
1068 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 3, SEPTEMBER 2015

Fingerprint-Based Detection and Diagnosis
of Malicious Programs in Hardware

Bao Liu, Senior Member, IEEE, and Ravi Sandhu, Fellow, IEEE

Abstract—In today's Integrated Circuit industry, a foundry, an
Intellectual Property provider, a design house, or a Computer
Aided Design vendor may install a hardware Trojan on a chip
which executes a malicious program such as one providing an
information leaking back door. In this paper, we propose a finger-
print-based method to detect any malicious program in hardware.
We propose a tamper-evident architecture (TEA) which samples
runtime signals in a hardware system during the performance
of a computation, and generates a cryptographic hash-based
fingerprint that uniquely identifies a sequence of sampled signals.
A hardware Trojan cannot tamper with any sampled signal
without leaving tamper evidence such as a missing or incorrect
fingerprint. We further verify fingerprints off-chip such that a
hardware Trojan cannot tamper with the verification process. As
a case study, we detect hardware-based code injection attacks in a
SPARC V8 architecture LEON2 processor. Based on a lightweight
block cipher called PRESENT, a TEA requires only a 4.5% area
increase, while avoiding being detected by the TEA increases the
area of a code injection hardware Trojan with a 1 KB ROM from
2.5% to 36.1% of a LEON2 processor. Such a low cost further
enables more advanced tamper diagnosis techniques based on a
concurrent generation of multiple fingerprints.
Index Terms—Security, integrated circuits, built-in self-test.

ACRONYMS AND ABBREVIATIONS

AES advanced encryption standard
ASIC application-specific integrated circuit
BIST built-in self-test
CAD computer-aided design
DMR dual-module redundancy
EDC error-detecting code
EDCC error-detecting and correcting code
FPGA field-programmable gate array
FSM finite-state machine
IC integrated circuit
IP intellectual property
LFSR linear feedback shift register
NBTI negative biased temperature instability
PMOS p-type metal-oxide semiconductor

Manuscript received November 03, 2013; revised August 26, 2014; accepted
November 17, 2014. Date of publication May 14, 2015; date of current version
August 28, 2015. Associate Editor: S. Shieh.
The authors are with the Institute for Cyber Security, the University of Texas

at San Antonio, San Antonio, TX 78249 USA (e-mail: bao.liu@utsa.edu; ravi.
sandhu@utsa.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TR.2015.2430471

RMT redundant multi-threading
ROM read-only memory
RTL register-transfer level
SRAM static random access memory
SIS structure integrity checking
TEA tamper-evident architecture
XOR exclusive OR

NOTATIONS

-bit message
Rabin fingerprint of
concatenation of and

I. INTRODUCTION

H ARDWARE is the foundation of any security system pro-
viding the root of security and trust. In recent years, there

has been a growing trend of migrating security solutions down
to the hardware level [37], [38], [44], [62], [63], [66]. How-
ever, hardware is not free of security threats. An adversary may
extract confidential data, a cryptographic key, or intellectual
property from a hardware device through testing [2], [73], side
channel analysis [26], [33], [34], [39], [71], or reverse engi-
neering [64].
Further, an adversary involved in an Integrated Circuit

(IC) design and manufacturing process such as a designer, an
Intellectual Property (IP) provider, a Computer-Aided Design
(CAD) tool vendor, or a foundry may tamper with an IC chip by
installing a Trojan horse component such as a logic bomb that
compromises computation integrity, or an information leaking
back door that compromises data confidentiality [23].
Testing [2], [73], side channel analysis [26], [33], [34], [39],

[71], and online monitoring [68] techniques have been proposed
to detect such hardware Trojans. However, hardware Trojans
can be very difficult to detect. First, a hardware Trojan can be
very difficult to activate. For example, a hardware Trojan that
is only triggered by an IC aging sensor may not be activated in
manufacturing tests without destroying the chip. Second, a hard-
ware Trojan may leave little trace to detect. For example, a back
door may leak information by a side channel without affecting
authentic computation results. Further, hardware Trojans are un-
knowns.Without knowledge about the attack schemes, it is diffi-
cult to defend against all possible attacks. Lastly, a supply chain
adversary may gain knowledge of an IC design, including any

0018-9529 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



LIU AND SANDHU: FINGERPRINT-BASED DETECTION AND DIAGNOSIS OF MALICIOUS PROGRAMS IN HARDWARE 1069

tamper detection scheme implemented on the chip, and invali-
date it.
We propose to overcome these difficulties and detect any

malicious program launched by a hardware Trojan as follows.
We leverage the existing online monitor or concurrent checking
techniques [18], [45]. Alternative to testing, such techniques do
not require activation of a hardware Trojan. They check the in-
ternal states of a program besides the final results. There is no
need to have knowledge about the possible hardware Trojans.
However, the traditional online monitor or concurrent checking
techniques target detection of runtime errors caused by the phys-
ical world such as due to radiation or aging, while an adver-
sary may tamper with the system and avoid being detected by
1) generating correct check bits, or 2) invalidating the checking
mechanism. We fix such vulnerabilities as follows. We pro-
pose a tamper-evident architecture (TEA) which samples run-
time signals in a hardware system during the performance of a
computation, and generates a cryptographic hash-based finger-
print which uniquely identifies a sequence of sampled signals.
A hardware Trojan cannot tamper with any sampled signal that
contributes to a cryptographic hash-based fingerprint without
leaving evidence such as a missing or incorrect fingerprint. Fur-
ther, we verify such a fingerprint off-chip, for example, by com-
paring with a pre-computed fingerprint, or re-computing the fin-
gerprint by simulation or emulation. A hardware Trojan cannot
tamper with such an off-chip verification process.
As a case study, we present an application of this tech-

nique which detects hardware-based code injection attacks in
a SPARC V8 architecture LEON2 processor [17]. Our logic
synthesis results based on the 45 nm Nangate open cell library
show that, based on a lightweight block cipher PRESENT, a
TEA requires only a 4.5% layout area increase for a LEON2
processor; while avoiding being detected by the TEA increases
the area of a code injection hardware Trojan with 1 KB ROM
from 2.5% to 36.1% of a LEON2 processor.
The rest of the paper is organized as follows. We give an

overview on the hardware security problem and related tech-
niques in Section II, before presenting the proposed fingerprint-
based tamper detection technique in Section III. We present our
case study on detecting hardware-based code injection attacks
in a LEON2 processor in Section IV. We further extend the pro-
posed technique for tamper diagnosis in Section V, and con-
clude in Section VI.

II. BACKGROUND

A. Hardware Data Confidentiality
With physical access to a hardware device, an adversary may

apply a number of techniques to extract confidential data and
even cryptographic keys. Testing is a powerful tool to break
cryptography algorithms [2], [73], and to extract sensitive in-
formation, e.g., frommemory. Side-channel analysis techniques
extract critical information by differential power analysis [33],
[39], timing analysis [26], [34], [71], or fault injection [6], [8].
A number of techniques are available to prevent such infor-

mation leaks. Testing is protected by encoding, lock and key
[35], or checking the signature of test vectors to guarantee the
test vectors are authentic [21]. Including additional circuitry

prevents power analysis attacks (by inducing noise [33] or
hiding supply variation [55]), timing analysis attacks (by re-
ducing the performance difference or increasing performance
uncertainty [34]), and fault injection attacks (by concurrent
checking [31], [32]).

B. Hardware Design Integrity
Other than data confidentiality, security-providing hardware

further needs to ensure hardware design integrity. Due to lack
of security mechanisms, in today's global IC industry, an IP
provider, an IC design house, a CAD company, or a foundry can
easily tamper with a hardware device, for example, by installing
a Trojan horse component that corrupts the authentic computa-
tion, bypasses security checks, or creates a back door for infor-
mation leaks [23]. Preventing this tampering from happening
is the supply chain risk management problem, which has been
identified as a national priority in the recently released Compre-
hensive National Cyber Security Initiative [48].
Many of the existing hardware integrity-ensuring techniques

are based on ensuring data integrity. For example, a FPGA de-
sign can be protected by encrypting and hashing its configu-
ration bit stream [3]. In computer architecture, static code in-
tegrity verification protects instructions and data in memory,
e.g., by encrypting and hashing in writing, and decrypting and
hash matching in reading [14], [37], [38], [62], [63]. Encrypting
and hashing register file contents further prevents leakage of de-
crypted instructions and data at system interruptions [37].
The dominant hardware IP protection technique is water-

marking [1]. IP watermarking secretly conveys the information
on content ownership and IP rights. Compared with steganog-
raphy, IP watermarking further requires the property of
robustness, i.e., being infeasible to remove or make useless
without destroying the object at the same time. Hardware IP
watermarking techniques can be categorized as static, and
dynamic [1], [11], [24]. In static hardware IP watermarking, the
watermark is detected without running the IP. The dominant
technique is to include ownership-indicating constraints in a
design optimization process [53], such as logic optimization
[28], or place and route [29]. In dynamic hardware IP water-
marking, the watermark can only be detected by running the
IP. For example, watermarks can be embedded in dont-care
logic values, e.g., under logic inputs that are never applied
in operation [74]. A watermarked FSM gives the encrypted
ownership information if the correct key sequence is applied
[65], or exhibits a unique property if an encrypted ownership
message is applied [49].
These hardware IP watermarking techniques do not lead to

hardware IP tamper-proofing. Compared with watermarking,
tamper-proofing further requires the watermarks to be verified
effectively in runtime [51]. Static hardware IP watermarks are
difficult to verify, e.g., they require reverse engineering to re-
trieve logic or physical design properties. Dynamic hardware
IP watermarks are verified by applying special inputs. They do
not verify system runtime behavior under all possible inputs.

C. Related Techniques for Computation Integrity
1) Concurrent Checking: To verify system runtime behavior,

a concurrent checking system generates information bits, and



1070 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 3, SEPTEMBER 2015

Fig. 1. Modular linear feedback shift register (LFSR) as a response compactor in built-in self test (BIST) [10].

check bits, for example, in an error-detecting code [18], [45].
The simplest check bits can be parity bits, or duplicates of the
information bits in a dual-module redundancy (DMR) scheme.
Checking the consistency between the information bits and the
check bits can detect runtime errors such as soft errors or an
adversary tampering (e.g., triggered by a timer), which cannot
be detected by testing.
At the architecture level, fault tolerant processor design in-

cludes a variety of system-level redundant execution and con-
current checking techniques [45]. Lock-stepping schemes com-
pare internal states (e.g., program control flow [42], [46], [58],
hardware control signals [13], memory access [47], and rea-
sonableness of results [43], [59]) in each cycle with duplicated
program runs in a watchdog co-processor. Non-lock-stepping
schemes such as Redundant Multi-Threading (RMT) compare
only the outputs of committed instructions [4], [5], [19], [56],
[67]. Error-detecting and correcting code (EDCC)-based hard-
ware assertion techniques lead to more hardware-efficient fault
tolerant processors compared with lock-stepping or RMT [60],
[61], [72].
A specific category of concurrent checking techniques is the

control flow checking techniques which verify dynamic code
integrity. In structure integrity checking (SIS), each branch-free
code sequence is assigned a random number as its signature,
while a watchdog co-processor runs a simplified code, which
keeps the control structure, but includes only receive signature
and check signature instructions [42]. In basic path signature
analysis, each branch-free code sequence (node) has a signature
which comes from, e.g., a parity, checksum, or linear feedback
shift register (LFSR) of the instruction words. The watchdog
co-processor computes a signature dynamically at runtime, and
compares with the signature computed statically at assembly
time [46]. In generalized path signature analysis, each set of
paths (including branches, sharing the same starting node and
the same ending node) have a common signature with included
justifying signatures. The watchdog co-processor compares

such signatures computed dynamically and statically [46]. In
branch address hashing, a branch target address is computed at
runtime based on a signature computed at runtime. An incorrect
control flow results in an incorrect signature, and an incorrect
branch target address, such that the subsequent node has an
incorrect signature, which will be detected [58].
2) Built-In Self Test: A similar category of techniques is the

built-in self test (BIST) category [10], [16]. A typical BIST
scheme includes a pattern generator, a response compactor,
and a comparator. BIST leads to significant test cost reduction.
However, it may not be effective in detecting adversary tam-
pering. For example, a Trojan may not alter the computation
result, or a Trojan may only be triggered by some input patterns
that are not included in the BIST scheme. Nevertheless, we
observe that the response compaction techniques in BIST
are very efficient in reducing the size of data to verify while
monitoring a hardware system over a long period of time.
Linear feedback shift registers (LFSRs) provide efficient

implementation for pseudo-random number generation and
response compaction in BIST. A LFSR consists of D flip-flops,
and linear exclusive-OR (XOR) gates. For pseudo-random
number generation, a LFSR of D flip-flops will cycle through

finite states. For response compaction, a LFSR takes
as input a bit stream of output data from the circuit-under-test.
Taking this bit stream as a descending order coefficient polyno-
mial, a LFSR performs polynomial division of this bit stream
polynomial by the characteristic polynomial of the LFSR.
The final state of a modular LFSR is the remainder of the
polynomial division (Fig. 1) [10].
We observe that the response compaction techniques in

BIST are fingerprinting techniques. Specifically, modular
LFSR-based response compaction produces Rabin fingerprints
[54].
3) Fingerprinting: Fingerprints are short tags for larger ob-

jects. They have the property that if two fingerprints are dif-
ferent, then the corresponding objects are certainly different,



LIU AND SANDHU: FINGERPRINT-BASED DETECTION AND DIAGNOSIS OF MALICIOUS PROGRAMS IN HARDWARE 1071

and there is only a small probability that two different objects
have the same fingerprints. The latter event is called a collision.
Such a model and requirements are similar to those for universal
hashing. However, the emphasis and the relation between the
number of objects and the fingerprint length are different.
For hashing, we are interested in bounding the number of colli-
sions, and typically is much larger than ; for fingerprinting,
we want to avoid collisions altogether, and wemust take
[9].
For a given -bit message , we rep-

resent it by a polynomial of degree over finite field
.

(1)

A Rabin fingerprint is the remainder after polynomial
division of by an irreducible polynomial .

(2)

A Rabin fingerprint can be computed in linear time, and
efficiently implemented by a LFSR [9]. However, Rabin's
algorithm is not secure against malicious attacks. An adversary
can easily obtain the key (e.g., the seed value in a LFSR),
and modify a message without changing its fingerprint. Cryp-
tographic hash functions generally serve as higher quality
fingerprint functions. However, they are much more costly, and
lack proven guarantees on collision probability.
Fingerprints are widely used for deduplication in commu-

nication. For example, before re-loading a large file, a web
browser first fetches the fingerprint of the file, compares it to
that of an old copy, determines if the large file has any update,
and only re-loads the file if an update exists [15].

III. FINGERPRINT-BASED DETECTION OF MALICIOUS
PROGRAMS IN HARDWARE

A. Supply Chain Attack Model
A supply chain adversary is an insider who is involved in

the design and the manufacturing of a hardware device. His
tampering capability is based on his role in the supply chain,
specifically his read and write permission in the design and
the manufacturing process of a specific device. An IP provider
or a designer for a specific module may have limited access
to the design, while a foundry or a chip-level integration de-
signer has access to the whole device design. The general lack
of access control in today's supply chain further facilitates an
adversary to gain knowledge of a design and launch attacks.
Besides, based on his role in the supply chain, a supply chain
adversary may gain further knowledge of a design by probing,
testing, side-channel analysis, or reverse engineering. As a re-
sult, a supply chain adversary may have read and write permis-
sion to the whole design of a particular device.
A supply chain adversary may install a hardware Trojan

that is triggered at system runtime [12], [25], [69]. A hardware
Trojan can be a logic bomb that compromises hardware compu-
tation integrity by altering the authentic computation result, or
a back door that compromises hardware data confidentiality by
leaking out secrets or confidential information [12], [30], [57],

[70]. A back door may launch an attack by performing more
(e.g., in leaking out information) or less (e.g., in bypassing
existing security checks) than expected, while keeping the
authentic computation result intact. Because a logic bomb can
be detected by online monitoring or concurrent checking, we
focus on detecting back doors in this paper.
Specifically, we consider the security threat that a supply

chain adversary (a designer, an IP provider, a CAD vendor,
or a foundry) may install a hardware Trojan on an IC which
provides an information leaking back door, once activated.
Such a hardware Trojan may not be present in the design (for
example installed at a foundry or hidden in an IP) such that it
cannot be detected by design verification or formal verification.
Further, it is very difficult to detect such a hardware Trojan
by testing because 1) it is very difficult to activate it (for
example, a hardware Trojan may be triggered by an IC aging
sensor), and 2) there may be little trace even if the hardware
Trojan is activated; for example, the hardware Trojan may
leak information through a side channel or by steganography
without affecting the authentic computation, without degrading
the system performance, and without causing any noticeable
power consumption increase.
However, such a hardware Trojan needs to have its own com-

putation, for example, monitoring the authentic computation
and finding data of interest from the intermediate computation
results. Such a Trojan computation may not alter the authentic
computation results. However, it may tamper with some of the
runtime signals of a hardware system during the performance of
a computation as long as it utilizes some of the existing hard-
ware resources. A hardware Trojan that does not utilize any ex-
isting hardware resource has a larger footprint which makes it
easier to be detected.

B. Fingerprint-Based Detection of Malicious Programs in
Hardware
Our approach is to monitor the runtime signals of a hardware

system during the performance of a computation to detect any
Trojan computation, and protect the intermediate data during a
computation (while before and after the computation, the data
can be protected by encryption).We further compact the runtime
signals into a fingerprint, and verify the fingerprint off-chip for
computation integrity and tamper detection.
The proposed fingerprint-based malicious program detection

scheme includes three components as follows.
1) Signal Sampling: We first sample a group of runtime sig-

nals in a hardware system. We will generate a fingerprint based
on these signals, and verify the fingerprint. As a result, any
Trojan computation which tampers with any of these sampled
signals will be detected.
A Trojan computation tampers with the inputs and outputs

of a module if the module is utilized for Trojan computation.
By sampling any of the module input and output signals, we
will detect any Trojan computation which utilizes this module.
For example, by sampling the input and output signals of an in-
struction decoder, we will detect any Trojan computation which
sends Trojan instructions to this instruction decoder. By sam-
pling the inputs and outputs of an adder, we will detect any
Trojan computation which utilizes this adder. By sampling the



1072 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 3, SEPTEMBER 2015

memory access signals, we will detect any Trojan memory ac-
cess (given that the authentic computation and memory access
patterns are pre-determined, which we will elaborate on in the
section on verification).
2) Fingerprint Generation: We generate a fingerprint which

uniquely identifies a group of sampled signals.
We observe that the LFSR-based Rabin fingerprinting

technique that is commonly applied in BIST for response
compaction does not achieve tamper resistance. A supply chain
adversary may generate a fingerprint for his tampered design
given a Rabin fingerprinting scheme.
The Rabin fingerprint of the concatenation of two messages
and has the following properties [9].

(3)

(4)

Note that is the length of . Suppose that an adversary wants to
insert a message between messages and . Based on (3),
it is guaranteed that
if . Based on (4), an adversary can
achieve the identical fingerprint after inserting a message if

, where is the length of mes-
sage . For a short message, there can be . For a
long message, an adversary can concatenate a short message
to an inserted message to correct the fingerprint, e.g.,

,
where is the length of message .
Cryptographic hash function-based fingerprinting prevents

such attacks. Cryptographic hash functions include dedicated
hash functions such as MD5 and SHA-1, and block cipher
such as AES-based hash functions. Such cryptographic hash
functions have preimage resistance or one-wayness, second
preimage resistance or weak collision resistance, and collision
resistance. Preimage resistance or one-wayness ensures that,
given a hash value , it must be computationally infeasible to
find an input message such that . Second preimage
resistance or weak collision resistance ensures that, given a
message and its hash value , it must be computation-
ally infeasible to find a different message with an equal
hash value . Collision resistance
ensures that it must be computationally infeasible to find
two different messages and with equal hash values

[50]. As a result, given a crypto-
graphic hash function-based fingerprinting scheme, a supply
chain adversary cannot design a tampering scheme that alters
the response without altering the fingerprint.
3) Fingerprint Verification: Given an authentic computa-

tion which we know, and many possible tampered computations
which we do not know, we ensure the integrity and authenticity
of a computation by generating a fingerprint based on sampled
runtime signals, and verifying the fingerprint by comparing it
with a pre-computed one, or by repeating the same computation
in a separate system. For such a verification to be successful, we
have a few conditions. First, the authentic computation needs

to be pre-determined, i.e., the instruction sequence is pre-de-
termined, and the input data are pre-determined. For certain
simple programs such as a boot procedure, this condition is true.
For a complex program, we can partition it into simple instruc-
tion sequences, each being free of branching, as in control flow
checking [42], [46], [58]. Second, any tampered computation
produces a different fingerprint. This condition can be achieved
by choosing a fingerprint generation method of satisfiable col-
lision resistance, and choosing a group of sampled runtime sig-
nals which a Trojan computation tampers with. Third, the verifi-
cation cost is acceptable. This condition is not a problem for any
repeated computation such as boot. A complex program can be
partitioned into simple instruction sequences, and the sampled
runtime signals can be selected such that they are expected to
be the same for repeated computation, for example, as in con-
trol flow checking [42], [46], [58].
We implement the fingerprint verification scheme off the chip

such that a hardware Trojan cannot tamper with the verifica-
tion procedure. For example, to detect any Trojan installed by
an ASIC foundry, we compute a fingerprint by RTL simulation
or FPGA emulation. To detect any Trojan installed by an IP
provider, we compute a fingerprint based on a function model
of the IP or another IP of the same function.
A fingerprint may be verified concurrently to the computation

under verification, or stored and verified at a later time.

C. Comparison to Concurrent Checking and BIST
The proposed fingerprint-based tamper detection method dif-

fers from the existing concurrent checking techniques as fol-
lows.
1) Tamper resistance—The existing concurrent checking

techniques do not achieve tamper resistance. A hardware
Trojan may tamper with information signals and check
signals together, or invalidate any on-chip concurrent
checking mechanism to avoid being detected.

2) Tamper evidence—Concurrent checking discards runtime
signals instantly. In the proposed technique, a fingerprint
may be stored for later verification, and multiple finger-
prints may provide tamper diagnosis.

3) Efficiency—Compacting a vast amount of sampled sig-
nals into a fingerprint provides efficiency in storage or
instant verification. In comparison, concurrent checking
either checks each sample signal individually, e.g., in a
DMR scheme [18], or checks a group of sample signals,
e.g., based on an error-detecting code (EDC) [40], [41],
or checks the signature of a code snippet in control flow
checking [43]. Concurrent checking is performed in run
time (on-the-fly), either in lock-stepping which checks
internal states, or non-lock-stepping which checks only the
final output of a program [45]. There are further synchro-
nization and communication bandwidth problems between
an on-chip function system and an off-chip checking
system in lock-stepping concurrent checking.

Fingerprint-based tamper detection differs from BIST as fol-
lows.
1) BIST detects only any output difference for the given input

patterns. Fingerprint-based tamper detection covers any
sample signal for all input patterns.



LIU AND SANDHU: FINGERPRINT-BASED DETECTION AND DIAGNOSIS OF MALICIOUS PROGRAMS IN HARDWARE 1073

Fig. 2. A code injection hardware Trojan including a Trojan ROM, multi-
plexers, and trigger logic.

2) BIST achieves LFSR-based response compaction or
Rabin fingerprinting. Fingerprint-based tamper detection
achieves fingerprints of a higher quality based on cryp-
tographic hash functions that are resistant to adversary
tampering.

IV. CASE STUDY
As a case study, we demonstrate application of the proposed

fingerprint-based method to detect hardware-based code injec-
tion attacks in a processor.

A. Code Injection Hardware Trojan
Code injection is a major mechanism in software-based at-

tacks. Code injection further provides increased efficiency and
capacity for a hardware Trojan. For example, a hardware Trojan
may launch a deputy attack (i.e., use the benign microprocessor
in a malicious way) [20], and tamper with data in memory that
are encrypted and authenticated such that only the authentic mi-
croprocessor has access to it. It has been shown that a hardware
Trojan may tamper with the instruction memory, and direct a
processor to execute malicious instructions, e.g., by inserting a
JUMP instruction [27], or tampering a procedure return address
stack through an overflown buffer [36]. Here we present a hard-
ware Trojan which injects Trojan code from a Trojan ROM to
an authentic instruction decoder.
A code injection Trojan can be very small. For example, it

may only need to include a Trojan ROM containing the Trojan
instructions, a few multiplexers at the instruction fetch unit in-
puts, and a trigger logicmodule (Fig. 2). The Trojan trigger logic
module monitors the program count in the instruction fetch
unit. When the trigger condition is met, for example, the lower
bits of the next program count are all zeros, the Trojan multi-

plexers direct the instruction fetch unit to fetch instructions from
the Trojan ROM other than from the instruction cache. Because
the Trojan ROM is very small, it can be addressed by the lower
bits of the program count. The Trojan instruction sequence

starts by saving the program count and the other processor in-
ternal states, and ends by restoring the processor internal states
including the program count. When the low bits of the pro-
gram count equal the address of the last Trojan instruction (that
restores the program count), the Trojan multiplexers direct the
instruction fetch unit to fetch instructions from the instruction
cache. This action resumes the authentic operation.
To evade manufacturing tests, we further include an IC aging

sensor in the Trojan trigger logic such that the Trojan can only

Fig. 3. A SRAM cell-based NBTI sensor.

be triggered after the IC is sufficiently aged. Such an IC aging
sensor can be in the form of a 6T SRAM cell which has a min-
imum footprint, and consumes no static power (Fig. 3) [52]. The
only difference between this sensor and a regular 6T SRAM
cell is that the PMOS transistor P1 is sized up a bit. This sensor
works in two modes: polling, and tracking. In polling, or when
the sensor is powered up with the pass transistors turned off,
the PMOS transistors fight to determine the sensor output. Ini-
tially, as P1 is stronger, the bitline outputs logic 1. In tracking,
or when the sensor is powered on, as the PMOS transistor P1
is constantly subject to a negative gate-to-source voltage ,
the Negative Biased Temperature Instability (NBTI) effect in-
creases the threshold voltage of P1. After the system is aged to
the point that P1 is weaker than P2, a polling will flip the sensor
output, and enable Trojan activation.
Such a Trojan cannot be detected by a static code integrity

check, because the Trojan instructions are not in the memory.
The Trojan cannot be detected by non-lock-stepping concurrent
checking [4], [5], [19], [56], [67] because the authentic compu-
tation results are intact. But the Trojan may be detected by lock-
stepping concurrent checking [13], [42], [43], [46], [47], [58],
[59]. However, if a lock-stepping concurrent checking module
resides on the same chip as the function system, a supply chain
adversary such as a foundry or a chip-integration designer can
easily tamper with the checking mechanism. If a lock-stepping
concurrent checking mechanism resides on a different chip, it
would be difficult to achieve synchronization, and only a lim-
ited number of signals can be monitored. As a result, a supply
chain adversary may tamper with the system while keeping the
sampled signals intact.

B. Tamper-Evident Architecture
Our fingerprint-based tamper detection is based on a tamper-

evident architecture (TEA) that generates fingerprints for sam-
pled signals (Fig. 4). By sampling the instruction fetch unit in-
puts, we can detect Trojans that send Trojan signals such as
branch target addresses to the instruction fetch unit. While at a
higher cost, a supply chain adversary may create his own Trojan
instruction fetch unit that inserts Trojan instructions to the in-
struction decoder unit. By sampling the instruction decoder unit
inputs, we can detect Trojans that send Trojan instructions to the



1074 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 3, SEPTEMBER 2015

Fig. 4. A code injection hardware Trojan which consists of a Trojan ROM, multiplexers, and trigger logic (colored); and a tamper-evident architecture (TEA)
which samples runtime signals in a round-robin scheme based on multiplexers, and computes a fingerprint based on a Matyas-Meyer-Oseas hash function (below
the pipeline) in a processor.

decoder unit. While at a higher cost, a supply chain adversary
may create his own Trojan instruction decoder unit that sends
control signals and data to the function units in the execute stage.
To defeat such an attack, we need to further sample the execute
stage inputs. While at an even higher cost, a supply chain adver-
sary may create his own Trojan function units. To defeat such
an attack, we need to further sample the register files and the
memory inputs.
We implement a round-robin scheduling algorithm to sample

the signals for a fingerprint generator based on a hash func-
tion that accepts fixed-length messages. We sample any specific
signal once in every clock cycles, which guarantees to detect
any inserted Trojan instruction sequence that takes more than
clock cycles. A Trojan instruction sequence cannot be too short
because it needs to start by saving the processor internal states
and end by restoring the processor internal states to keep the
authentic computation result intact. We have in our im-
plementation.
We implement a Matyas-Meyer-Oseas hash function for fin-

gerprint generation (Fig. 4), while several other hash functions
such as Davies-Meyer andMiyaguchi-Preneel are equally effec-
tive [50]. We divide a message into blocks of a fixed size
such as 128 bits. A block cipher such as AES encrypts eachmes-
sage block , while taking a mapping from the pre-
vious output as the key input to the cipher. If the previous
output and the key input have the same length, can be
the identity mapping. After encryption, we XOR the encrypted
message block to the original message block .
The function can be expressed as . The
last output value computed is the hash of the whole message

, i.e., [50].

A particularly strong attack against the TEA and fingerprint-
based tamper detection method is for a hardware Trojan to ini-
tiate a precise interrupt. A precise interrupt does not affect any
program output, but increases the runtime of an on-the-fly pro-
gram. Similarly, a hardware Trojan may 1) freeze the on-the-fly
authentic computation and fingerprint generation process, for
example, by clock gating; 2) save the system internal state; 3)
perform the Trojan program; 4) restore the system internal state;
and 5) resume the on-the-fly authentic computation and finger-
print generation process. Such an attack (as a precise interrupt)
does not tamper with the authentic computation result or the fin-
gerprint. However, it leads to significant performance degrada-
tion, which makes it easy to be detected, e.g., by checking the
program runtime in clock cycles.

C. Fingerprint Generation and Verification
We generate cryptographic hash-based fingerprints by RTL

simulation assuming the RTL design is tamper-free while a
foundry or an IP provider may install a hardware Trojan which
is not present in the RTL design. A simple input-free program
such as a boot sequence has a unique fingerprint . The TEA is
expected to output the fingerprint in a given number of clock
cycles. At the start of a program, we insert a no-op instruction
giving in its operand field a check value , where is
a function that is not on-chip and unknown to any supply chain
adversary. At the end of a program run, an off-chip verifier
that knows the check function computes its check value

based on the actual fingerprint and the actual
runtime , and compares to . Any interrupt time needs to be
deducted from the program runtime. If a hardware Trojan fakes
an interrupt, the interrupt occurrence record provides tamper



LIU AND SANDHU: FINGERPRINT-BASED DETECTION AND DIAGNOSIS OF MALICIOUS PROGRAMS IN HARDWARE 1075

evidence. If a hardware Trojan eavesdrops a set of , and
launches a replay attack, i.e., by giving first then after
cycles to cover a Trojan program run of cycles, an off-chip
verifier can detect this change by checking if the program of
fingerprint has been re-launched.
We partition a more complex program including branching

instructions into branch-free instruction sequences as in path
signature analysis [46]. We generate a fingerprint and a check
value for each branch-free instruction sequence
which takes cycles. To prevent a hardware Trojan from in-
jecting a Trojan branch-free instruction sequence, and covering
it with a set of in a replay attack, we link each branch-
free instruction sequence to its two successor branch-free in-
struction sequences as follows.We insert two no-op instructions
at the end of a branch-free instruction sequence carrying the
check values for the next branching, and non-branching instruc-
tion sequences, respectively. As a result, the program cannot
branch to a Trojan instruction sequence.

D. Evaluation
The proposed TEA provides computation integrity verifica-

tion and intermediate data protection against hardware Trojans
or malicious programs.
If a hardware Trojan launches a malicious program which

tampers with an existing hardware module from which signals
are sampled, then the TEA will produce an incorrect fingerprint,
leading to tamper detection. Alternatively, performing all the
Trojan program based on dedicated Trojan hardware leads to an
increased hardware footprint, and makes the Trojan easier to be
detected.
We evaluate a few possible code injection hardware Trojans

and the proposed fingerprint-based tamper detection scheme
based on a TEA on a five-stage in-order open source SPARC
V8 architecture LEON2 processor [17]. We have designed
a minimum code injection hardware Trojan including a few
multiplexers, a trigger logic network, and a 1 KB Trojan ROM.
We have further designed two TEAs which compute signatures
of guaranteed preimage and second preimage resistance based
on two block ciphers AES and PRESENT, respectively [7],
[50]. We achieve logic synthesis of these designs by Synopsys
Physical Compiler based on the 45 nm Nangate open source
cell library [22]. Table I compares their hardware cost in
terms of area, power consumption, and critical path delay.
The LEON2 processor is configured to include a five-cycle
multiplier, a 35-cycle divider, a floating-point unit, a memory
management unit, a PCI interface, and a network unit with
no co-processors. Compared with the LEON2 processor, the
minimum code injection hardware Trojan with a 1 KB ROM
leads to a layout area increase of only 2.5%. In the presence
of a TEA, the hardware Trojan cannot utilize any existing
hardware resources, and needs to have its own instruction fetch
unit, instruction decode unit, function units, memory, and write
back logic. This condition leads to a layout area increase of
36.1% for the LEON2 processor, which makes it much easier to
detect the hardware Trojan. While an AES-based TEA leads to
a 45.1% layout area increase, moving to the lightweight block
cipher PRESENT leads to a tamper-evident architecture of less
than twice the area of a code injection hardware Trojan with a 1

TABLE I
HARDWARE OVERHEAD OF A LEON2 PROCESSOR, A CODE INJECTION

HARDWARE TROJAN INCLUDING A 1KB ROM, ANOTHER CODE INJECTION
HARDWARE TROJAN INCLUDING A 1KB ROM AND AN INTEGER UNIT, AND

TWO TEAS BASED ON AES AND PRESENT, RESPECTIVELY

KB ROM, or only a 4.5% layout area increase for the LEON2
processor.

V. TAMPER DIAGNOSIS

The proposed fingerprint-based tamper detection method can
be extended for tamper diagnosis. For example, we generate
multiple fingerprints for different groups of sampled signals
concurrently. Our experimental results (Table I) show that this
result is possible to achieve even under a tight area constraint
based on a lightweight block cipher such as PRESENT.
We may generate fingerprints for each pipeline stage in a pro-

cessor. For more thorough diagnosis, one may arrange the se-
quential elements to sample in a 2-D array, and generate a fin-
gerprint for each row and each column. A sequential element
of a tampered with signal would be located by the row and the
column of an incorrect fingerprint. A more efficient scheme is to
generate fingerprints for selected sampling points in a way that
is similar to Hamming code construction. For example, for 4 in-
formation bits, 3 check bits are generated by respectively taking
XOR for bits 1,3,5,7, for bits 2,3,6,7, and for bits 4,5,6,7. In
general, for information bits, check bits are needed to
construct a single-error-correctable Hamming code. Similarly,
we need fingerprints for sampled signals to locate a
single tampered with signal.

VI. CONCLUSION
In this paper, we propose a fingerprint-based method to de-

tect malicious programs in hardware. We propose a TEA which
generates fingerprints that each uniquely identifies a sequence
of runtime signals in a hardware system during the performance
of a computation.We generate cryptographic hash-based finger-
prints such that a hardware Trojan cannot tamper with any sam-
pled signal without leaving tamper evidence such as a missing
or incorrect fingerprint. We verify fingerprints off-chip such that
a hardware Trojan cannot tamper with the fingerprint verifica-
tion process. To avoid being detected by the proposed method,
a hardware Trojan cannot launch a malicious program based on
any existing hardware module from which signals are sampled.
This result leads to an increased Trojan footprint or degraded

system performance, and makes Trojan detection easier. As a
case study, we apply this technique to detect hardware-based
code injection attacks in a LEON2 processor. Logic synthesis
based on the 45 nm Nangate open cell library shows that, based
on a lightweight block cipher PRESENT, a TEA requires only
a 4.5% area increase for a LEON2 processor; while avoiding
being detected by the TEA increases the area of a code injection



1076 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 3, SEPTEMBER 2015

hardware Trojan with a 1 KB ROM from 2.5% to 36.1% of
a LEON2 processor. The small overhead of fingerprint-based
tamper detection further enables concurrent generation of
multiple fingerprints for more advanced tamper diagnosis
techniques.

REFERENCES
[1] A. T. Abdel-Hamid, S. Tahar, and M. Aboulhamid, “A survey on IP

watermarking techniques,” Design Autom. Embed. Syst., vol. 9, pp.
211–227, 2004.

[2] M. Agrawal, S. Karmakar, D. Saha, and D. Mukhopadhyay, “Scan
based side channel attacks on stream ciphers and their counter-mea-
sures,” in Proc. Int. Conf. Cryptology in India (INDOCRYPT), 2008,
pp. 226–238.

[3] Altera, “Anti-tamper capabilities in FPGA designs,” [Online]. Avail-
able: http://www.altera.com/literature/wp/wp-01066-anti-tamper-ca-
pabilities-fpga.pdf/

[4] T. M. Austin, “DIVA: A reliable substrate for deep submicron mi-
croarchitecture design,” in Proc. Annu. Int. Symp. Microarchitecture
(MICRO), 1999, pp. 196–207.

[5] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “NonStop advanced architecture,” in Proc. Int. Conf.
Dependable Systems and Networks (DSN), 2005, pp. 12–21.

[6] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Proc. Annu. Int. Cryptography Conf. Advances in Cryp-
tography, 1997, pp. 513–527.

[7] A. Bogdanov, L. R. Knudsen, G. Le, C. Paar, A. Poschmann, M. J.
B. Robshaw, Y. Seurin, and C. Vikkelsoe, “PRESENT: An ultra-light-
weight block cipher,”Cryptograph. Hardw. Embed. Syst., pp. 450–466,
2007.

[8] D. Boneh, R. A. Demillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in Proc. Int. Conf. Theory
and Application of Cryptographic Techniques (Eurocrypt), 1997, pp.
37–51.

[9] A. Z. Broder, “Some applications of Rabins fingerprinting method,”
in Sequences II: Methods in Communications, Security, and Computer
Science. New York, NY, USA: Springer-Verlag, 1993, pp. 143–152.

[10] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing
for Digital, Memory and Mixed-Signal VLSI Circuits. Norwell, MA,
USA: Kluwer, 2000.

[11] A. E. Caldwell, H.-J. Choi, A. B. Kahng, S. Mantik, M. Potkonjak, G.
Qu, and J. L. Wong, “Effective iterative techniques for fingerprinting
design IP,” IEEE Trans. Comput.-Aided Design, vol. 23, no. 2, pp.
208–215, 2004.

[12] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware Trojans:
Threats and emerging solutions,” in Proc. IEEE HLVDT Workshop,
2009, pp. 166–171.

[13] S. F. Daniels, “A concurrent test technique for standard microproces-
sors,” in Dig. Papers Compcon Spring 83, 1983, pp. 389–394.

[14] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally, and L.
Torres, “Hardware mechanisms for memory authentication: A survey
of existing techniques and engines,” in Transactions on Computational
Science IV. Berlin, Germany: Springer-Verlag, 2009, pp. 1–22.

[15] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol,” IEEE/ACM Trans. Netw., vol.
8, no. 3, pp. 281–293, 2000.

[16] R. A. Frohwerk, “Signature analysis: A new digital field service
method,” Hewlett-Packard J., vol. 28, no. 9, pp. 2–8, 1977.

[17] Aeroflex Gaisler, LEON SPARC V8 Processors [Online]. Available:
http://www.gaisler.com/

[18] M. Göessel, V. Ocheretny, E. Sogomonyan, and D. Marienfeld, New
Methods of Concurrent Checking. New York, NY, USA: Springer,
2008.

[19] M. A. Gomaa, C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz,
“Transient fault-recovery for chip multiprocessors,” in Proc. Int. Symp.
Computer Architecture, 2003, pp. 98–109.

[20] N. Hardy, “The confused deputy (or why capabilities might have been
invented),” ACM SIGOPS Operat. Syst. Rev., vol. 22, no. 4, pp. 36–38,
1988.

[21] D. Hely, F. Bancel, M.-L. Flottes, and B. Rouzeyre, “Test control for
secure scan design,” in Proc. Eur. Test Symp., 2005, pp. 190–195.

[22] Silicon Integration Initiative, “Nangate open cell library,” [Online].
Available: http://www.si2.org/openeda.si2.org/projects/nangatelib/

[23] C. E. Irvine and K. Levitt, “Trusted hardware: Can it be trustworthy?,”
in Proc. ACM/IEEE Design Automation Conf., 2007, pp. 1–4.

[24] A. K. Jain, L. Yuan, P. R. Pari, and G. Qu, “Zero overhead water-
marking technique for FPGA designs,” in Proc. Great Lakes Symp.
VLSI, 2003, pp. 147–152.

[25] Y. Jin, N. Kupp, and Y.Makris, “Experience in hardware Trojan design
and implementation,” inProc. IEEE Int. WorkshopHardware-Oriented
Security and Trust (HOST), 2009, pp. 50–57.

[26] Y. Jin and Y. Makris, “Hardware Trojan detection using path delay
fingerprint,” in Proc. IEEE Int. Workshop Hardware-Oriented Security
and Trust (HOST), 2008, pp. 51–57.

[27] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. IEEE Int. Conf. Computer
Design, 2012, pp. 131–134.

[28] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Constraint-based
watermarking techniques for design intellectual property protection,”
IEEE Trans. Comput.-Aided Design, vol. 20, no. 10, pp. 1236–1252,
2001.

[29] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker, H.
Wang, and G. Wolfe, “Robust IP watermarking methodologies for
physical design,” in Proc. ACM/IEEE Design Automation Conf., 1998,
pp. 782–787.

[30] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trust-
worthy hardware: Identifying and classifying hardware Trojans,”
IEEE Comput., vol. 43, no. 10, pp. 39–46, Oct. 2010.

[31] R. Karri, K. Wu, and P. Mishra, “Fault-based side-channel cryptanal-
ysis tolerant architecture for Rijndael symmetric block cipher,” inProc.
IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems, 2001, pp.
427–435.

[32] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent error detec-
tion schemes for fault-based side-channel cryptanalysis of symmetric
block ciphers,” IEEE Trans. Comput.-Aided Design, vol. 21, no. 12,
pp. 1509–1517, 2002.

[33] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Proc. Int. Cryptography Conf. Advances in Cryptography, 1999, pp.
388–397.

[34] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” Advances in Cryptology CRYPTO96,
Lecture Notes in Computer Science, vol. 1109, pp. 104–113, 1996.

[35] J. Lee, M. Tehranipoor, C. Patel, and J. Plusquellic, “Securing designs
against scan-based side-channel attacks,” IEEE Trans. Depend. Secure
Comput., vol. 4, no. 4, pp. 325–336, 2007.

[36] R. B. Lee, D. K. Karig, J. P. Mcgregor, and Z. Shi, “Enlisting hardware
architecture to thwart malicious code injection,” in Proc. Int. Conf. Se-
curity in Pervasive Computing, 2003, pp. 237–252, Springer Verlag.

[37] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang,
“Architecture for protecting critical secrets in microprocessors,” in
Proc. Int. Symp. Computer Architecture, 2005, pp. 2–13.

[38] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architecture support for copy and tamper resistant
software,” in Proc. Int. Conf. Architecture Support for Programming
Languages and Operating Systems (ASPLOS-IX), 2000, pp. 168–177.

[39] L. Lin, M. Kasper, T. Guneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware Trojans through side-channel en-
gineering,” Cryptograph. Hardw. Embed. Syst., pp. 382–395, 2009.

[40] B. Liu, X. Chen, and F. Teshome, “Resilient and adaptive performance
logic,” ACM J. Emerg. Technol. Comput. Syst., vol. 8, no. 3, 2012, No.
22:1-22.

[41] B. Liu and L. Wang, “Minimum logic of guaranteed single soft error
resilience based on group distance-two code,” in Proc. Int. Conf. IC
Design and Technology (ICICDT), 2012, pp. 193–196.

[42] D. Lu, “Watchdog processors and structural integrity checking,” IEEE
Trans. Comput., vol. 31, no. 7, pp. 681–685, 1982.

[43] A. Mahmood and E. J. McCluskey, “Concurrent error detection using
watchdog processors—A survey,” IEEE Trans. Comput., vol. 37, no.
2, pp. 160–174, 1988.

[44] Microsoft, “Next-generation secure computing base,” [Online]. Avail-
able: http://www.microsoft.com/resources/ngscb/default.mspx

[45] S. Mukherjee, Architecture Design for Soft Errors. San Mateo, CA,
USA: Morgan Kaufmann, 2008.

[46] M. Namjoo, “Techniques for concurrent testing of VLSI processor op-
eration,” in Proc. IEEE Int. Test Conf., 1982, pp. 461–468.

[47] M. Namjoo and E. J. McCluskey, “Watchdog processors and capability
checking,” in Dig. Papers 12th Annual Int. Symp. Fault Tolerant Com-
puting, FTCS-12, 1982, pp. 245–248.

[48] National Security Council, “The comprehensive national cybersecu-
rity initiative,” [Online]. Available: http://www.whitehouse.gov/cyber-
security/comprehensive-national-cybersecurity-initiative



LIU AND SANDHU: FINGERPRINT-BASED DETECTION AND DIAGNOSIS OF MALICIOUS PROGRAMS IN HARDWARE 1077

[49] A. L. Oliveira, “Robust techniques for watermarking sequential cir-
cuit designs,” in Proc. ACM/IEEE Design Automation Conf., 1999, pp.
837–842.

[50] C. Paar and J. Pelzl, Understanding Cryptography: A Textbook for Stu-
dents and Practitioners. Berlin, Germany: Springer-Verlag, 2010.

[51] T. Park and K. G. Shin, “Soft tamper-proofing via program in-
tegrity verification in wireless sensor networks,” IEEE Trans. Mobile
Comput., vol. 4, no. 3, pp. 1–13, 2005.

[52] Z. Qi, J. Wang, A. Cabe, S. Wooters, T. Blalock, B. Calhoun, and M.
Stan, “SRAM-basedNBTI/PBTI sensor system design,” inProc. ACM/
IEEE Design Automation Conf., 2010, pp. 849–852.

[53] G. Qu, “Publicly detectable watermarking for intellectual property au-
thentication in VLSI design,” IEEE Trans. Comput.-Aided Design, vol.
21, no. 11, pp. 1363–1368, 2002.

[54] M. O. Rabin, Fingerprinting by Random Polynomials, 1981 Center for
Research in Computing Technology, Harvard Univ., Cambridge, MA,
USA, Rep. TR-15-81.

[55] G. B. Ratanpal, R. D. Williams, and T. N. Blalock, “An on-chip signal
suppression countermeasure to power analysis attacks,” IEEE Trans.
Depend. Secure Comput., vol. 1, no. 3, pp. 179–188, 2004.

[56] E. Rotenberg, “AR-SMT: A microarchitectural approach to fault tol-
erance in microprocessors,” in Proc. Annu. Fault-Tolerant Computing
Systems (FTCS), 1999, p. 84.

[57] J. C. M. Santos and Y. Fei, “Designing and implementing a malicious
8051 processor,” in Proc. IEEE Int. Symp. Defect and Fault Tolerance
in VLSI and Nanotechnology Systems, 2012, pp. 63–66.

[58] J. P. Shen and M. A. Schuette, “On-line self-monitoring using sig-
natured instruction streams,” in Proc. IEEE Int. Test Conf., 1983, pp.
275–282.

[59] P. P. Shirvani and E. J. McCluskey, Fault-Tolerant Systems in a Space
Environment: The CRC ARGOS Project , CRC Technical Report No.
98-2 (CSL TR No. 98-774), 1998.

[60] T. J. Slegel, R. M. Averill, M. A. Check, B. C. Giamei, B. W. Krumm,
C. A. Krygowski, W. H. Li, J. S. Liptay, J. D. MacDougall, T. J.
McPherson, J. A. Navaroo, E. M. Schwarz, K. Shum, and C. F. Web,
“IBMs S/390 G5 microprocessor design,” IEEE Micro, pp. 12–23,
1999.

[61] L. Spainhower and T. A. Gregg, “IBM S/390 parallel enterprise server
G5 fault tolerance: A historical perspective,” IBM J. Res. Develop., vol.
43, no. 5/6, pp. 863–873, 1999.

[62] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas,
“AEGIS: Architecture for tamper-evident and tamper-resistant pro-
cessing,” in Proc. Int. Conf. Supercomputing, 2003, pp. 160–171.

[63] G. E. Suh, C. W. ODonnell, I. Sachdev, and S. Devadas, “Design
and implementation of a single-chip secure processor using physical
random functions,” in Proc. Int. Symp. Computer Architecture, 2005,
pp. 25–36.

[64] R. Torrance and D. James, “The state-of-the-art in IC reverse engi-
neering,” Cryptographic Hardware and Embedded Systems—CHES
2009, Lecture Notes in Computer Science, vol. 5747, pp. 363–381,
2009.

[65] I. Torunoglu and E. Charbon, “Watermarking-based copyright protec-
tion of sequential functions,” IEEE J. Solid State Circuits, vol. 35, no.
3, pp. 434–440, 2000.

[66] Trusted Computing Group, “TPM main, part 1, design principles,”
Mar. 2006 [Online]. Available: http://www.trustedcomputing-
group.org/downloads/specifications/tpm/tpm/

[67] T. N. Vijaykumar, I. Pomeranz, and K. Cheng, “Transient fault re-
covery using simultaneous multithreading,” in Proc. Int. Symp. Com-
puter Architecture, 2002, pp. 87–98.

[68] A. Waksman and S. Sethumadhavan, “Tamper evident microproces-
sors,” in Proc. IEEE Symp. Security & Privacy, 2010, pp. 173–188.

[69] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in Proc. IEEE Symp. Security and Privacy, 2011, pp. 49–63.

[70] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware Trojans in embedded processor,” in
Proc. IEEE Int. Symp. Defect and Fault Tolerance in VLSI and Nan-
otechnology Systems, 2012, pp. 55–58.

[71] Z. Wang and R. B. Lee, “New cache design for thwarting software
cache-based side channel attacks,” in Proc. Int. Symp. Computer Ar-
chitecture, 2007, pp. 494–505.

[72] C.Webb, “z6—The next-generation mainframe microprocessor,” 2007
[Online]. Available: http://speleotrove.com/decimal/IBM-z6-main-
frame-microprocessor-Webb.pdf

[73] B. Yang, K. Wu, and R. Karri, “Scan based side channel attack on dedi-
cated hardware implementations of data encryption standard,” in Proc.
IEEE Int. Test Conf., 2004, pp. 339–344.

[74] L. Yuan, R. Pari, and G. Qu, “Soft IP protection: Watermarking HDL
source codes,” in Proc. 6th Information Hiding Workshop, 2004, pp.
224–238.

Bao Liu (SM'11) received the B.S., M.S., and Ph.D. degrees in 1993, 1996, and
2003, respectively.
He is currently an Assistant Professor with the Department of Electrical and

Computer Engineering, University of Texas at San Antonio, San Antonio, TX,
USA. He has authored over 60 journal articles and conference papers, and holds
three U.S. and international patents. His current research interests include hard-
ware security, nanocomputing, and VLSI CAD, including physical design, sta-
tistical timing analysis and optimization, power rail and signal integrity analysis,
reliable and resilient design, and delay testing.
Prof. Liu has served as the Chair of an invited session Emerging Nano-Cir-

cuits and System in Midwest Symposium on Circuits and Systems in 2010, the
Chair of the Hardware and System Security track in International Symposium
on Quality Electronic Design (ISQED) in 2015, the Co-Chair of the Emerging
Design and Technology track in ISQED since 2006, and a Panelist on CAD
for Nanoelectronics in International Symposium on Nanoscale Architectures in
2010. He was a recipient of the Best Paper Award in the International Confer-
ence on Computer Design in 2005, the Best Research Award in UCSD Research
Review in 2002, the China ICCAD Best Member Award in 1996, and the China
Mathematics Olympiad Honor Medal in 1988.

Ravi Sandhu (F'02) received the B.Tech. and M.Tech. degrees from IIT
Bombay and Delhi, and the M.S. and Ph.D. degrees from Rutgers University,
New Brunswick, NJ, USA.
He is Executive Director of the Institute for Cyber Security at the University

of Texas at San Antonio, where he holds the Lutcher Brown Endowed Chair
in Cyber Security. Previously he served on the faculty at George Mason Uni-
versity (1989–2007), and Ohio State University (1982–1989). A prolific and
highly cited author, his research has been funded by NSF, NSA, NIST, DARPA,
AFOSR, ONR, AFRL, and private industry. His seminal papers on role-based
access control established it as the dominant form of access control in practical
systems. His numerous other models and mechanisms have also had consider-
able real-world impact.
Dr. Sandhu is a Fellow of ACM and AAAS, and has received awards from

IEEE, ACM, NSA, and NIST. He served as Editor-in-Chief of the IEEE
TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, and previously
as founding Editor-in-Chief of ACM Transactions on Information and System
Security. He was Chairman of ACM SIGSAC, and founded the ACM Confer-
ence on Computer and Communications Security, the ACM Symposium on
Access Control Models and Technologies, and the ACM Conference on Data
and Application Security and Privacy. He has served as General Chair, Steering
Committee Chair, Program Chair, and Committee Member for numerous
security conferences. He has consulted for leading industry and government
organizations, and has lectured all over the world. He is an inventor on 30
security technology patents, and has accumulated over 28,000 Google Scholar
citations for his papers. At the Institute for Cyber Security, his research
projects include attribute-based access control, secure cloud computing, secure
information sharing, social computing security, and secure data provenance.
His web site is at http://www.profsandhu.com.


