
Safety Decidability for Pre-Authorization Usage
Control with Finite Attribute Domains

P.V. Rajkumar and Ravi Sandhu

Abstract—This paper considers the safety problem for the pre-authorization sub-model of the well-known UCONABC usage control

model, that is, Pre UCONA. It is shown that Pre UCONA with finite attribute domains has decidable safety even if arbitrary object

creation is allowed. This result eliminates the previously known restrictions for obtaining safety decidability in this context, which only

allow a finite bounded number of objects to be created. Our result specifically permits unbounded object creation, so the set of objects

is potentially infinite. In the proof, we show that the set of reachable protection tuples in infinite state Pre UCONA models is finite and

computable. We also provide a construction for decision procedure which answers the safety question by examining the reachable

protection tuples.

Index Terms—Usage control authorization, safety, decidability, automated analysis and decision procedures

Ç

1 INTRODUCTION

UCONABC [1] is the well-known usage control model
developed to support diverse security requirements

of modern information systems in a unified manner. The
notion of subject and object attributes is central to
UCONABC . Pre UCONA is an authorization sub-model of
UCONABC which has features to support classical manda-
tory access control (MAC), discretionary access control
(DAC) and role-based access control (RBAC) policies, as
well as consumable and regenerative usage rights, by means
of attributes. Pre UCONA includes mutable attributes which
are updated as a consequence of usage actions performed
by subjects on objects.

A fundamental issue in any access or usage control
model is to determine whether the given policies and the
initial configuration actually enforce the security intent of
the security architects. In Pre UCONA, usage decisions
are based on the attribute values of the subject and the
object. Execution of a usage right can modify the attribute
values of the involved subject and object, or possibly
create a new object which in turn brings in new values
for its attributes. Existence of the new object or modified
attributes of an existing object can enable new permis-
sions. Execution of the new permissions can further bring
in additional new objects and modify existing attribute
values. This cycle could continue indefinitely. Given these
interactions, it is difficult for a security architect to manu-
ally check if the policy and the initial configuration could
lead to any unintended security violations.

In this work, we present an automated decision proce-
dure to check such unintended policy violations when the
attributes are restricted to be from constant finite domains.

Notably, this procedure is applicable even in presence of
arbitrary object creation. This result eliminates the previ-
ously known restrictions [2] for such decidability, which
amount to allowing only a finite bounded number of objects
to be created (see proof of Theorem 3 in [2]). Our result
allows the set of objects to grow without a finite bound.

One of the basic policy violations is unauthorized
usage right leakage, that is, a subject which is not sup-
posed to get a right over an object gets the right. Analysis
of such leakages is often referred as safety analysis
and an automated decision procedure which does that
analysis is called a safety decision procedure (SDP). The
usage control authorization model has been shown
to simulate a single tape Turing machine whereby the
Turing machine’s halting problem is reduced to the safety
analysis problem in Pre UCONA [2]. Hence, it is not pos-
sible to have an SDP for Pre UCONA, in general. We
emphasize that Pre UCONA permits unbounded attribute
domains such as the set of objects in the system. Further,
it has been shown that Pre UCONA with infinite domain
attributes (such as natural numbers or strings over a finite
alphabet) can encode the Post Correspondence Problem,
even without any object creation [3].

In many practical systems security attributes, such as
social-security number, roles, labels, gender, title, depart-
ment, and so on, have constant finite domains, while the
number of resources and processes within a system could be
unbounded. This paper focusses on a finite attribute domain
security system with infinite number of objects due to object
creation. Restricted sub-models of usage control authoriza-
tion with finite attribute values and with acyclic object crea-
tions have previously been shown to have SDPs [2].

In this paper, we prove that usage control authoriza-
tion with finite attribute value domains is sufficient to
ensure existence of SDPs. This is without any restrictions
on number of object creations and the attribute update
features of the scheme. This is a significant generalization
of previous results in this arena and requires a novel
construction that has not previously been applied to the

� The authors are with the Institute for Cyber Security, University of Texas
at San Antonio, San Antonio, TX 78249.
E-mail: rajkumarpv@gmail.com, ravi.sandhu@utsa.edu.

Manuscript received 5 Aug. 2014; revised 6 Apr. 2015; accepted 10 Apr. 2015.
Date of publication 29 Apr. 2015; date of current version 2 Sept. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TDSC.2015.2427834

582 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

1545-5971� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:

safety problem. Our construction is based on the notion of
protection tuples (PT) and their computability. A protection
tuple is a combination of attribute values that can enable
usage rights. We prove that the maximal set of reachable
protection tuples is finite in a usage schema with finite
attribute domains, and we construct a decision procedure
that finds the reachable set of protection tuples and
answers the safety question.

The rest of this paper is organized as follows. Section 2
presents related work. Section 3 presents the usage control
authorization scheme analyzed in this paper. Section 4
introduces the notion of protection tuples. Section 5 brings
in the concept of reachable protection tuples, shows that
this set is computable and gives a decision procedure for
the safety problem based on this notion. The complexity
of this problem turns out to be PSpace-Hard. Section 6 con-
cludes the paper.

2 RELATED WORK

Usage control is an unification approach to combine tradi-
tional access control with obligations, conditions, and attri-
bute mutability. UCONABC [1] is the first comprehensive
model to support all these features under one umbrella.
This model defines three decision components namely
Authorization, oBligation and Condition (ABC) to support
security policies involving authorization, obligation, and
condition requirements, respectively.

Safety analysis of Pre UCONA, an authorization fragment
of UCONABC , has been shown to be an undecidable problem
in general [2]. However, it has been shown that the safety is
decidable for two restricted cases of Pre UCONA [2]. The first
sub-model has finite attribute value domains without object
creation. The second sub-model has finite attribute value
domains with restricted object creationwhich imposes a finite
bound on the number of objects that can be created in the sys-
tem. Our work improves on the decidability result obtained
in [2] by relaxing the finite object creation constraint without
applying any additional restrictions.

Safety analysis of ongoing authorization model
On UCONA with finite attributes and without object crea-
tion policies has been studied in [4]. Alternatively, safety
analysis problem can be mapped to a satisfiability problem
in some logical theories, thereby decidability results of logi-
cal theories are immediately available for safety analysis.
This approach has been followed in [5], where in particular,
decidability results of many-sorted first order logic have
been applied to solve the usage control safety problem. The
safety decidable fragment identified in [5] has finite number
of objects and the objects’ attributes can take values from
infinite domains, but the update actions do not include
arithmetic operations like addition and multiplication.

The safety analysis problem dates back to 1970’s access
control models. Safety of access control matrix (ACM)
model was shown to be undecidable [6], in general.
Monotonic mono-conditional ACM models have SDPs.
The schematic protection model (SPM) [7], [8] introduced
typed security entities. Each entity is associated with a
security type which remains unchanged. The extended
SPM with conditional tickets and revocation features are
explored in [9], [10]. The typed access matrix (TAM) [11]

is an extension of access control matrix model by adding
types to the objects. Both the safety decidable TAM model
and the SPM model support only a limited set of mono-
tonic access control policies. The Dynamic-Typed Access
Matrix (DTAM) [12] model introduces the constructs
needed to change the object types in the TAM model
to support non-monotonic access control policies. The
DTAM model with limited object creations has SDPs.

The main idea behind the RBAC model [13] is to specify
and enforce enterprise-specific security policies in a natural
way as they present themselves in an organizational struc-
ture. The RBAC model provides a simplified approach to
manage users and resources by decoupling the permissions
and users. This model has been extended to support tempo-
ral [14] and numerous other features.

Adminstration of RBAC and its safety problem are
explored in [14], [15], [16], [17], [18], [19], [20], [21], [22]. Secu-
rity analysis of RBAC has been elaborately addressed in [22].
Recently, some of the program analysis techniques have
been used to study the ARBAC safety problem. Abstraction
refinement approach is applied for ARBAC security analysis
in [23], [24] and the technique is implemented in a bounded
model checker calledMohawk [24]. A fragment of first order
logic along with the satisfiability modulo theories have been
applied in ARBAC security analysis [25]. The approach pre-
sented in [26] translates the ARBAC policies into imperative
style programs and employs an inter-procedural analyzer
for security verification.

Usage control is fundamentally a different model than
the ARBAC models both in terms of its design and applica-
tion. The ARBAC models are exclusively meant to adminis-
ter the user-role assignment, role-permission assignment,
and role-role assignment components of the RBAC model.
Whereas the usage control model has been designed to cater
to much broader range of applications than the RBAC
model itself. Usage control has rich features like attribute
mutability, consumable rights and object creation which are
not part of the RBAC design.

The present work significantly improves on previous
usage control safety analysis results. We prove the existence
of an SDP for Pre UCONA with finite attribute domains. We
believe that the SDP can be extended to many other models
of practical interest, so long as the attribute domains are
finite. Detailed consideration of such extensions is beyond
the scope of this paper.

3 USAGE CONTROL AUTHORIZATION MODEL

The usage control authorization model follows the standard
convention of representing user processes as subjects and
resources as objects. Subjects are considered as a subset of
objects in this model. Each object has a unique name and a
finite set of attributes. An attribute’s value can be accessed
using the dot operator, as in object name:attribute name, e.g.,
oi:color ¼ 0red0. Themodel supports bothmutable and immu-
table attributes, as well as dynamic creation and deletion of
objects. A usage right is a permission defined over an object.
We use the terms right and permission interchangeably.

This section introduces the model features necessary for
safety analysis. Readers are referred to [1] for understand-
ing the expressivity and applications of this model.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH FINITE ATTRIBUTE DOMAINS 583

3.1 Pre-Authorization Model

The pre-authorization model has only pre-enforcement
commands. In such commands, the decision module
grants permission at the beginning of usage right execu-
tion and the permission remains enabled till the end
of the execution. The model allows attribute updates
before the usage of the permission, called a preUpdate.
Recall, that mutable attributes are updated as a conse-
quence of usage actions performed by a subject on an
object. Both subject and object attributes can be updated
as per the command specification. There can also be create
and delete operations in a pre-enforcement command, in
addition to attribute updates.

3.2 Usage Control Scheme

Definition 3.1. A usage control scheme UQ has three components
as follows:

(i) an object schema OSD,
(ii) a set of usage rights UR ¼ fr1; r2; . . . ; rmg, and
(iii) a set of usage control commands fUC1; UC2; . . . ;

UCng.

3.2.1 Object Schema and Rights

The object schema specifies the attributes of objects and the
domains from which attribute values are drawn.

Definition 3.2. The object schema OSD is of the form
½a1 : V1; a2 : V2; . . . ; an : Vn�, where each ai is the name of an
attribute and Vi is a finite set specifying ai’s domain.

Note that the set of subjects or objects does not qualify to
be an attribute domain Vi, because in general these sets are
unbounded due to creation.

For simplicity we assume there is a single object schema
which applies uniformly to all objects. In practice different
objects usually will have different attributes. For example,
a user could have a role attribute or a gender attribute
while a file may have attributes such as a sensitivity label.
Generalization of our safety results to systems with multiple
object schemas for different kinds of objects is straightfor-
ward as shown in [2]. We assume each attribute value is
atomic being a single element from the attribute’s domain.
Set-valued attributes, such as role, are common in practice
but can be reduced to atomic attributes for our purpose
since all attribute domains are constant and finite. For exam-
ple, a set-valued attribute with domain ff; fag; fbg; fa; bgg
can be recast as an atomic-valued attribute with domain
fset empty; set a; set b; set abg, where each of these values
is understood to denote the corresponding set to simulate
the set-valued attribute. Optionally, attributes can have a
default value from the domain at creation time which does
not need to be explicitly assigned. Attributes with default
values are specifically identified with bold case italicized
letters within the object schema.

The second component of a usage control scheme is a
finite set of usage rights UR which defines the permission ri
that can be enabled by a usage control command. The inter-
pretation of an individual right ri is not specified in the
model. The usage of a right by a subject on an object is con-
tingent on their attribute values as determined by usage
control commands as discussed below.

3.2.2 Usage Control Commands

The third component of a usage control scheme is a finite set
of usage control commands. Each command has a name and
is associated with a right r that it authorizes, written as a
subscript to the name. Each command has two formal
parameters s and o, of which s is the subject attempting to
access owith permission r.

There are two kinds of usage control commands: non-
creating commands in which the object o exists prior to exe-
cution of the command and creating commands in which
the object o is created during execution of the command.

3.2.3 Non-Creating Commands

A non-creating command has the following structure.

Command Namerðs; oÞ
PreCondition: fbðs; oÞ ! fyes; nog;

PreUpdate: s:ai1 :¼ f1;ai1 ðs; oÞ;
. . .
s:aip :¼ f1;aip ðs; oÞ;
o:aj1 :¼ f2;aj1 ðs; oÞ;
. . .
o:ajq :¼ f2;ajq ðs; oÞ;

Here fbðs; oÞ is a Boolean function which takes the attribute
values of s and o as input and evaluates to yes or no. If the
result is yes then the PreUpdate is performed and the usage
right r is granted. Otherwise, the command terminates with-
out granting r. In the PreUpdate part, zero or more attributes
of s and o are independently updated to new values com-
puted from their attribute values prior to the command exe-
cution. In general, it is possible for s to equal o whereby a
subject can perform an operation on itself.

3.2.4 Creating Commands

The structure of a creating command is as follows:

Command Namerðs; oÞ
PreCondition: fbðsÞ ! fyes; nog;

PreUpdate: create o;
s:ai1 :¼ f1;ai1 ðsÞ;
. . .
s:aip :¼ f1;aip ðsÞ;
o:a1 :¼ f2;a1ðsÞ;
. . .
o:an :¼ f2;anðsÞ;

The create o operation brings a new object into the usage
control system. The object identifier o is considered as a
meta value, in that each execution of create operation in
the system assigns a unique object identifier which is
never re-used. Here fbðsÞ is a Boolean function which
takes the attribute values of s and evaluates to yes or no.
If the result is yes then the PreUpdate is performed and
the usage right r is granted. Otherwise, the command
terminates without creating o or granting r. In the PreUp-
date part, zero or more attributes of s are updated to new
values computed from s’s attribute values prior to the
command execution. Moreover, all attributes of the newly
created object o are assigned similarly computed attribute
values. Some of the assignments to o’s attributes may be
omitted for attributes that have a default value defined,
in which case the default value will be assigned.

584 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

For both commands we assume that the entire command
executes as an atomic action. We further assume that each
attribute can be updated by at most one assignment state-
ment in the PreUpdate part. Moreover, reference to an attri-
bute of s and o on the right hand side of an assignment is
understood to mean the value of the attribute prior to the
command being executed. Thereby the ordering of the
update assignments is not material.

The Pre UCONA model also includes a delete operation.
For purpose of safety analysis we can ignore the delete
operation. Intuitively delete can be simulated by means of a
special boolean attribute, call it deleted, so that o:deleted ¼
yes indicates that object o has been deleted while o:deleted ¼
no indicates the object is existing. Additional details for this
argument are provided in the appendix.

3.3 Example Usage Control Schema

The following toy game example illustrates components of
usage control schema. The example schema permits (i) play-
ers tomark a white ball into a red ball, (ii) players to hit a ball
after he marks three white balls into red balls, and (iii) exist-
ing players can create new players in the game.

Example 3.3. The components of the usage control schema
UQgame are given as follows.

1) Object schema OSDgame ¼ [x:{0,1,2,3}, color:{red,
white, blue}]

2) Usage rights UR ¼ {mark, hit, addplayer}
3) Usage commands UC ¼ {UC1, UC2, UC3} where

UC1: Permitmarkðs; oÞ
PreCondition: s:color ¼ blue ^ o:color ¼ white;
PreUpdate: o:color :¼ red;

s:x ¼ s:xþ 1;
UC2: Permithitðs; oÞ

PreCondition: s:color ¼ blue ^ s:x ¼ 3^
o:color 6¼ blue;

UC3 : Permitaddplayerðs; oÞ
PreCondition: s:color ¼ blue;
PreUpdate: createo;

o:x ¼ 0;
o:color ¼ blue;

The object schema OSDgame has two attributes namely
‘x’and ‘color’. The attribute x can take a value from the
finite set {0, 1, 2, 3} and the attribute color can take a value
from the set {blue, red, white}. In this scheme, color attri-
bute of the players are always blue and the attribute x of
the balls are always 0. The usage rights mark, hit, and add-
player are protected by the usage commands UC1, UC2

and UC3 respectively.
We use example 3.3 as a running example to illustrate the

concepts and definitions introduced in the remaining parts
of this paper.

3.4 Usage Control Configuration

The state of an usage control authorization system is called
a usage configuration, defined as follows.

Definition 3.4. A usage configuration UX is defined as the set of
objects fo1; o2; . . . ; ong in a state along with the values of the
attributes for each object oi.

Example 3.5. An example usage configuration for the usage
schema UQgame of example 3.3 with one user and four
balls is given as follows:

UX ¼ { s:x ¼ 0; s:color ¼ blue;
o1:x ¼ 0; o1:color ¼ white;
o2:x ¼ 0; o2:color ¼ white;
o3:x ¼ 0; o3:color ¼ white;
o4:x ¼ 0; o4:color ¼ white}

Where appropriate the state can be named as in UXinit for
the initial state and in UXk for state k. The set of all possible
usage configurations for a usage control scheme UQ is

denoted by cUXQ. Since the number of objects is unbounded
cUXQ is, in general, a countably infinite set.

A usage control system begins in its specified initial
state and evolves thereafter by execution of usage control
commands at the discretion of the subjects in the system.
Usage commands are referred to as UCi and are specified
with formal parameters. A usage command instance for
usage command UCi is written as uci and will be executed
with actual parameters substituted for formal parameters.

3.5 Safety Question

A safety question is written as �ðs1;o1;rÞ. For a given usage
control scheme UQ and an initial configuration UXinit, the
safety question asks if it is possible for subject s1 2 UXinit to
gain usage right r for object o1 2 UXinit. A safety decision pro-
cedure takes as input UQ, UXinit and �ðs1;o1;rÞ. It returns yes if
subject s1 can acquire usage right r for o1 and no otherwise.

In order to make the technical presentation easier, we
analyse a different safety question denoted �ðrÞ, defined
as follows. For a given usage control scheme UQ and an
initial configuration UXinit, is it possible for any subject s
to gain usage right r for any object o? An SDP which can
answer �ðrÞ can be used to find the answer for the origi-

nal safety question �ðs1;o1;rÞ by applying it to augmented

versions of the schema U 0
Q and initial configuration U 0

Xinit,

defined below. Let UC½r� be the set of usage commands in
UQ which grant the usage right r in the original safety
question �ðs1;o1;rÞ.

� The augmented usage schema U 0
Q has

- Object schema OS0
D ¼ ½a1 : V1; a2 : V2; . . . ; an : Vn;

color : fred;whiteg�, where each ai : Vi 2 OSD and
color is a new attribute, different from a1; a2; . . . ;
an, with the default value white.

- Set of usage rights UR0 ¼ fr1; r2; . . . ; rn; r0g, where
ri 2 UR and the r0 is a new usage right, different
from r1; r2; . . . ; rn, introduced in the augmented
schema.

- Set of usage commands UC 0 ¼ UC [UCaug. The
new commands in UCaug each grant the new

usage right r0. Each command in UC ½r� has an
augmented version in UCaug. The PreCondition

Boolean function in each usage command in
UCaug is identical to that of its counterpart

in UC ½r� with the additional check s:color ¼
red ^ o:color ¼ red. The PreUpdate part of the
commands in UCaug is empty.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH FINITE ATTRIBUTE DOMAINS 585

� The initial configuration U 0
Xinit is identical to UXinit

except that s1:color :¼ red, o1:color :¼ red, and
si:color :¼ white, oi:color :¼ white, for i 6¼ 1.

The augmented usage schema U 0
Q does not change any of

the usage commands in UQ. The additional attribute color
has not been used anywhere except in the new usage
command in UCaug which do not make any state changes.
Moreover, s1 and o1 are the only objects whose color attri-
bute can be red. Hence, the result of �ðr0Þ on U 0

Q and UX0init
would be same as the result of �ðs1;o1;rÞ on UQ and UXinit.

4 PROTECTION TUPLES

This section introduces the notion of protection tuples
and a method to compactly represent them using a multi-
set notation. The protection tuples basically are attribute
values of the subjects and objects in a usage configura-
tion. Since the system allows unbounded creation of
objects, the size of the protection tuple set can be
unbounded. However, if we ignore multiple occurrences
then the number of distinct protection tuples is bounded
by the maximum value hmax. We also define a function fX
which maps a usage configuration to the compact repre-
sentation of protection tuples.

For convenience symbols and notation used in this paper
are summarized in Table 1, grouped into blocks by horizon-
tal lines. The symbols in the first three blocks were intro-
duced in the previous section, while the fourth block
summarizes this section. Symbols in the fifth block will be
defined in the next section.

For ease of exposition it is convenient to assume that the
attributes are ordered a1; a2; . . . ; an so that the attribute val-
ues for an object can be represented as a similarly ordered n-
tuple as follows.

Definition 4.1. An attribute value tuple (AVT) is an ordered n-
tuple <v1; v2; . . . ; vn>, where n is the number of attributes in
the object schema and each vi 2 Vi.

Each object o 2 UXt has an AVT; denoted AVTXtðoÞ ¼
< vt1 ; vt2 ; . . . ; vtn > where o:ai ¼ vti 2 UXt, which can change

in different states. For convenience, we write AVTXtðoÞ ¼
<o:a1; o:a2; . . . ; o:an>. We define the notion of an empty
AVT as follows.

Definition 4.2. An empty attribute value tuple, denoted AVTf, is
a special n-tuple AVTf ¼ <f;f; :::; f>, where f is a special
symbol which does not belong to any Vi.

AVTf denotes that the attribute values of an object being
created are not yet ready to be used in usage command pre-
conditions. Since each usage command involves two formal
parameters we define the following notion to refer to a pair
of AVTs.

Definition 4.3. A protection tuple is defined as an ordered pair of
AVT s, PT ¼ <AVT1; AVT2> where AVT2 can be AVTf but
AVT1 cannot.

Every ordered pair of objects in a usage configuration has
an associated PT with AVT1 6¼ AVTf and AVT2 6¼ AVTf. This
PT accounts for possible non-creating command instances
involving this ordered pair of objects. Additionally every

TABLE 1
Summary of Symbols

Symbols Description

UQ The usage schema, does not change

UX A usage configuration for given UQ

UXinit An initial configuration for given UQ

UXk Usage configuration in state k for given UXinit
cUXQ

The set of all usage configurations for given UQ

UCi Usage control command
uci Usage control command instance

�ðs1;o1;rÞ Safety question: can s1 2 UXinit gain r for o1 2 UXinit?
�ðrÞ Safety question: can any subject gain r for any object?

AVT Attribute value tuple, AVT ¼ <v1; v2; . . . ; vn>
AVTf Empty AVT ¼ <f;f; . . . ;f>, f =2 Vi

AVTXiðoÞ <o:a1; o:a2; . . . ; o:an>
PT PT ¼ <AVT1; AVT2>, AVT1 6¼ AVTf

cPTQ
Set of all possible PTs for given usage schema UQ

MPT Multiset of PTs in an UX
½½MPT �� Determinant, number of distinct PTs
½½½½MPT ���� Absolute determinant, total number of PT s
dMPT Set of all possible MPTs for given UQ

hmax hmax ¼ maximumMPT ¼ j cPTQj for given UQ

fX fX : cUXQ ! dMPT

PT 2 cUX ð9UXp 2 cUXÞPT 2 fXðUXpÞ
cUXi � PT

cUXj ð8PT 2 PTQÞPT 2 cUXi , PT 2 cUXj
cUXinit"0 fUXinitg
cUXinit"1 Set of usage configurations reachable from UXinit in 0 or 1 step

cUXinit"k Set of usage configurations reachable from UXinit in 0 or up to k steps

cUXi"� Set of usage configurations reachable from UXi in 0 or any number of steps

586 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

object has an associated PT with AVT1 6¼ AVTf and
AVT2 ¼ AVTf, to account for possible creating commands.

We write cPTQ to denote the set of all possible PTs for a given
usage schemaUQ.

For a given usage configuration, in general there will
be multiple object pairs with identical PTs, as well as
multiple individual objects with identical PT s with the
second component being AVTf. This leads us to introduce

the following notion.

Definition 4.4. A collection of protection tuples constitutes a
multiset MPT ¼ fPTi1

1 ; PT
i2
2 ; :::; PT

ih
h g, where each PT is a

protection tuple and 8x8yððPTx ¼ PTyÞ) ðx ¼ yÞ). The
superscript ix denotes the number of distinct occurrences of
PTx; 1 � x � h in the usage configuration.

For example, if a collection of PT s has a total of t1 PT s
and among them a subset of t2 � t1 PTs are different
from each other then that collection constitutes the

MPT ¼ fPTi1
1 ; PT

i2
2 ; :::; PT

ih
h g, where h ¼ t2 and S

h
x¼1ix ¼

t1. Accordingly, we define the determinant (½½��) of an MPT
as the number of distinct PTs in the multiset, that is
½½MPT �� ¼ h, and the absolute determinant (½½½½����) as
½½½½MPT ���� ¼ P

PTix
x

2 MPTix. We use the notation PT 2
MPT and PTi 2 MPT more or less interchangeably
depending on whether or not the multiplicity of the PT is
relevant or not in a particular context.

In this paper we are primarily concerned with MPT s
that can occur for a given usage schema UQ. Since the
usage schema is fixed when the system is created and
does not change, we usually omit explicit mention of the
schema. The set of all possible MPTs for a given usage

schema UQ is denoted by dMPT . dMPT is countably infinite
in general, due to unbounded multiplicity of individual
PTs for the given schema. Correspondingly, the maxi-

mum absolute determinant of an MPT 2 dMPT , i.e. maxi-
mum ½½½½MPT ����, is unbounded. However, the maximum

determinant of an MPT 2 dMPT , i.e. maximum ½½MPT ��, is
finite due to the assumption of finite attribute value
domains which limits the number of distinct PT s that can
occur. This finite bound, denoted hmax, is critical to the
results of this paper. We have the following observation.

Lemma 4.5. Let hmax denote the maximum determinant of an

MPT for a given usage schema UQ. hmax ¼ ðPn
i¼1ðjVijÞÞ2þ

ðPn
i¼1ðjVijÞÞ, where jVij is the domain size of attribute ai and

n is the number of attributes defined in the object schema OSD

of UQ.

Proof. The maximum number of distinct AVTs for a given
UQ is Pn

i¼1ðjVijÞ. The maximum number of distinct PTs

with AVT2 6¼ AVTf is ðPn
i¼1ðjVijÞÞ2. The maximum num-

ber of distinct PTs with AVT2 ¼ AVTf is Pn
i¼1ðjVijÞ. Since

construction of the initial configuration is arbitrary, an
MPT with these maximum numbers can be instantiated
in an initial configuration. tu
For instance, for the usage schema of example 3.3 we

have hmax ¼ ð4 � 3Þ2 þ ð4 � 3Þ ¼ 156. Note that hmax can be

equivalently defined to be j cPTQj.

It remains to formally define the relationship between a
usage configuration UX and its MPT . The notion of a multi-
set sum is useful for this purpose.

Definition 4.6. The multiset sum X] Y of two multisets X and
Y is defined as the multiset Z for which each member m 2 Z
has the sum of the multiplicitiesm has inX and Y (where pos-
sibly one, but not both, of these could be zero).

This definition naturally extends to more than two multi-
sets, and is commutative and associative.

The relationship between a usage configuration UX and
its MPT is defined by the tuple aggregation function fX :
cUXQ ! dMPT as follows.

Definition 4.7. Let AVT ðoiÞ be the AVT of object oi in a given
configuration UX. Then fXðUXÞ is theMPT defined as follows:

fXðUXÞ ¼]oi;oj2UX { f< AVT ðoiÞ; AVT ðojÞ >g
]f< AVT ðojÞ; AVT ðoiÞ >g
]f< AVT ðoiÞ; AVT ðoiÞ >g
]f< AVT ðojÞ; AVT ðojÞ >gg

]
]oi2UXff< AVT ðoiÞ; AVTf >gg.

The intuition behind this definition is straightforward.
The MPT ¼ fXðUXÞ is the multiset sum of PTs generated by
all pairs of objects in usage configuration UX, and PTs with
AVT2 ¼ AVTf generated by all objects in UX.

Example 4.8. The following multiset represents the MPT of
the usage configuration UXi given in example 3.5.

fXðUXiÞ = {< ½0; blue�;f >1, < ½0; white�;f >4,
< ½0; blue�; ½0; blue� >1, < ½0; white�; ½0; blue� >4,
< ½0; blue�; ½0; white� >4, < ½0; white�; ½0; white� >16}.

5 REACHABLE PROTECTION TUPLES

In this section, we prove that the set of reachable protection
tuples for a given usage schema UQ and initial state UXinit is
computable. We begin by introducing the notion of a set of
reachable configurations as follows.

Definition 5.1. A set of usage configurations fUXp1 ;
UXp2 ; . . . ; UXptg is said to be reachable from the initial configu-
ration UXinit in k or less steps if and only if for each UXpi , either
UXpi ¼ UXinit or there exists a sequence of command instances
uci1uci2 . . . :ucit ; 1 � t � k which begins at UXinit and end at

UXpi . The set is denoted as
cUXinit"k.

The set of configurations reachable in zero steps cUXinit"0
is the singleton fUXinitg. The set of configurations reachable
from UXinit in unbounded number of steps is denoted by
cUXinit"�. In general cUXinit"� is countably infinite, since the

number of objects that can be created is unbounded. Each
newly created object by definition results in a new configu-
ration. However, for a fixed k the set of reachable configura-
tions is finite as shown below.

Lemma 5.2. cUXinit"k is finite.

Proof. This is trivially true for k ¼ 0, which is our basis case.

Assume the inductive hypothesis that cUXinit"k is finite for

k � n. Consider k ¼ nþ 1. A usage configuration

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH FINITE ATTRIBUTE DOMAINS 587

UXp 2 cUXinit"nþ1 must either already be in cUXinit"n, or must

result from application of a single usage command to some

usage configuration UXq 2 cUXinit"n. The former case does

not add any new usage configurations. Consider the latter
case. The number of such possible UXq configurations is
finite by induction hypothesis. For any non-creating com-
mand instance uciðs; oÞ there are only a finite number of
combinations of applicable ðs; oÞ pairs that can be actual
parameters to uci in any UXq. For any creating command
instance uciðs; oÞ there are only a finite number of applica-
ble subjects s that can be the actual parameter to uciðs; oÞ in
any UXq (note that the o parameter in a creating command
is not an input but rather a result of the command). Thus
there can only be a finite number of new usage configura-

tions in cUXinit"nþ1 relative to cUXinit"n. tu
The next two definitions introduce the crucial concept of

protection tuple equivalence.

Definition 5.3. A protection tuple PT belongs to a set of usage

configurations cUXi, written PT 2 cUXi, if and only if there is a

usage configuration UXp 2 cUXi such that PT 2 fXðUXpÞ.
The set of reachable PTs is thereby defined as fXðcUXinit"�Þ

or, equivalently, as fXðcUXinit"kÞ for some k. If this set is com-

putable we can answer the safety question. Note that even

though cUXinit"� is countably infinite, fXðcUXinit"�Þ � cPTQ is

finite since j cPTQj ¼ hmax.

Definition 5.4. Two sets of usage configurations cUXi and cUXj are

said to be protection equivalent, written cUXi �PT
cUXj, if and

only if fXðcUXiÞ ¼ fXðcUXjÞ.
We now prove the following theorem which is central to

the results of this paper.

Theorem 5.5. cUXinit"hmax
�PT

cUXinit"�.

Proof. Follows from lemmas 5.6 and 5.7 below. tu
Lemma 5.6. Suppose there exists k such that cUXinit"kþ1

�PT
cUXinit"k. Then for all n � kþ 2, cUXinit"n �PT

cUXinit"k.

Proof. By assumption, cUXinit"kþ1 �PT
cUXinit"k. Assume for

contradiction that cUXinit"kþ2 6�PT
cUXinit"kþ1. Since cUXinit"kþ1

� cUXinit"kþ2, this can happen only if there is some PTq 2
fXðcUXinit"kþ2Þ and PTq 62 fXðcUXinit"kþ1Þ. This PTq must be

the result of some command uciðs; oÞ enabled by a

PTr 2 fXðcUXinit"kþ1Þ. But then PTr 2 fXðcUXinit"kÞ and PTq

could have been produced in fXðcUXinit"kþ1Þ, which is a

contradiction to PTq 62 fXðcUXinit"kþ1Þ. This argument can

be applied inductively for n > kþ 2. tu
Lemma 5.7. cUXinit"hmaxþ1 �PT

cUXinit"hmax
.

Proof. There are at most hmax PTs that can be added to a

given cUXinit"0. The longest chain of such additions is at

most hmax (which would happen if only one new PT is
added at each step). Thus it is not possible to have a

PTq 2 fXðcUXinit"hmaxþ1Þ and PTq 62 fXðcUXinit"hmax
Þ. tu

It remains to prove the following theorem.

Theorem 5.8. The set cUXinit"hmax
is computable and can be used

to answer any safety question �ðrÞ.

Proof. By definition �ðrÞ can be true if and only if there is

some PT in fXðcUXinit"�Þ which satisfies the pre-condition

of a creating or non-creating command that grants r. By
Theorem 5.5 such a PT must then also belong to

fXðcUXinit"hmax
Þ.

Procedure Q given below computes cUXinit"hmax
from

which fXðcUXinit"hmax
Þ can be trivially computed. Let

cUXinit"¼k denote the set of configurations that can be

reached from UXinit by using exactly k usage commands.
This is similar to Definition 5.1 except for requiring
exactly k commands rather than k or less.

Procedure Q:
Let cUXinit"¼0 ¼ fUXinitg;
Let cUXinit"0 ¼ fUXinitg;
Let k ¼ 1;
While k � hmax do begin

cUXinit"¼k ¼ ;;
For each UXp 2 cUXinit"¼k	1 do begin

Add all UXq reachable from UXp

in one command to cUXinit"¼k

without any duplicates;
end for;
cUXinit"k ¼ cUXinit"k	1 [cUXinit"¼k;
k ¼ kþ 1;

end while;

By the argument given in the proof of Lemma 5.2,
each iteration of the for loop above is computable, and
thereby Procedure Q computes cUXinit"hmax

. tu

5.1 Complexity

Theorem 5.8 proves the existence of SDPs. Implementation
of an SDP based on the approach used in the proof would
consume huge amount of computational resources. While
there are obvious optimizations that could be made, we
have the following result concerning complexity of the
safety problem.

Theorem 5.9. Possible SDPs for the usage authorization
control model with finite attribute value domains are in
PSPACE-Hard.

Proof sketch. The hardness proof is based on a polyno-
mial time reduction which maps an arbitrary instance of
satisfiability of quantified Boolean formula (QBF) to an
instance of safety problem in usage control pre-authoriza-
tion model. Possible SDPs for the model should also solve
the satisfiability of QBF which is a hard problem in
PSPACE. Hence, the possible SDPs for the model are in
PSPACE-Hard and the detailed proof is given in [3].

Our attempts to devise efficient SDPs have resulted in
very restricted models. For example, a fragment of the
model with Boolean attribute domains, restricted update
actions and bi-conditional usage predicates, has an effi-
cient SDP with a polynomial time algorithm. However,
its expressivity is severely limited. Efficient design of
SDPs for useful specialized cases is beyond the scope of
this paper and is left for future work.

588 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

6 CONCLUSION AND DISCUSSION

In this work, we proved the existence of a safety decision
procedure for automating the safety analysis of usage con-
trol authorization schemes with potentially unbounded
number of objects. We also provided construction of one
such SDP. This result significantly improves the state of the
art in the safety decidability result by relaxing the bounded-
ness in object creation. In practice, it will help us to design
security mechanisms without keeping limits on the size of
resource pools they meant to protect. This result is particu-
lary relevant for today’s computing systems with intrinsi-
cally dynamic resource pools.

We believe that the safety analysis of other sub models of
UCONABC with finite attribute domains is also decidable.
Extending this procedure for safety analysis of sub models
UCONABC with ongoing authorization and obligations may
be feasible. Developing these results in detail is outside the
scope of this paper.

APPENDIX

In Section 3.2.2 we mentioned that delete operations in the
Pre UCONA model can be ignored for purpose of safety
analysis. This appendix provides additional details in sup-
port of this argument. A deleting command has the
following structure.

Command Namerðo1; o2Þ
PreCondition: fbðo1; o2Þ ! fyes; nog;
PreUpdate: delete o2;

o1:ai1 :¼ f1;ai1 ðo1; o2Þ;
. . .
o1:aip :¼ f1;aip ðo1; o2Þ;

We argue that given any usage control schema UQ with a
deleting usage command, we can construct another usage
schema U 0

Q without the deleting command such that UQ and

U 0
Q are in simulation relationwith respect to safety properties.

Let the usage control schema UQ ¼ ðOSD; UR;UC ¼
fUC1; UC2; . . . ; UCn	1; UCdgÞ be the schema with a deleting
command UCd. We construct the schema U 0

Q ¼ ðOS0
D;

UR;UC0Þ as follows

� OS0
D ¼ ½a01 : V0

1; a
0
2 : V

0
2; . . . ; a

0
n : V0

n; deleted ¼ fyes;nog�,
where 8i; a0i ¼ ai;Vi ¼ V0

i and deleted is a special attribute
with a special domain fyes; nogwith default value ‘no’.

� UR’=UR
� UC’=fUC0

1; UC
0
2; . . . ; UC

0
n	1; UC

0
dg, where

–the delete command UCd in UC is replaced with an
update command UC0

d in UC0.
The PreCondition in UC0

d is f 0
bd
ðo1; o2Þ ^ fdðo1; o2Þ,

where f 0
bd
ðo1; o2Þ ¼ fbdðo1; o2Þ and the new predicate

fdðo1; o2Þ is defined as (o1:deleted ¼ no o2:deleted ¼
no).
The PreUpdates in UC0

d are same as those in UCd

except delete o2 which is replaced with an update
function o2:deleted :¼ yes.
–the create commands UC0

i;1�i�n	1 2 UC0 are same as
UCi 2 UC except the PreCondition. The
PreCondition in UC0

i is f 0
bi
ðo1Þ ^ fdðo1Þ, where

f 0
bi
ðo1Þ ¼ fbiðo1Þ and the new predicate fdðo1Þ is

defined as (o1:deleted ¼ no).
–the update commands UC0

j;1�j�n	1 2 UC0 are also
same as UCj 2 UC except the PreCondition. The

PreCondition in UC0
j is f

0
bj
ðo1; o2Þ ^ fdðo1; o2Þ, where

f 0
bj
ðo1; o2Þ ¼ fbjðo1; o2Þ and the new predicate

fdðo1; o2Þ is defined as (o1:deleted ¼ no &&
o2:deleted ¼ no).

Let UXinit ¼ fo1; o2 . . . okg be the initial configuration of
UQ, the initial configuration of UQ0 , that is UXinit0 , is con-
structed from UXinit by adding the extra binary attribute
“deleted”with the value “no”to each object oi 2 UXinit.

For any given initial configuration UXinit, a usage
command UCi is executable in a usage configuration UXx,
UXx 2 UXinit"� iff there exist a UXx0 , UXx0 2 UXinit0"� such

that the usage command UC0
i is executable in UXx0 and

vice-versa.
Hence, the usage schema UQ is safe with respected to

the safety question �ðs1;o1;rÞ iff the schema U 0
Q is safe and

vice-versa. Rigorous formal proof for this claim can be
constructed using the state-matching reduction technique
given in [27].

REFERENCES

[1] J. Park and R. Sandhu, “The UCONABC usage control model,”
ACM Trans. Inf. Syst. Security, vol. 7, no. 1, pp. 128–174, Feb. 2004.

[2] X. Zhang, R. Sandhu, and F. Parisi-Presicce, “Safety analysis of
usage control authorization models,” in Proc. ACM Symp. Inf.,
Comput. Commun. Security, Mar. 21–24, 2006, pp. 243–254.

[3] P. V. Rajkumar, “Formal and semi-formal methods for application
specific security and usage control,” Ph.D. dissertation, Indian
Inst. Technol., Kharagpur, India, Aug. 2012.

[4] Z. Zhigang, W. Jiandong, and M. Yuguang, “Study and safety
analysis on UCONonA model,” in Proc. 1st Int. Workshop Database
Technol. Appl., Apr. 25–26, 2009, pp. 103–106.

[5] S. Ranise and A. Armando, “On the automated analysis of safety
in usage control: A new decidability result,” in Proc. 6th Int. Conf.
Netw. Syst. Security, Nov. 21–23, 2012, pp. 15–28.

[6] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in operating
systems,” Commun. ACM, vol. 19, no. 8, pp. 461–471, Aug. 1976.

[7] R. Sandhu, “The schematic protection model: Its definition and
analysis for acyclic attenuating schemes,” J. ACM, vol. 35, no. 2,
pp. 404–432, 1988.

[8] R. Sandhu, “Expressive power of the schematic protection mod-
el,” J. Comput. Security, vol. 1, no. 1, pp. 59–98, 1992.

[9] V. Varadharajan and C. Calvelli, “Extending the schematic
protection model - i. conditional tickets and authentication,”
in Proc. IEEE Symp. Res. Security Privacy, May 16–18, 1994,
pp. 213–229.

[10] V. Varadharajan, “Extending the schematic protection model - ii.
revocation.” ACM SIGOPS Oper. Syst. Rev., vol. 31, pp. 64–77, Jan.
1997.

[11] R. Sandhu, “The typed access matrix model,” in Proc. IEEE Symp.
Security Privacy, May 4–6, 1992, pp. 122–136.

[12] M. Soshi, M. Maekawa, and E. Okamoto, “The dynamic-typed
access matrix model and decidability of the safety problem,”
IEICE Trans. Fundamentals, vol. E87-A, no. 1, pp. 190–203, Jan.
2004.

[13] D. Ferraiolo, R. Sandhu, D. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Security, vol. 4, no. 3, pp. 224–274, Aug. 2001.

[14] J. Joshi, E. Bertino, and A. Ghafoor, “An analysis of expressiveness
and design issues for the generalized temporal role-based access
control model,” IEEE Trans. Dependable Secure Comput., vol. 2,
no. 2, pp. 157–175, Apr.–Jun. 2005.

[15] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Security, vol. 2, no. 1, pp. 105–135, Feb. 1999.

[16] J. Crampton and G. Loizou, “Administrative scope: A foundation
for role-based administrative models,” ACM Trans. Inf. Syst. Secu-
rity, vol. 6, no. 2, pp. 201–231, May 2003.

[17] S. Osborn, “Information flow analysis of an RBAC system,” in
Proc. 7th ACM Symp. Access Control Models Technol., Jun. 03–04,
2002, pp. 163–168.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH FINITE ATTRIBUTE DOMAINS 589

[18] M. Koch, L. Mancini, and F. Parisi-Presicce, “Decidability of safety
in graph-based models for access control,” in Proc. 7th Eur. Symp.
Res. Comput. Security, Oct. 14–16, 2002, pp. 229–243.

[19] N. Li, J. Mitchell, and W. Winsborough, “Design of a role-based
trust-management framework,” in Proc. IEEE Symp. Security Pri-
vacy, May 12–15, 2002, pp. 114–130.

[20] S. Stoller, P. Yang, C. Ramakrishnan, and M. Gofman, “Efficient
policy analysis for administrative role based access control,” in
Proc. 14th ACM Conf. Comput. Commun. Security, Oct. 29–Nov. 2,
2007, pp. 445–455.

[21] E.Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A logical frame-
work for reasoning about access control models,” ACM Trans. Inf.
Syst. Security, vol. 6, pp. 71–127, 2003.

[22] N. Li and M. Tripunitara, “Security analysis in role-based access
control,” ACM Trans. Inf. Syst. Security, vol. 9, no. 4, pp. 391–420,
Nov. 2006.

[23] K. Jayaraman, M. Tripunitara, V. Ganesh, M. Rinard, and S.
Chapin, “MOHAWK: Abstraction-refinement and bound-estima-
tion for verifying access control policies,” ACM Trans. Inf. Syst.
Security, vol. 15, no. 4, p. 18, Apr. 2013.

[24] K. Jayaraman, V. Ganesh, M. Tripunitara, M. Rinard, and S.
Chapin, “Automatic error finding in access-control policies,” in
Proc. ACM Conf. Comput. Commun. Security, Oct. 2011, pp. 17–21.

[25] A. Armando and S. Ranise, “Scalable automated symbolic analy-
sis of administrative role-based access control policies by smt
solving,” J. Comput. Security, vol. 20, no. 4, pp. 309–352, Jul. 2012.

[26] A. Ferrara, P. Madhusudan, and G. Parlato, “Security analysis of
role-based access control through program verification,” in Proc.
IEEE 25th Comput. Security Found. Symp., Mar. 2012, pp. 113–125.

[27] M. V. Tripunitara and N. Li, “A theory for comparing the expres-
sive power of access control models,” J. Comput. Security, vol. 15,
no. 2, pp. 231–272, Apr. 2007.

Rajkumar P.V. received the PhD degree from the Indian Institute of
Technology, Kharagpur, India. He is a postdoctoral fellow in the Institute
for Cyber Security, University of Texas at San Antonio, TX. His research
interests are formal verification and information security.

Ravi Sandhu is the founding executive director in the Institute for Cyber
Security, University of Texas San An-tonio, and holds an Endowed chair.
He is an inventor on 29 patents. He is a past editor-in-chief of the IEEE
Transactions on Dependable and Secure Computing, a past founding
editor-in-chief of ACM Transactions on Information and System Security,
and a past chair of ACM SIGSAC. He founded ACM CCS, SACMAT, and
CODASPY, and has been a leader in numerous other security conferen-
ces. His research has focused on security models and architectures,
including the seminal role-based access control model. His papers
have accumulated over 26,000 Google Scholar citations, including over
6,400 citations for the RBAC96 paper. He is a fellow of the ACM, IEEE,
and AAAS.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

590 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 13, NO. 5, SEPTEMBER/OCTOBER 2016

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

