
UNDECIDABILITY OF SAFETY FOR THE

SCHEMATIC PROTECTION MODEL

WITH CYCLIC CREATES
�

Ravinderpal Singh Sandhu

Department of Information Systems and Systems Engineering

George Mason University

Fairfax, Virginia 22030-4444

January 22, 1990

Suggested running head:

Undecidable Safety with Cycles

Mailing address for proofs and all correspondence:

Dr. Ravi Sandhu
Department of Information Systems and Systems Engineering

George Mason University
Fairfax, Virginia 22030-4444

Telephone: 703-764-4663

�This paper has been accepted for publication in Journal of Computer and System Sciences.

ii

ABSTRACT

In the schematic protection model subjects and objects are classi�ed into protection
types. Creation is authorized by a can-create binary relation on types. It is shown
that with arbitrary cycles in can-create safety is undecidable. Whereas it has been
previously shown safety is decidable for acyclic can-create. It is also shown that safety
remains undecidable even if all creates are attenuating in that tickets (capabilities)
given to a subject on its creation are attenuated copies of tickets available to its
parent. This contrasts with decidable safety for attenuating cycles of length one. It
appears safety is decidable for the practically useful cases while undecidability results
from undue laxity in authorizing creation.

iii

1 INTRODUCTION

The need for access controls or protection arises in any computer system in which
multiple users share information and physical resources. These systems are viewed as
consisting of subjects and objects. Active entities such as users are subjects whereas
passive entities such as text �les are objects. Protection is enforced by ensuring
that subjects can execute only those operations which are authorized by privileges in
their domains. We regard subjects and objects as mutually exclusive and use entity to
denote either a subject or object. The key di�erence is that subjects possess privileges
whereas objects do not.�

The protection state of a system is de�ned by the privileges possessed by subjects
in their domains at a given moment. We understand state to mean protection state.
Inert privileges authorize operations which do not modify the state, e.g., reading
a �le. Control privileges authorize operations which modify the state, e.g., user X

authorizes user Y to read �le Z. Control privileges authorize incremental changes in
the protection state and de�ne the dynamics of authorization. Once the initial state
is established the protection state evolves due to autonomous actions of subjects
constrained by control privileges. The challenge is to construct the initial state so
all reachable states conform with the policy the security administrator wishes to
implement.

A useful protection model must provide a formalism for specifying the dynamics
of the protection state. This is usually done by stating rules which prescribe the
authorization for making localized incremental changes in the state. We call such a
collection of rules an (authorization) scheme. The scheme embodies the policy for
dynamic authorization. In order to understand the formal speci�cation of a scheme it
must be possible to determine the cumulative global e�ect of authorized incremental
changes in the protection state. That is given the initial protection state and the
authorization scheme, we need to characterize protection states that are reachable.
The safety problem poses the question: is there a reachable state in which some subject
possesses a speci�c privilege which it did not previously possess? It is the fundamental
analysis question which a protection model must confront. Since subjects are usually
authorized to create new subjects and objects, the system is unbounded and it is
not certain such analysis will be decidable let alone tractable without sacri�cing
generality.

Analysis issues were �rst formalized by Harrison, Ruzzo and Ullman [2] in context
of the well-known access matrix model [1, 5]. The matrix has a row for each subject
and a column for each entity. The (I,J) cell contains symbols called rights authorizing
subject I to perform operations on entity J. In this model an authorization scheme
is de�ned by a set of commands. Each command has a condition part and a body.

�Subjects are often de�ned to be a subset of objects. This amounts to calling what we call entities

as objects and coining some other term for entities which are not subjects.

1

The condition speci�es rights required to exist in the matrix before the body can
be executed for its actual arguments. The body consists of a sequence of primitive
operations. The primitive operations enter or delete a right from a cell of the matrix
or create a new row or column or destroy an existing row or column. A right is said
to be leaked if it can be entered into a cell of the access matrix where it did not
previously exist. The safety problem poses the question whether or not some speci�c
right can be leaked. Harrison, Ruzzo and Ullman showed this problem is undecidable
in general [2]. It was further shown by Harrison and Ruzzo [3] that safety remains
undecidable even if the condition can test for rights in at most two cells of the matrix
and the primitive operations are restricted to be monotonic.y

In retrospect it is not too surprising that analysis is undecidable in this general
setting. More disappointing is the lack of interesting special cases of the access matrix
model with tractable safety, as evident from the following quote [2].

It would be nice if we could provide for protection systems an algorithm which

decided safety for a wide class of systems, especially if it included all or most of

the systems that people seriously contemplate. Unfortunately, our one result

along these lines involves a class of systems called \mono-operational," which

are not terribly realistic. Our attempts to extend these results have not suc-

ceeded, and the problem of giving a decision algorithm for a class of protection

systems as useful as the LR(k) class is to grammar theory appears very di�cult.

In response to this situation we proposed the schematic protection model (SPM) to
balance the inherently conicting goals of generality versus tractable safety analy-
sis [14]. SPM classi�es subjects and objects into protection types. The dynamic
component of a protection state consists of tickets (capabilities). The key idea is that
the rules comprising the authorization scheme are speci�ed in terms of protection
types. In particular creation is authorized by a can-create binary relation on types.
It has been previously shown that analysis is decidable provided the can-create re-
lation is acyclic [14]. In this paper we show that with arbitrary cycles in can-create
safety becomes undecidable. This gives us a natural demarcation between decidable
and undecidable safety in SPM.

Undecidability results are disappointing since they reect inherent limitations.
But in this case our disappointment is mitigated by the conjecture that most, if not
all, SPM speci�cations of practical interest will satisfy the constraints of [14]. This
is demonstrated by the examples of [12, 13, 14] and our failure to �nd any realistic
policy which cannot �t within the assumptions of [14]. It appears that decidability is
obtained for the most useful cases while undecidability follows from undue laxity in
authorizing subject creation, which can be easily prevented.

yThat is it is possible to enter a right in a cell or create new subjects and objects, but deletion

of a right from a cell or destruction of subjects and objects is not permitted.

2

The paper is organized as follows. Section 2 reviews SPM. Section 3 shows that
safety is undecidable with arbitrary cycles in can-create. The proof is by reduction
from Post's correspondence problem. Use of Post's problem for this purpose was mo-
tivated by its successful application in showing undecidable safety for the monotonic
access-matrix [3]. Our construction is quite intricate because of the local nature of
authorization rules in an SPM scheme. In section 4 we show safety remains undecid-
able even if all create operations are required to be attenuating. Roughly speaking
this requirement stipulates that tickets given to a created subject on creation should
be attenuated copies of tickets available to the creator. This is a natural restriction
whose signi�cance is highlighted by the fact that with attenuating loops (cycles of
length one) safety is decidable [14]. Section 5 concludes the paper.

2 THE SCHEMATIC PROTECTION MODEL

The key notion in SPM is that of protection types, henceforth referred to simply as
types. The domain of a subject consists of two parts: a static type-dependent part
de�ned by the authorization scheme and a dynamic part consisting of tickets. The
intuitive concept of types is that instances of the same type are treated uniformly in
the authorization scheme. The scheme is de�ned by the security administrator when
a system is �rst set up and thereafter cannot be changed. The idea is major policy
decisions are built into the scheme while details are reected in the initial distribution
of tickets. SPM entities are strongly typed, that is an entity's type cannot change.

Tickets are dynamic privileges of the form U/x , where U identi�es some unique
entity and the right symbol x authorizes the possessor of this ticket to perform some
operation(s) on U. Tickets can only be obtained by rules speci�ed in the authorization
scheme. We use the neutral term ticket rather than capability to avoid the impression
that SPM tickets are necessarily represented at run-time as capabilities. SPM tickets
have only one right symbol. For convenience we abbreviate a set of tickets for the
same entity by letting U/xyz denote fU/x , U/y , U/zg. We understand U/x to denote
the ticket U/x as well as the set fU/xg as determined by context. This allows us for
instance to write fU/x , V/yzg or U/x [V/yz interchangeably.

2.1 TYPES AND RIGHT SYMBOLS

The �rst step in de�ning a scheme is to specify disjoint sets of object types TO and
subject types TS. Their union T is the entire set of entity types. The intention
is protection types identify classes of entities which have common properties with
respect to the authorization policy. For subjects this might be membership in a
department or a distinguished position of authority in a group such as project leader.
For objects this might be a classi�cation such as an internal document or a public
document. By convention types are named in lower case and entities in upper case.

3

The type of an entity U is denoted by �(U). An entity of type u is often referred to
as an u entity.

The next, or perhaps concurrent, step is to de�ne the right symbols carried by
tickets. The set of right symbols R is partitioned into two disjoint subsets: RI the
set of inert rights and RC the set of control rights. Examples of inert rights are the
typical read, write, execute and append privileges for a �le. Because of the passive
role of inert rights with respect to the protection state, the symbols in RI require
no interpretation for safety analysis. The interpretation of symbols in RC will be
discussed shortly. Every right symbol x comes in two variations x and xc where c is
the copy ag. The only di�erence between U/x and U/xc is that the former cannot
be copied from one domain to another whereas the latter may be, provided certain
additional conditions to be de�ned shortly are true. It follows that presence of U/xc
in a subject's domain subsumes the presence of U/x but not vice versa. We use x:c
to signify x or xc with the understanding that multiple occurrences of x:c in the same
context are either all read as x or all as xc. We understand U/xyc to denote U/xc
and U/yc, that is the copy ag applies to each symbol in the string. If the copy ag
occurs in the middle of a string it applies to privileges to the left of it but not those
to the right, for instance U/xcyz denotes U/xc and U/yz .

The type of a ticket U/x:c is written as �(U/x:c) and we de�ne it to be the
ordered pair �(U)/x:c. That is the type of a ticket is determined by the type of
entity it addresses and the right symbol it carries. Conventions for representing
tickets, especially regarding the copy ag, extend in an obvious way to ticket types.
In particular �(U/x) and �(U/xc) are di�erent ticket types. This is an important
distinction because of the role of the copy ag. The entire set of ticket types is T�R.

T, R and T�R constitute the basic sets of an authorization scheme. The re-
maining components are de�ned in terms of functions and relations involving these
basic sets. SPM requires that T and R be �nite, so a scheme is de�ned by �nite
sets, relations and functions. Before considering the details we note SPM is mono-
tonic in that there are no facilities for revocation of tickets or deletion of entities.
This is a reasonable assumption for analysis purposes in most cases, by accepting the
restoration principle [14]. This principle requires that whatever can be revoked can
be restored, i.e., revocation can always be undone. Then for the worst-case we can
assume revocation does not occur. In this way SPM side steps the issue of specifying
revocation policies.

In SPM there are three operations which change the protection state: copy, de-
mand and create. Demand is not used in the construction of this paper and is men-
tioned here only for the sake of completeness. Demand in now actually known to be
formally redundant [15].

4

2.2 THE COPY OPERATION

The copy operation moves a copy of a ticket from the domain of one subject to the
domain of another leaving the original ticket intact. We often speak of copying a
ticket from one subject to another, although technically a ticket is copied from one
subject's domain to another's domain. In addition to the copy ag this operation is
authorized by a link predicate linki de�ned by control rights and its associated �lter
function fi which is a component of the scheme.

A link predicate takes two subjects, say U and V, as arguments and evaluates to
true or false. If true it establishes a connection from U to V which can be used to copy
tickets from the domain of U to the domain of V. Link predicates are de�ned in terms
of the presence of some combination of control tickets for U and V in the domains
of U and V. Formally a link predicate linki(U,V) is a conjunction or disjunction, but
not negation, of terms from the following collection for x2RC

U/x2dom(U), U/x2dom(V), V/x2dom(U), V/x2dom(V) or true

where dom(U) is the set of tickets possessed by subject U. The idea is that link
predicates are evaluated by examining the domains of the two subjects of concern
and that too only with respect to presence of control tickets for these two subjects.
To emphasize this property we say link predicates are local. That the de�nition of
a link should depend only on presence and not absence of tickets is a well-known
principle for protection [10]. In SPM a �nite collection of local link predicates are
de�ned in a scheme. Some examples of these are given below.

1. The take-grant link of [4, 7, 16] de�ned as V/g2dom(U) _ U/t2dom(U).

2. The take and grant links of [8] de�ned as U/t2dom(U) and V/g2dom(U) re-
spectively.

3. The send-receive link of [9, 11] de�ned as V/s2dom(U) ^ U/r2dom(V).

4. The broadcast link of [14] de�ned as U/b2dom(U).

5. The universal link of [14] de�ned as true.

For a given state if linki(U,V) is true we say there is a linki from U to V. We emphasize
that existence of a link is necessary but not su�cient for copying tickets.

The �nal condition required for authorizing a copy operation is speci�ed by a �lter
function fi:TS�TS! 2T�R for each predicate linki. The interpretation is that Y/x:c
can be copied from dom(U) to dom(V) if and only if all of the following are true for
some linki, where the types of U, V and Y are u, v and y respectively:

Y/xc2dom(U) ^ linki(U,V) ^ y/x:c2fi(u,v)

5

Note that Y/xc is required in dom(U) whether we are authorized to copy Y/xc or
Y/x by the �lter function. In this manner the copy ag, link predicates and �lter
functions together authorize copying. We emphasize there is a di�erent �lter function
for each link predicate.

Filter functions are a powerful tool for specifying policies. They impose mandatory
controls which are inviolable and constrain the discretionary behavior of individual
subjects. Some sample values for fi(u,v) are T�R, TO�RI and �. SPM imposes no
assumptions regarding the role of U and V in a copy operation from U to V. It is
equally acceptable that copying take place at the initiative of U or V alone or require
both to cooperate. This is consistent with a worst-case scenario for analysis in which
complete cooperation between subjects is assumed.

2.3 THE CREATE OPERATION

The create operation introduces new subjects and objects in the system. There are
two issues here: what types of entities can be created and which tickets are introduced
as the immediate result of a create operation? The �rst issue is speci�ed in a scheme
by the can-create relation cc�TS�T. The interpretation is that subjects of type u

are authorized to create entities of type v if and only if cc(u, v). It is often convenient
to regard cc as a function cc:TS! 2T .

The tickets introduced by a create operation are speci�ed by a create-rule cr for
every pair in cc. SPM create-rules are local in that the only tickets introduced are for
the creating and created entities in the domains of these two entities. The motivation
is that creation should immediately have only a local incremental impact on the state.
We emphasize there is a di�erent create-rule for each pair in cc.

Let subject U of type u create entity V of type v, so U is the parent and V the
child. If V is an object the only tickets that can be introduced by the create-rule are
inert tickets for V in U 's domain. So if v is an object type the create-rule cr(u,v)
is speci�ed as a subset of fchild/x:cjx:c2RI g where child is a special symbol. The
interpretation is that U gets V/x:c if and only if child/x:c2cr(u,v). If V is a subject
the create-rule must also specify tickets to be placed in V 's domain. So if v is a
subject type the create-rule cr(u,v) has two components crp(u,v) and crc(u,v) which
respectively specify tickets to be placed in the parent and child domains. Tickets for
the parent and child are identi�ed by the special symbols parent and child respec-
tively. That is crp(u,v) and crc(u,v) are subsets of fparent/x:c, child/x:cjx:c2Rg.
The interpretationz is the parent U gets U/x:c provided parent/x:c2crp(u,v) and gets
V/x:c provided child/x:c2crp(u,v). Similarly the child V gets U/x:c provided par-

ent/x:c2crc(u,v) and V/x:c provided child/x:c2crc(u,v).

zSlightly di�erent interpretations of the create-rules are discussed in section 4.

6

2.4 SUMMARY OF SPM

In summary SPM requires the security administrator to specify an authorization
scheme by de�ning the following �nite components.

1. A set of entity types T partitioned into subject types TS and object types TO.

2. A set of right symbols R partitioned into inert rights RI and control rights RC.

3. A collection of local link predicates flinkig.

4. A �lter function fi:TS�TS! 2T�R for each predicate linki.

5. A can-create relation cc�TS�T. Equivalently, cc:TS! 2T .

6. A local create-rule for each pair in cc.

A system is speci�ed by de�ning an authorization scheme and the initial protection
state, i.e., the initial set of entities and the initial distribution of tickets. Thereafter
the protection state evolves by copy and create operations. In SPM we say a right x is
leaked if a ticket with the x right can be entered in a domain where it previously did
not exist. The safety problem poses the question whether or not a particular right x
can be leaked.

3 UNDECIDABILITY OF SAFETY FOR SPM

Let x [1]$y [1], x [2]$y [2], . . . , x [n]$y [n], be a �nite sequence of pairs of nonempty
strings over some alphabet � not containing the symbols (and). Post's corre-
spondence problem asks if there is a �nite sequence of integers i1i2. . . ik such that
x [i1]x [i2]. . . x [ik] = y [i1]y [i2]. . . y [ik]. It is one of the classic undecidable problem and
remains undecidable even if the solution sequence is constrained to begin with the
�rst pair, that is i1=1 (see [6] for instance). Consider the following variation of Post's
problem.

1. Augment � by introducing two new symbols (and).

2. Replace each symbol z2� in the strings x [i], y [i] by the string (z).

It is obvious that any solution sequence for the modi�ed strings is also a solution
sequence for the original problem and vice versa. We call the class of problems
obtained by this replacement as Post's problem with parenthesis, abbreviated pcp().

In this section we reduce pcp() to the safety problem for SPM systems. Each
string in pcp() has at least three symbols. Moreover in a sequence of x strings or y

7

strings no two consecutive symbols are identical. These properties are exploited in
our construction and proof.

For a given instance of pcp() we construct the corresponding SPM system as
follows. Let x [i,l] signify the lth position in x [i] for l=1. . . li. Similarly let y [i,m]
signify the mth position in y [i] for m=1. . .mi. We de�ne a subject type for each
position in each string as follows.

1. TS = fx [i,l], y [i,m]j i=1. . .n, l=1. . . li, m=1. . .mig

The symbols at these positions are denoted by sym(x [i,l]) and sym(y [i,m]).

We simulate a pair of strings x [i]$y [i] in the following way. Subjects of type
x [i,l] are authorized to create subjects of type x [i,l+1], for l=1. . . li-1. Subjects of
type x [i,li], which simulate the end position of x [i], are authorized to create subjects
of type y [i,mi] to simulate the end position of y [i]. Preceding positions of y [i] are
simulated by creating them backwards. That is subjects of type y [i,m] are authorized
to create subjects of type y [i,m-1], for m=mi. . . 2. To simulate a paired sequence of x
and y strings, subjects of type x [i,li] are authorized to create subjects of type x [j,1].
The latter in turn can create the pair of strings x [j]$y [j]. This leads to the following
de�nition of can-create, stated for convenience as a function.

2. For i=1. . .n
For l=1. . . li-1, cc(x [i,l]) = fx [i,l+1]g
cc(x [i,li]) = fy [i,mi]g [fx [j,1]j j=1. . .ng
For m=mi. . . 2, cc(y [i,m]) = fy [i,m-1]g
cc(y [i,1]) = �

This de�nition of cc is cyclic since subjects of type x [i,l] can indirectly create subjects
of type x [j,k] and vice versa.

Points 1 and 2 above are critical to the construction, particularly the idea of
simulating the x [i] and y [i] strings respectively by a forward and backward sequence
of creates, and connecting these strings at their end points. We can visualize cc as
shown in �gures 1 and 2. Each circle represents the subject type indicated alongside.
Each edge represents the direction in which creation is authorized. Figure 1 pictures
cc vertically. It shows that a x [i,1] subject can create a x [i,2] subject and so on to
form a sequence corresponding to the string x [i]. The x [i,li] subject at the end of this
sequence can create a y [i,mi] subject as well as x [j,1] subjects for j=1. . .n. The y [i,mi]
subject can create a y [i,mi-1] subject and so on to form a sequence corresponding to
the string y [i]. In the same way each x [j,1] subject can \grow" a pair of x [j] and y [j]
strings. This pattern can be repeated inde�nitely. If we follow a path such as the one
straight below x [i,1] we can visualize a sequence of x strings paired with y strings as
shown in �gure 2. This gives us a horizontal view of cc ignoring the fan-out at the
x [i,li] subjects. This view is particularly useful for understanding the construction
and proof.

8

We can set up the create-rules to introduce appropriate links between adjacent
subjects in �gure 2. This is almost enough to simulate a sequence of x strings
x [i1]x [i2]. . . x [ik] paired with a corresponding sequence of y strings y [i1]y [i2]. . . y [ik].
There is however a missing connection between the end points of the y strings, for
instance between the y [i,mi] and y [j,1] subjects. Establishing this missing connection
properly is the main complication. Particularly in that we want to prevent a similar
connection from occurring between the y [i,mi] and y [k,1] subjects. The key idea here
is that the y [i,mi] subject is a direct child of the x [i,li] subject, while the y [j,1] subject
is a closer descendant of the x [i,li] subject than the y [k,1] subject is. By carefully
specifying the create-rules and �lter functions we are able to establish the desired con-
nection between the y [i,mi] and y [j,1] subjects by a sequence of copy operations while
preventing a similar connection between the y [i,mi] and y [k,1] subjects. Once we are
able to ensure the missing connections are properly established it remains to match
the sequence of x strings and y strings subject by subject. This is done backwards
by testing for a match at the end points of these two sequences. If a match exists it
permits the subjects at the immediately preceding positions of the two sequences to
be tested for a match and so on working our way back to the starting positions. This
is the intuition behind the rest of the construction.

We de�ne the following right symbols and link predicates with mnemonic signi�-
cance as indicated.

3. RC = fa:c, e:c, m:c, p:c, r:c, t:cg, RI = fl:cg
Read as: a-adopt, e-end, l -leak, m-match, p-predecessor, r -refer, t-test.

4. links(U,V) � U/p 2 dom(V) Successor link
linkp(U,V) � V/p 2 dom(U) Predecessor link
linke(U,V) � U/e 2 dom(V) _ V/e 2 dom(U) End link
linkr(U,V) � V/r 2 dom(U) Refer link
linka(U,V) � U/a 2 dom(V) Adopt link
linkt(U,V) � U/t 2 dom(V) ^ V/t 2 dom(U) Test link
linkm(U,V) � U/m 2 dom(V) ^ V/m 2 dom(U) Match link
linkl(U,V) � U/m 2 dom(V) ^ V/mr 2 dom(U) Leak link

Recall that links which do not exist in the initial state can be established by create-
rules as a side e�ect of creation or by copy operations.

We now describe the role of the various links in our construction. Predecessor and
successor links are established by the same right symbol p but in opposite directions.
That is if U/p2dom(V) we have links(U,V) and linkp(V,U). In this case �(U) corre-
sponds to the position that immediately precedes the position corresponding to �(V)
in a sequence of x or y strings. The links's are established in a pattern corresponding
to the left to right direction in �gure 2 with linkp's in the opposite direction. For
the most part linkp and links are established by creation. The exceptions are linkp's
and links's corresponding to the missing connections of �gure 2, which are established

9

by copy operations. The end, refer and adopt links are used for this purpose. The
end link connects an x [j,lj] subject to a y [j,mj] subject which it creates. The refer
link has a non-empty �lter function only from an x [j,1] subject to a y [j,1] subject.
It is established by a sequence of copy operations over links's from y [j,m] subjects
to y [j,m+1] subjects, a copy operation over a linke from a y [j,mj] subject to a x [j,lj]
subject, and �nally a sequence of copy operations over linkp's from x [j,l] subjects to
x [j,l -1] subjects. The refer link is then used to set up an adopt link from a y [i,mi]
subject to a y [j,1] subject, which in turn is used to establish the above mentioned
missing connections. The test and match links are used to match a paired sequence of
x strings and y strings working backwards from the end points. These bi-directional
links have non-empty �lter functions only between x [i,l] and y [j,m] subjects. A test
link between X and Y can be converted to a match link if and only if sym(�(X)) =
sym(�(Y)). A match link in turn is used to establish a test link by copy operations
between subjects to which X and Y have linkp's. To begin this process test links are
introduced at the end points by the create-rules for cc(x [i,li],y [i,mi]). De�nition of
the leak link amounts to requiring the match link and the refer link. The leak link
can only be used to copy a x [1,1]/l ticket from a x [1,1] subject to a y [1,1] subject.
It reduces the problem of �nding a solution to a given instance of pcp() to that of
establishing a leak link from a x [1,1] subject to a y [1,1] subject.

The above considerations motivate the following de�nitions for the �lter functions.
Values not explicitly de�ned are empty by default.

5. For i=1. . .n,
For l=1. . . li-1,

fp(x [i,l+1], x [i,l]) = fy [k,q]/t j k=1. . .n, q=1. . .mkg [y [i,1]/rc
For m=1. . .mi-1,

fp(y [i,m+1], y [i,m]) = fx [k,q]/t j k=1. . .n, q=1. . . lkg
For j=1. . .n,

fp(x [i,1], x [j,lj]) = fy [k,q]/t j k=1. . .n, q=1. . .mkg
fp(y [i,1], y [j,mj]) = fx [k,q]/t j k=1. . .n, q=1. . . lkg

For i=1. . .n,
For l=1. . . li-1,

fs(x [i,l], x [i,l+1]) = x [i,l]/tc
For m=1. . .mi-1,

fs(y [i,m], y [i,m+1]) = y [i,m]/tc [y [i,1]/rc
For j=1. . .n,

fs(x [i,li], x [j,1]) = x [i,li]/tc [y [i,mi]/ac
fs(y [i,mi], y [j,1]) = y [i,mi]/tc

For i=1. . .n, fe(y [i,mi], x [i,li]) = y [i,1]/rc

For i=1. . .n, fr(x [i,1], y [i,1]) = fy [j,mj]/aj j=1. . .ng

For i=1. . .n, j=1. . .n, fa(y [i,mi], y [j,1]) = y [i,mi]/p

10

For i=1. . .n, j=1. . .n, l=1. . . li, m=1. . .mj ,

ft(x [i,l], y [j,m]) =

(
x [i,l]/m if sym(x [i,l]) = sym(y [j,m])
� otherwise

ft(y [j,m], x [i,l]) =

(
y [j,m]/m if sym(x [i,l]) = sym(y [j,m])
� otherwise

For i=1. . .n, j=1. . .n, l=1. . . li, m=1. . .mj ,

fm(x [i,l], y [j,m]) =

(
fx [k,lk]/tcj k=1. . .ng if l=1
x [i,l -1]/tc otherwise

fm(y [j,m], x [i,l]) =

(
fy [k,mk]/tcj k=1. . .ng if m=1
y [j,m-1]/tc otherwise

fl(x [1,1], y [1,1]) = x [1,1]/l

The create-rules ensure that each subject has the mc and tc tickets for itself and
introduce test and end links at the end points of a pair of x [i]$y [i] strings. They
also establish the predecessor and successor links. Finally they introduce copiable
refer, adopt and predecessor tickets required to establish the missing connections of
�gure 2. The formal statement of these rules is given below.

6. For i=1. . .n, l=1. . . li-1,
crp(x [i,l], x [i,i+1]) = �

crc(x [i,l], x [i,i+1]) = child/mtc [parent/p

For i=1. . .n, m=mi. . . 2,
crp(y [i,m], y [i,m-1]) = child/p

crc(y [i,m], y [i,m-1]) =

(
child/mrtc if m=2
child/mtc otherwise

For i=1. . .n, j=1. . .n,
crp(x [i,li], x [j,1]) = �

crc(x [i,li], x [j,1]) = child/mtc [parent/p

For i=1. . .n,
crp(x [i,li], y [i,mi]) = child/act
crc(x [i,li], y [i,mi]) = child/mptc [parent/et

Points 1 through 6 enumerated above de�ne the corresponding SPM scheme for a
given instance of pcp(). To complete the construction we need to specify the initial
state, which we de�ne as follows.

7. The initial state consists of a single subject X1[1,1], whose type is x [1,1], with
dom(X1[1,1]) = X1[1,1]/lmtc.

The safety question is whether l can be leaked in the SPM system de�ned by points
1 through 7 above.

11

Naming Conventions. It is useful to name subjects so their types are evident
from their names to the extent possible. Subjects with names of the form X [i,l] or
Xk[i,l] are understood to be of type x [i,l]. Similarly subjects with names of the form
Y [i,m] or Yk[i,m] are understood to be of type y [i,m]. When we use X, X 0 or X 00 as
the names of subjects we understand these are of types x [i,l] for unspeci�ed i and l.
Similarly subjects with names Y, Y 0 or Y 00 are understood to be of types y [j,m] for
unspeci�ed j and m.

The if part of the reduction is straightforward from the construction. The main
steps are summarized below.

Theorem 1 If an instance of pcp() has a solution then l can be leaked in the corre-
sponding SPM system.

Proof: Let 1i2. . . ik be a solution so x [1]x [i2]. . . x [ik] = y [1]y [i2]. . . y [ik]. Starting
with X1[1,1] construct a paired sequence of x and y strings, as indicated in �gure 2,
in the order 1i2. . . ik. Establish the missing links's as outlined earlier. The create-
rules introduce linkt's between Xik [ik,lik] and Yik [ik,mik] at the end points of these
sequences. Copy Xik

[ik,lik]/m from Xik
[ik,lik] to Yik [ik,mik] and vice versa via linkt's.

Use the resulting linkm's in conjunction with linkp's to establish linkt's between the
predecessors of Xik [ik,lik] and Yik [ik,mik]. Repeat this procedure to propagate linkm's
to the beginning of the paired sequence, i.e., between X1[1,1] and Y1[1,1]. This is
possible because sym(�(X)) = sym(�(Y)) all along. Finally copy Y1[1,1]/rc from
Y1[1,1] to X1[1,1] which, in conjunction with linkm, sets up a linkl from X1[1,1] to
Y1[1,1]. So X1[1,1]/l can be leaked from X1[1,1] to Y1[1,1]. 2

As is usual in reduction proofs the more di�cult part is to show the converse property.
The fact that no consecutive identical symbols occur in a sequence of x strings or y
strings in pcp() is crucial to the proof.

Theorem 2 If l can be leaked in the corresponding SPM system the given instance
of pcp() has a solution.

Proof: The only lc ticket is X1[1,1]/lc in the initial domain of X1[1,1], so l can be
leaked only by copying X1[1,1]/l from X1[1,1] to some y [1,1] subject, say Y1[1,1], via
a linkl. This amounts to requiring linkm and linkr from X1[1,1] to Y1[1,1]. A linkm
between X and Y subjects can be established only by mutual exchange of each other's
m tickets using linkt's, which requires sym(�(X)) = sym(�(Y)). The linkt's in turn
are established by create-rules or copy operations. Creation establishes linkt's only
at the end points of x and y strings, in which case we also have linke(X,Y). (Because
each string in pcp() has at least three symbols X1[1,1] and Y1[1,1] are not at the end
points, so this case does not apply to them.) Otherwise we must somehow copy Y/t to
X and vice versa. X can obtain Y/t in one of two ways shown in �gures 3(a) and 3(b).
Each edge depicts the link indicated by the label in the middle. In �gure 3(a) Y/tc

12

can be copied from Y to Y 0 and from Y 0 to X 0, and then Y/t can be copied from
X 0 to X. In �gure 3(b) Y/tc can be copied from Y to Y 0 and from Y 0 to X. Y can
similarly obtain X/t in one of two ways shown in �gures 3(a) and 3(c). However the
situations of �gures 3(b) and 3(c) cannot occur simultaneously. This is because fs is
non-empty only if �(Y) and �(Y 0) correspond to successive positions in a sequence
of y strings, and similarly for �(X) and �(X 0) with regard to x strings. Now for pcp()
it is not possible to simultaneously have

sym(�(X))=sym(�(Y 0)) ^ sym(�(Y))=sym(�(X 0))

Therefore a linkt can be established by copy operations only in the situation of �g-
ure 3(a) which requires a linkm between X 0 and Y 0. By applying this argument induc-
tively it follows linkm(X1[1,1],Y1[1,1]) implies there exist X 0 and Y 0 with linke(X

0,Y 0)
and a successor path (sequence of links's) from X1[1,1] to X 0 and from Y1[1,1] to Y 0

such that:

1. Identical words are formed by the symbols corresponding to the subject types
traversed by the successor path from X1[1,1] to X 0 and from Y1[1,1] to Y 0.

2. The types of subjects traversed by the successor path from X1[1,1] to X 0 cor-
respond to a sequence of x strings, while the types of subjects traversed by the
successor path from Y1[1,1] to Y 0 correspond to a sequence of y strings.

It remains to show the sequences of x and y strings asserted above must be pairwise
identical so they form a solution to pcp(). Now all subjects are ultimately descen-
dants of X1[1,1]. So for every subject there is a chain of its ancestors going back to
X1[1,1]. Let !(Y [i,1]) signify the closest x [i,1] ancestor of Y [i,1]. It is evident that
linkr(X1[1,1],Y1[1,1]) implies X1[1,1] = !(Y1[1,1]). This property ensures the desired
result. Note there is a unique successor path from X1[1,1] to X 0 because links's from
x [i,l] subjects are established only by creation. On the other hand there may be mul-
tiple successor paths from Y1[1,1] to Y 0. To see this consider that the y [j,2] subject
in �gure 2 may have several y [j,1] children, to all of whom the y [i,mi] subject can
have links's. However this fan-out to multiple successor paths converges at the y [j,mj]
subject. It follows that all successor paths from Y1[1,1] to Y 0 traverse the same y

strings. Moreover a links from Y [i,mi] to Y [j,1] can be established by copy operations
only if the creator X [i,li] of Y [i,mi] is also the creator of X [j,1] = !(Y [j,1]). But then
if we have X 0 and Y 0 with linke(X

0,Y 0) and successor paths from X1[1,1] to X 0 and
from Y1[1,1] to Y 0, these paths must traverse pairwise identical sequences of x and y

strings. So if the symbols in these sequences form the same word we have a solution
to pcp(). 2

13

4 ATTENUATING CREATE-RULES

In this section we show safety remains undecidable even if all create operations are
required to be attenuating. The general idea behind the attenuating restriction is
that tickets given to a child at the moment of creation should be somehow derived
from tickets available to its parent. Then, at least with respect to tickets, the child
will be \no more powerful" than its creator. Of course in SPM the type of the child
may give it more power in the scheme than its parent has. For example consider
the broadcast link linkb(U,V) de�ned by U/b2dom(U). That is a subject with the
self/b ticket has a broadcast link to everybody in the system. The motivation for
the attenuating restriction is that the child should get the broadcast ticket only if
the parent also has the broadcast ticket. However the broadcast links from the child
may be much more powerful than broadcast links from the parent as determined by
fb. The attenuating restriction was pro�tably used in our earlier work where it was
shown that safety is decidable with loops (cycles of length one) in can-create provided
the create-rules for loops are attenuating [14]. For loops the child and parent are of
the same type so by attenuating the tickets we were really ensuring the child is \no
more powerful" than its parent.

The safety algorithm of [14] is based on the observation that without creates safety
is easily determined in polynomial time by simply executing copy operations until the
state stabilizes. Creation is accommodated by breaking the analysis into two phases,
as follows.

1. From the initial state construct an augmented state by create operations alone.

2. Compute the no-creates stable state from the augmented state of phase 1.

This strategy works provided we have a method for constructing a suitable augmented
state. We have just shown in section 3 that there is no such method in general. On
the other hand for acyclic can-create there is a straightforward method for phase 1.
Let each subject create one entity of every type it is authorized to create. Repeat this
procedure for all children and so on. Clearly then phase 1 is guaranteed to terminate
if and only if cc is acyclic. This method correctly analyzes safety because if a subject
creates two entities of the same type there is no di�erence between them as far as
the scheme is concerned. So from a worst-case viewpoint it su�ces to create just
one. In [14] this method was extended to handle attenuating loops by letting each
subject create one child of its own type, if so authorized, and then simply ignoring
the child for further creation in phase 1. This demonstration was important because
attenuating loops were required to simulate models such as take-grant [7] in SPM.

With acyclic cc the tree of descendants created by a subject has �nite depth,
although its breadth is unbounded. As indicated above unbounded breadth is of
no consequence for safety because multiple children of the same type add no power.
The previous section shows that in general the tree cannot be truncated at some

14

computable depth. For attenuating loops however the analysis of [14] allows us to
truncate the tree very easily. This naturally leads us to consider whether this idea
can be generalized to cycles of length greater than one. In this section we show this
is not possible.

The �rst component of the attenuating restriction is that a newly created subject
should not get more tickets than its creator. In our notation this is stated as follows.

I. crc(u,v) � crp(u,v)

This requirement seems almost necessary for any meaningful notion of attenuating.
However it not enough by itself. For instance crc = crp = fchild/bg satis�es this
condition and introduces a broadcast ticket for the child in the child and parent
domains. However the latter is totally useless. We clearly need to relate self/b in
the child domain to self/b in the parent domain. We can achieve this in a number of
ways. Perhaps most straightforward is to interpret create-rules as upper bounds on
the tickets which will actually be introduced, as follows.

II. Only those parent/x:c and child/x:c tickets for which self/x:c ticket is already
present in the creator's domain prior to the create operation, will be actually
introduced by the create-rule.

Note that in this case parent/x:c in crp(u,v) has no e�ect. This formulation is con-
servative in that tickets introduced by creation are truly derived from self tickets in
the parent domain. We can even be more strict and require the strongly conservative
formulation below.

II0. Only those parent/x:c and child/x:c tickets for which self/xc ticket is already
present in the creator's domain prior to the create operation, will be actually
introduced by the create-rule.

In this case the parent is required to possess the xc ticket for itself before the create
operation even if the create-rule only introduces x tickets. The actual formulation
chosen in [14] was the following non-conservative one. It stipulates that if a ticket for
the created subject is placed in the creator's domain the creator should also get the
corresponding ticket for itself.

II00. If child/x:c2crp(u,v) then parent/x:c2crp(u,v).

With this formulation the parent may actually possess new tickets for itself as a result
of creating a child. In a sense it makes creation attenuating after the fact rather then
forcing it to be attenuating before the fact.

It turns out it really does not matter which of these formulations we chose. Safety
is undecidable in general for all cases. We modify the create-rules for the scheme of
section 3 to be attenuating as follows.

15

60. For i=1. . .n, l=1. . . li-1
crp(x [i,l], x [i,l+1]) = parent/aemprtc [child/aemprtc

crc(x [i,l], x [i,l+1]) = child/aemprtc [parent/p

For i=1. . .n, m=mi. . . 2
crp(y [i,m], y [i,m-1]) = parent/aemprtc [child/aemprtc

crc(y [i,m], y [i,m-1]) = child/aemprtc

For i=1. . .n, j=1. . .n
crp(x [i,li], x [j,1]) = parent/aemprtc [child/aemprtc

crc(x [i,li], x [j,1]) = child/aemprtc [parent/p

For i=1. . .n
crp(x [i,li], y [i,mi]) = parent/aemprtc [child/aemprtc

crc(x [i,li], y [i,mi]) = child/aemprtc [parent/et

To accommodate the conservative variations of the attenuating restriction we modify
the initial state of the construction of the previous section to be as follows.

70. The initial state consists of a single subject X1[1,1], whose type is x [1,1], with
dom(X1[1,1]) = X1[1,1]/aelmprtc.

With this initial state the three formulations of the attenuating restriction are all
equivalent.

It is clear that with the create-rules of 60 and the initial state of 70 every subject
will possess the aemprtc tickets for itself and for its children. We now show that this
has no e�ect with respect to leaking l.

Theorem 3 l can be leaked in the original SPM system of section 3 if and only if
it can be leaked in the system obtained by modifying the create-rules to 60 and the
initial state to 70.

Proof: Since every ticket in the original system is also present in the modi�ed system,
if l can be leaked in the original system it can also be leaked in the modi�ed system.
For the converse we show the additional tickets in the modi�ed system are of no
consequence. In the modi�ed system every subject possesses self/aemprtc for itself
and child/aemprtc for every child. Consider the di�erent rights in turn. In both
systems only child/ac tickets for y [i,mi] subjects can be copied and the other ac

tickets in the modi�ed system do not establish signi�cant links, i.e., links with non-
empty �lter functions. Similarly ec tickets cannot be copied in either system and
introduce the same signi�cant links between a x [i,li] subject and its y [i,mi] child.
The self/mc ticket exists for every subject in both systems. Since child/m:c tickets
cannot be copied the only signi�cant linkm's that may result due to these are between
some X [i,li] and its Y [i,mi] child. However we still need to copy X [i,li]/m from X [i,li]
to Y [i,mi] in which case we can also copy Y [i,mi]/m from Y [i,mi] to X [i,li] in the
original system. Similar arguments can be made for the prtc rights. 2

16

5 CONCLUSION

We have shown that safety for SPM systems with cyclic can-create relations is in
general undecidable. This complements our earlier result that with acyclic can-create
safety is decidable [14]. In [14] we also showed that safety remains decidable with loops
(cycles of length one) in can-create provided the create-rules for loops are attenuating.
We believe that attenuating loops cover all practical systems that might be considered,
and have been unable to formulate a realistic SPM system for which this restriction
cannot be met. In section 4 we have shown that extending the attenuating restriction
to all create-rules still leaves the safety problem undecidable. An interesting open
question is whether or not SPM schemes with non-attenuating loops have a decidable
safety problem.

The SPM framework has a rich structure and numerous theoretical questions can
be posed. The ones of greatest interest at the moment pertain to the modeling power
of SPM. In particular how does SPM compare in power with the monotonic access
matrix of Harrison and Ruzzo [3]? It is quite straightforward to express an SPM
system in the latter formulation. Whether the converse is true is a crucial open
question. We would be pleased if it turns out to be the case. Then SPM could be
viewed as an alternate formulation of the monotonic access matrix but with richer
structure and a natural demarcation between its decidable and undecidable cases.

Acknowledgment. I am grateful to my colleague Timothy Long of Ohio State
University for comments on a draft of this paper. I am also indebted to the referees.
Their comments have greatly improved the paper.

References

[1] Graham, G.S. and Denning, P.J. \Protection - Principles and Practice." Pro-

ceedings of the AFIPS Spring Joint Computer Conference 40:417-429 (1972).

[2] Harrison, M.H., Ruzzo, W.L. and Ullman, J.D. \Protection in Operating Sys-
tems." Communications of ACM 19(8):461-471 (1976).

[3] Harrison, M.H. and Ruzzo, W.L. \Monotonic Protection Systems." In Founda-

tions of Secure Computations. DeMillo, R.A., Dobkin, D.P., Jones, A.K. and
Lipton, R.J. (Editors). Academic Press (1978).

[4] Jones, A.K., Lipton, R.J. and Snyder, L. \A Linear Time Algorithm for Deciding
Security." 17th IEEE Symposium on the Foundations of Computer Science, 337-
366 (1976).

17

[5] Lampson, B.W. \Protection." 5th Princeton Symposium on Information Sci-

ence and Systems, 437-443 (1971). Reprinted in ACM Operating Systems Review

8(1):18-24 (1974).

[6] Lewis, H.R. and Papadimitriou, C.H. Elements of the Theory of Computation.

Prentice-Hall (1981).

[7] Lipton, R.J. and Snyder, L. \A Linear Time Algorithm for Deciding Subject
Security." Journal of ACM 24(3):455-464 (1977).

[8] Lockman, A. and Minsky, N. \Unidirectional Transport of Rights and Take-
Grant Control." IEEE Transactions on Software Engineering SE-8(6):597-604
(1982).

[9] Minsky, N. \Selective and Locally Controlled Transport of Privileges." ACM

Transactions on Programming Languages and Systems 6(4):573-602 (1984).

[10] Saltzer, J.H. and Schroeder, M.D. \The Protection of Information in Computer
Systems." Proceedings of IEEE 63(9):1278-1308 (1975).

[11] Sandhu, R.S. Design and Analysis of Protection Schemes Based on the Send-

Receive Transport Mechanism. PhD Thesis, Rutgers University, Department of
Computer Science (1983).

[12] Sandhu, R.S. \The SSR Model for Speci�cation of Authorization Policies: A
Case Study in Project Control." 8th IEEE International Computer Software and

Applications Conference, 482-491 (1984).

[13] Sandhu, R.S. and Share, M.E. \Some Owner Based Schemes with Dynamic
Groups in the Schematic Protection Model." IEEE Symposium on Security and

Privacy, 61-70 (1986).

[14] Sandhu, R.S. \The Schematic Protection Model: Its De�nition and Analysis for
Acyclic Attenuating Schemes." Journal of ACM 35(2):404-432 (1988).

[15] Sandhu, R.S. \The Demand Operation in the Schematic Protection Model."
Information Processing Letters 32(4):213-219 (1989).

[16] Snyder, L. \Formal Models of Capability-Based Protection Systems." IEEE

Transactions on Computers C-30(3):172-181 (1981).

18

x [i, 1]

x [i, 2]

x [i, l]

x [j, 1]

x [j, 2]

x [j, l]

x [k, 1]

x [1, 1]y [i, m]

y [i, 2]

y [i, 1]

y [j, 2]

y [j, 1]

x [1, 1] x [n, 1]

x [n, 1]i

j

i

y [j, m]

j

Figure 1: Vertical view of can-create.

19

x[i, 1] x[i, l] x[j, 2]

y[j, 2]y[j, 1]

x[i, 2] x[j, 1]

y[i, 1] y[i, 2] y[i, m] y[j, m]

x[k, l]

y[k, m]y[k, 2]y[k, 1]

x[k, 2]x[k, 1]i

ji

kx[j, l]j

k

Figure 2: Horizontal view of can-create.

s

m

s

s

m

X X’

Y

X’X

Y’Y

s

X

m

Y Y’

(a)

(b) (c)

Figure 3: Establishing a test link.

20

