
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
Published online 28 November 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3446

SPECIAL ISSUE PAPER

Multi-tenancy authorization models for collaborative
cloud services

Bo Tang1,2, Ravi Sandhu1,2 and Qi Li3,1,*,†

1Institute for Cyber Security, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
2Department of Computer Science, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

3Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China

SUMMARY

The cloud service model intrinsically caters to multiple tenants, most obviously not only in public clouds but
also in private clouds for large organizations. Currently, most cloud service providers isolate user activities
and data within a single tenant boundary with no or minimum cross-tenant interaction. It is anticipated
that this situation will evolve soon to foster cross-tenant collaboration supported by Authorization as a
Service. At present, there is no widely accepted model for cross-tenant authorization. Recently, Calero
et al. informally presented a multi-tenancy authorization system (MTAS), which extends the well-known
role-based access control model by building trust relations among collaborating tenants. In this paper, we
formalize this MTAS model and propose extensions for finer-grained cross-tenant trust. We also develop an
administration model for MTAS. We demonstrate the utility and practical feasibility of MTAS by means of
an example policy specification in extensible access control markup language. To further test the metrics
of the model, we develop a prototype system and conduct experiments on it. The result shows that the
prototype has 12-ms policy decision overhead on average and is scalable. We anticipate that researchers
will develop additional multi-tenant authorization models before eventual consolidation and convergence to
standard industry practice. Copyright © 2014 John Wiley & Sons, Ltd.

Received 10 March 2014; Revised 20 October 2014; Accepted 5 November 2014

KEY WORDS: security models for cloud computing; access control in collaboration environments;
role-based access control, reputation, and trust; fundamentals and frameworks for security
in collaboration systems; privacy protection for collaboration systems

1. INTRODUCTION

As cloud adoption increases, cloud service providers (CSPs) are seeking ways to improve their
service capabilities. A natural approach, as the recent trend suggests [1], is to establish collaborative
relations among cloud services, especially at the Software as a Service (SaaS) layer [2]. Thereby, the
resources of a cloud service are available not only to its original users but also to users from other
collaborators. Collaboration among cloud services mitigates the data lock-in issue [3] and brings
new opportunities for more sophisticated services. However, the mashup of user activities and data
across collaborators raises security and privacy issues.

Typically, SaaS CSPs have their services hosted by Platform as a Service clouds in which the SaaS
services are treated as tenants and segregated by the multi-tenancy mechanism [2]. Collaborations
among tenants require an adaptive access control model. The model has to cope with the different
access control mechanisms and policies in different tenants. Moreover, the agility, flexibility, and

*Correspondence to: Qi Li, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
†E-mail: qi.li@sz.tsinghua.edu.cn

Copyright © 2014 John Wiley & Sons, Ltd.

2852 B. TANG, R. SANDHU AND Q. LI

granularity of such a model should also be considered. Clearly, maintenance of sensitive information
for each collaborator is crucial.

We identify some characteristics of the cloud environment, along with the corresponding
requirements in collaborative access control models, as follows.

� Centralized facility. CSPs typically present an abstraction of their services as a pool of
computing resources to their clients. Because the resources are centralized in the cloud,
fully decentralized access control models used in traditional distributed environments are not
appropriate or suitable.
� Agility. A tenant in a cloud may be created for temporary use and deleted afterwards. So access

control models in clouds should also be agile and flexible enough to cope with this kind of
usage on demand.
� Homogeneous architecture. The services in a cloud are supposed to be equal in quality, as

most CSPs build and maintain cloud systems with homogeneous infrastructures while the user
configurations are different. Therefore, the access control model in different tenants tends to be
similar, especially in SaaS.
� Out-sourcing trust. Cloud users intrinsically out-source part of their IT infrastructures to CSPs

in order to lower the cost so that trust relations between the two parties are already established.
Collaborations among tenants also need similar trust relations, which can be developed through
their common trust in the CSP.

Currently, CSPs use single sign-on techniques to achieve authentication and simple authorization
in federated cloud environments, but fine-grained authorizations are typically not supported. NASA
has integrated role-based access control (RBAC) into Nebula [4], a private cloud system. Although
traditional RBAC enables fine-grained access control mechanisms in clouds, it lacks the ability to
manage collaborations. IBM [5] and Microsoft [6] proposed a resource sharing approach in data-
centric clouds using database schema, but this approach is specialized to databases and cannot be
directly applied to other types of services. Collaboration models in traditional access control models,
such as RT [7] and dRBAC [8], use credentials to securely communicate among collaborators.
The management of credentials remains a problem which could be avoided in cloud environments
because of the existence of centralized facilities.

To achieve collaborations among cloud services, Calero et al. [9] proposed a multi-tenancy autho-
rization system (MTAS) by extending RBAC with a coarse-grained trust relation. The authorization
policies and trust assertions are stored in a centralized knowledge base. The authorization decisions
are also made in a centralized policy decision point (PDP). Calero et al. described an authorization
model and a trust model in an informal way, while noting that the trust relation is coarse-grained
and open for extensions.

In this paper, we abstract the collaborative access control mechanisms of MTAS in a formal
model. Additionally, we propose an administration model for MTAS (AMTAS) and build finer-
grained enhancements upon the trust model. The administration model formally specifies the
administrative functions managing authorization policies and trust assertions with decentralized
authority. One enhancement of the trust model introduces truster-centric public role (TCPR)
constraints over the trust relation, that is, a truster only exposes its predefined public roles to its
trustees. This approach limits unnecessary disclosure of the trusters’ sensitive information in the
collaboration processes. Beyond TCPR, we also give an even finer-grained trust model, relation-
centric public role (RCPR) by defining public roles with respect to a specific trust relation. To further
investigate the feasibility of MTAS, we develop MTAS policy specification in extensible access
control markup language (XACML) and a prototype system in a private cloud environment.

The rest of the paper is organized as follows. Section 2 presents the use case of multi-tenant
collaborations in the cloud and discusses current approaches in context of this example. The formal
model of MTAS is presented in Section 3 along with its administration model and enhancements in
the trust model. In Section 4, we use an example to walk through our MTAS policy specification in
XACML. Our prototype implementation and benchmarking experiments are described in Section 5.
Section 7 concludes the paper.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2853

2. BACKGROUND AND MOTIVATION

In order to provide a variety of services, collaborations are increasingly common in IT systems, espe-
cially in distributed systems. Yet, collaborations among services are not fully supported in today’s
cloud environment. In part, because of this lack, data lock-in issues are rated as second of the top
10 issues for cloud computing adoption [3]. User data are usually contained within one service and
not easily used in others. This results in inconvenience and waste of resources. For example, a user
may want to open one of their own files stored in Dropbox directly on the cloud, but Dropbox does
not support this function. To achieve this result, a common approach is that the user downloads the
file to their local machine and uploads it to another cloud service. In this way, the barrier between
the two cloud services is mitigated by the intermediate local machine with extra communications,
operations, and storage space. Directly building collaborations across these current barriers may be
a more effective solution.

2.1. Case study

Out-sourcing is the essence of cloud computing. The trust relation between cloud users and CSPs
is very similar to the familiar trust relation between organizations and their contracted out-sourcing
companies. We use a typical out-sourcing case, as described in the following, to explain the models.

In the out-sourcing example as shown in Figure 1, Enterprise (E), Out-Sourcing (OS) Company,
and Auditing Firm (AF) are three independent organizations using cloud storage service, coding
service, and reporting service, respectively. The yellow lines represent the cloud service boundaries.
Similar to the pavement markings, the double solid line means ‘do not pass’ and the double line with
one side solid and the other side broken means ‘one way pass only’ from the broken side. Let ‘.’
denote the affiliation relation between a tenant and an organization, for example, Dev:E represents
the development tenant on the cloud storage service of E. As some of E’s application development
is out-sourced to OS , the developer Charlie from OS is authorized to access the source code
stored in Dev:E. In the meanwhile, E has a contracted AF to execute external auditing of E’s
financial and application development projects on a regular basis, so that the auditorAlice fromAF

is allowed to have read-only accesses to both Acc:E and Dev:E. The human resource information
of E is stored in HR:E, which is not accessible externally.

2.2. Current approaches

Access control problems in collaborative environments have been extensively addressed in the
research community. Many extensions of RBAC [10, 11] have been proposed to enable multi-
domain access control [12–15]. In these approaches, the presence of a centralized authority is
required. It acts as an administrator to manage collaborative policies among domains. However,

Figure 1. An out-sourcing case of multi-tenant accesses.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2854 B. TANG, R. SANDHU AND Q. LI

in clouds, typical issuers come from different organizations with independent administrative
authorities. Therefore, centralized authority may not be suitable for the cloud.

Another line of work seeks to integrate delegation in RBAC in order to obtain decentralized
authority in collaborations [8, 16–19]. Users may delegate their entire or partial roles to others,
entirely at their discretion within constraints established by the security architects. This fragments
the authorization on the basis of individual user decisions, which may lead to lack of agility as
authorization goals change.

To support collaboration, federated identity and authorization services were proposed in dis-
tributed environments. Federated identity [20] enables authenticating strangers by sharing identity
information among federated parties who trust each other equally.

Moreover, the establishment and maintenance of federations have proved to be costly and far
from agile. Authorization services [21–25] were developed to control resource sharing between
different virtual organizations in grids utilizing asymmetric key-based credentials. However, the
cloud is designed with centralized facility and less heterogeneity than the grid for better flexibility
and scalability [26]. Therefore, such costly and inefficient credential-driven approaches are not
necessary to build collaborations in clouds.

By introducing trust management into access control mechanisms [7, 27–29], decentralized
authority is achieved. However, these approaches need to build extra facilities or changing the
existing administrative models in order to cope with the semantic mismatch issue.

2.3. Authorization as a service (AaaS)

In the cloud environment, multi-tenant architecture brings new challenges to collaborative
authorization. The homogeneous architecture and centralized facility characteristics of the cloud
differentiate it from traditional distributed environments. In order to address access control problems
in the cloud, we build upon the concept of AaaS. Similar to other service models, AaaS is an
independent framework providing authorization service to its clients in a multi-tenant manner,
whereas the service itself is managing access control for the tenants. The authorization policies of
the tenants are stored separately in a centralized facility where a PDP is able to collect necessary
policies and attributes it needs to make appropriate authorization decisions. In this framework, a
general access control model is required.

2.4. Scope and assumptions

The following assumptions define the scope of this paper.
One cloud service. For simplicity, our work is aimed at addressing access control problems for

multiple tenants on a single cloud service. Thus, we intentionally rule out the issue of heterogeneous
architecture and incompatible APIs. Although we believe that the proposed models are extensible
beyond a single cloud, multi-cloud problems are not considered in this paper.

Authenticated users. In the cloud environment, all the access requesting users are assumed to have
been properly authenticated. Particularly, we assume that each user possesses one or more creden-
tials from its correlated identity provider who authenticates the user and includes user information
in the credentials. Then, the credentials can be handed to cloud services to request accesses.

Specific trust relation. The tenant trust relations are specifically between two tenants. Other trust
relations for more than two tenants, such as federation [30, 31] relations, are not considered in
this paper. Each trust relation is unidirectional (like follow in Twitter) as opposed to bidirectional
(like friend in Facebook). Also, we assume that each trust relation is established unilaterally by
the trustor and remains under exclusive control of the trustor. Specifically, the trustor and only the
trustor can create and revoke a trust relation. In other words, the trustee does not need to agree on
the establishment or removal of a trust relation.

For simplicity, the trust relation in this paper is a Boolean variable, meaning, a tenant can either
trust or not trust another tenant. Other trust relations may be able to express trust levels, and the
values can be automatically generated through negotiation or predefined policies. But they are
considered out of the scope of this paper.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2855

3. MTAS MODELS

In this section, we formalize the MTAS informally described in [9]. We call the resulting model as
the MTAS model for ease of reference and continuity. We also develop an AMTAS model. Further,
we propose two feasible enhancements to the trust model of MTAS.

3.1. Formalization

Toward a general model of multi-tenant RBAC in the cloud, we start from abstracting the MTAS
system [9] into a formalized model, as shown in Figure 2. There are four entity components: issuers
(I), users (U), permissions (P), and roles (R). In addition to classic RBAC2, the role hierarchy
(RH) model [10], the issuer component is introduced to express authorization in multi-tenant
environments, whereas other components need to be modified accordingly. In particular, the tradi-
tional RBAC entities of permissions and roles have issuer attributes so that they can be identified
uniquely in a multi-tenant cloud environment. This is depicted by the role ownership .RO/ and
permission ownership .PO/ relations in Figure 2. RO and PO are many-to-one relations from R

and P , respectively, to I .
ISSUERS. An issuer represents an organization or an individual who uses the cloud services. It

is a client of the CSPs’. An issuer may use multiple cloud services and vice versa. A service creates
an interface (tenant) for each issuer so that the data and action of the issuer are isolated from each
other. For example, in the out-sourcing case,E is an issuer who owns three tenants:Dev:E,Acc:E,
and HR:E. The tenants are operated separately.

USERS. A user is an identity for an individual (or a process). It is authenticated as a federated
ID [20], which is universally unique for all the issuers in the community. Every user has an owner
attribute indicating the issuer who provides the identity and authentication of the user. The identity
is also usable by other issuers.

PERMISSIONS. A permission is a specification of a privilege to an object on a tenant, which
is specified as a service interface. A permission is denoted in a three-tuple (privilege, tenant, and
object). For example, (read, Dev.E, /root/) represents a permission of reading the ‘/root/’ path on
Dev:E. Because the tenant attribute of a permission belongs to only one issuer, every permission
is associated with a single issuer, whereas one issuer may have multiple permissions.

ROLES. A role is a job function (role name) with an issuer. A role is denoted as role(issuer,
roleName), for example, role.E; dev/ represents a developer role in issuer E. A role belongs to a
single issuer, whereas an issuer may own multiple roles.

Figure 2. An abstracted model of the MTAS system.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2856 B. TANG, R. SANDHU AND Q. LI

SESSIONS.‡ A session is an instance of access created by a user. The owner attribute of the user
is inherited to the session. A session, in its lifespan, is regarded as the subject of the access. A subset
of roles that the user is assigned to be activated in a session. In a multi-tenant cloud environment,
note that the user and the active roles in a session might not all be from the same issuer.

Crucially, an additional issuer trust .IT / relation (IT � I � I , also written as ‘.’) establishes
issuer to IT as will be described and formalized in detail later in this section. For 8ir ; ie; if 2 I ,
IT relation is reflexive

ir . ir (1)

but not transitive

ir . ie ^ ie . if » ir . if (2)

and it is neither symmetric

ir . ie » ie . ir (3)

nor anti-symmetric

ir . ie ^ ie . ir » ir D ie: (4)

For ir . ie , we call ir the trustor and ie the trustee. In MTAS model, trust is always established
by the trustor allowing the trustee to view and use its own authorization statements. Therefore, the
trustee can grant one of the trustor’s roles, say rr , a trustee’s permission, say pe . This role to permit
assignment enables all users in rr to inherit pe . Further, the trustee can make one of the trustee’s
roles, say re , to be junior to one of the trustor’s roles, say rr . The effect of this role to role assignment
is to make all users in rr members of re so that the permissions of re in the trustee are also inherited
by the users of rr in the trustor. The definition of MTAS trust model is given as follows.

Definition 1
Let A and B denote two issuers. By establishing an IT relation with B (A . B), A exposes its
entire RH to B so that B is able to make the two following assignments:

1. Assigning B’s permissions to A’s roles; and
2. Assigning B’s roles as junior roles to A’s roles.

For example, in the out-sourcing case as described in Section 2.1, Bob, representing the resource
owner E, could allow certain developers in OS to access the source code files stored in Dev:E for
them to conduct the out-sourcing job. Assume the proper permission in E for the out-sourcing job,
(edit, Dev.E, /src/) is associated with the role role.E; dev/. In order to achieve this cross-issuer
access, with the presence of OS . E relation, Bob can assign role.E; dev/ to be a junior role
of an appropriate developer role in OS , say role.OS; dev/. In this way, the users associated with
role.OS; dev/ are able to edit the files under the /src/ directory in Dev:E.

The trust model solves the two key problems in collaborative RBAC: decentralized authority and
semantic mismatch. Because the collaborators are independent self-managing services, the service
issuers (decentralized authorities) desire to remain control of their resources including data and
authorization settings. But in most collaborations, some level of resource sharing is inevitable and
that is why we need a trust model to keep the resource sharing process secure. By establishing a
trust relation described in Definition 1, the trustor exposes its authorization settings to the trustee,
whereas the trustee assigns permissions of its data to the trustor. In this way, both sides contribute
to cross-issuer assignments, and the accesses are under mutual control.

The semantic mismatch issue refers to the fact that the definitions of roles vary in different
domains so that no proper assignment could be made by a single authority without additional

‡The session component was not discussed in [9], but we feel it indispensable in a complete formal model which builds
on RBAC, so it is included, and some session related components are added in the formalization, as described in
Definition 2.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2857

communication with each other. In the trust model of MTAS, this issue is mitigated, because the
authorization settings, that is, theRH and the role members, of the trustor are exposed to the trustee
upon the creation of the IT relation. Consider the out-sourcing case. With the presence ofOS . E,
E’s administrator may examine the members of OS ’s roles and decide which role is appropriate to
assign the permission to.

The formal definition of MTAS model is as follows.

Definition 2
The MTAS authorization model has the following components:

� U , R, P , I , and S (users, roles, permissions, issuers, and sessions, respectively);
� User ownership .UO/ � U �I , a many-to-one relation mapping each user to its owning issuer;

correspondingly, userOwner.u W U/ ! I , a derived function mapping a user to its issuer,
where userOwner.u/ 2 ¹i 2 I j.u; i/ 2 UOº;
� RO � R� I , a many-to-one relation mapping each role to its owning issuer; correspondingly,

roleOwner.r W R/! I , a derived function mapping a role to its issuer, where roleOwner.r/ 2
¹i 2 I j.r; i/ 2 ROº;
� PO � P � I , a many-to-one relation mapping each permission to its owning issuer; corre-

spondingly, permOwner.p W P / ! I , a derived function mapping a permission to its issuer
where permOwner.r/ 2 ¹i 2 I j.p; i/ 2 POº;
� IT � I � I , a reflexive relation on I called IT relation, also written as .;
� canUse.r W R/ ! 2I , a derived function mapping a role to a set of issuers who can use the

particular role. Formally, canUse.r/ D ¹i 2 I jroleOwner.r/ . iº;
� User assignment .UA/ � U �R, a many-to-many user-to-role assignment relation;
� Permission assignment .PA/ � P�R, a many-to-many permission-to-role assignment relation

requiring .p; r/ 2 PA only if permOwner.p/ 2 canUse.r/;
� RH � R �R is a partial order on R called RH or role dominance relation, also written as >,

requiring r > r1, only if roleOwner.r1/ 2 canUse.r/;
� user.s W S/ ! U , a function mapping each session to a single user, which is constant within

the lifetime of the session; and
� roles.s W S/! 2R, a function mapping each session to a subset of roles, roles.s/ � ¹r j.9r 0 >
r/Œ.user.s/; r 0/ 2 UA^ userOwner.user.s// 2 canUse.r/�º, which can change within s, and
s has the permissions

S
r2roles.s/¹pj.9r

00 6 r/Œ.p; r 00/ 2 PA�º.

Note that because we are formalizing an extension of pure RBAC model [10], the user PA
described in [9] is ignored in the formalization.

Role activation mechanisms determine the executable permissions inherited by a session. Because
a role may inherit permissions from its junior roles in the RH , when a role is activated in a session,
its inherited roles may be either automatically activated (implicit activation) or require explicit acti-
vation. Theoretically, the former scenario is transformable to the latter by recursively executing
explicit activation for the junior roles. The choice between the two approaches is left as an imple-
mentation issue in the National Institute of Standards and Technology (NIST) RBAC model [10].
In the RBAC96 model, implicit activation is specified [11]. In MTAS, we choose to specify explicit
activation in the roles.s/ component. In a session, only the permissions of the explicitly activated
roles are executable to the user.

Because every user identity is available to all the issuers, UA assignments bear no constraints
on issuers. Thus, the UA assignments are always issued by the role owners as discussed in the
administration of the MTAS model in Section 3.2.

The trust model is embedded in the canUse function, which takes effect in PA and RH assign-
ments in the MTAS model. As the name suggests, the canUse.r/ function returns the issuers who
can use r to make authorization assignments. The returned issuers are the trustees who are trusted by
r’s owner, say i . In order to issue PA, permission owner has to be i itself or one of the trustees of i .
Therefore, r is only assigned to permissions of i or its trustees. Similar conditions require that only

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2858 B. TANG, R. SANDHU AND Q. LI

the roles of i or its trustees can be assigned as junior roles of r in RH . PA and RH assignments
enable collaborations among issuers.

Based on the formalization of MTAS model, we also develop a formal administrative model and
finer-grained trust models, as presented in the following sections.

3.2. Administrative MTAS model

The administration model, AMTAS is tightly coupled with the MTAS model, because the main
problem of access control models in distributed environments is how to manage the decentralized
administrative authority. In other words, the administrative model regulates who are eligible to issue
what kind of assignments.

Hence, a desirable administrative model should maintain balanced management workload and
proper control for both sides.

Definition 3
The AMTAS model is defined by the following two rules. Assume that A and B are two tenants and
A trusts B .

� The resource requester A is responsible for managing the trust relation of A . B;
� The resource owner B is responsible for managing the cross-issuer assignments (i.e., PA and
RH) to A’s requesting roles, according to MTAS in Definition 2.

As described in Definition 3, AMTAS maintains the balance of management by introducing ‘dual
control’. In any cross-issuer access, the resource requesting issuer controls the trust relations, which
decide whether or not to allow cross-issuer assignments. The resource owner keeps the ultimate
authority of its resources and issues the assignments based on properly created and maintained
trust relations. Both the trust relations and the assignments are crucial in cross-issuer authorization
because if either is revoked or altered, the corresponding collaborative accesses will be denied.

Table I provides the core logic of administrative functions of AMTAS. The functions are presented
in a three-column format with function names, conditions, and updates. There are two parts of
administrative functions available to two different levels of administration. The cloud administrators
are roles empowered to add and remove issuers §. Along with the removal of an issuer, its correlated
trust relations, users, roles, and permissions should also be removed. Even though the users are
globally available, the removal of their owner issuers will result in removal of the users as well
because the authentication of the users depends on their owner issuers. The removal of users will
result in revocation of correlated UA. As cross-issuer UA is allowed, some assignments authorized
by other issuers may also be removed. The same situation happens when an issuer is trying to remove
one of its roles. In this way, cross-issuer authorization assignments are controlled by the resource
owners, the permission owners in AMTAS.

The functions of assigning and revoking trust relations are controlled by the resource requesters.
When a revocation of a trust relation is issued the trustor, the question of whether the correlated
cross-issuer assignments (PA and RH) specified by the trustee is automatically removed or not
is left as an implementation issue. For simplicity of our discussion, we choose the former. It is
worth to note that the policy decision results are not affected by the choice because according to
Definition 2, the authorization assignments will not function without the proper trust relation when
the corresponding cross-issuer accesses are being checked.

3.3. Enhanced trust models

The trust model discussed in Definition 1 enables collaborative access control among issuers. How-
ever, the unnecessary exposure of the trustor’s authorization settings raises privacy issues. Therefore,
we propose two natural enhancements to the trust model.

§Although in contemporary clouds, the administration commands tend to integrate self-service features without
intervention by cloud administrators, they are also required to follow the built-in rules specified by the CSP.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2859

Table I. Administrative functions in AMTAS

Function Condition Update

Administrative functions available to cloud administrators:

AddIssuer.i/ i … I I 0 D I [¹iº

RemoveIssuer.i/ i 2 I forall ie 2 I do
RevokeTrust.i; ie/
RevokeTrust.ie ; i /

forall userOwner.u/ � i do
RemoveUser.i; u/

forall roleOwner.r/ � i do
RemoveRole.i; r/

forall permOwner.p/ � i do
RemovePerm.i; p/

I 0 D I n ¹iº

Administrative functions available to issuer i:

AddUser.i; u/ userOwner.u/ � i ^ u … U U 0 D U [¹uº

RemoveUser.i; u/ userOwner.u/ � i ^ u 2 U forall ¹r W Rj.u; r/ 2 UAº do
RevokeUser.i; u; r/

U 0 D U n ¹uº

AddRole.i; r/ i D roleOwner.r/ ^ r … R R0 D R [¹rº

RemoveRole.i; r/ i D roleOwner.r/ ^ r 2 R forall ¹u W U j.u; r/ 2 UAº do
RevokeUser.i; u; r/

forall ¹p W P j.p; r/ 2 PAº do
RevokePerm.i; p; r/

forall ¹rasc W Rj.rasc ; r/ 2 RH º do
RevokeRH.i; rasc ; r/

forall ¹rdesc W Rj.r; rdesc/ 2 RH º do
RevokeRH.i; r; rdesc/

R0 D R n ¹rº

AddPerm.i; p/ permOwner.p/ � i ^ p … P P 0 D P [¹pº

RemovePerm.i; p/ permOwner.r/ � i ^ p 2 P forall ¹r W Rj.p; r/ 2 PAº do
RevokePerm.i; p; r/

P 0 D P n ¹pº

AssignUser.i; u; r/ i D roleOwner.r/ ^ u 2 U UA0 D UA [¹.u; r/º

RevokeUser.i; u; r/ i D roleOwner.r/ ^ u 2 UA0 D UA n ¹.u; r/º
U ^ .u; r/ 2 UA

AssignPerm.i; p; r/ i D permOwner.p/ ^ i 2 PA0 D PA [¹.p; r/º
canUse.r/

RevokePerm.i; p; r/ i D permOwner.p/ ^ i 2 PA0 D PA n ¹.p; r/º
canUse.r/ ^ .p; r/ 2 PA

AssignRH.i; rasc ; r/ i D roleOwner.r/ ^ i 2 >0D> [¹r2; r3 W Rjr2 > rasc ^ r >
canUse.rasc/^ r3 ^ roleOwner.r3/ 2
:.rasc � r/ ^ :.r > rasc/ � canUse.r2/ � .r2; r3/º �

RevokeRH.i; rasc ; r/ i D roleOwner.r/ ^ i 2 >0D .� n¹.rasc ; r/º/� �
canUse.rasc/ ^ rasc � r

AssignTrust.i; ie/ ie 2 I .0D. [¹.i; ie/º
RevokeTrust.i; ie/ ie 2 I ^ i . ie ^ i ¤ ie ‘ .0D. n¹.i; ie/º [

�The notation ‘�’ represents an immediate inheritance relation. This condition prevents cycle creation in the role
hierarchy.
�All the roles senior to rasc become senior to all the roles junior to r .
�The notation ‘�’ represents recursive updates for the entire role hierarchy.
‘An issuer cannot refuse to trust itself. Otherwise, improper revocation of assignments may occur.
[By revoking the trust relation, the canUse() function of i ’s roles automatically updates accordingly as well as PA
and RH .

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2860 B. TANG, R. SANDHU AND Q. LI

3.3.1. Trustor-centric public role. As the name suggests, TCPR introduces the public role con-
straint for trustors. The public roles are included in a predefined subset of a trustor’s roles exposed
to all of the trustees. It is formally defined as follows.

Definition 4
The TCPR model inherits all the components from MTAS in Definition 2, while the following
modifications are applied:

� PT .i W I / ! 2R, a function mapping an issuer to a set of its public roles, which are the only
roles that i is expose to its trustees; and
� canUse.r W R/ ! 2T is modified to canUse.r/ D ¹iº [¹i1 2 i ji . i1 ^ r 2 PT .i/º, where
i D roleOwner.r/.

By introducing PT .i/, the exposure surface of the i’s roles in TCPR is much smaller than that in
MTAS trust model. Accordingly, only if r 2 PT .i/, then r can be used by i’s trustees. Otherwise, it
can only be used internally by i .

Because the public roles in TCPR are defined in terms of the trustor i , if PT .i/ is modified, then
all the trust relations with the common trustor are influenced. Hence, in practice, PT .i/ tends to
contain more public roles than necessary to make sure the availability of all the collaborations that
i is using. Therefore, we give a more fine-grained enhancement to the trust model.

3.3.2. Relation-centric public role. In contrast with TCPR, RCPR enforces the public role con-
straints for trust relations instead of trustors. The public roles are included in a predefined subset of
the trustor’s roles exposed to the trustee in a specific trust relation. The formal definition follows.

Definition 5
The RCPR model inherits all the components from MTAS in Definition 2, while the following
modifications are applied:

� PR.t W IT /! 2R, a function mapping an IT relation to a set of the trustor’s public roles; and
� canUse.r W R/ ! 2T is modified to canUse.r/ D ¹iº [¹i1 2 I ji . i1 ^ r 2 PR.i . i1/º,

where i D roleOwner.r/.

In RCPR, the public roles of the trustor are defined per trust relation so that the role exposure of
the trustor is accurately expressed and enforced. With this fine-grained constraint, MTAS systems
may achieve minimum exposure of the trustor’s roles in collaborations.

3.4. Constraints

We now identify several issues introduced by extending RBAC to the multi-tenant environment and
discuss potential constraints to mitigate these issues.

Cyclic RH . A ‘role cycle’ may be formed across tenants in MTAS systems without proper
constraints. This may lead to violation of the security principal [32] in interoperation.

Similar problems in secure interoperation have been addressed in multi-domain environment [33].
Some computational challenges discussed in [32] remain in the multi-tenant cloud environment. In
order to prevent the formation of role cycles, constraints should be enforced over assignments or
sessions. The former is achieved by checking role cycles whenever a cross-issuer RH assignment
is issued. Even if there are role cycles in assignments, the latter prohibits all the roles in a cyclic
hierarchy from being activated in the same session. Note that the AssignRH function in AMTAS
includes these provisions.

Separation of duties (SoD). During collaborations with MTAS, we identify two levels of SoD,
issuer level and role level. For issuer level SoD, one collaborating issuer cannot execute two conflict
responsibilities. For instance, SOX [34] compliant companies are not suppose to hire the same
third party as both consultant and auditor. This constraint could be enforced over trust relations.
The role level SoD is straightforward. Two roles attached to conflict duties are not suppose to be
activated for one user in a session. In the out-sourcing example as shown in Figure 1, a QA role
and a developer role in either issuer, E or OS , should not be obtained by a single user in a same

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2861

session. In more general cases, the two roles with conflict duties may come from different tenants.
Also, the conflict duties may be associated with different cloud services. In this case, the constraint
policy composition process can become very complicated [35]. Thus, the CSP should be responsible
to identify potential conflict roles. Each tenant should be aware of the SoD problems and specify
proper constraint policies in the reference with the conflict roles.

Chinese wall. The conflict of interests (COIs) among issuers also need to be managed. For
example, two competing issuers should not be trusted by a single issuer so that the security and
privacy of the trustee issuer’s sensitive information are protected against the competitors. This situa-
tion is already abstracted and addressed by the Chinese wall model [36], which can be integrated in
the centralized AaaS platform to avoid COIs. Essentially, the issuers are grouped into ‘COI classes’,
and by mandatory ruling, all issuers are allowed to trust at most one issuer belonging to each such
COI class. The CSP or a third party authority should be responsible to maintain the COI classes. In
this way, no cross-issuer access will be assigned or permitted by the other COI issuers.

3.5. Trusts in Amazon Web Service (AWS) and OpenStack

As needs of multi-tenant collaboration keep growing, more and more cloud software vendors are
trying to establish cross-tenant or cross-issuer access control mechanisms. Amazon, as one of the
biggest public CSPs, allows its user to establish trust between two accounts in AWS in order to
simplify user management between Production and Development accounts and many other use
cases [37]. Account is a counterpart of issuer in MTAS. Moreover, the unilateral trust relation
between accounts is very similar to the trust relation between issuers but the types are different. Take
the Production and Development accounts use case for example. In order to allow cross-account
accesses in AWS, the Production account, the trustor, establishes a trust relation with the Develop-
ment account, the trustee, first. Then the Production account specifies an authorization assignment
allowing only developers, as one of the roles, from the Development account to access some of its
resources. As described earlier, the AWS account trust does not provide dual control feature, and
some offline communications, such as the role names, are required. In MTAS, the trust relation is
established by the Development account so that the Production account can see its roles, users, and
assignments and make cross-account authorization assignments based on the information. In this
way, offline communication is avoided, and the Development account can control cross-account
authorization with trusts.

OpenStack is an open source cloud computing platform for public and private clouds [38]. The
trust mechanism inside OpenStack is built on the basis of user-level delegation. Use the same Pro-
duction and Development accounts as examples. The concept of account or issuer is close to the
concept of domain in OpenStack. It provides administrative boundary for users and projects. In
OpenStack, a user Paul in Production domain can set up a trust relation with another user David in
Development domain. The trustee user David can inherit a subset of Paul’s roles and access project
resources in the Production. The collaboration is enabled and fully controlled by Paul. This trust
relation is flexible and easy to achieve collaboration. However, improper use of this trust may result
in breaches of security boundaries between domains. If MTAS is integrated in OpenStack, domain
administrators will be in charge of maintaining the trust relations and authorization assignments.
Hence, the risk of access control breaches caused by user behavior can be lowered. Again, dual
control mechanism is introduced between domain administrators.

In fact, there are some other types of trusts to choose from [39–41]. Different types of trust
relations may suit different needs for collaboration. However, a consolidated access control model
for cross-tenant collaboration in the real world cloud is still not generally available.

4. POLICY SPECIFICATION

In order to demonstrate the feasibility of the MTAS model, we give the policy specification
here in XACML. The normative specification of RBAC policies with XACML2.0 language has
been proposed by OASIS XACML TC [42]. Its Role PolicySet (RPS) and Permission PolicySet
(PPS), representing UA and PA, respectively, are also used with the MTAS policy specification.
Additionally, a novel Trust PolicySet (TPS) is added to express the trust relation.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2862 B. TANG, R. SANDHU AND Q. LI

Figure 3. Example MTAS policy structure with trust relation OS . E as highlighted.

To better explain how MTAS XACML policy work, we develop an example policy structure
as shown in Figure 3 consistent with the out-sourcing example as described in Section 2.1. For
instance, Charlie as a user in OS with a manager role in E, namely, E:manager, requests to access
a permission to create a repository in E, namely, E:cr . Following the convention in XACML, we
use ‘W’ as the delimiter of namespaces. At the PDP end, OS ’s TPS , written as TPS :OS , states
OS . E, which is simply adding RPS :E as a referenced PolicySet. E’s RPS , written as RPS :E,
states that E:manager dominates E:employee, which is the employee role in E. Meanwhile, E’s
PPS , written as PPS :E, states that E:employee is permitted to have the permission E:cr . As a
start, the request is sent from PEP to PDP where TPS :OS is invoked because the subject tenant
attributes in the request valued asOS . According to the MTAS, as long as the trust relationOS . E
exists, TPS :OS is able to reference both RPS :OS and RPS :E. Thus, the request is forwarded
to both. A dead end will be reached in RPS :OS because the requested permission is in E. In
RPS :E, the request is forwarded to RPS :E:manager and then to RPS :E:employee due to the
RH assignment. The PDP will probe into the referenced PPS :E policies from RPS :E along the
process and find a match in PPS :E:cr . Then, a permit decision will be responded to PEP who will
lead Charlie the requested access.

If Charlie uses another role OS :manager requesting the same permission, the authorization path
is different. At the PDP end, E states that OS :manager dominates E:employee, and OS :manager
has permission E:cr . When the request is forwarded to RPS :E through the same aforemen-
tioned trust relation, PDP will look into the policies inside RPS :E. The RPS :OS :manager will
be reached and will forward the request to both PPS :E:cr and RPS :E:employee. Both paths
representing cross-issuer PA and RH , respectively, will return a permit for the request.

In this example, we can clearly see that cross-issuer accesses are properly controlled by MTAS
policies. The policy specification could be directly used in MTAS implementation.

5. PROTOTYPE IMPLEMENTATION

In order to further explore the feasibility of MTAS, we developed an AaaS prototype system using
SUN’s XACML implementation [43] with respect to OASIS standards [44]. The experiments are
designed to benchmark the prototype performance and scalability in the cloud environment.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2863

5.1. Implementation details

The prototype system has a centralized PDP and multiple distributed policy enforcement points
(PEPs), which are in charge of forwarding access requests to the PDP and enforcing authorization
decisions for corresponding cloud services. Because each service is built-in with multi-tenancy, the
MTAS model will aggregate the permissions in various services for each tenant. In practice, the
PDP can be built in fully distributed manner to achieve better performance. However, the policy
discovery algorithms in a distributed environment are beyond the scope of our discussion, and the
policy discovery latency is unpredictable because of various factors in implementation. Thus, a
centralized deployment is better to show the metrics for experiment purpose.

The PDP and PEP modules are compiled, deployed, and evaluated on virtual machines (VMs)
created in a private cloud system running Joyent Cloud [45]. The PDP is installed on a 64-bit Linux
CentOS 6 system with 2.5 GHz dedicated CPUs. The PEPs are built upon SmartMachines [45] with
SmartOS 1.8.1, 256-MB RAM and shared CPUs.

SmartMachine CPU caps are set to 350 meaning each can use 3.5 CPUs in maximum. The VMs
for PDPs and PEPs are deployed in different security zones with different networks and physical
racks so that the performance evaluation results are not affected by virtualization level interference.
All the machines in the prototype are connected through data center networks. The architecture
of our testbed is described in Figure 4. We used eight VMs with the same flavor to send concur-
rent requests to the centralized PDP, which is deployed on various testing machines with different
capacities for scalability tests. The automated test controller (ATC) synchronizes the code of the
system with all the VMs, runs the PDP service on a particular testing server, and configures the
PEPs to send all the requests to the server. The experiment results are also collected by the ATC.
The testbed architecturally simulates an authorization service implementing the MTAS model and
supports controlled experiments in a commercial-standard cloud system.

5.2. Experiments and results

In order to measure the scalability of PDPs, we define a computing capacity unit as 1-GB RAM and
1 Core CPU. Because standard commodity hardware dominates the cloud, VM CPU frequencies
are usually identical with each other in the same environment. Thus, the number of CPU cores,
rather than value of CPU frequency, is regarded as proportional to hardware capability. For example,
a PDP with 2 GB RAM and 2 Core CPU is considered as of 2-unit computing capacity, which
doubles hardware capability of its 1-unit counterpart. In our experiments, we have PDPs running on
1-unit, 2-unit, and 4-unit servers, respectively. At the PEP end, we have eight SmartMachines of the
same capacity to generate authorization requests so that the volumes of PEP requests can be scaled
proportionally with the PDP capacity.

Performance. Policy decision latency is one of the most important metrics in performance evalu-
ation of access control systems. An MTAS decision process consists of several procedures: subject
and resource verification, attribute searching, and retrieving referenced policy files. These proce-
dures take policy decision time at the PDP end. We call this effect authorization overhead, which
is inevitable.

Figure 4. MTAS Testbed Architecture.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2864 B. TANG, R. SANDHU AND Q. LI

Figure 5. Performance and scalability evaluation results.

We evaluate the authorization overhead of our prototype system by sending concurrent sample
requests from various numbers of PEPs to a 4-unit PDP. There are 10 disjoint pairs of sam-
ple requests and responses representing intra-issuer and cross-issuer accesses. The horizontal axis
represents the count of concurrent requests sent by PEPs, and the vertical axis shows the average
PDP response delay measured at the PEP end. At the beginning, the average response time falls
steeply as concurrent requests from each PEP increase. Because the policy files are loaded at run
time at the PDP end, it takes longer time to respond for the first requests and then as the caching
mechanisms of the operating system function, the average response latency tends to reach a stable
state. For our prototype system, as shown in Figure 5(a), the average PDP response delay at the
stable state is around 12 ms, which is acceptable for ordinary deployment in the cloud.

The PDP hardware capacity is also an important factor of PDP response delay. Figure 5(b) illus-
trates the performance of PDP on different servers with 1, 2, 4, and 8 units of hardware capacity,
respectively. The experiments are conducted with eight PEPs and 1000 tenants. The result shows
that with the same hardware capacity, the response delay is relatively stable. It is reasonable that
more powerful PDP causes less response delay which drops around 80% between 1-unit and 2-unit
PDPs. This outcome leads us to test the throughput scalability of the prototype system.

Scalability. Dynamic scaling is one of the key features of cloud computing. Authorization mech-
anisms in the cloud also need to be scalable. We evaluate the scalability of our prototype from
both capacity and policy complexity view points. A scalable system should have its performance
improvement proportional to the hardware capacity increase. In the mean time, the complexity of
policy also influences the system performance. In our experiments, we identify that the number of
tenants is the major factor in the authorization overhead. Thus, we also measure the scalability by
increasing the number of tenants in orders of magnitude.

The capacity scalability evaluation compares the authorization overhead of PDPs with various
computing capacity units. The throughput of authorization requests is calculated using the follo-
wing formula.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2865

Throughput D
1

Average_Delay � CPU _Utilization
(5)

The results shown in Figure 5(c) give a clear view that the speedup of PDP servers increases the
throughput proportionally. The result is validated against multiple scales of concurrent requests.

The policy complexity scalability evaluation takes the number of tenants into account to measure
the trend of how the policy complexity affects the performance of the system. Figure 5(d) plots
the results with the number of tenants on the x-axis and the authorization overhead on the y-axis.
In the experiment, the total concurrent requests number is 160,000 which is fairly dispersed to all
the tenants. The trend shows that the increase of tenants does not cause steep drop of the system
performance and is inversely proportional with the throughput. Consequently, it is reasonable to
believe that the prototype is scalable in the cloud environment.

6. RELATED WORK

The RBAC [10, 11] model provides efficient authorization solutions within enterprises and orga-
nizations. Many RBAC extensions have been proposed to address access control problems among
multiple organizations. Some extensions [13, 15] introduce centralized authority to specify or medi-
ate cross-domain policies. However, in cloud environment, the only existing centralized authority
is the CSP who should maintain the generic policies for all the tenants rather than for specific ones
because the tenants are temporary and self-service oriented. Thus, these approaches are not directly
applicable in the cloud. Some other extensions use decentralized authorities to RBAC using dele-
gation [8, 18]. In particular, a user may delegate the assigned permissions, entirely or partially, to
other users. The delegation is maintained by the delegator who can specify whether the delegation
is transitive or not. The delegation approach requires additional administration. All the delegations
of a permission need to be kept track of well in a graph. If any of the nodes, typically users, change,
the entire graph of authorization will change unexpectedly. Hence, the complexity of the delegation
approaches becomes overwhelming in the agile cloud environment.

Addressing multi-domain secure interoperation, the role mapping approaches [33, 35, 46] allow
external users in trusted domains to acquire privileges in a local domain through role hierarchy
relations. These approaches focus on extending RBAC models and enabling interoperation by map-
ping roles between domains. Shafiq et al. [33] address the issue of optimal RBAC policy resolution
among multiple domains by an integer-programming-based approach. It helps maintain autonomy
for inter-domain role accesses. Baracaldo et al. [35] present a policy enforcement framework to
enforce temporal and SoD constraints for multi-domain interoperation. Moreover, Shehab et al. [46]
introduce a distributed secure interoperability framework to link multiple domains. The access path
discovery algorithm is critical to enforce secure accesses in this framework. The problems in multi-
domain scenarios are similar to those in multi-tenant scenarios so that the role mapping approaches
are potentially applicable in the cloud. But the role mapping approaches and MTAS are solving
problems in different layers. The role mapping approaches focus on linking and discovery algo-
rithms to connect roles between domains based on RBAC. Yet, MTAS focuses on extending RBAC
with multi-tenant features and facilitating collaborations with trust relations between tenants. Unlike
the role-mapping approaches, the trust relation in MTAS is not transitive so that the access paths
never exceed the range of two tenants which is the normal case in the cloud because each tenant
owns the ultimate authority of its resources. Also, MTAS allows not only cross-tenant role hierar-
chy assignments but also direct cross-tenant permission assignments supported by the homogeneous
architecture of the cloud infrastructure.

Federated identity and authorization services are included in the architecture of distributed sys-
tems to facilitate collaborative access control. Federated identity [20, 47] enables authenticating
strangers by sharing identity information among federated parties. The federation relation is intrinsi-
cally an equal trust relation, which is meaningful in some used cases but cumbersome in supporting
the variety of collaborations. For example, the trust relation between E and OS in Figure 1 is
apparently not an equal trust because the ultimate owner of the resources to be accessed is E but

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2866 B. TANG, R. SANDHU AND Q. LI

not both of them. Moreover, the maintenance of federation relation becomes costly when it has
to cope with the agility feature in clouds. Some tenants are created temporarily and deleted upon
completion of their jobs, while the federation relation has to be updated accordingly. Authorization
services [21, 23, 25] aim at secure resource sharing among virtual organizations in grid comput-
ing systems leveraging cryptographic credentials. Although such credential-driven approaches are
viable and effective, the overhead of maintaining the public-key infrastructure for credentials is
expensive and not necessary in the cloud environment with the existence of centralized facility and
homogeneous architecture.

Along with the development of cloud computing, multi-tenant authorization, as an enabling tech-
nology, is being researched in both the industry and the academia. Calero et al. [9] propose a
centralized multi-tenancy authorization system for cloud services. It bridges RBAC systems using
a trust model which is coarse-grained and open for extensions. Continuing their work, MTAS [39]
formalizes the authorization model and extends it with finer-grained trust relations in terms of
roles exposed to trustee tenants. MT-RBAC [40] is similar but uses a different trust model suitable
for scenarios requiring the trustor to partially delegate the authority of resources to the trustees.
CTTM [41] gives a systematic taxonomy of useful trust relations between tenants. The trust types
cover RT [7], MTAS, and MT-RBAC. OSAC-DT [48] implements the CTTM models in a domain
trust module into Keystone, the identity service of OpenStack cloud system. The dynamic nature
of multi-tenancy distinguishes the access control model with the traditional ones. It is the key to
culture secure collaboration in the cloud.

7. CONCLUSION AND FUTURE WORK

To support collaboration between cloud services, we formalize an MTAS model based on an infor-
mally specified MTAS [9], which extends the RBAC model by building trust relations among
collaborating services. Further, we give the AMTAS and enhancements (TCPR and RCPR) for the
trust model in MTAS. In order to demonstrate that MTAS is a viable collaborative AaaS model, we
give an example of policy specification in XACML. Further, we implement a prototype MTAS sys-
tem in a cloud and evaluate its performance and scalability. The results provide more insights and
confidence of MTAS to be integrated with collaborative cloud services.

Currently, our research team is working toward various collaborative access control models, both
role-based and attribute-based, using similar trust relations. Further research in feasible trust models,
and generic trust frameworks are anticipated to emerge from this line of research. Also, in order to
explore the applicability of the multi-tenant access control models, they will be integrated with real
world cloud systems in our future work.

ACKNOWLEDGEMENTS

This work is partially supported by grants from the National Science Foundation and AFOSR
MURI program.

REFERENCES

1. Singhal M, Chandrasekhar S, Ge T, Sandhu R, Krishnan R, Ahn G-J, Bertino E. Collaboration in multicloud
computing environments: framework and security issues. IEEE Computer 2013; 46(2):76–84.

2. Mell P, Grance T. The NIST definition of cloud computing. Special Publication 800-145, 2011.
3. Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Konwinski A, Lee G, Patterson DA, Rabkin A, Stoica I,

Zaharia M. Above the clouds: a Berkeley view of cloud computing. Technical Report, EECS Department, University
of California, Berkeley, 2009.

4. McKenty J. Nebula’s implementation of role based access control (RBAC). (Available from: http://nebula.nasa.gov/
blog/2010/06/03/nebulas-implementation-role-based-access-control-rbac/) [Accessed on 3 June 2010].

5. Chong RF. Designing a database for multi-tenancy on the cloud. (Available from: http://www.ibm.com/
developerworks/data/library/techarticle/dm-1201dbdesigncloud/index.html) [Accessed on 26 January 2012].

6. Chong F, Carraro G, Wolter R. Multi-tenant data architecture. (Available from: http://msdn.microsoft.com/en-us/
library/aa479086.aspx) [Accessed on June 2006].

7. Li N, Mitchell JC, Winsborough WH. Design of a role-based trust-management framework. Proceedings of the 2002
IEEE Symposium on Security and Privacy, IEEE, Oakland, California, USA, 2002; 114–130.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

http://nebula.nasa.gov/blog/2010/06/03/ nebulas-implementation-role-based-access-control-rbac/
http://nebula.nasa.gov/blog/2010/06/03/ nebulas-implementation-role-based-access-control-rbac/
http://www.ibm.com/developerworks/data/ library/techarticle/dm-1201dbdesigncloud/index.html
http://www.ibm.com/developerworks/data/ library/techarticle/dm-1201dbdesigncloud/index.html
http://msdn.microsoft.com/en-us/library/ aa479086.aspx
http://msdn.microsoft.com/en-us/library/ aa479086.aspx

MULTI-TENANT AUTHORIZATION MODELS FOR CLOUD SERVICES 2867

8. Freudenthal E, Pesin T, Port L, Keenan E, Karamcheti V. dRBAC: distributed role-based access control for dynamic
coalition environments. Proceedings of the 22nd International Conference on Distributed Computing Systems, IEEE,
Vienna, Austria, 2002; 411–420.

9. Calero JMA, Edwards N, Kirschnick J, Wilcock L, Wray M. Toward a multi-tenancy authorization system for cloud
services. Security Privacy, IEEE 2010; Nov/Dec 2010:48–55.

10. Ferraiolo DF, Sandhu R, Gavrila S, Kuhn DR, Chandramouli R. Proposed NIST standard for role-based access
control. ACM Transactions on Information and System Security (TISSEC) 2001; 4(3):224–274.

11. Sandhu RS, Coyne EJ, Feinstein HL, Youman Charles E. Role-based access control models. IEEE Computer 1996;
29(2):38–47.

12. Cohen E, Thomas RK, Winsborough W, Shands D. Models for coalition-based access control (CBAC). Proceedings
of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT), ACM, 2002; 97–106.

13. Li Qi, Zhang Xinwen, Xu Mingwei, Wu Jianping. Towards secure dynamic collaborations with group-based RBAC
model. Computers & Security 2009; 28(5):260–275.

14. Lin D, Rao P, Bertino E, Li N, Lobo J. Policy decomposition for collaborative access control. Proceedings of the
13th ACM Symposium on Access Control Models and Technologies (SACMAT), ACM, Estes Park, Colorado, USA,
2008; 103–112.

15. Zhang Z, Zhang X, Sandhu R. ROBAC: scalable role and organization based access control models. Proceed-
ings of the 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), IEEE, Atlanta, Georgia, USA, 2006; 1–9.

16. Alam M, Zhang X, Khan K, Ali G. xDAuth: a scalable and lightweight framework for cross domain access control
and delegation. Proceedings of the 16th ACM Symposium on Access Control Models and Technologies (SACMAT),
ACM, Innsbruck, Austria, 2011; 31–40.

17. Bauer L, Jia L, Reiter MK, Swasey D. xDomain: cross-border proofs of access. Proceedings of the 14th ACM
Symposium on Access Control Models and Technologies (SACMAT), ACM, Stresa, Italy, 2009; 43–52.

18. Zhang X, Oh S, Sandhu R. PBDM: a flexible delegation model in RBAC. Proceedings of the 8th ACM Symposium
on Access Control Models and Technologies (SACMAT), ACM, Villa Gallia, Como, Italy, 2003; 149–157.

19. Barka E, Sandhu R. Framework for role-based delegation models. Proceedings of the 16th Annual Conference on
Computer Security Applications (ACSAC), IEEE, New Orleans, Louisiana, USA, 2000; 168–176.

20. Bhatti R, Bertino E, Ghafoor A. An integrated approach to federated identity and privilege management in open
systems. Communications of the ACM 2007; 50(2):81–87.

21. Alfieri R, Cecchini R, Ciaschini V, dell’Agnello L, Frohner Á, Lőrentey K, Spataro F. From gridmap-file to VOMS:
managing authorization in a grid environment. Future Generation Computer Systems 2005; 21(4):549–558.

22. Bertino E, Mazzoleni P, Crispo B, Sivasubramanian S. Towards supporting fine-grained access control for grid
resources. Proceedings of the 10th IEEE International Workshop on Future Trends of Distributed Computing Systems
(FTDCS), IEEE, Suzhou, China, 2004; 59–65.

23. Chadwick DW, Otenko A. The PERMIS X. 509 Role Based Privilege Management Infrastructure, Vol. 19. Elsevier:
Amsterdam, Netherlands, 2003, 277–289.

24. Mazzoleni P, Crispo B, Sivasubramanian S, Bertino E. Efficient integration of fine-grained access control and
resource brokering in grid. The Journal of Supercomputing 2009; 49(1):108–126.

25. Pearlman L, Welch V, Foster I, Kesselman C, Tuecke S. A community authorization service for group collaboration.
Proceedings of the 3rd International Workshop on Policies for Distributed Systems and Networks, IEEE, Monterey,
California, USA, 2002; 50–59.

26. Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid computing 360-degree compared. Grid Computing
Environments Workshop (GCE), IEEE, Austin, Texas, USA, 2008; 1–10.

27. Adams AK, Lee AJ, Mossé D. Receipt-mode trust negotiation: efficient authorization through outsourced interac-
tions. Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, ACM,
Hong Kong, 2011; 430–434.

28. Jin J, Ahn G-J. Role-based access management for ad-hoc collaborative sharing. Proceedings of the Eleventh ACM
Symposium on Access Control Models and Technologies (SACMAT), ACM, Lake Tahoe, California, USA, 2006;
200–209.

29. Jin J, Ahn G-J, Shehab M, Hu H. Towards trust-aware access management for ad-hoc collaborations. Proceed-
ings of the International Conference on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), IEEE, New York, USA, 2007; 41–48.

30. Bhatti R, Bertino E, Ghafoor A. X-FEDERATE: a policy engineering framework for federated access management.
IEEE Transactions on Software Engineering 2006; 32(5):330–346.

31. Chadwick D, Zhao G, Otenko S, Laborde R, Su L, Nguyen TA. Permis: a modular authorization infrastructure.
Concurrency and Computation: Practice and Experience 2008; 20(11):1341–1357.

32. Gong L, Qian X. Computational issues in secure interoperation. IEEE Transactions on Software Engineering 1996;
22(1):43–52.

33. Shafiq B, Joshi JB, Bertino E, Ghafoor A. Secure interoperation in a multidomain environment employing RBAC
policies. IEEE Transactions on Knowledge and Data Engineering 2005; 17(11):1557–1577.

34. Sarbanes-Oxley Act (SOX). U.S. Public Law 107-204, 2002.
35. Baracaldo N, Masoumzadeh A, Joshi J. A secure, constraint-aware role-based access control interoperation frame-

work. Proceedings of the 5th Iinternational Conference on Network and System Security (NSS), IEEE, Milan, Italy,
2011; 200–207.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

2868 B. TANG, R. SANDHU AND Q. LI

36. Brewer DF, Nash MJ. The Chinese wall security policy. Proceedings of the 1989 IEEE Symposium on Security and
Privacy, IEEE, Oakland, California, USA, 1989; 206–214.

37. Walkthrough: cross-account api access using IAM roles. (Available from: http://docs.aws.amazon.com/IAM/latest/
UserGuide/cross-acct-access-walkthrough.html) [Accessed on 8 May 2010].

38. OpenStack. (Available from: http://www.openstack.org/) [Accessed on 17 October 2013].
39. Tang B, Sandhu R, Li Q. Multi-tenancy authorization models for collaborative cloud services. Proceedings of the 14th

International Conference on Collaboration Technologies and Systems (CTS), IEEE, San Diego, California, USA,
2013; 132–138.

40. Tang B, Li Q, Sandhu R. A multi-tenant RBAC model for collaborative cloud services. Proceedings of the 11th IEEE
Conference on Privacy, Security and Trust (PST) IEEE, Tarragona, Spain, 2013; 229–238.

41. Tang B, Sandhu R. Cross-tenant trust models in cloud computing. Proceedings of the 14th IEEE Conference on
Information Reuse and Integration (IRI) IEEE, San Francisco, USA, 2013; 129–136.

42. Core and hierarchical role based access control (RBAC) profile of XACML v2.0. OASIS Standard, 2005.
43. Sun’s XACML implementation. (Available from: http://sunxacml.sourceforge.net/) [Accessed on 16 July 2004].
44. OASIS eXtensible Access Control Markup Language (XACML) v2.0 specification set, 2005. (Available from: http://

www.oasis-open.org/committees/xacml/) [Accessed on 1 February 2005].
45. Joyent SmartOS. (Available From: http://smartos.org/) [Accessed on 19 September 2013].
46. Shehab M, Bertino E, Ghafoor A. SERAT: SEcure role mApping technique for decentralized secure interoperability.

Proceedings of the tenth ACM Symposium on Access Control Models and Technologies (SACMAT) ACM, Stockholm,
Sweden, 2005; 159–167.

47. Chadwick D. Federated identity management. In Foundations of Security Analysis and Design V, vol. 5705, Lecture
Notes in Computer Science. Springer: Berlin Heidelberg, 2009; 96–120.

48. Tang B, Sandhu R. Extending openstack access control with domain trust. Proceedings of the 8th International
Conference on Network and System Security (NSS) Springer, Xi’an, China, 2014; 54–69.

Copyright © 2014 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:2851–2868
DOI: 10.1002/cpe

http://docs.aws.amazon.com/IAM/latest/UserGuide/cross-acct-access-walkt hrough.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/cross-acct-access-walkt hrough.html
http://www.openstack.org/
http://sunxacml.sourceforge.net/
http://www.oasis-open.org/committees/xacml/
http://www.oasis-open.org/committees/xacml/
http://smartos.org/

	Multi-tenancy authorization models for collaborative cloud services
	Summary
	Introduction
	Background and Motivation
	Case study
	Current approaches
	Authorization as a service (AaaS)
	Scope and assumptions

	MTAS Models
	Formalization
	Administrative MTAS model
	Enhanced trust models
	Trustor-centric public role
	Relation-centric public role

	Constraints
	Trusts in Amazon Web Service (AWS) and OpenStack

	Policy Specification
	Prototype implementation
	Implementation details
	Experiments and results

	RELATED WORK
	Conclusion and Future Work
	REFERENCES

