
Journal of Computer Security 7 (1999) 317–342 317
IOS Press

Role-based administration of user-role assignment:
The URA97 model and its Oracle implementation

Ravi Sandhu and Venkata Bhamidipati
Laboratory for Information Security Technology, ISSE Department, Mail Stop 4A4, George Mason
University, Fairfax, VA 22033, USA
E-mail: sandhu@isse.gmu.edu

In role-based access control (RBAC) permissions are associated with roles, and users are made mem-
bers of appropriate roles thereby acquiring the roles’ permissions. The principal motivation behind RBAC
is to simplify administration. An appealing possibility is to use RBAC itself to manage RBAC, to fur-
ther provide administrative convenience. In this paper we investigate one aspect of RBAC administration
concerning assignment of users to roles. We define a role-based administrative model, called URA97
(User-Role Assignment ’97), for this purpose and describe its implementation in the Oracle database
management system. Although our model is quite different from that built into Oracle, we demonstrate
how to use Oracle stored procedures to implement it.

1. Introduction

Role-based access control (RBAC) has recently received considerable attention
as a promising alternative to traditional discretionary and mandatory access controls
(see, for example, [3,5,7,9,11,14,15,19–21]). In RBAC permissions are associated
with roles, and users are made members of appropriate roles thereby acquiring the
roles’ permissions. This greatly simplifies management of permissions. Roles are
created for the various job functions in an organization and users are assigned roles
based on their responsibilities and qualifications. Users can be easily reassigned from
one role to another. Roles can be granted new permissions as new applications and
systems are incorporated, and permissions can be revoked from roles as needed.
Role–role relationships can be established to lay out broad policy objectives.

In large enterprise-wide systems the number of roles can be in the hundreds or
thousands, and users can be in the tens or hundreds of thousands, maybe even mil-
lions. Managing these roles and users, and their interrelationships is a formidable
task that often is highly centralized and delegated to a small team of security ad-
ministrators. Because the main advantage of RBAC is to facilitate administration of
permissions, it is natural to ask how RBAC itself can be used to manage RBAC. We
believe the use of RBAC for managing RBAC will be an important factor in the long-
term success of RBAC. Decentralizing the details of RBAC administration without
loosing central control over broad policy is a challenging goal for system designers
and architects.

0926-227X/99/$8.00 1999 – IOS Press. All rights reserved

318 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

As we will see there are many components to RBAC. RBAC administration is
therefore multi-faceted. In particular we can separate the issues of assigning users
to roles, assigning permissions to roles, and assigning roles to roles to define a role
hierarchy. These activities are all required to bring users and permissions together.
However, in many cases, they are best done by different administrators (or adminis-
trative roles). Assigning permissions to roles is typically the province of application
administrators. Thus a banking application can be implemented so credit and debit
operations are assigned to a teller role, whereas approval of a loan is assigned to a
managerial role. Assignment of actual individuals to the teller and managerial roles
is a personnel management function. Assigning roles to roles has aspects of user-role
assignment and role-permission assignment. Role–role relationships establish broad
policy. Control of these relationships would typically be relatively centralized in the
hands of a few security administrators.

In this paper we have focussed our attention exclusively on user-role assignment.
We recognize that a comprehensive administrative model for RBAC must account
for all three issues mentioned above, among others. However, user-role assignment
is a particularly critical administrative activity. We feel it is the right one to focus
on in taking our first step towards what will eventually evolve into a comprehensive
administrative model.

In large systems user-role assignment is likely to be the first administrative func-
tion that is decentralized and delegated to the hands of users rather than security or
system administrators. Assigning people to tasks is a normal managerial function.
Assigning users to roles should be a natural part of assigning users to tasks. Em-
powering managers to do this routinely is one way of making security an enabling
user-friendly technology rather than an intrusive and cumbersome nuisance as it all
too often turns out to be. A manager who can assign a user to perform certain tasks
should not have to ask someone else to enroll this user in appropriate roles. This
should happen transparently and conveniently.

A user-role assignment model can also be used for managing user-group assign-
ment and therefore has applicability beyond RBAC. The difference between roles
and groups was hotly debated at the First ACM Workshop on RBAC [18]. Workshop
attendees arrived at the consensus that a group is a named collection of users (and
possibly other groups). Groups serve as a convenient shorthand notation for collec-
tions of users and that is the main motivation for introducing them. Roles are similar
to groups in that they can serve as a shorthand for collections of users, but they go
beyond groups in also serving as a shorthand for a collection of permissions. As-
signing users to roles or users to groups are therefore essentially the same function.
Assigning permissions to roles and permissions to groups, on the other hand, can
have rather different characteristics. We need not get into this latter issue here since
our focus is on user-role, or equivalently user-group, assignment.

In this paper we propose a model for the assignment of users to roles by means
of administrative roles and permissions. For ease of reference we call this model as

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment319

URA97 (user-role assignment 1997). URA97 imposes strict limits on individual ad-
ministrators regarding which users can be assigned to which roles. We then describe
an implementation of URA97 in the Oracle database management system [4,12]. Or-
acle’s administrative model for user-role assignment is very different from URA97.
Nevertheless, we show how to use Oracle’s stored procedures to implement URA97.

The principal contribution of URA97 is to provide a concrete example of what
is meant by role-based administration of user-role assignment. Another central con-
tribution of this paper is to demonstrate that an existing popular product, namely
Oracle, provides the necessary base mechanisms and extensibility to program the
behavior of URA97. URA97 is defined in context of the family of RBAC96 family
of models due to Sandhu et al. [19]. However, it applies to almost any RBAC model,
including [3,7,9,11,15], because user-role assignment is a basic administrative fea-
ture which will be required in any RBAC model.

The rest of this paper is organized as follows. We begin by reviewing the RBAC96
family of models in Section 2. In Section 3 we define the administrative model called
URA97 for user-role assignment which itself is role-based. This is followed by a
quick review of relevant RBAC features of Oracle in Section 4. Our implementation
of URA97 in Oracle is described in Section 5. Section 6 concludes the paper.

2. The RBAC96 models

A general family of RBAC models called RBAC96 was defined by Sandhu
et al. [19]. Figure 1 illustrates the most general model in this family. In Fig. 1 a
single headed arrow indicates a one to one relationship and a double headed arrow
indicates a many to many relationship. For simplicity we overload the term RBAC96
to refer to the family of models as well as its most general member.

The top half of the figure shows roles and permissions in the system that regulate
access to data and resources. The bottom half shows administrative roles and admin-
istrative permissions. RBAC96 is based on five sets of entities called users (U), roles
(R), and permissions (P), and their administrative counterparts called administrative
roles (AR) and administrative permissions (AP). It is required that administrative
roles and administrative permissions be respectively disjoint from the regular (i.e.,
non-administrative) roles and permissions. Moreover regular permissions can only
be assigned to regular roles and administrative permissions can only be assigned to
administrative roles.

Intuitively, a user is a human being or an autonomous agent, a role is a job func-
tion or job title within the organization with some associated semantics regarding the
authority and responsibility conferred on a member of the role, and a permission is
an approval of a particular mode of access to one or more objects in the system. Ad-
ministrative permissions control operations which modify the components of RBAC,
such as adding new users and roles and modifying the user assignment and permis-
sion assignment relations. Regular permissions on the other hand control operations

320 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Fig. 1. The RBAC96 model.

on the data and resources and do not permit administrative operations. We loosely
use the term role to include both regular and administrative roles, making this dis-
tinction precise whenever appropriate. Similarly for the term permission.

The user assignment (UA) and permission assignment (PA andAPA) relations
of Fig. 1 are many-to-many, as indicated by double-headed arrow. A user can be a
member of many roles, and a role can have many users. Similarly, a role can have
many permissions, and the same permission can be assigned to many roles. There
is a partially ordered role hierarchyRH, also written as>, wherex > y signifies
that rolex inherits the permissions assigned to roley. Equivalentlyx > y signifies
a user who is a member ofx is also implicitly a member ofy. If x > y we sayx
is senior toy or equivalentlyy is junior tox. Inheritance along the role hierarchy is
transitive and multiple inheritance is allowed in partial orders. There is similarly a
partially ordered administrative role hierarchyARH.

Each session in Fig. 1 relates one user to possibly many roles. Intuitively, a user
establishes a session and activates some subset of roles that he or she is a member
of (directly or indirectly by means of the role hierarchy). The double-headed arrows
from a session toR andAR indicate that multiple roles and administrative roles can

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment321

be simultaneously activated. The permissions available to the user are the union of
permissions from all roles activated in that session. Each session is associated with
a single user, as indicated by the single-headed arrow from the session toU . This
association remains constant for the life of a session. A user may have multiple ses-
sions open at the same time, each in a different window on the workstation screen for
instance. Each session may have a different combination of active roles. The concept
of a session equates to the traditional notion of a subject in access control. A subject
(or session) is a unit of access control, and a user may have multiple subjects (or
sessions) with different permissions active at the same time.

Finally, Fig. 1 shows a collection of constraints. Constraints can apply to any of
the preceding components. An example of constraints is mutually disjoint roles, such
as purchasing manager and accounts payable manager, where the same user is not
permitted to be a member of both roles. Another example is a limit on the maximum
number of users that can be members of some role.

The following definition formalizes the above discussion.

Definition 1. The RBAC96 model has the following components:

• U is a set of users,
• R andAR are disjoint sets of roles and administrative roles, respectively,
• P andAP are disjoint sets of permissions and administrative permissions,
• UA ⊆ U × (R ∪AR), is a many-to-many user to role, and administrative role,

assignment relation,
• PA ⊆ P × R andAPA ⊆ AP × AR, are, respectively, many-to-many per-

mission to role assignment and administrative permission to administrative role
assignment relations,
• RH ⊆ R×R andARH ⊆ AR×AR, are, respectively, partially ordered role

and administrative role hierarchies (written as> in infix notation),
• S is a set of sessions,
• user :S → U , is a function mapping each sessionsi to the single useruser(si)

and is constant for the session’s lifetime,
• roles :S → 2R∪AR is a function mapping each sessionsi to a set1 of roles and

administrative roles

roles(si) ⊆
{
r | (∃r′ > r)

[
(user(si), r′) ∈ UA

]}
(which can change within a single session) so that sessionsi has the permissions⋃

r∈roles(si)

{
p | (∃r′′ 6 r)

[
(p, r′′) ∈ PA ∪APA

]}
,

and

1Recall that 2X is the set of all subsets ofX, also called the power set ofX.

322 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

• there is a collection of constraints stipulating which values of the various com-
ponents enumerated above are allowed or forbidden.

Motivation and discussion about various design decisions made in developing this
family of models is given in [17,19]. It is worth emphasizing that RBAC96 distin-
guishes roles and permissions from administrative roles and permissions, respec-
tively, where the latter are used to manage the former. How are administrative per-
missions and roles managed in turn? One could consider a second level of adminis-
trative roles and permissions to manage the first level ones and so on. We feel such a
progression of administration is unnecessary. Administration of administrative roles
and permissions is under control of the chief security officer or delegated in part to
administrative roles.

3. The URA97 administrative model

RBAC has many components as described in the previous section. Administration
of RBAC involves control over each of these components including creation and
deletion of roles, creation and deletion of permissions, assignment of permissions
to roles and their removal, creation and deletion of users, assignment of users to
roles and their removal, definition and maintenance of the role hierarchy, definition
and maintenance of constraints and all of these in turn for administrative roles and
permissions. A comprehensive administrative model would be quite complex and
difficult to develop in a single step.

Fortunately administration of RBAC can be partitioned into several areas for
which administrative models can be separately and independently developed to be
later integrated. In particular we can separate the issues of assigning users to roles,
assigning permissions to roles and defining the role hierarchy. In many cases, these
activities would be best done by different administrators. Assigning permissions to
roles is typically the province of application administrators. Thus a banking applica-
tion can be implemented so credit and debit operations are assigned to a teller role,
whereas approval of a loan is assigned to a managerial role. Assignment of actual
individuals to the teller and managerial roles is a personnel management function.
Design of the role hierarchy relates to design of the organizational structure and is
the function of a chief security officer under guidance of a chief information officer.

In this paper our focus is exclusively on user-role assignment. As discussed in
Section 1 this is likely to the first and most widely decentralized administrative task
in RBAC. In the RBAC96 framework of Fig. 1 control ofUA is vested in the ad-
ministrative rolesAR. For simplicity we limit our scope to assignment of users to
regular roles. Assignment of users to administrative roles is centralized under the
chief security officer. In general the chief security officer has complete control over
all aspects of RBAC96.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment323

In the rest of this section we develop a model called URA97 in which RBAC is
used to manage user-role assignment. We define URA97 in two steps dealing with
granting a user membership in a role and revoking a user’s membership. URA97 is
deliberately designed to have a very narrow scope. For example creation of users
and roles is outside its scope. In spite of its simplicity URA97 is quite powerful and
goes much beyond existing administrative models for user-role assignment, such as
the one implemented in Oracle. It is also applicable beyond RBAC to user-group
assignment.

3.1. URA97 grant model

In the simplest case user-role assignment can be completely centralized in a single
chief security officer role. This is readily implemented in existing systems such as
Oracle. However, this simple approach does not scale to large systems. Clearly it is
desirable to decentralize user-role assignment to some degree.

In several systems, including Oracle, it is possible to designate a role, say, junior
security officer (JSO) whose members have administrative control over one or more
regular roles, say, A, B and C. Thus limited administrative authority is delegated
to the JSO role. Unfortunately these systems typically allow the JSO role to have
complete control over roles A, B and C. A member of JSO can not only add users
to A, B and C but also delete users from these roles and add and delete permissions.
Moreover, there is no control on which users can be added to the A, B and C roles
by JSO members. Finally, JSO members are allowed to assign A, B and C as junior
to any role in the existing hierarchy (so long as this does not introduce a cycle). All
this is consistent with classical discretionary thinking whereby member of JSO are
effectively designated as “owners” of the A, B and C roles, and therefore are free to
do whatever they want to these roles.

In URA97 our goal is to impose restrictions on which users can be added to a role
by whom, as well as to clearly separate the ability to add and remove users from
other operations on the role. The notion of a prerequisite condition is a key part of
URA97.

Definition 2. A prerequisite condition is a boolean expression using the usual∧ and
∨ operators on terms of the formx andx wherex is a regular role (i.e.,x ∈ R).
A prerequisite condition is evaluated for a useru by interpretingx to be true if
(∃x′ > x)(u,x′) ∈ UA andx to be true if (∀x′ > x)(u,x′) /∈ UA. For a given set of
rolesR letCR denotes all possible prerequisite conditions that can be formed using
the roles inR.

In the trivial case a prerequisite condition can be a tautology which is always true.
The simplest non-trivial case of a prerequisite condition is test for membership in a
single role, in which situation that single role is called a prerequisite role.

User-role assignment is authorized in URA97 by the following relation.

324 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Fig. 2. An example role hierarchy.

Definition 3. The URA97 model controls user-role assignment by means of the re-
lationcan-assign⊆ AR × CR× 2R.

The meaning ofcan-assign(x,y, {a, b, c}) is that a member of the administrative
role x (or a member of an administrative role that is senior tox) can assign a user
whose current membership, or non-membership, in regular roles satisfies the prereq-
uisite conditiony to be a member of regular rolesa, b or c.2

To appreciate the motivation behind thecan-assignrelation consider the role hi-
erarchy of Fig. 2 and the administrative role hierarchy of Fig. 3. Figure 2 shows the
regular roles that exist in a engineering department. There is a junior-most role E to
which all employees in the organization belong. Within the engineering department
there is a junior-most role ED and senior-most role DIR. In between there are roles
for two projects within the department, project 1 on the left and project 2 on the
right. Each project has a senior-most project lead role (PL1 and PL2) and a junior-
most engineer role (E1 and E2). In between each project has two incomparable roles,
production engineer (PE1 and PE2) and quality engineer (QE1 and QE2).

Figure 2 suffices for our purpose but this structure can, of course, be extended to
dozens and even hundreds of projects within the engineering department. Moreover,
each project could have a different structure for its roles. The example can also be
extended to multiple departments with different structure and policies applied to each
department.

2User-role assignment is subject to constraints, such as mutually exclusive roles or maximum cardinal-
ity, that may be imposed. The assignment will succeed if and only if it is authorized bycan-assignand it
satisfies all relevant constraints.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment325

Fig. 3. An example administrative role hierarchy.

Figure 3 shows the administrative role hierarchy which co-exists with Fig. 2. The
senior-most role is the senior security officer (SSO). Our main interest is in the ad-
ministrative roles junior to SSO. These consist of two project security officer roles
(PSO1 and PSO2) and a department security officer (DSO) role with the relationships
illustrated in the figure.

The role structure shown in Fig. 2 becomes a project oriented if the users are
assigned to roles in a single project. If the users are assigned to roles from multiple
projects then the structure is of matrix-form and If the users are assigned to same
functional role in different projects then the structure is of functional oriented.

3.1.1. Prerequisite roles
For sake of illustration we define thecan-assignrelation shown in Table 1(a). This

example has the simplest prerequisite condition of testing membership in a single
role known as the prerequisite role.

The PSO1 role has partial responsibility over project 1 roles. Let Alice be a mem-
ber of the PSO1 role and Bob a member of the ED role. Alice can assign Bob to
any of the E1, PE1 and QE1 roles, but not to the PL1 role. Also if Charlie is not a
member of the ED role, then Alice cannot assign him to any project 1 role. Hence,
Alice has authority to enroll users in the E1, PE1 and QE1 roles provided these users
are already members of ED. Note that if Alice assigns Bob to PE1 he does not need
to be explicitly assigned to E1, since E1 permissions will be inherited via the role
hierarchy. The PSO2 role is similar to PSO1 but with respect to project 2. The DSO
role inherits the authority of PSO1 and PSO2 roles but can further add users who are
members of ED to the PL1 and PL2 roles. The SSO role can add users who are in
the E role to the ED role, as well as add users who are in the ED role to the DIR role.
This ensures that even the SSO must first enroll a user in the ED role before that user
is enrolled in a role senior to ED. This is a reasonable specification forcan-assign.
There are, of course, lots of other equally reasonable specifications in this context.
This is a matter of policy decision and our model provides the necessary flexibility.

326 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Table 1

Example ofcan-assignwith prerequisite roles

(a) Subset notation

Administrative role Prerequisite role Role set

PSO1 ED {E1, PE1, QE1}

PSO2 ED {E2, PE2, QE2}

DSO ED {PL1, PL2}

SSO E {ED}

SSO ED {DIR}

(b) Range notation

Administrative role Prerequisite role Role range

PSO1 ED [E1, PL1)

PSO2 ED [E2, PL2)

DSO ED (ED, DIR)

SSO E [ED, ED]

SSO ED (ED, DIR]

In general, one would expect that the role being assigned is senior to the role
previously required of the user. That is, if we havecan-assign(a, b,C) thenb is junior
to all rolesc ∈ C. We believe this will usually be the case, but we do not require it in
the model. This allows URA97 to be applicable to situations where there is no role
hierarchy or where such a constraint may not be appropriate.

The notation of Table 1(a) has benefited from the administrative role hierarchy.
Thus for the DSO we have specified the role set as {PL1, PL2} and the other values
are inherited from PSO1 and PSO2. Similarly for the SSO. Nevertheless explicit
enumeration of the role set is unwieldy, particularly if we were to scale up to dozens
or hundreds of projects in the department. Moreover, explicit enumeration is not
resilient with respect to changes in the role hierarchy. Suppose a third project is
introduced in the department, with roles E3, PE3, QE3, PL3 and PSO3 analogous to
corresponding roles for projects 1 and 2. We can add the following row to Table 1(a).

Administrative role Prerequisite role Role set

PSO3 ED {E3, PE3, QE3}

This is a reasonable change to require when the new project and its roles are intro-
duced into the regular and administrative role hierarchies. However, we also need to
modify the row for DSO in Table 1(b) to include PL3.

3.1.2. Range notation
Consider instead the range notation illustrated in Table 1(b). Table 1(b) shows the

same role sets as Table 1(a) but defines these sets by identifying a range within the
role hierarchy of Fig. 1(a) by means of the familiar closed and open interval notation.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment327

Definition 4. Role sets are specified in the URA97 model by the notation below

[x,y] = { r ∈ R | x > r ∧ r > y},
(x,y] = { r ∈ R | x > r ∧ r > y},
[x,y) = { r ∈ R | x > r ∧ r > y},

(x,y) = { r ∈ R | x > r ∧ r > y} .

This notation is resilient to modifications in the role hierarchy such as addition of
a third project which requires addition of the following row to Table 1(b).

Administrative role Prerequisite role Role range

PSO3 ED [E3, PL3)

No other change is required since the [ED, DIR) range specified for the DSO will
automatically pick up PL3.

The range notation is, of course, not resilient to all changes in the role hierarchy.
Deletion of one of the end points of a range can leave a dangling reference and an
invalid range. Standard techniques for ensuring referential integrity would need to
be applied when modifying the range hierarchy. Changes to role–role relationships
could also cause a range to be drastically different from its original meaning. Never-
theless the range notation is much more convenient than explicit enumeration. There
is also no loss of generality in adopting the range notation since every set of roles
can be expressed as a union of disjoint ranges.

Strictly speaking the two specifications of Table 1 are not precisely identical. In
Table 1(a) the DSO role is explicitly authorized to enroll users in PL1 and PL2, and
the inherits the ability to enroll users in other project 1 and 2 roles from PSO1 and
PSO2. On the other hand, in Table 1(b) the DSO role is explicitly authorized to enroll
users in all project 1 and 2 roles. As it stands the net effect is the same. However, if
modifications are made to the role hierarchy or to the PSO1 or PSO2 authorizations
the effect can be different. The DSO authorization in Table 1(a) can be replaced by
the following row to make Table 1(a) more nearly identical to Table 1(b).

Administrative role Prerequisite role Role set

DSO ED {E1, PE1, QE1, PL1, E2, PE2, QE2, PL2}

Now even if the PSO1 and PSO2 roles of Table 1(a) are modified respectively to the
role sets {E1} and {E2}, the DSO role will still retain administrative authority over
all project 1 and project 2 roles. Of course, explicit and implicit specifications will
never behave exactly identically underall circumstances. For instance, introduction
of a new project 3 will exhibit differences as discussed above. Conversely, the DSO
authorization in Table 1(b) can be replaced by the following rows to make Table 1(b)
more nearly identical to Table 1(a).

Administrative role Prerequisite role Role range

DSO ED [PL1, PL1]
DSO ED [PL2, PL2]

328 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Table 2

Example ofcan-assignwith prerequisite conditions

Administrative role Prerequisite condition Role range

PSO1 ED [E1, E1]

PSO1 ED∧ QE1 [PE1, PE1]

PSO1 ED∧ PE1 [QE1, QE1]

PSO1 PE1∧ QE1 [PL1, PL1]

PSO2 ED [E2, E2]

PSO2 ED∧ QE2 [PE2, PE2]

PSO2 ED∧ PE2 [QE2, QE2]

PSO2 PE2∧ QE2 [PL2, PL2]

DSO ED (ED, DIR)

SSO E [ED, ED]

SSO ED (ED, DIR]

There is an analogous situation with the SSO role in Table 1. Clearly, we must
anticipate the impact of future changes when we specify thecan-assignrelation.

3.1.3. Prerequisite conditions
An example ofcan-assignwhich uses prerequisite conditions rather than prereq-

uisite roles is shown in Table 2. The authorizations for PSO1 and PSO2 have been
changed relative to Table 1.

Let us consider the PSO1 tuples (analysis for PSO2 is exactly similar). The first
tuple authorizes PSO1 to assign users with prerequisite role ED into E1. The second
one authorizes PSO1 to assign users with prerequisite condition ED∧ QE1 to PE1.
Similarly, the third tuple authorizes PSO1 to assign users with prerequisite condition
ED∧ PE1 to QE1. Taken together the second and third tuples authorize PSO1 to put
a user who is a member of ED into one but not both of PE1 and QE1. This illustrates
how mutually exclusive roles can be enforced by URA97. PE1 and QE1 are mutually
exclusive with respect to the power of PSO1. However, for the DSO and SSO these
are not mutually exclusive. Hence, the notion of mutual exclusion is a relative one
in URA97. The fourth tuple authorizes PSO1 to put a user who is a member of both
PE1 and QE1 into PL1. Of course, a user could have become a member of both PE1
and QE1 only by actions of a more powerful administrator than PSO1.

In RBAC users are made members of roles because of their job function or task as-
signment in the interest of the organization. Prerequisite conditions allow us to spec-
ify the requirements that need to be met before granting a role to a user. Generally an
employee who is an engineer is not given access to HR or Pay roll information, he
has access to only his personal information. A person belonging to Pay Roll depart-
ment has access to information of all the employees or employees of the division to
which he has been designated. In real life many large organizations have these kind
of specifications and policies in place. Prerequisite conditions provide capabilities to
enforce these policies.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment329

3.2. URA97 revoke model

We now turn to consideration of the URA97 revoke model. The objective is to
define a revoke model that is consistent with the philosophy of RBAC. This causes
us to depart from classical discretionary approaches to revocation.

In the classical discretionary approach to revocation there are at least two issues
that introduce complexity and subtlety [2,10]. Suppose Alice grants Bob some per-
missionP . This is done at Alice’s discretion because Alice is either the owner of
the object to whichP pertains or has been granted administrative authority onP by
the actual owner. Alice can later revokeP from Bob. Now suppose Bob has received
permissionP from Alice and from Charlie. If Alice revokes her grant ofP to Bob
he should still continue to retainP because of Charlie’s grant. A related issue is that
of cascading revokes. Suppose Charlie’s grant was in turn obtained from Alice, per-
haps Bob’s permission should end up being revoked by Alice’s action. Or perhaps it
should not, because Alice only revoked her direct grant to Bob but not the indirect
one via Charlie which really occurred at Charlie’s discretion. A considerable litera-
ture has developed examining the subtleties that arise, especially when hierarchical
groups and negative permissions or denials are brought into play (see, for example,
[1,6,8,13,16]).

The RBAC approach to authorization is quite different from the traditional discre-
tionary one. In RBAC users are made members of roles because of their job function
or task assignment in the interest of the organization. Granting of membership in
a role is specifically not done at the grantor’s whim. Suppose Alice makes Bob a
member of a roleX . In URA97 this happens because Alice is assigned suitable ad-
ministrative authority overX via some administrative roleY and Bob is eligible for
membership inX due to Bob’s existing role memberships (and non-memberships)
satisfying the prerequisite condition. Moreover, there are some organizational cir-
cumstances which cause Alice to grant Bob this membership. It is not merely being
done at Alice’s personal fancy. Now if at some later time Alice is removed from
the administrative roleY there is clearly no reason to also remove Bob fromX .
A change in Alice’s job function should not necessarily undo her previous grants.
Presumably some other administrator, say Dorothy, will take over Alice’s responsi-
bility. Similarly, suppose Alice and Charlie both grant membership to Bob inX . At
some later time Bob is reassigned to some other project and no longer needs to be a
member of roleX . It is not material whether Alice or Charlie or both or Dorothy re-
vokes Bob’s membership. Bob’s membership inX is being revoked due to a change
in organizational circumstances.

To summarize, in classical discretionary access control the source (direct or indi-
rect) of a permission and the identity of the revoker is typically taken into account
in interpreting the revoke operation.3 These issues do not arise in the same way for

3This is true more in theory than practice, because many commercial products opt for a simpler seman-
tics than implied by a strict owner-based discretionary viewpoint.

330 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

revocation of user-role assignment in RBAC. However, there are related subtleties
that arise in RBAC concerning the interaction between granting and revocation of
user-role membership and the role hierarchy. We will illustrate these in a moment.

We now introduce our notation for authorizing revocation.

Definition 5. The URA97 model controls user-role revocation by means of the rela-
tion can-revoke⊆ AR × 2R.

The meaning ofcan-revoke(x,Y) is that a member of the administrative rolex
(or a member of an administrative role that is senior tox) can revoke membership
of a user from any regular roley ∈ Y . Y is specified using the range notation of
Definition 4. We sayY defines therange of revocation. The precise semantics of
revocation in URA97 needs to be carefully defined to explain its interaction with the
role hierarchy.

3.2.1. Weak revocation
In URA97 we define two notions of revocation calledweakandstrong. Recall that

UA is the user assignment relation.

Definition 6. Let us say a userU is anexplicit memberof role x if (U ,x) ∈ UA,
and thatU is animplicit memberof rolex if for somex′ > x, (U ,x′) ∈ UA.

Note that a user can simultaneously be an explicit and implicit member of a role.
Weak revocation has an impact only on explicit membership. It has the straight-

forward meaning stated below.

Definition 7 (Weak revocation algorithm).

1. Letu have a session with administrative rolesA = {a1,a2, . . . ,ak}, and letu
try to weakly revokev from rolex.

2. If v is not an explicit member ofx this operation has no effect, otherwise there
are two cases.

(a) There exists acan-revoketuple (b,Y) such that there existsai ∈ A, ai > b
andx ∈ Y .
In this casev’s explicit membership inx is revoked.

(b) There does not exist acan-revoketuple as identified above.
In this case the weak revoke operation has no effect.

Let us consider the example ofcan-revokeshown in Table 3 and interpret it in
context of the hierarchies of Figs 2 and 3. Let Alice be a member of PSO1, and let
this be the only administrative role she has. Alice is authorized to weakly revoke
membership of users from roles E1. Table 4(a) illustrates whether or not Alice can
weakly revoke membership of a user from role E1. The effect of Alice’s weak re-
vocation of each of these users from E1 is shown in Table 4(b). There is no effect

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment331

Table 3

Example ofcan-revoke

Administrative role Role range

PSO1 [E1, PL1)

PSO2 [E2, PL2)

DSO (ED, DIR)

SSO [ED, DIR]

Table 4

Example of strong revocation

(a) Prior to weak revocation

User E1 PE1 QE1 PL1 DIR Alice can revoke user from E1

Bob Yes No No No No Yes

Cathy No Yes Yes No No Yes

Dave Yes Yes Yes Yes No Yes

Eve No No No Yes Yes Yes

(b) After weak revocation

User E1 PE1 QE1 PL1 DIR Alice revoke user from E1

Bob No No No No No removed from E1

Cathy No Yes Yes No No no effect

Dave No Yes Yes Yes Yes removed from E1

Eve No No No Yes Yes no effect

of weak revocation on Cathy and Eve because they are not explicit members of E1
role. On the other hand Bob and Dave are removed from E1 role. Dave however still
holds the E1 permissions because of his membership in senior roles.

3.2.2. Strong revocation
Strong revocation in URA97 requires revocation of both explicit and implicit

membership. Strong revocation ofU ’s membership inx requires thatU be removed
not only from explicit membership inx, but also from explicit (or implicit) mem-
bership in all roles senior tox. Strong revocation therefore has a cascading effect
upwards in the role hierarchy. However, strong revocation in URA97 takes effect
only if all implied revocations upward in the role hierarchy are within the revocation
range of the administrative roles that are active in a session.

Let us consider the example ofcan-revokeshown in Table 3 and interpret it in
context of the hierarchies of Figs 2 and 3. Let Alice be a member of PSO1, and let
this be the only administrative role she has. Alice is authorized to strongly revoke
membership of users from roles E1, PE1 and QE1. Table 5(a) illustrates whether
or not Alice can strongly revoke membership of a user from role E1. The effect of
Alice’s strong revocation of each of these users from E1 is shown in Table 5(b). Alice
is not allowed to strongly revoke Dave and Eve from E1 because they are members

332 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Table 5

Example of strong revocation

(a) Prior to strong revocation

User E1 PE1 QE1 PL1 DIR Alice can revoke user from E1

Bob Yes Yes No No No Yes

Cathy Yes Yes Yes No No Yes

Dave Yes Yes Yes Yes No No

Eve Yes Yes Yes Yes Yes No

(b) After strong revocation

User E1 PE1 QE1 PL1 DIR Alice revoke user from E1

Bob No No No No No removed from E1, PE1

Cathy No No No No No removed from E1, PE1, QE1

Dave Yes Yes Yes Yes Yes no effect

Eve Yes Yes Yes Yes Yes no effect

of senior roles outside the scope of Alice’s revoking authority. If Alice was assigned
to the DSO role she could strongly revoke Dave from E1 but still would not be able
to strongly revoke Eve’s membership in E1. In order to strongly revoke Eve from E1,
Alice needs to be in the SSO role.

The general rule is that strong revocation takes effect within the revocation range
authorized for an administrative role. The precise statement of the strong revoca-
tion algorithm becomes complicated because of the administrative role hierarchy and
the possible existence of several tuples incan-revokewhich determine the outcome.
In the example above Alice is allowed to strongly revoke Cathy from E1 because
of can-revoke(PSO1, [E1, PL1)). We should have the same result if the instead of
this singlecan-revokerange for PSO1 we have two rangescan-revoke(PSO1, [E1,
PE1]) andcan-revoke(PSO1, [E1, QE1]). Finally, because of the session concept
in RBAC96 we must also pay attention to which roles Alice has turned on in the
particular session. These considerations lead to the following algorithm for strong
revocation.

Definition 8 (Strong revocation algorithm).

1. Letu have a session with administrative rolesA = {a1,a2, . . . ,ak}, and letu
try to strongly revokev from rolex.

2. Find allcan-revoketuples (b1,X1), (b2,X2), . . . , (bp,Xp) such that there exists
ai ∈ A, ai > bj andx ∈ Xj for j = 1 . . . p.

3. LetX̂ = X1∪X2∪· · ·∪Xp where the union is over the actual roles identified
by the rangesX1,X2, . . . ,Xp.

4. There are two cases.

(a) There existsy /∈ X̂ such thatv is a member ofy andy > x.
In this caseu’s strong revocation has no effect.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment333

(b) There does not exist a roley as identified above (therefore all senior roles
to x to whichv belongs are in̂X).
In this casev’s membership is revoked from rolex and all roles senior to
x.

In context of our example this algorithm will treatcan-revoke(PSO1, [E1, PL1)) as
equivalent tocan-revoke(PSO1, [E1, PE1]) andcan-revoke(PSO1, [E1, QE1]). It is
similarly equivalent tocan-revoke(PSO1, [E1, E1]),can-revoke(PSO1, [PE1, PE1])
andcan-revoke(PSO1, [QE1, QE1]).

The strong revocation algorithm can also be expressed in terms of weak revoke by
the following all-or-nothing transaction.

1. Letu have a session with administrative rolesA = {a1,a2, . . . ,ak}, and letu
try to strongly revokev from rolex.

2. Find all rolesy > x andv is a member ofy.
3. Weak revokev from all suchy as if u did this weak revoke.
4. If any of the weak revokes fail thenu’s strong revoke has no effect otherwise

all weak revokes succeed.

An alternate approach would be to do only those weak revokes that succeed and
ignore the rest. We decided to go with a cleaner all-or-nothing semantics in URA97.

So far we have looked at the cascading of revocation upward in the role hierarchy.
There is a downward cascading effect that also occurs. Consider Bob in our example
who is a member of E1 and PE1. Suppose further that Bob is an explicit member of
PE1 and thereby an implicit member of E1. What happens if Alice revokes Bob from
PE1? If we remove (Bob, PE1) from theUA relation, Bob’s implicit membership in
E1 will also be removed. On the other hand if Bob is an explicit member of PE1
and also an explicit member of E1 then Alice’s revocation of Bob from PE1 does
not remove him from E1. The revoke operations we have defined in URA97 have the
following effect.

Property 1. Implicit membership in a rolea is dependent on explicit membership in
some senior roleb > a. Therefore when explicit membership of a user is revoked
from b, implicit membership is also automatically revoked on junior rolea unless
there is some other senior rolec > a in which the user continues to be an explicit
member. (This will requireb 6> c.)

As we have discussed earlier, when a user’s administrative roles are revoked that
user’s assignments and revocations remain in effect because these were done for
organizational reasons and not at the user’s whim. A related issue is what happens
when the prerequisite condition which authorized Alice to assign Bob to a role gets
changed. Say that Alice as PSO1 assigns Bob to PE1, as per the second PSO1 tuple
of Table 2. Later somehow Bob is made a member of QE1, perhaps by a user in
DSO or SSO role. This assignment negates the prerequisite condition which enabled

334 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Alice to do her assignment. Bob’s membership in PE1 will nevertheless continue.
We feel this is the appropriate action. The prerequisite conditions of URA97 (and at
other places in ARBAC97) are not invariants that hold for all time. They are simply
enabling conditions at the moment that assignment is made.

As another example of the enabling but not invariant nature of prerequisite condi-
tions consider the following in context of thecan-assignrelation of Table 1. Suppose
Alice as PSO1 enrolls Bob into PE1 due to his prerequisite membership in ED. Later
Charles as SSO revokes Bob from ED. Should Alice’s assignment of Bob to PE1 be
negated since the prerequisite condition has been negated? It depends on Charles’
intention, which in turn depends on the organizational reason for this revocation. If
Charles really needs to clear out Bob from the engineering department the correct
course of action is a strong revocation of Bob from ED. If Charles does a weak re-
voke of Bob’s explicit membership in ED he is leaving open the option that Bob
will continue to participate in engineering department roles till such time as Bob is
revoked from all of them (say by project security officers). This latter option can be
useful in allowing Bob to gracefully leave the engineering department without an
abrupt termination. In such cases it might be useful for Charles to be able to freeze
Bob’s membership in engineering department roles so that Bob cannot be assigned
to new roles. This can be done using prerequisite conditions. A role called EF (for
engineering frozen) can be defined and non-membership in EF required in the pre-
requisite condition of allcan-assigntuples that authorize users to be assigned to
engineering department roles.

Note that our examples ofcan-assignin Table 1(b) andcan-revokein Table 3 are
complementary in that each administrative role has the same range for adding users
and removing users from roles. Although this would be a common case we do not
impose it as a requirement on our model.

We have defined URA97 so that the same revocation range applies for both strong
and weak revocation. In principle we could define different ranges for these two
operations. We do not feel this added complexity would be justified.

3.3. Summary of URA97

URA97 controls user-role assignment by means of the relationcan-assign⊆
AR × CR × 2R. Role sets are specified using the range notation of Definition 4.
Assignment has a simple behavior wherebycan-assign(a, b,C) authorizes a session
with an administrative rolea′ > a to enroll any user who satisfies the prerequisite
conditionb into any rolec ∈ C. The prerequisite condition is a boolean expres-
sion using the usual∧ and∨ operators on terms of the formx andx, respectively,
denoting membership and non-membership regular rolex.

Revocation is controlled in URA97 by the relationcan-revoke⊆ AR× 2R. Weak
revocation applies only to explicit membership in a single role as per the algorithm
of Definition 7. Strong revocation cascades upwards in the role hierarchy as per the
algorithm of Definition 8. In both cases revocation cascades downwards as noted in
Property 1.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment335

4. Oracle RBAC and related features

The Oracle database management system [4,12] provides support for RBAC in-
cluding support for hierarchical roles. However, Oracle does not directly support the
URA97 model. In particular, Oracle has a strong discretionary flavor to its admin-
istrative model for user-role assignment and revocation. Also the Oracle revocation
model is similar to our weak revoke and does not cascade revocation upwards in the
role hierarchy like our strong revoke does. This is reasonable given Oracle’s discre-
tionary orientation. Nevertheless, we will see in the next section how it is possible
to use Oracle’s stored procedures to implement URA97. In this section we briefly
review relevant features of Oracle access control.

4.1. Privileges

Oracle has two kinds of privileges, system privileges and object privileges. Sys-
tem privileges authorize actions on a particular type of object for example create
table, create user, etc. There are over 60 distinct system privileges. Object privileges
authorize actions on a specific object (table, view, procedure, package, etc.). Typi-
cal examples of object privileges are select rows from a table, delete rows, execute
procedures, etc.

Who can grant or revoke privileges from users or roles? The answer depends on
various issues such as whether it is a system or an object privilege, and whether
the object is owned by the user, etc. In order to grant or revoke a system privi-
lege the user should have the admin option on that privilege or the user should have
GRANT_ANY_PRIVILEGE system privilege. In order to grant or revoke an object
privilege a user should own that particular object or the user should have grant option
on the object if it is owned by someone else.

4.2. Roles in Oracle

Oracle provides roles (from Oracle 7.0 onwards) for ease of management of priv-
ilege assignment. System and object privileges can be granted to a role. A role can
be granted to any other role (circular granting is not allowed). Any role can be
granted to any user in the database. A role can either be enabled or disabled dur-
ing a session. This includes both explicit and implicit roles that a user is a mem-
ber of. Enabling a role will implicitly enable all the roles granted to it directly or
transitively. The system privileges related to role management are CREATE_ROLE,
GRANT_ANY_ROLE, DROP_ROLE, and DROP_ANY_ROLE.

Information about privileges assigned to a role can be obtained from Ora-
cle’s built-in views ROLE_SYS_PRIVILEGES, ROLE_TAB_PRIVILEGES, and
ROLE_ROLE_PRIVS. When a regular user performs query on these views these
views only show information pertaining to the roles granted to that user. However, the
Oracle internal user SYS will see information about all the roles through these views.

336 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

The view SESSION_ROLES provides information about roles that are enabled in a
session. The view ROLE_ROLE_PRIVS shows information about which roles are
directly assigned to another role. Roles inherited transitively are not shown. For ex-
ample, if role C was granted to role B and role B to role A the ROLE_ROLE_PRIVS
view will show that B has been granted to A and C to B, but will not show the implied
transitive C to A grant.

4.3. Procedures, functions and packages

Oracle provides a programmatic approach to manipulate database information us-
ing procedural schema objects called PL/SQL (Procedural Language/SQL) program
units. Procedures, functions and packages are different types of PL/SQL objects.
PL/SQL extends the capabilities of SQL by providing some programming language
features such as conditional statements, loops etc. Procedures are also referred to as
stored procedures.

A procedure is a collection of instructions which can be grouped together and
are performed on database objects to add, modify or delete database information. In
order to create a procedure a user should have the CREATE_PROCEDURE system
privilege. A procedure can be executed by a user who owns it or by a user who has
execute privileges on it.

A stored procedure runs with the privileges of the user who owns it and not the
user who is executing it. This feature gives great flexibility in enforcing security. For
example suppose we want a user to perform some operations on a database but we
do not want to grant privileges explicitly. Then one can write a procedure embedded
with necessary operations, and grant execute privileges on the procedure to the user.4

Functions are very similar to procedures. The only difference between a function
and a procedure is that a procedure call is a PL/SQL statement itself, while functions
are called as part of an expression. A function always returns a value when it is
called.

Packages are PL/SQL constructs that store related objects together. A package is
essentially a named declarative section. It can contain procedures, functions, vari-
ables etc. A package consists of two parts, the specification part and body, stored
separately in the data dictionary. The package specification, also known as pack-
age header, contains the information about the contents of the package. The package
body contains code for the subprograms declared in the header.

5. Implementing URA97 in Oracle

To implement URA97 we define Oracle relations which encode thecan-assignand
can-revokerelations of URA97. Thecan-assignrelation of URA97 is implemented

4The privileges that are referenced in a procedure should have been explicitly granted to the user who
owns the procedure. Privileges obtained by the owner via a role cannot be referenced in a procedure.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment337

Fig. 4. Entity-relation diagram forcan-assignrelation.

in Oracle as per the entity-relation diagram of Fig. 4. We assume that the prerequi-
site condition is converted into disjunctive normal form using standard techniques.
Disjunctive normal form has the following structure.

(· · · ∧ · · · ∧ · · · ∧ · · ·) ∨ (· · · ∧ · · · ∧ · · · ∧ · · ·) ∨ · · · ∨ (· · · ∧ · · · ∧ · · · ∧ · · ·)

Each· · · is a positive literalx or a negated literalx. Each group (· · ·∧· · ·∧· · ·∧· · ·) is
called a disjunct. For a given prerequisite conditioncan-assign2has a tuple for each
disjunct. All positive literals of a single disjunct are incan-assign3, while negated
literals are incan-assign4.

The four PSO1 tuples of Table 2 are represented by this scheme as shown in Ta-
ble 6. The prerequisite conditions in this case all have a single disjunct. An example
with multiple disjuncts is shown in Table 7.

Thecan-revokerelation of URA97 is represented by a single Oracle relation. For
example, Table 3 is represented as shown in Table 8.

Thecan-assign, can-assign2, can-assign3, can-assign4, andcan-revokerelations
are owned by the DBA who also decides what their content should be. In addition we
have three accompanying procedures and a package to support these. There is one
procedure each for assigning a user to a role, doing a weak revoke of membership
and doing a strong revoke of membership, respectively as follows.

– ASSIGN
– WEAK_REVOKE
– STRONG_REVOKE

Execute privilege on these procedures is given to all administrative roles. We achieve
this by introducing a junior-most administrative role, say GSO (generic security of-
ficer), and assigning it the permission to execute these procedures.

338 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

Table 6

Oraclecan-assignrelations for PSO1 from Table 2

(a) can-assign

AR PC Min_Int Min_Role Max_Role Max_Int

PSO1 C1 [E1 E1]

PSO1 C2 [PE1 PE1]

PSO1 C3 [QE1 QE1]

PSO1 C4 [PL1 PL1]

.

(b) can-assign2

PC and_set_name not_set_name

C1 ASET1 null

C2 ASET2 NSET2

C3 ASET3 NSET3

C4 ASET4 null

.

(c) can-assign3

and_set_name and_roles

ASET1 ED

ASET2 ED

ASET3 ED

ASET4 PE1

ASET4 QE1

.

(d) can-assign4

not_set_name not_roles

NSET2 QE1

NSET3 PE1

.

These relations and accompanying procedures and packages are owned by the
DBA. Our implementation also maintains an audit relation which keeps a log of all
attempted assignment and revoke operations and their outcome. The audit relation is
also owned by the DBA.

Oracle does not provide convenient primitives for testing whether or not a user is
an implicit member of a particular role. Testing explicit membership is straightfor-
ward since explicit membership is encoded as a tuple in Oracle’s system relations.
To test implicit membership, however, we need to chase the role hierarchy. Oracle
also does not provide direct support for enumerating roles in a range set. We built
a PL/SQL package to support these requirements and assist in writing our stored
procedures, as discussed below.

In our implementation of URA97 a user invokes the stored procedure to grant or
revoke a role from or to another user. The procedure calls are then as follows.

• ASSIGN(user, trole, arole)
• WEAK_REVOKE(user, trole, arole)
• STRONG_REVOKE(user, trole, arole)

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment339

Table 7

Oraclecan-assignRelations for Prerequisite Condition (A∧ D ∧ E)
∨ (B ∧ D ∧ F)

(a) can-assign

AR PC Min_Int Min_Role Max_Role Max_Int

SO1 C1

.

(b) can-assign2

PC and_set_name not_set_name

C1 ASET1 NSET1

C1 ASET2 NSET2

.

(c) can-assign3

and_set_name and_roles

ASET1 A

ASET1 D

ASET2 B

.

(d) can-assign4

not_set_name not_roles

NSET1 E

NSET2 F

NSET2 D

.

Table 8

Oraclecan-revokerelation

AR Min_Int Min_Role Max_Role Max_Int

PSO1 [E1 PL1)

PSO2 [E2 PL2)

DSO (ED DIR)

SSO [ED DIR]

The parameters user and trole (target role) specify which user is to be added to trole,
or to be weakly or strongly revoked from trole. The arole parameter specifies which
administrative role should be applied (with respect to the user who is invoking the
URA97 procedure). The procedure code will check whether or not the user who calls
the procedure has turned on the arole.5

All the three procedures follow three basic steps.

1. If the user executing the procedure is an explicit or implicit member of arole
then proceed to step 2, else stop execution and return an error message indicat-
ing this is not an authorized operation.

5It is relatively straightforward to specify a set of administrative roles instead of a single arole, and we
plan to extend our implementation to do that.

340 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

2. The tuple(s) fromcan-assign(for assign procedure) orcan-revoke(for revo-
cation procedures) are obtained where AR role value equals or is junior to the
arole parameter specified in the procedure call.

3. If trole is in the specified range for any one of the tuples selected in step 2, then
assign or revoke the trole else return an appropriate error message.
In case of ASSIGN also check whether the user being assigned to trole satisfies
the prerequisite condition specified in the authorizingcan-assigntuple or not.
In case of STRONG_REVOKE the operation may still fail due to all-or-nothing
semantics.

The implementation of steps 1 and 3 involves complex queries built on Oracle in-
ternal tables. These queries are performed dynamically at runtime. In order to check
whether the user is a member of arole (in step 1) and whether the role is in the spec-
ified range for one of the relevantcan-assignor can-revoketuples (in step 3), we
use Oracle CONNECT BY clause in our queries. By using CONNECT BY clause,
one can traverse a tree structure corresponding to the role hierarchy in one direc-
tion. One can start from any point within the role hierarchy and traverse it towards
junior or senior roles. But there is no control on the end point of the traversal. Spe-
cific branches or an individual node of the tree can be excluded by hard coding their
values. Such hard coding is not appropriate for a general purpose stored procedure.
In our implementation we overcome this problem by performing multiple queries
and intersecting them to get the exact range. We specifically do not hard code any
parameters in our queries.

In order to modularize our implementation we developed a package which per-
forms the necessary checks involved in steps 1 and 3. All the procedures call
this package to do the verification. The package contains several functions. Each
one is designed to perform certain tasks, for example, we have a function called
user hasadminrole. This function takes the parameters from the procedure which
has called it and returns the results to the calling procedure. There are other functions
which determine the range for a given arole.

Our implementation is convenient for the DBA since the stored procedures and
packages we provide are generic and can be reused by other databases. The DBA
only needs to define the roles and administrative roles, and configure thecan-assign
andcan-revokerelations. Our implementation is available in the public domain for
other researchers and practitioners to experiment with.

6. Conclusion

In this paper we have developed the URA97 model for assigning users to roles and
revoking users from roles. URA97 is defined in context of the RBAC96 model [19].
However, it should apply to almost any RBAC model, including [3,7,9,11,15], be-
cause user-role assignment is a basic administrative feature which will be required
in any RBAC model.

R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment341

Authorization to assign and revoke users to and from roles is controlled by ad-
ministrative roles. The model requires users must previously satisfy a designated
prerequisite condition (stated in terms of membership and non-membership in roles)
before they can be enrolled via URA97 into additional roles. URA97 applies only
to regular roles. Control of membership in administrative roles remains entirely in
hands of the chief security officer. We have identified strong and weak revocation
operations in URA97 and have defined their precise meaning.

The paper has also described an implementation of URA97 using Oracle stored
procedures. Oracle’s built in primitives are cumbersome to use for determining indi-
rect membership in roles. We have implemented suitable functions and packages to
enable this conveniently. These should be of use to other researchers and practition-
ers and are available in the public domain.

In future work we will extend URA97 to develop more comprehensive role-based
administrative models encompassing administration of role-permission assignment
and role–role relationships. We will also investigate how URA97 can be adapted for
user-group assignment on platforms such as Unix and Windows NT (including sim-
ulation of group hierarchies which neither product provides). More generally we feel
our work will inspire other researchers and developers to investigate administrative
models in a systematic, scientific and experimental approach. We feel the security
community has much to gain by pursuing such work.

Acknowledgment

This work is partially supported by the National Science Foundation and the Na-
tional Security Agency.

References

[1] E. Bertino, P. Samarati and S. Jajodia, Authorizations in relational database management systems,
in: Proceedings of 1st ACM Conference on Computer and Communications Security, Fairfax, VA,
November 3–5, 1993, pp. 130–139.

[2] R. Fagin, On an authorization mechanism,ACM Transactions on Database Systems3(3) (1978),
310–319.

[3] D. Ferraiolo, J. Cugini and R. Kuhn, Role-based access control (RBAC): Features and motivations,
in: Proceedings of 11th Annual Computer Security Application Conference, New Orleans, LA, De-
cember 11–15, 1995, pp. 241–248.

[4] S. Feuerstein,Oracle PL/SQL Programming, O’Reilly & Associates, Inc., 1995.

[5] D. Ferraiolo and R. Kuhn, Role-based access controls, in:Proceedings of 15th NIST-NCSC National
Computer Security Conference, Baltimore, MD, October 13–16, 1992, pp. 554–563.

[6] E.B. Fernandez, J. Wu and M.H. Fernandez, User group structures in object-oriented database
authorization, in:Database Security VIII: Status and Prospects, J. Biskup, M. Morgernstern and
C. Landwehr, eds, North-Holland, Amsterdam, 1995.

342 R. Sandhu and V. Bhamidipati / Role-based administration of user-role assignment

[7] L. Guiri and P. Iglio, A formal model for role-based access control with constraints, in:Proceedings
of IEEE Computer Security Foundations Workshop 9, Kenmare, Ireland, June 1996, pp. 136–145.

[8] E. Gudes, H. Song and E.B. Fernandez, Evaluation of negative, predicate, and instance-based autho-
rization in object-oriented databases, in:Database Security IV: Status and Prospects, S. Jajodia and
C.E. Landwehr, eds, North-Holland, Amsterdam, 1991, pp. 85–98.

[9] L. Guiri, A new model for role-based access control, in:Proceedings of 11th Annual Computer
Security Application Conference, New Orleans, LA, December 11–15, 1995, pp. 249–255.

[10] P.P. Griffiths and B.W. Wade, An authorization mechanism for a relational database system,ACM
Transactions on Database Systems1(3) (1976), 242–255.

[11] M.-Y. Hu, S.A. Demurjian and T.C. Ting, User-role based security in the ADAM object-oriented
design and analyses environment, in:Database Security VIII: Status and Prospects, J. Biskup,
M. Morgernstern and C. Landwehr, eds, North-Holland, Amsterdam, 1995.

[12] G. Koch and K. Loney,Oracle The Complete Reference, Oracle Press, 1995.

[13] T. Lunt, Access control policies: Some unanswered questions, in:Proceedings of IEEE Computer
Security Foundations Workshop II, Franconia, NH, June 1988, pp. 227–245.

[14] I. Mohammed and D.M. Dilts, Design for dynamic user-role-based security,Computers & Security
13(8) (1994), 661–671.

[15] M. Nyanchama and S. Osborn, Access rights administration in role-based security systems, in:
Database Security VIII: Status and Prospects, J. Biskup, M. Morgernstern and C. Landwehr, eds,
North-Holland, 1995.

[16] F. Rabitti, E. Bertino, W. Kim and D. Woelk, A model of authorization for next-generation database
systems,ACM Transactions on Database Systems16(1) (1991).

[17] R. Sandhu, Rationale for the RBAC96 family of access control models, in:Proceedings of the 1st
ACM Workshop on Role-Based Access Control, ACM, 1997.

[18] R. Sandhu, Roles versus groups, in:Proceedings of the 1st ACM Workshop on Role-Based Access
Control, ACM, 1997.

[19] R.S. Sandhu, E.J. Coyne, H.L. Feinstein and C.E. Youman, Role-based access control models,IEEE
Computer29(2) (1996), 38–47.

[20] S.H. von Solms and I. van der Merwe, The management of computer security profiles using a role-
oriented approach,Computers & Security13(8) (1994), 673–680.

[21] C. Youman, E. Coyne and R. Sandhu, eds,Proceedings of the 1st ACM Workshop on Role-Based
Access Control, Nov. 31–Dec. 1, 1995, ACM, 1997.

