flow can take on at
most |2T*E| distinct values. Hence there are at most |SUB®|?  [2T*R| distinct
equivalence classes, which is clearly finite.

We are now ready to formalize the notion of maximal state. For a given system,
m is a mazimal state if and only if m is derivable and for every derivable state h,
h < m. Clearly, all maximal states are equivalent. The flow function in a maximal
state completely defines the potential for copying tickets between subjects present
in the initial state.

Proving the existence of maximal states is relatively straightforward [38]. Un-
fortunately, the proof is non-constructive and thereby does not provide a method
for computing maximal states. In general, it is necessary to create new subjects
to to derive a maximal state from the initial state. The problem is to determine
which new subjects need to be created. In the general case, this is an undecidable
problem for SPM, and hence also for ESPM. We do have exact solutions in sev-
eral special cases of practical interest, the most important one of which we discuss
below.

6.3. Acyclic attenuating creation for ESPM

In the safety analysis given for SPM in [38], the create function is restricted to be
acyclic except for certain cycles of length one, or loops. The loops that are allowed
are for create operations with affenuating create rules. Attenuating create rules
specify that for those tickets acquired as a result of a create operation, the tickets
acquired by the child are a subset of those acquired by the parent. The idea is that
the parent can then simulate any possible action of the child, and thus the creation
of the child may be ignored.

t For cases in which the role of the copy flag is not important, we use the notation
Y/z : ¢ as an abbreviation for either Y/z or Y/z ¢, but not both. Thus in a particular
context either all indicated tickets have the copy flag, or none does.
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For the analysis of the joint create operation in ESPM, we similarly restrict the
multiple-parent create function to be acyclic except for attenuating create loops.
The restriction that at least one parent in a multiple-parent, loop-create operation
must be able to simulate the child effectively means that, in general, child tickets
may not be distributed to either the child or its parents, and that no parent tickets
may be distributed to the child. Thus for creation operations in which the type v
of the child is the same as the type u; of one or more parents, we have the general
rule:

crp,(uy, ug, ..., un,v) = p; /Ry fori € 1.N

ere(uy, ug, ..., un,v) = 0.
Note that a parent can only use an attenuating loop create operation to increase
the set of tickets that it holds for itself.

However, the general rule given above is too pessimistic in two important
situations. First, for single-parent creation, these rules are relaxed, as was done
in [38], so that the parent’s tickets need only be a superset of the child’s tickets.
Second, for multi-parent creation, one of the parents with type matching the child
may be treated in a similar manner; the child may receive tickets for itself and that
one parent if that parent receives a superset of these tickets. If multiple parents
in an attenuating loop creation were allowed to receive tickets for the child, no
single parent would be able to simulate the actions of the child. For this reason,
attenuating create rules do not allow such a situation.

6.4. The ID function

To realize the strategy outlined at the beginning of this section, we need to provide a
sufficiently rich set of canonical entities and show how to map actual ESPM entities
onto canonical entities. In [38], a special function, called the surrogate function, is
introduced to provide correspondence between canonical SPM entities and entities
in arbitrary SPM histories. The surrogate function turns out to be inadequate
for ESPM schemes because, except for individual entities in the initial state, the
surrogate function is based strictly on the notion of type. For joint create, we need
to capture the notion of grouping entities together. We therefore define a function,
which we call the ID function, which assigns a canonical name or identification to
every ESPM entity. This name effectively summarizes the ancestry of each entity
and maps it to the canonical ESPM entity which simulates that entity.

The 1D function is recursively defined below. Consider an entity V' of type v.
If V is not in the initial state, it is assumed to have parent(s) Uy ... Un of types
Uy ...up, respectively. There are three cases to consider:
(1) If V is in the initial state then ID(V) = V. The ID of an entity in the initial
state is simply the name of that entity.
(2) Hv#u;foralliel...N then ID(V) = C,(ID(V,),...,ID(UN)). The ID
of an entity that is strictly below all of its parents in the create/joint-create

t Without loss of generality, we may assume that the parent which is allowed to receive
tickets for the child is the first appropriately-typed parent listed in the parameters of
the can-create function. The assumption simplifies the /D function’s definition, given
below.
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graph is simply a grouping of the ID’s of the child’s parents. The group is
tagged with the child’s type. Note that, since there are a finite number of
types, we may effectively regard the C, as constants.

(3) If v = u; for some ¢ € 1...N then ID(V) = ID(U;) for the smallest i for
which v = u;. Since any child produced by an attenuating create rule can
be simulated by at least one of the parents, the ID of an entity that has
been created with an attenuating loop create rule is the ID of a parent of the
matching type. Since there may be multiple parents with the same type as
the child, we simply define the I D function to map to the first such parent.

We define one canonical entity for each element in the range of the ID function.

Thus questions about the correspondence between ESPM entities and canonical

entities reduce to questions about the ID function. Our first task is to show that

there are a finite number of canonical entities for acyclic attenuating schemes, t.e.

that the range of ID is finite:

Lemma 6.1. Given any acyclic attenuating ESPM scheme, the range of the ID
function s a finite sel.

ProoF. Consider each of the three cases. Clearly, case 1 presents no difficulty since
the case represents the base case of the recursion and there are a finite number of
entities in the initial state. In a depth-first evaluation, Case 2 cannot be applied
more often than there are types in the ESPM scheme due to the acyclic structure
of the create graph. Since the tree structure introduced by case 2 has a bounded
number of children at each node and a finite depth, the number of entries in the
tree must be finite. Finally, case 3 does not alter the value of the ID function, so
it may be invoked an arbitrary number of times without affecting the function’s
value. Since cases 1 and 2 are the only rules that can be used to generate distinct
names, and since each case can only be applied a finite number of times, the range
of the ID function is finite.

6.5. The unfolding algorithm

Our goal is to unfold an initial state and have the result be the complete collection
of canonical entities, one entity for each element in the range of the ID function.
As a first step, we define e¢c¢’, to be the acyclic part of the function cc. Now, if we
simply apply arbitrary rules from c¢’ first to entities in an initial state and then to
entities in each resulting state, it is not at all clear whether the unfolding operation
terminates. However, there is an order for applying the creation rules in cc’ such
that the unfolding process is guaranteed to terminate. The order depends upon the
type of entity produced by a create operation, but not upon the parent type(s).
To develop the correct ordering, we reformulate the can-create function c¢’ as

a relation. For each tuple of types (uy, ug, ..., un) in the domain of e¢/, we replace
the mapping ec’(uq,ug,...,un) = S, where S = {s1,s2,...,sm} is a subset of
T, with the relation, {((u1,usg,...,un),s1), ((u1,u2,...,un),52),..., ((u1,uz,...

..., uN),8m)}. Note that in each ordered pair in the relation, the abscissa, or first
element, is the tuple of parent types and the ordinate, or second element, is a single
child type. We refer to an ordered pair in this relation as a create-tuple.

Now we (partially) order the create-tuples based on the ordinate (i.e. the child
type). That is, for every pair of types s and ¢, if s precedes ¢ in the creation graph,
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Types:

T = {z, v, z}
Create Rules:

ce(z,y) = {y, z}

ce(z) = {z,y}
Acyclic Portion Of Create Rules:
cd(z,y) = =
cd(z)=y
Ordered Create Tuples from cc’:
((=),9)
((,9), 2)
Initial State:
{X1, X2, Y1}
Canonical State and I D function values:
X, ID(X)) =X,
Xq ID(X3) = Xo
Y1 IDM)=11
Y, ID(¥:) = G, (ID(X1)) = Cy(X)
Ys 1D(¥s) = Cy(ID(X2)) = C) (X2)
7y ID(Z1) = C,(I1D(X1),ID(Y1)) = C,(X1, Y1)
Zs ID(Z3) = C.(ID(X1),(ID(Y2)) = C,{X1,Cy(X1))
Zs 1D(25) = C.(ID(X1), (ID(Y)) = C. (X1, Cy (X2))
Z4 ID(Z4) = C,(ID(X3),(ID(Y1)) = C,(X2, Y1)
Zs ID(Zs) = C,(ID(X3),(ID(Y2)) = C, (X3, Cy(X1))
Zs 1D(Ze) = C;(1D(X3), (ID(Y3)) = C; (X2, Cy(X2))

Fig. 10. Example of unfolding an initial state.

then every create-tuple with s as an ordinate must precede every create-tuple with
t as an ordinate. We may then make the key observation, which is guaranteed by
the acyclic structure of cc/, that in the ordered list of create-tuples, every create-
tuple that employs type ¢ as a parent follows all of the create-tuples that produce
type t as a child. The observation allows us to consider a create-tuple once during
the unfolding process and be sure that the create-tuple will not be subsequently
“re-enabled” with a new set of parents as a result of some later creation operation.

The unfolding algorithm to build the canonical state is as follows:
(1) Put the entities from the initial state into the canonical state.

(2) Reformulate the can-create function as create tuples as described above. Order
the create tuples by ordinate (i.e. the child type) consistently with the partial

order imposed by the creation graph. (Note that in general there are many
possible orderings).

(3) Proceed down the ordered list of create-tuples and apply each create-tuple

once to each possible tuple of parent entities in the canonical state. Place

the resulting entity from each application of a create-tuple into the canonical
state.

The unfolding algorithm is illustrated with an example in fig. 10. In fig. 10, entities

are represented by subscripted upper case letters; the type of a given entity is the
same letter in lower case.

We now establish two key results:
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Lemma 6.2. The unfolding algorithm terminates.

ProoF. That the unfolding algorithm terminates can be seen by noting that no
application of a particular create-tuple can result in either that create-tuple, or
any other create-tuple considered before it, being applicable to a previously uncon-
sidered tuple of entities. Thus for each create-tuple, there are a fixed number of
applications possible. Since each create-tuple is considered only once, the procedure
terminates.

Lemma 6.3. The ID function applied to the unfolded state is a bijection.

PRroOOF. The proof has two parts. First we show that the /D function produces
a different value for each element in the unfolded state, ¢.e. that it is 1 to 1, or
injective. Next we show that the range of the ID function when applied only to
the unfolded state is, in fact, the entire range of the ID function, ¢.e. that it is
onto, or surjective.

The first part of the proof proceeds by induction. Since the names of entities
in the initial state are unique, the ID function is clearly injective when applied
to the initial state. For the inductive hypothesis, assume that the I D function is
injective when applied to entities in a partially unfolded state and consider the next
application of the current create-tuple. The value of the ID function for the new
entity must be constructed by applying case 2 of the definition of the I D function.
Since each create tuple is considered once for each possible, unique tuple of parents,
the value of the I D function, which lists both the identities of the parent entities
and the type of the child entity, must differ from the ID’s of all other entities in
the partially unfolded state.

For second part of the proof, consider the ID function applied to some arbitrary
entity. The value of the I D function is constructed by recursive applications of the
the three rules that define the I D function. Since rule 3 maps the ID of a child
to the ID of one of the child’s parents, applications of rule 3 are not represented
in the range of the ID function. Thus the range of the ID function is entirely
determined by rules 1 and 2, both of which are exhaustively considered in the
unfolding process.

Finally, we consider the attenuating loop portion of ce. We allow a single
application of each attenuating rule to each possible entity or set of entities in the
unfolded state. The resulting entities are not placed into the canonical state, since
the I Ds for these entities are already present. The effect is to supply each canonical
parent with all tickets that can be acquired as a result of creation.

6.6. Safety analysis for ESPM schemes

We are now ready to prove the central result of this section. We show that every
history for a given system can be simulated by a history without create operations
applied to the fully unfolded state. Care has been taken with the definition of
the ID function so that the following theorem and proof can directly parallel the
presentation of theorem 17 in [38].

Theorem 3. For an acyclic attenuating ESPM scheme, for every history H which
derives h from the initial state there exists a history GG, without create operations,
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which derives g from the fully unfolded state u such that:
VA, B € SUB" : flow™(A, B) C flow?(1D(A), ID(B))

PROOF. We may assume without loss of generality that H is in canonical form,
Le., all create operations precede all copy operations. G is obtained from H by
replacing the individual transitions of H as follows while preserving the relative
order.
(1) Ignore all create operations.
(2) Replace “copy A/z : ¢ from B to C” by “copy ID(A)/z : ¢ from 1D(B) to
ID(C)”
We first establish the following assertions.
(1) Every transition in G is legal.
(2) A/z:c€dom®(B) = ID(A)/z : c € dom I(ID(B)).
(3) For every i, link ! (A, B) = link{(ID(A), ID(B)).
Assertion 3 follows directly from assertion 2, and is crucial to the second part

of the proof. Assertions 1 and 2 are proved by induction on the number of copy
operations in H.

Basis Case

Let there be no copy operations in H, so that H consists of creates while
G is empty.

Assertion 1

Since there are no transitions in G, assertion 1 is trivially satisfied.
Assertion 2

Without copy operations, there are only two ways by which A/z : ¢ can
appear in domh(B): either the ticket is present in the initial state, or
it 1s introduced as a side effect of creation. If Alz : ¢ € dom°(B),
then ID(A) = A and ID(B) = B so assertion 2 is trivially true. If
Alz : ¢ € dom™(B) because of a create operation in H, assertion 2
follows from the construction of the canonical state.

Induction Step

Assume assertions 1 and 2 are true for every history with k copy opera-
tions, and consider a history H with k + 1 copy operations. H consists of
an initial sequence H’ with k copy operations followed by a single copy
operation. Let i’ be the state derived by H’. Let G correspond to H'. By
induction hypothesis and assertion 1, ¢/ is a history (i.e. every transition
in G’ is legal). Let ¢’ be the state derived by G’ applied to the unfolded
state. Let the final operation of H be “copy A/z : ¢ from B to C.” By
construction, the final operation of G is “copy ID(A)/z : ¢ from ID(B)
to ID(C).”
Assertion 1

For the final operation of H to be legal, the following conditions must be
true for some 1.

(1) A/zc € dom hI(B)
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(2) link ¥ (B, C)
(3) type(A/z : c) € fi(type(B), type(C))
By the induction hypothesis and assertion 2 it follows that the first two con-
ditions above respectively imply that
(1) ID(A)/zc € dom? (ID(B))
(2) link ' (ID(B), ID(C))
Since ID preserves types, it follows from the third condition above that
(3) type(ID(A)/x : c) € fi(type(I1D(B), type(I1D(C)))-
So the three conditions required to authorize the final operation of G are true
in state ¢/, and the final operation in G is legal.

Assertion 2
h differs from A’ at most by A/z : c € dom*(C). By construction, the
final operation of G ensures that ID(A)/z : ¢ € dom?(ID(C)). This
completes the induction step.

It remains to prove that VA, B € SUB" : flow™ (A, B) C flow? (1D(A), ID(B)).
We do so by showing that for every path® from A to B, there is a path? from ID(A)
to ID(B) with the same capacity as the path® from A to B. The proof is by in-
duction on the number of links. For the basis case, consider a palh® from A to
B of length 1, that is link (4, B). By assertion 3, we have link { (ID(A), I1D(B)).
Since 1D preserves types, the basis case is true. Assume the hypothesis is true
for every path® of length k, and consider a path® from A to B of length k + 1.
Then there is some C with a path® from A to C of length k and link;-l(C, B). By
the induction hypothesis, there is a path? from ID(A) to ID(C) with the same
capacity as the path" from A to C. By assertion 3 we have link §(ID(C), ID(B)).
Since ID preserves types, it follows there is a path® from ID(A) to I1D(B) with
the same capacity as the path® from A to B.

The essence of the theorem is that all histories applied to the initial state can
be simulated by histories without create operations applied to the fully unfolded
state u. Let #u be the no-creates maximal state which results from u as the initial
state. We have the following corollary.

Corollary. For a system with an acyclic attenuating scheme, #u is a maximal
state.

PROOF. From the theorem and definition of #u, for every history H which derives
state h from the initial state

VA, B € SUB" : flow" (A, B) C flow¥*(ID(A), ID(B)).
In particular, VA,B € SUB° : flow"(A, B) C flow#%(A, B), because for such
subjects ID(A) = A and ID(B) = B.

6.7. Complezity of safety analysis

We now present the safety algorithm’s cost in computational complexity and offer
guidelines on how to minimize costs in practical applications. As is the case for
SPM, the time required to construct the canonical state for ESPM is exponential in
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the number of types if the cc relation is dense. This may not be a serious obstacle
if the scheme employs relatively few types.

On the other hand, the required time is also multiply exponential in the number
of parents of the joint creation operator. The reason is that each application of
an N-parent create operation that produces a specific child type, v, results in on
the order of IV new entities being added in the worst case to the canonical state,
where [ is the number of entities in the canonical state before any entities of type
v are produced. For each case in which the child of a joint create can participate
as a parent in another joint create (excluding attenuating loops) this expansion is
repeated.

Let z be the number of create-tuples derived from cc¢/, N; be the number of
parents in the creation operation corresponding to the ith create-tuple for i €
l...z, and I be the size of the initial state. Note that N; may well equal 1, which
corresponds to using the SPM create operation. The application of the first create-
tuple results in a canonical state whose size, I, is on the order of I = O(I + I™).
The application of the second create-tuple results in Iy = O(I; +I{V’). This process
continues up to the complete canonical state I, I, = O(I,—; + Iiv_’l).

Clearly, the joint create operation needs to be used with great care to keep
the analysis feasible. Some simple rules are:

(1) Use single parent creation where possible.

(2) Do not use a value for N that is any larger than necessary, ie keep the number
of parents in joint creates as small as possible.

(3) Minimize the opportunities for descendants of a joint creation operation to
participate in further creation operations.

(4) Avoid dense cc functions.

These appear to be reasonable guidelines which can be easily achieved in practice.

7. Discussion

Below we briefly enumerate issues that are raised by the demonstration of equiva-
lence between ESPM and HRU and the safety algorithm presented in the previous
section.

7.1. Equivalence of ESPM/SPM

We have argued that from a theoretical point of view, joint creation appears to
confer additional expressive power not available with the traditional single-parent
creation. In particular, we have shown that extending the create operation of
SPM [38] in this manner gives us a model, ESPM, which is equivalent to the
monotonic HRU model [16]. We conjecture that SPM is strictly weaker than ESPM;
however we offer no direct proof. The relationship between the expressive power
of ESPM and SPM remains an important open question.

7.2. Ease of ezpression

Whether or not joint creation does possess a fundamental expressive power lacking
in the SPM model, joint creation clearly offers, as was shown in section 3, an
easier and more natural way to express a variety of protection schemes. From
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a practical point of view, ease of expression is at least as important power of
expression. Fortunately, as was shown in section 6, the additional expressive ease
of joint creation does not have an undue cost on safety analysis, provided care is
exercised in its use.

7.3. Other extensions

It is worth noting that there are a variety of alternate mechanisms that could be
used in place of joint creation to extend SPM sufficiently to make it equivalent to
monotonic HRU. Two such mechanisms are countdown tickets, a mechanism by
which a ticket can only be used a fixed number of times, and use-once tickets, the
limiting case of countdown tickets.

To simulate grouping N entities together with countdown tickets, a child is
created with an N-countdown ticket. The child can then distribute this ticket to
N entities, each of which can now act as if it is an actual (joint) parent of the child
entity. Use-once tickets can simulate countdown tickets in the same manner in
which 2-parent creation can simulate N-parent creation, a result which was shown
in section 4.2.

Countdown tickets have the undesirable property of being non-monotonic; op-
erations which are possible in a given state may not be possible in a subsequent
state. Thus the analysis of schemes with countdown tickets is potentially forced to
use a backtracking algorithm. In addition, the notion of joint creation appears to
capture a natural operation, whereas countdown tickets appear to be more of an
implementation mechanism.

7.4. Safety in ESPM versus monotonic HRU

Why is it that these two models are equivalent in expressive power yet have sig-
nificantly different safety properties? We believe the main reason is due to the
typing structure built into ESPM (which it inherited from SPM). The only means
of distinguishing one row or column from another in the HRU model is by the con-
tents of the individual cells. In (E)SPM (i.e., SPM or ESPM) on the other hand
rows and columns are distinguished by type as well as by the rights in individual
cells. This behavior can be mimicked in HRU by encoding the type information
into rights as shown in Section 4. In doing so, the simulation looses the distinction
between types and rights. There is therefore no simple statement of what acyclic
type-based creation means in HRU. In future work it would be interesting to look
for models other than (E)SPM which have a type notion built into their primitive
operations and are equivalent to (E)SPM. This would corroborate our conjecture
that typing is fundamental to safe and expressive access control models.

8. Conclusions

The challenge with access control models is to provide adequate expressive power
without sacrificing safety analysis. To date, models with broad expressive power,
eg HRU, exhibit weak safety properties, and models with desirable safety prop-
erties exhibit less expressive power than HRU. In this paper we have established
the remarkable result that by extending SPM with a joint creation operation, the
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resulting model, called ESPM, simultaneously enjoys the expressive power of mono-
tonic HRU and retains the strong safety properties of SPM. ESPM is therefore, in
effect, an alternate formulation of HRU with strong safety properties.

We have given a complete proof of equivalence between monotonic HRU and
ESPM. This is the first demonstration of the equivalence of two powerful access-
control models which are clearly very different in their definitions. Additional re-
sults showing formal equivalence of radically different access-control models would
advance our understanding of computer security. It is also important to obtain
equivalence results for the non-monotonic case.

We have also presented a safety analysis algorithm for ESPM schemes with
acyclic attenuating loops in the create structure, and we have given the compu-
tational complexity of the safety algorithm. Our analysis shows that safety is
tractable for many cases of practical interest, provided some care is used in apply-
ing the create operations of ESPM. Guidelines have been discussed in section 6.1.
The analysis is closely related to the safety analysis of SPM given in [38]. However,
significant extensions are required to make the technique of [38] work for ESPM.

We are left with the important and difficult open problem regarding the relative
power of ESPM and SPM. In other words, does joint creation offer a fundamen-
tal expressive power not available by single parent creation? This is not merely
a significant theoretical question but also one of considerable practical interest to
designers and implementors of operating systems and database management sys-

tems. We conjecture that SPM is less expressive than ESPM, and therefore less
expressive than monotonic HRU.
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