
Safety Decidability for Pre-Authorization Usage
Control with Identifier Attribute Domains

P. V. Rajkumar ,Member, IEEE and Ravi Sandhu, Fellow, IEEE

Abstract—Safety analysis is a fundamental problem in authorization models. Safety decidable models provide theoretical foundations

for decentralized security administration. Attributes of objects are central to usage control authorization models. It has previously been

shown that inclusion of a single infinite attribute leads to undecidable safety, even without any creation of objects. Therefore

unrestricted inclusion of infinite attributes is not possible in a safety decidable model. On the other hand, it has recently been shown that

the safety problem for the pre-authorization usage control sub-model with finite attribute domains, called PreUCONfinite
A , is decidable

even with unbounded object creation. A major limitation of finite attributes is the inability to link objects through attribute values in

presence of unbounded object creation (since attributes that reference other objects must be infinite in this case). It would be desirable

to have safety-decidable attribute-based models which include both finite and infinite attributes (necessarily with some restrictions).

This paper develops a pre-authorization usage control sub-model, called PreUCONid
A , with attribute domains solely comprised of

infinite object identifiers with considerable restrictions on how these attributes can be updated. Safety decidability for PreUCONid
A is

proved by defining the notion of v-equivalent usage configurations, and showing that the reachable set of v-equivalent usage

configurations is computable and can be used to answer safety questions. The utility of such models in practice is illustrated by means

of an example. The paper further shows that addition of even a single finite domain attribute to PreUCONid
A results in undecidable

safety. These results indicate that combining finite and infinite attributes in a safety decidable model is a challenging task, which

will likely require carefully crafted restrictions on updates to these attributes. The formulation of such a model remains an important

open question.

Index Terms—Security, access control, usage control, authorization, and safety analysis

Ç

1 INTRODUCTION

USAGE control is an unified authorization system which
supports wide variety of security policies besides tra-

ditional access control [1]. Safety decidability is one of the
fundamental requirements for decentralizing and automat-
ing the administration of authorization systems. In particu-
lar, it is a basic requirement for development of policy
analysis tools for the system administrators, to check if the
given set of policies and the initial configuration can give
out an unintended access right in any of the future states.
Such checking is called safety analysis and is known to be
undecidable in general for the pre-authorization usage con-
trol model [2], hereafter called PreUCONA. Therefore,
safety checking of PreUCONA cannot be automated in its
full generality and its safety decidable sub-models neces-
sarily have restrictions on the attributes and update
functions.

Attributes of objects along with authorization predi-
cates constitute the core of PreUCONA. PreUCONA sub-
jects are considered as a subset of objects. Attributes

represent the security relevant features of objects in the
system. Authorization predicates defined over the attrib-
utes represent the authorization security requirements.
Usage rights are the security sensitive functions of the
system whose executions need to be guarded with authori-
zation predicates. The domain of an object’s attribute
specifies the set from which that attribute can take a value.
A domain can be finite or infinite, so accordingly we call
each attribute as a finite domain or infinite domain. Both
finite and infinite domain attributes are useful in express-
ing authorization policies.

In the PreUCONA model, a subject can execute a usage
right over an object if the attribute values of the subject,
object pair satisfy the corresponding authorization predi-
cates. Execution of usage rights can dynamically create
new objects in the system, as well as delete existing objects
and modify attribute values. These features of the model
can express security policies that are meant to prevent
unauthorized creation, deletion, and usage of files, docu-
ments, and processes. Unbounded execution of object-cre-
ating commands can bring potentially infinite number of
objects in the system. Infinite domain attributes are neces-
sary to express certain authorization requirements, in par-
ticular, systems with infinite number of objects. However,
safety analysis of PreUCONA with arbitrary infinite
domain attributes, even without object creation, is unde-
cidable [3]. Therefore, to achieve safety decidability the
choice of the infinite domain and the update operations
need to be restricted.

� P. V. Rajkumar is with the Computer Information Systems and Analytics,
University of Central Missouri, Warrensburg, MO 64093.
E-mail: rajkumarpv@gmail.com.

� R. Sandhu is with the Computer Science, Institute for Cyber Security, Uni-
versity of Texas at San Antonio, San Antonio, TX 78249.
E-mail: ravi.sandhu@utsa.edu.

Manuscript received 16 Aug. 2017; revised 6 Feb. 2018; accepted 8 May 2018.
Date of publication 23 May 2018; date of current version 13 May 2020.
(Corresponding author: P. V. Rajkumar.)
Digital Object Identifier no. 10.1109/TDSC.2018.2839745

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020 465

1545-5971� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5272-1182
https://orcid.org/0000-0001-5272-1182
https://orcid.org/0000-0001-5272-1182
https://orcid.org/0000-0001-5272-1182
https://orcid.org/0000-0001-5272-1182
mailto:
mailto:

In prior work, it has been shown that safety is decidable
for PreUCONA with finite attribute domains [4] without any
restrictions on object creation or on update operations. We
call this the PreUCONfinite

A model. It can express authoriza-
tion requirements with finite domain attributes such as
types, security labels and consumable rights.

A subtle but commonly used security attribute in infor-
mation systems is object identifiers. Uniqueness of such
identifiers play a vital role in expressing certain useful secu-
rity policies. A common use of object identifiers is to estab-
lish relationships amongst objects such as parent and child.
Another common example arises in dynamic separation of
duties, such as a security policy which states that an
employee who created a check must be different from the
employee who approves the check. These cases can be easily
enforced by utilizing attributes whose values come from the
domain of object identifiers. In realistic systems this domain
is infinite since, in principle, an unbounded number of
objects can be created. In general, identities of files and their
creators, identities of database records and tables, and
unique document numbers in enterprise resource planning
system are examples of important security attributes that
require infinite domains.

In this paper, we present a safety decidability proof for a
PreUCONA sub-model with infinite identifier domain attrib-
utes with constrained update operations, which we call
PreUCONid

A . In our earlier work on safety decidability for

PreUCONfinite
A [4], we used the notion of protection tuples

and their equivalence. Protection tuples are the current val-
ues in the attributes of the objects in the system. In a given
state, the objects with same protection tuples can be
grouped as one equivalence class. Due to finite domain
attributes, there are only a finite number of equivalence clas-
ses. This property was exploited in the decidability proof of
PreUCONfinite

A . With infinite domain attributes this property
no longer holds as the unbounded object creation would
lead to potentially infinite number of non-equivalent protec-
tion tuples. Therefore, the safety decision procedure devel-
oped for PreUCONfinite

A [4] may not work for certain
instances of PreUCONid

A . In this work, we develop a safety
decision procedure for PreUCONid

A with infinite domain
attributes that tracks changes in predicates instead of
changes in attribute values. Specifically, we define the
notion of v-equivalence with respect to authorization predi-
cates and show that the set of v-equivalent authorization
predicates that can become true is computable, and can be
used to answer the safety question.

PreUCONid
A has its own limitations compared to general

PreUCONA as it has restrictions on attribute updates, does
not support finite domain attributes, and lacks arithmetic
operations. A PreUCONA sub-model with both identifier
attributes and finite attributes will be more expressive and
desirable. Unfortunately, directly combining PreUCONid

A

with PreUCONfinite
A results in undecidable safety as shown

in this paper. A challanging open problem arising from this
undecidability is to formulate safety decidable PreUCONA

sub-models that combine both finite and infinite attribute
domains with reasonable restrictions.

The rest of the paper is organized as follows. Section 2
presents related work. Section 3 reviews the undecidability
of safety in PreUCONA with arbitrary infinite domain

attributes [3]. Section 4 presents the usage control authoriza-
tion model with infinite domain identifier attributes newly
developed in this paper, viz., PreUCONid

A . Section 5 defines
the notion of v-equivalent protection tuples and shows that
the set of reachablev-equivalent protection tuples is comput-
able and can be used to decide the safety problem. Section 6
presents an illustration of expressiveness of PreUCONid

A .
Section 7 shows that adding a single finite attribute to
PreUCONid

A results in undecidable safety. It also discusses
some open questions regarding safety analysis. Section 8
concludes the paper.

2 RELATED WORK

Safety analysis has been actively studied in the context of
both access control and usage control authorization models.
The Access Matrix Model (ACM) [5] formulates protection
systems as a two-dimensional matrix with the rows repre-
senting subjects, the columns representing objects and the
cells holding a set of rights the subjects have over the objects.
The model provides set of commands to change the matrix.
Safety of the ACM model had been shown undecidable in
general, and decidable if the commands are non-creating or
mono-operational. The non-creating model cannot create any
new objects in the system. The mono-operational model can
create objects but (i) it cannot distinguish between two newly
created objects, and further, (ii) it cannot express any rela-
tionship between the creator and the created objects.
Recently, safety definitions and proofs presented in the foun-
dation work [5] have been revisited and analyzed in [6]. Set
of subjects in ACM is considered as a subset of objects. We
also use this convention unless specified otherwise.

The Take-Grant authorization model [7] represents the
protection system as a graph with objects as nodes and
rights as labeled directed arcs. The model provides graph
rewriting rules for execution of take, grant, call, create, and
delete rights. The Take-Grant model’s safety is decidable,
however, its expressiveness is very limited as the rewrite
rules are specified as a part of the model itself. Further, if a
subject has a right then any subject which is connected to it
in the graph can obtain the right without any constraint.
The model has no features that can limit rights that can be
acquired from one connected subject to another.

The Schematic Protection Model (SPM) [8], [9] intro-
duced security types where every object in the model has a
fixed type. The SPM model has two types of rights: control
rights and inert rights. Execution of control rights can
change the protection state whereas inert rights cannot. For
example, create and delete are control rights while read and
write are inert rights. Safety is decidable for the SPM model
with acyclic creates. Safety remains decidable for the acyclic
SPM with additional features such as (i) inclusion of condi-
tional authorization [10], (ii) revocation of rights [11], and
(iii) multi-parent object creation [12].

Typed Access Matrix (TAM) [13] model formulates an
access matrix with typed subjects and typed objects. An
object’s type is decided at the time of its creation, thereafter
type cannot be changed. The TAM authorization model with
acyclic object creation has decidable safety. Safety decidable
TAM combines features in safety decidable fragments of
SPMwith ACM.Dynamic TypedAccessMatrix (DTAM) [14]

466 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

model provides features for changing object’s type after its
creation but within a fixed finite domain. Safety of DTAM is
decidable if its object creation is acyclic. Safety decidable
TAM and DTAMmodels do not support consumable, regen-
erative rights, and cyclic creation policies.

Role Based Access Control (RBAC) [15], [16] model asso-
ciates rights to roles and when a user is assigned to a role he
gets the rights that are associated with the role. The RBAC
model closely reflects role structured authorization policies
within organizations. The RBAC model has been extended
to support temporal [17], [18] and location [19] based secu-
rity features. Administrative models [20], [21] of RBAC are
specifically designed to systematically authorize the secu-
rity administrators to change the role-permission, user-role
assignments and role hierarchies. Execution of such admin-
istrative changes may make the system unsafe.

Large information systems in organizations like banks have
thousands of roles [22] and manual administration of systems
with such large number of roles is a difficult task. Automated
safety analysis of RBAC has been widely studied [23], [24],
[25] and results fromother domains like programanalysis [26],
logic [27], and trust management [28], [29] have been applied
for the RBAC safety problem. A detailed study on security
analysis of RBAC is given in [29]. Further, model checking
based security analysis tool, called Mohawk, has been devel-
oped for automatically finding errors in RBAC policies [30],
[31]. Recently, the safety problem in temporal administrative
RBAC has been mapped to the safety problem in Administra-
tive RBAC [32]. Thereby,Mohawkhas been shown to be appli-
cable for security analysis of temporal administrative RBAC
policies. Safety problem in Administrative RBACmodels con-
cern analysis of user-role assignment, role-permission assign-
ment, and role-role assignment of RBACmodels. Whereas the
usage control authorization model has been designed to sup-
port broader applications than RBAC [1].

The safety problem in the general PreUCONA model has
been shown to be undecidable [2]. Safety is shown to be
decidable for two sub-models of PreUCONA in [2]. First
sub-model has finite attribute value domains without creat-
ing commands. Second sub-model supports create com-
mands and its safety is decidable if the usage control
commands meet three criteria: (i) the attribute create graph is
acyclic, (ii) the attribute update graph has no cycle containing
create-parent attribute tuples, and (iii) in creating com-
mands both child and parent objects’ attributes are updated.
The safety decidable model in [2] cannot express cyclic crea-
tion policies and the model supports creation of only a finite
number of new objects.

The safety problem in a sub-model of the OnUCONA on-
going authorization model without object creation com-
mands, has been shown decidable in [33]. Safety decidable
model in [33] cannot support creation of any new subjects
in the system. An alternative approach to safety analysis is
to map the safety problem into a satisfiability problem in
logical theories, whereby the decidability results in a spe-
cific logical theory can be used to answer the safety ques-
tion. Safety problem in a sub-model of the OnUCONA has
been mapped to a decidable fragment of many-sorted
logic [34]. Safety decidable model in [34] can create new
passive objects like files but cannot create new active sub-
jects like processes in the system.

Recently, we have shown that the PreUCONA sub-model
with finite attribute value domains, called PreUCONfinite

A ,
has decidable safety property [4] without any restrictions
on create commands or update commands. PreUCONfinite

A

can express acyclic policies and support unbounded crea-
tion of new objects. The model can express uniform security
policies such as (i) “no student is permitted to change his advi-
sor more than twice”, but it cannot express individualistic
security policies such as (ii) “a faculty advisor of a student
can approve project team if he brings another student as his
team member”. The first policy can be enforced using
PreUCONfinite

A . However, the second policy cannot be cor-
rectly enforced with finite attribute domains alone due to
potentially infinite number of students.

First policy can be expressed with two finite attribute
domains, say type:{student, faculty} and count:{0, 1, 2}. A usage
control command can permit the changeadvisor right for
s1 over s2 if s1:type ¼ faculty, s2:type ¼ student and
s2:count > 0. The count attribute is initialized with 2 and
each execution of changeadvisor decrements its value. The sec-
ond policy requires four attributes, say faculty_id, advisor_id,
student_id, and team_member_id. A usage control command
can permit the approve right for s1 over s2 if s1:faculty id ¼
s2:advisor id and s2:student id 6¼ s2:team member id. The
attributes advisor id and team member id are the identifiers
of the student’s advisor and his project teammate, respec-
tively. Correct enforcement of this policy requires infinite
value domains for at least the student_id and the team_
member_id attributes. Suppose we use the finite domain
fx; yg for these two id attributes. Then there can be two sets
of students in the system: one set with student id ¼ x and
another with student id ¼ y. A student who chooses a team
member with the same id will be denied approval which is
incorrect. This problem will persist for any choice of finite
domain values for these two id attributes.

3 SAFETY OF PreUCONA WITH ARBITRARY

INFINITE DOMAIN ATTRIBUTES IS UNDECIDABLE

Undecidability of safety in the general PreUCONA model
has been previously shown [2]. In this section, we briefly
describe a proof of undecidable safety for a sub-model of
PreUCONA with an arbitrary infinite domain attribute and
without create commands. This result was first proved in
[3]. It is included here for completeness.

The proof demonstrates that an arbitrary instance of Post
Correspondence Problem (PCP) can be mapped to the safety
problem in PreUCONA with an infinite domain attribute.
Let the objects in PreUCONA have an arbitrary infinite
domain attribute, say str, which is initialized to the empty
string. The initial configuration of the model has two objects
s and o. For each pair (str1; str2) of strings in PCP, we can
construct a usage control command that appends the first
string str1 to the subject’s str attribute and the second string
str2 to the object’s str attribute. An additional usage control
command is included to grant an unsafe right r if the values
of the subject’s str attribute and the object’s str attribute are
equal and non-empty. The subject s can get the unsafe usage
right r if and only if the arbitrary instance of the PCP prob-
lem has a solution. Thereby, the undecidability of safety in
the PreUCONA sub-model follows from the undecidability
of the PCP problem. Additional proof details are given in

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH IDENTIFIER ATTRIBUTE DOMAINS 467

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2018.2839745.

An important observation from this undecidability result
is that the choice of attribute domain and the type of update
functions are important aspects that need to be considered
while constructing safety decidable PreUCONA sub-models
with infinite domains. Whereas the PreUCONfinite

A with
arbitrary finite domain attributes and unconstrained update
functions has decidable safety, even with unbounded object
creation [4].

PreUCONfinite
A cannot express certain important relation-

ships like parent and child between the creater subject and
the created object. Such linking relationships play a very
significant role in enforcing many commonly used security
policies. For example policies like ‘a parent process can give a
subset of its privileges to its child process then eventually revoke
the privileges’ cannot be enforced without having the linking
relationship between the parent process and the child pro-
cess. The key element in establishing such relationships is
the identifiers of the objects. Further, to establish the rela-
tionship between the objects, the update functions in the
usage control commands must have the ability to store each
others identifiers. The set of object identifiers in the systems
with unbounded number of objects must be an infinite set,
therefore, the domain of attributes which stores the object
indentifiers must be an infinite set as well. In this work, we
focus on constructing a safety decidable PreUCONA model
which can express such important relationships between
unbounded number of objects.

4 THE PreUCONid
A MODEL

One of the challenges in constructing safety decidable mod-
els is to identify the right synergy between the predicates
and update functions, such that the model is expressive
enough for practical applications while maintaining decid-
ability. Usage control authorization policies specify the
authorization security requirements to execute usage rights
as well as the consequence of executing the rights. In
PreUCONA security requirements are specified as predi-
cates and the consequences are specified as update opera-
tions. The updates may (i) create a new object, (ii) delete an
existing object, and (iii) modify attribute values of the
objects. We construct a sub-model of PreUCONA with iden-
tifier domain attributes, namely PreUCONid

A , that can
express important security policies that are not expressible
in PreUCONfinite

A . We define the usage control authorization
scheme in PreUCONid

A below, followed by an example.

4.1 Usage Control Authorization Scheme

Definition 4.1. A usage control authorization scheme Uv has
three components as follows.

(i) an object schema OSv,
(ii) a set of usage rights UR ¼ fr1; r2; . . . ; rmg, and
(iii) a set of usage control commands UC ¼ fUC1;

UC2; . . . ; UCcng (defined in Section 4.2).

4.1.1 Object Schema

Security relevant attributes of objects in an information sys-
tem and the domain of the attributes are specified in an

object schema. A crucial feature of the PreUCONid
A model is

to express various linking relationships between an
unbounded population of objects, for which purpose we
use the set of object identifiers in the system as the value
domain of the attributes.

Definition 4.2. The object schema OSv is of the form ½id : ID;
a2 : ID; a3 : ID . . . an : ID�, where id is the object’s own iden-
tifier and the remaining ai’s are the attributes that can store an
id of any object in the system.

The id attribute of each object in the system must have a
unique value. Since there could be infinite number of
objects, the domains of the id attribute must be an infinite
set of unique identifiers. For the sake of convenience, we
also use the name a1 to refer the id attribute whenever we
do not have to differentiate it from the rest of the attributes.
We use v in OSv to denote that all the attributes in the object
schema are infinite domains attributes.

Definition 4.3. The domain ID is defined as a countably infinite
set of unique identifiers in the system.

The choice of the set of values for identifiers is left specific
to the application. In practical applications, the domain of
one set of object identifiers may differ from that of another
set. For example, in online course-ware applications, the
course identifier attributes value domain IDc ¼ fCS100-
S2016-01; CS104-F2016-02; . . .g is usually different from
both the faculty identifier attribute’s value domain
IDf ¼ fFCS000158, FMAT0045067, ...g and the student
identifier attribute’s value domain IDs ¼ fBS201500018,
MS20160021; . . .g. In order to simplify the presentation, the
object schema in PreUCONid

A uses one generic infinite set ID
as the value domain of all identifier attributes. Such a generic
set may be taken as union of value domains of all identifier
attributes in the application. For the above example, the
domain of idmay be the union of IDc, IDf and IDs. Further,
we also assume that there is a single object schema which
uniformly applies to all the objects in the system [2], [4].

Attributes of objects are atomic valued and can hold an
identifier of an object in the system. Values of an object’s
attributes are accessed using dot(.) operator, e.g., o:x gives
the value of object o’s attribute x. An important and limiting
restriction in PreUCONid

A is that once an object’s attribute is
assigned a value then it remains unchanged forever.

4.1.2 Usage Rights

Usage rights are the finite set of permissions defined over the
objects. Usage control commands grant the rights.
PreUCONid

A supports creation and deletion of objects beside
uninterpreted application-specific usage rights. Execution of
create brings a new object into the system. Create also assigns
a unique value to the id attribute of newly created object
while some of the object’s attributes may remain unassigned.
Such unassigned attributes are markedwith the special sym-
bol f 62 ID and may get assigned with a value during execu-
tion of subsequent usage control commands.

4.2 Usage Control Commands

Usage control commands in Uv enforce the authorization
requirements and execute update operations before

468 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.2839745
http://doi.ieeecomputersociety.org/10.1109/TDSC.2018.2839745

permitting the execution of usage rights. A subject can exe-
cute a usage right over an object if the subject, object pair’s
attribute values satisfy the authorization predicates in a
usage control command. There are three types of usage con-
trol commands, viz. non-creating, creating and deleting
commands. Deleting commands can be ignored for the
purpose of safety analysis [4] (see Appendix B, available in
the online supplemental material).

4.2.1 Authorization Predicates

Authorization predicates are composition of specific set of
atomic predicates. The most useful operations in the identi-
fier domain are to check whether a value is assigned to an
attribute and if it is assigned then to check whether it is
equal to the value of another attribute. We define two types
of atomic predicates to do such checking on attributes of
objects, namely, a-predicates and b-predicates. In the defini-
tions of a-predicates and b-predicates, the attribute name ai
is a symbolic placeholder used to denote an attribute of the
object ox including the id attribute.

Definition 4.4. An a-predicate is of the form ox:ai ¼ f. It evalu-
ates to True if and only if the object ox’s attribute ai is not yet
assigned with a value from ID.

The a-predicates are used to ensure that an attributes is
assigned a value at most once. They also help in expressing
certain consumable rights such as “a student can change his
project advisor at most twice”.

The b-predicates consist of three varieties, viz., b1;b2;
and b3.

Definition 4.5. A b1-predicate is of the form ox:ai 6¼ f. It evalu-
ates to True if and only if the object ox’s attribute ai is assigned
with a value from ID.

The b1 predicates are used to make sure that the attrib-
utes values are non-empty before comparing them with
other attribute values. The following two predicates are
used to compare equality between attribute values.

Definition 4.6. A b2-predicate is of the form ox:ai ¼: oy:aj. It
evaluates to True if and only if the following three conditions
are satisfied: (i) ox:ai 6¼ f, (ii) oy:aj 6¼ f, and (iii)
ox:ai ¼ oy:aj.

Definition 4.7. A b3-predicate is of the form ox:ai 6¼: oy:aj.
It evaluates to True if and only if the following three
conditions are satisfied: (i) ox:ai 6¼ f, (ii) oy:aj 6¼ f, and
(iii) ox:ai 6¼ oy:aj.

The b-predicates are useful in expressing authorization
requirements that compare equality between attribute
values.

For the moment let us ignore the possibility of object
deletion. If the truth value of an a-predicate for an object
becomes false then it will remain false thereafter. Likewise,
if the truth value of a b-predicate for a given subject, object
pair becomes true then it remains true thereafter. Note that
the b2 and b3 predicates are not opposites of each other.
However, if one is true then the other must be false. It is pos-
sible for both to be false for a given subject, object pair.
Once one of them becomes true for a given subject, object
pair it must remain true thereafter.

4.2.2 Non-Creating Commands

The non-creating commands involve an existing subject,
object pair. The structure of a non-creating command UCi is
as follows.

Command Namerðs; oÞ
PreCondition: Pa ^ Pb

PreUpdate: s:ai1 :¼ fai1 ðs; oÞ;
. . .

s:aip :¼ faip ðs; oÞ;
o:aj1 :¼ faj1 ðs; oÞ;
. . .

o:ajq :¼ fajq ðs; oÞ;

In this command both s and o are input parameters. Pa

and Pb are respectively, the a-predicate conjunct and the
b-predicate conjunct defined over the attributes of the subject
s and the object o. Pb should have at least two b-predicates
s:id 6¼ f and o:id 6¼ f to ensure the existence of both s and o.
Pa must include the sub-conjuncts ðs:ai1 ¼ fÞ ^ � � � ^ ðs:aip ¼
fÞ and ðo:aj1 ¼ fÞ ^ � � � ^ ðo:ajq ¼ fÞ to check that these attrib-
utes are not yet assigned with any values. Values for these
attributes are assigned from attributes of s, o which have
already been assigned values. Each function f in the
preUpdate returns the value stored in a specific attribute of its
inputs s and o. If the attribute values of s and o satisfies the
predicate conjuncts then the command grants the right r and
executes the preUpdate operations. Otherwise, it denies the
right and terminateswithout executing preUpdate.

4.2.3 Creating Commands

The structure of a creating command UCi is as follows.
Command Namecreateðs; oÞ

PreCondition: Pa ^ Pb

PreUpdate: create o;

s:ai1 :¼ fai1 ðs; o:idÞ;
. . .

s:aip :¼ faip ðs; o:idÞ;
o:aj1 :¼ faj1 ðs; o:idÞ;
. . .

o:ajq :¼ fajq ðs; o:idÞ;

In this command s is an input parameter and o is an output
parameter. Pa and Pb are the a-predicate conjunct and the
b-predicate conjunct respectively, defined over the attrib-
utes of the subject s. Pb should have at least one b-predicate
s:id 6¼ f to ensure the existence of subject s. Pa must include
the sub-conjunct ðs:ai1 ¼ fÞ ^ � � � ^ ðs:aip ¼ fÞ to check that
the attributes s:ai1 . . . s:aip are not yet assigned any values.
Values for these attributes as well as for some attributes of
the newly created object o are assigned from attributes
which are already having assigned values. If the attribute
values of subject s satisfies the predicate conjuncts, then the
command grants the create right and executes the
preUpdate operations. Otherwise, the command denies the
right and terminates without executing the preUpdate part.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH IDENTIFIER ATTRIBUTE DOMAINS 469

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

The create operation in the preUpdate part brings a new
object o into the usage control system. Further, the create
operation assigns a unique object identifier value to o:id and
assigns f to all other attributes of o. The object’s identifier
value is from the infinite domain ID and the value is never
reused. Each function fa in the preUpdate part returns a spe-
cific attribute’s value from the attributes of its input s or the
value of o:id. The Fig. 1 diagrammatically shows the rela-
tionship between the objects, usage rights, and usage con-
trol commands. Other concepts in the figure such as usage
configurations and reachable usage configurations are
explained in Sections 4.4, and 5.

4.3 Example Usage Control Authorization Scheme

The following toy game example illustrates components of a
PreUCONid

A authorization scheme. The example scheme
permits (i) players to red mark white balls created by others,
(ii) players to hit balls red marked by themselves, and (iii)
players to add new players and create white balls.

Example 4.8. The components of the usage control authori-
zation scheme Uv game are as follows.

(1) Object schema OSv game = [id:ID, playerid:ID,
ballid:ID, creator:ID, red:ID]

(2) Usage rights UR = {mark, hit, addplayer, addball}
(3) Usage control commands UC = {UC1, UC2, UC3,

UC4} are as follows.
UC1 : Permitmarkðs; oÞ

PreCondition: s:playerid 6¼ f ^ o:ballid 6¼ f^
s:playerid 6¼: o:creator ^ o:red ¼ f

PreUpdate : o:red :¼ s:playerid;

UC2: Permithitðs; oÞ

PreCondition: s:playerid 6¼ f ^ o:ballid 6¼ f

^ o:red ¼: s:playerid;

UC3: Permitaddplayerðs; oÞ
PreCondition: s:playerid 6¼ f;

PreUpdate : create o;

o:playerid :¼ o:id;

UC4: Permitaddballðs; oÞ

PreCondition: s:playerid 6¼ f;

PreUpdate : create o;

o:ballid :¼ o:id;

o:creator :¼ s:playerid;

The object schema OSv game has five attributes: (i) id is the
default object identifier attribute, (ii) playerid for storing a
player’s identity, (iii) ballid for storing a ball’s identity, (iv)
creator for storing the creator’s identity of a ball, and (v) red
for remembering if a ball is marked red and which player
marked it. In this scheme, the set of players are the subjects
and the set of balls are the objects. The playerid attribute is
used in writing the security properties of the subjects and
the remaining attributes are unused for subjects. Likewise,
the ballid, creator and red attributes are used in writing the
security properties of the objects and the playerid attribute is
unused for objects.

The usage rights mark and hit are protected using non-
creating commands UC1 and UC2, respectively. The add-
player and addball rights are protected using creating com-
mands UC3 and UC4, respectively. This scheme has the set
of a-predicates fo:red ¼ fg and the set of b-predicates
fs:playerid 6¼ f; o:ballid 6¼ f; o:red ¼: s:playeridg as precondi-
tions. The create command UC3 assigns a unique player
identifier to the attribute o:playerid and assigns f to the
remaining attributes of the newly created object o, which is
a new player. Similarly, the create command UC4 assigns a
unique ball identifier to the attribute o:ballid, records the
ball’s creaor in the o:creator attribute and assigns f to the
remaining attributes of the newly created object o.

4.4 Usage Control Configuration

A state of the usage control authorization scheme Uv is
called as a usage configuration U�.

Definition 4.9. A usage configuration U� is defined as the set of
objects fo1; o2; . . . ; ong along with the values stored in the
attributes of each object oi.

Example 4.10. An example usage configuration for the
usage control authorization scheme Uv game of Example 4.8
with two players, one white ball, and one red marked ball
is given as follows

U�t ¼ fs1:playerid ¼ PX021; s1:ballid ¼ f;

s1:creatorid ¼ f; s1:red ¼ f;

s2:playerid ¼ PX756; s2:ballid ¼ f;

s2:creatorid ¼ f; s2:red ¼ f;

o1:playerid ¼ f; o1:ballid ¼ BI213;

o1:creatorid ¼ PX021; o1:red ¼ f;

o2:playerid ¼ f; o2:ballid ¼ BI855;

o2:creatorid ¼ PX756; o2:red ¼ PX021; g:

Fig. 1. Pre-authorization system.

470 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

The initial configuration of the usage control authoriza-
tion scheme Uv is symbolically denoted as U�init. Likewise
U�t denotes the usage configuration t. A usage control system
begins with a specified initial configuration U�init and there-
after it evolves as the subjects execute usage control com-
mands. The set of all possible configurations of the scheme is
denoted as the set cU�v. This set could be potentially infinite
as the scheme supports unbounded executions of creating
commands. Appendix C, available in the online supplemen-
tal material, gives an example of unbounded creation in con-
text of Example 4.8. An execution of usage control command
UCi with an actual subject s and an actual object o is called a
command instance, denoted as uciðs; oÞ. Subject s must exist
prior to execution of uciðs; oÞ. For a non-creating command
object omust also exist prior to execution of uciðs; oÞ, whereas
for a creating command o is newly created.

4.5 Safety Question

Definition 4.11. Safety question is defined as given a usage con-
trol authorization scheme Uv and its initial configuration
U�init, can the subject s1 2 U�init obtain the usage right r over
the object o1 2 U�init? A safety question is written as �ðs1;o1;rÞ.

A safety decision procedure (SDP) takes as input Uv,
U�init and �ðs1;o1;rÞ. It returns yes if subject s1 can acquire
usage right r for o1 and no otherwise. In order to make the
technical presentation easier, we use a more general version
of the safety question called �ðrÞ.

Definition 4.12. The safety question �ðrÞ is defined as given a
Uv and a U�init, can any subject obtain the usage right r over
any object?

If there is an SDP to answer the safety question �ðrÞ we can
use the same SDP to answer the �ðs1;o1;rÞ as shown in
Appendix D, available in the online supplemental material.

5 SAFETY IN PreUCONid
A IS DECIDABLE

In this section, we present a proof of safety decidability for
PreUCONid

A . Let Pa1 ^ Pb1; Pa2 ^ Pb2 � � �Pacn ^ Pbcn denote
the authorization predicates in precondition part of the
usage control commands UC1; UC2 . . .UCcn, respectively.
We also understand Pi to mean Pai ^ Pbi for UCi.

In a usage configuration multiple subject object pairs may
satisfy the preconditions of a usage control command and a
pair may satisfy preconditions of multiple commands as
well. Subjects can execute the commands at their own discre-
tion without any predefined order. Execution of a command
can bring a new object into the system as well as update the
object’s attribute values. The new attribute values may
enable additional commands and the execution of additional
commands can bring new objects as well as update the attri-
bute values. This cycle may continue without bound and can
create potentially infinite number of new configurations.
Therefore, tracking the changes in usage configuration may
not terminate. Instead, our safety decision procedure tracks
the changes in the set of satisfiable predicate sub-conjuncts
of Pa1 ^ Pb1; Pa2 ^ Pb2 . . .Pacn ^ Pbcn.

The crux of the safety decidability proof lies in showing
that there exists a subset of reachable usage configurations
which can satisfy the maximal set of sub-conjuncts that are

satisfiable in the set of all reachable configurations. We first
define the sub-conjuncts and their maximal set for the given
usage control authorization scheme Uv and the initial con-
figuration U�init. The symbols used in developing our proof
are summarized in Table 1.

Definition 5.1. The size of an a-predicate conjunct Pai is defined
as the number of atomic a-predicates in Pai and is denoted as
jPaij. Likewise, jPbij denotes the size of b-predicate conjunct
Pbi and jPij = jPaij + jPbij.

Definition 5.2. The set of sub-conjuncts of Pi is defined as the
union of all sub-conjuncts of Pai ^ Pbi of size 1 to jPaij þ jPbij
and is denoted as bPi.

Example 5.3. The set of sub-conjuncts of the predicate in
the precondition part of the usage control command UC2

in the usage control authorization scheme Uv game in the
Example 4.8 is given as follows

TABLE 1
Summary of Symbols

Symbols Description

Uv The usage control authorization scheme
U� A usage configuration for given Uv

U�init An initial configuration for given Uv

U�x Usage configuration in state x for given U�init and Uv

cU�p A set of usage configurations
cU�v The set of all usage configurations for given U�init

and Uv

UCi Usage control command
uci Instance of the specific usage control command UCi

_uc Instance of any usage control command
�ðs1 ;o1 ;rÞ Safety question: can s1 2 U�init gain r for o1 2 U�init?
�ðrÞ Safety question: can any subject gain r for any

object?
a-predicate An atomic predicate of the form ox:ai ¼ f

b-predicate An atomic predicate of the form ox:ai 6¼ f,
ox:ai ¼: oy:aj, or ox:ai 6¼: oy:aj

pi An atomic a-predicate or an atomic b-predicate
Pai a-predicate conjunct in the precondition of usage

control command UCi

Pbi b-predicate conjunct in the precondition of usage
control command UCi

Pi Pai ^ Pbi, the precondition of usage control
command UCi

jPaij Number of atomic predicates in Pai

jPbij Number of atomic predicates in Pbi

bPi Set of all subconjuncts of Pi

cPv Set of all subconjuncts of usage control authorization
scheme Uv

j bPij Number of predicates in the set bPi

vmax vmax � cPvj, maximum number of predicate con-
juncts in Uvbf�v bf�v : dU�v ! cPv, mapping from a set of usage config-
urations to a set of predicates in cPv

cU�i �v
cU�j

bf�vðcU�iÞ ¼ bf�vðcU�jÞcU�init"0 fU�initg
cU�init"1 Set of usage configurations reachable from U�init in 0

or 1 step
cU�init"k Set of usage configurations reachable from U�init in 0

or up to k steps
cU�i"� Set of usage configurations reachable from U�i in 0

or any number of steps

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH IDENTIFIER ATTRIBUTE DOMAINS 471

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

cP2 ¼ fs:playerid 6¼ f; o:ballid 6¼ f; o:red ¼: s:playerid;

s:playerid 6¼ f ^ o:ballid 6¼ f;

s:playerid 6¼ f ^ o:red ¼: s:playerid;

o:ballid 6¼ f ^ o:red ¼: s:playerid;

s:playerid 6¼ f ^ o:ballid 6¼ f ^ o:red ¼: s:playeridg

Definition 5.4. The set of sub-conjuncts in the given usage con-
trol authorization scheme Uv is defined as the union of sets of
sub-conjuncts of all bPi’s. That is, cPv = [cn

i¼1
bPi, where cn is the

number of usage control commands and each bPi is the set of
subconjuncts of the precondition predicate Pi in the usage con-
trol command UCi.

Definition 5.5. Let vmax denote the maximum number of predi-
cate conjuncts for a given usage control scheme Uv.

Lemma 5.6. vmax � jcPvj.
Proof. The maximum number of predicate conjuncts in eachbPi is 2

jPij � 1. Hence the upper bound on maximum num-
ber of predicate conjuncts in the set cPv is

Pcn
i¼1 2

jPij � cn. tu
For example the usage control authorization scheme

Uv game in Example 4.8 has vmax ¼ 24 þ 23 þ 21 þ 21 � 4 ¼ 24:
The upper bound may not be realized since some atomic
predicatesmay be duplicated inmore than one Pi.

Values stored in the attributes of the objects in a usage
configuration determine the satisfiability of the predicates
in cPv in that usage configuration. As the usage configura-
tion changes the satisfiable predicates in cPv may also
change. We use the notions in Definitions 5.8 through 5.21
below to systematically track those changes.

We use the symbols s:v1; s:v2 . . . s:vn to denote the values
stored in the attributes a1ðidÞ; a2 . . . an of the subject s and

the symbols o:v1; o:v2 . . . o:vn to denote the values stored in
the attributes a1ðidÞ; a2 . . . an of the object o. If an attribute ai
of an object o is yet to store a value, o:vi refers to the empty
value f. Satisfiability of the atomic predicates in the usage
control commands are checked over the values stored in the
subject object pairs.

The atomic predicates in the usage control commands are
represented using the letter p with subscripts like
p1; p2 . . . etc. Depending on the relationship the predicates
check and the attributes over which they check the relation-
ship, there are fourteen forms of atomic predicates. Differ-
ent forms of atomic predicates are represented using the
letter pwith superscripts like p1; p2 . . . p14. The formal defini-
tions of satisfiability of each form of pi is given in the Table 2.
Each atomic predicate pi in the usage control commands
will be in one of the fourteen forms defined in the Table 2.

The left column in the table provides the definitions of sat-
isfiability of atomic predicates pi that are defined over the
attributes of a subject, object pair ðs; oÞ in non-creating usage
control commands. The atomic predicate forms p1; p3; p5 and
p8 are meant to check the relationships between the attribute
values of the subject s and the atomic predicate forms
p2; p4; p6 and p9 are meant to check the relationships between
the attribute values of the object o. The remaining predicates
in the left column, p7 and p10, are meant to check the relation-
ships between the attribute values of s and o.

Example 5.7. Let the atomic predicate p1 be o:red ¼:
s:playerid. Then, the subject object pair ðs1; o2Þ in Example
4.10 satisfies p1, i.e., ðs1; o2Þ 	 p1 while ðs1; o1Þ does not,
i.e., ðs1; o1Þ 6	 p1.

The predicates in non-creating commands are defined on
the attributes of both the subject s and the object o whereas
the predicates in creating usage control commands are
defined only on the attributes of the subject s. In order to
simplify the tracking of the changes in satisfiability of predi-
cates of both create and non-create commands, we use of to
denote an empty object with no stored values in its attrib-
utes including the identifier attribute. The right column in
the Table 2 provides the definitions of satisfiability of atomic
predicates pi that are defined over the attribute values of
subject ðsÞ in the creating usage control commands. We use
the notation ðs; ofÞ to refer an ordered pair of subject and
object in the creating usage control commands, here, of is
the symbolic place holder for the newly created object.

For sake of brevity, we use the following definition to
check if an atomic predicate pi is satisfiable by the values
stored in the attributes of ðs; oÞ for both non-creating and
creating commands.

Definition 5.8. A subject object pair ðs; oÞ is said to satisfy an
atomic predicate pi if and only if the values stored in the attrib-
utes of the pair satisfies the relation ð¼; 6¼;¼: ; or 6¼: Þ defined in
pi over the attributes of (s, o) and it is written as ðs; oÞ 	 pi.

A usage configuration can have multiple subject object
pairs. The safety decision procedure searches for a usage
configuration in which a subject can get the unsafe right
over an object. Therefore, we extend the Definition 5.8 to
usage configurations as follows.

Definition 5.9. An atomic predicate pi is said to be satisfied in
some usage configuration U�x if and only if there exist an

TABLE 2
Formal Definition of Satisfiability of pis

ðs; oÞ 	 pi ðs; ofÞ 	 pi

p1 : s:ai ¼ f p11 : s:ai ¼ f
ðs; oÞ 	 p1, iff s:vi ¼ f. ðs; ofÞ 	 p11, iff s:vi ¼ f.
p2 : o:aj ¼ f
ðs; oÞ 	 p2, iff o:vj ¼ f.
p3 : s:ai 6¼ f p12 : s:ai 6¼ f
ðs; oÞ 	 p3, iff s:vi 2 IDi. ðs; ofÞ 	 p12, iff s:vi 2 IDi.
p4 : o:aj 6¼ f
ðs; oÞ 	 p4, iff o:vj 2 IDj.
p5 : s:ai ¼: s:aj p13 : s:ai ¼: s:aj
ðs; oÞ 	 p5, iff s:vi 2 IDi, ðs; ofÞ 	 p13, iff s:vi 2 IDi,
s:vj 2 IDj, and s:vi ¼ s:vj. s:vj 2 IDj, and s:vi ¼ s:vj.
p6 : o:ai ¼: o:aj
ðs; oÞ 	 p6, iff o:vi 2 IDi,
o:vj 2 IDj, and o:vi ¼ o:vj:
p7 : s:ai ¼: o:aj
ðs; oÞ 	 p7, iff s:vi 2 IDi,
o:vj 2 IDj, and s:vi ¼ o:vj.
p8 : s:ai 6¼: s:aj p14 : s:ai 6¼: s:aj
ðs; oÞ 	 p8, iff s:vi 2 IDi, ðs; ofÞ 	 p14, iff s:vi 62 IDi,
s:vj 2 IDj, and s:vi 6¼ s:vj. s:vj 2 IDj, and s:vi 6¼ s:vj.
p9 : o:ai 6¼: o:aj
ðs; oÞ 	 p9, iff o:vi 2 IDi,
o:vj 2 IDj, and o:vi 6¼ o:vj.
p10 : s:ai ¼: o:aj
ðs; oÞ 	 p10, iff s:vi 2 IDi,
o:vj 2 IDj, and s:vi 6¼ o:vj.

472 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

ordered subject object pair (s,o): s; o 2 U�x and ðs; oÞ 	 pi. This
is written as U�x 	 pi.

Example 5.10. The usage configuration U�t in the Example
4.10 satisfies the atomic predicate p1 in the example, that
is, U�t 	 p1.

Usage control commands are guarded with the conjunc-
tion of multiple atomic predicates and a usage configuration
can also satisfy multiple atomic predicates. All possible sub-
conjuncts of Pa1 ^ Pb1; Pa2 ^ Pb2 . . .Pacn ^ Pbcn are in the setcPv. Therefore, we extend the Definition 5.9 to conjuncts of
atomic predicates in cPv.

Definition 5.11. A predicate conjunct Pi 2 cPv, where
Pi ¼ pi1 ^ pi2 ^ � � � ^ pin is said to be satisfied in some usage
configuration U�x if and only if there exists a subject object pair
ðs; oÞ: s; o 2 U�x and ðs; oÞ 	 pi1 , ðs; oÞ 	 pi2 . . . ðs; oÞ 	 pin .
It is written as U�x 	 Pi.

Example 5.12. Let the predicate conjunct P1 be
ðs:playerid 6¼ f ^ o:ballid 6¼ f ^ o:red ¼: s:playerid). The
usage configuration U�t in the Example 4.10 satisfies P1,
that is, U�t 	 P1. Here, s1; o1 2 U�t and ðs1; o1Þ 	 ðs:playerid 6¼
fÞ; ðs1; o1Þ 	 ðo:ballid 6¼ fÞ, and ðs1; o1Þ 	 ðo:red ¼: s:playeridÞ.

If a usage configuration U�x satisfies the predicate con-
junct Pai ^ Pbi in a usage control command UCi then the
command is enabled in U�x and a subject in U�x can execute
the command. The execution of a command may create a
new object and store values into the attributes of the existing
object, as a result, the current usage configuration will
change. We formalize the notion of successful execution of
usage control command and the corresponding change in
usage configuration using the following definition.

Definition 5.13. An execution of a usage control command UCi

in a usage configuration U�x is defined as an instance of the
command and it is denoted as uciðs; oÞ, where s is the subject
which executes the command UCi on the object o. We use the
notation U�x uciðs; oÞ! U�x0 to denote that the command

instance uciðs; oÞ occurred in U�x and the U�x0 is the new usage
configuration after the occurrence of uciðs; oÞ.
If the execution of the usage control command is not suc-

cessful then there will be not any change in the current
usage configuration and it will not be called as an instance
of the command.

Example 5.14. In the Example 4.10, the occurrence of usage
control command instance uc4ðs1; ofÞ in U�t could change
the configuration U�t to U�t0 ¼ fs1; s2; o1; o2; o3:playerid ¼
f; o3:ballid ¼ BI865; o3:creatorid ¼ PX021; o3:red ¼ fg. It
is denoted as U�t uc4ðs1; ofÞ!U�t0 .

If multiple usage control commands are enabled then
any one of the enabled command can be executed in the cur-
rent usage configuration. Likewise, if multiple subject object
pairs satisfy the predicate conjunct Pai ^ Pbi in the usage
control command UCi, then any one of the pair can execute
the usage control command UCi.

We use the symbol uci to refer to a usage control com-
mand instance when the names of the particular subject and
the object are not important in the context of discussion.
Likewise, we use _uc to denote an instance of a usage control

command without naming the particular objects and with-
out naming the particular usage control command.

The usage control command instances change the usage
configurations and new configurations may satisfy addi-
tional atomic predicates and eventually reach a configura-
tion where new usage control commands are enabled. For
example, the faculty member can submit the final grade for a
student after evaluating all his assignments and exams. In
this example, each time the faculty member evaluates an
assignment, the usage configuration will change and even-
tually when he completes the evaluation of all assignments
and exams, the resulting usage control configuration will
enable the submit command. To analyze the cumulative
effect of such incremental changes we need to define the
notion of reachable configurations.

Definition 5.15. A usage configuration U�x0 is said to be reach-
able from another usage configuration U�x if and only if there is
a sequence of command instances such that U�x _uc! U�x1

_uc! U�x2 . . . _uc! U�x0 .

Example 5.16. In the Example 4.10, the usage configuration
U�t00 ¼ fs1; s2; o2; o3; o1:playerid ¼ f; o1:ballid ¼ BI213; o1:
creatorid ¼ PX021; o1:red ¼ PX756g is reachable from U�t

since there is a sequence of command instances from U�t

to U�t00 , that is, U�t uc4ðs1; ofÞ! U�t0 uc1ðs2; o1Þ!U�t00 .

In a usage configuration, a subject may have options to
executemore than one usage control command. For example,
a student can take either a music course or a management
course as an elective and depending on the elective he takes,
he may have different sets of additional rights over different
objects. Though both the choices together are not realizable,
nevertheless both of them are individually reachable from
the initial configuration. Therefore, the safety decision proce-
dure needs to explore all such non-deterministic choices left
with each individual subjects. This non-determinism adds
another level of complexity to the safety analysis as it pro-
vides more than one possible future usage configurations for
one usage configuration. To simplify the analysis, we extend
the Definition 5.11 to a set of usage configurations as follows.

Definition 5.17. A predicate conjunct Pi 2 cPv, Pi ¼ ðpi1 ^ pi2
^ � � � ^ pin) is said to be satisfied in a set of usage configurations
cU�X if and only if 9U�x 2 cU�X such that U�x 	 Pi. It is writ-

ten as cU�X 	 Pi.

Example 5.18. Let the predicate conjuncts P2 be
ðs:playerid 6¼ f ^ o:ballid 6¼ f) and P3 : ðs:playerid 6¼ f ^
o:ballid 6¼ f ^ o:red ¼: s:playerid). Let the two sets of usage
configurations from Example 5.16 be cU�T1 ¼ fU�t; U�t0 g
and cU�T2 ¼ fU�t0 ; U�t00 g. In this example, cU�T1 	 P2,cU�T1 6	 P3, cU�T2 	 P2 and cU�T2 	 P3.

With help of Definition 5.17, we can track the changes in
the satisfiability of set of predicate conjuncts in cPv in a set of
reachable configurations. We formally define the set of
reachable configurations in k or less steps as follows.

Definition 5.19. A set of usage configurations fU�x1 ; U�x2 ; . . . ;
U�xng is said to be reachable from the initial configuration U�init

in k or less steps if and only if for each U�xi , either U�xi ¼ U�init

or there exists a sequence of k or less number of command instan-
ces such that U�init _uc! U�xi1

_uc! U�xi2
. . . _uc! U�xi . This set is

denoted as cU�init"k. We use k as the step-variable.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH IDENTIFIER ATTRIBUTE DOMAINS 473

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

The set of configurations reachable in zero steps cU�init"0 is
the singleton fU�initg.
Example 5.20. In Example 4.10, the set of usage configura-

tions reachable in one step is cU�init"1=fU�t; U�t0 ; U�t00 ;
U�t000 g, where U�t; U�t0 are same as in Example 5.14,
U�t00 ¼ fs1; s2; o1; o2g as in Example 5.16, and U�t000 ¼ fs1;
s2; o1; o2; s3:playerid ¼ PX356; s3:ballid ¼ f; s3:creatorid ¼ f; s3:

red ¼ fg.
We define the function bf�v to track the changes in the sat-

isfiable predicate conjuncts in cPv.

Definition 5.21. The predicate function bf�v : cU�X ! PðcPvÞ
returns a set of predicate conjuncts fPi1 ; Pi2 . . .Pin : 8k; 1 �
k � n; ðPik 2 cPvÞ & ðcU�X 	 PikÞg. The symbol PðcPvÞ denotes
the power set of cPv.

Example 5.22. Let cPv ¼ fP1; P2; P3g be a set of predicate con-
juncts, where P1 is from Example 5.12 and P2; P3 are from

Example 5.18. Then, bf�vðcU�T1Þ ¼ fP1; P2g and bf�vðcU�T2Þ ¼
fP1; P2; P3g, where cU�T1 and

cU�T2 are fromExample 5.18.

We pictorially summarize the notions defined so far in
the Fig. 1. The upward arrows denote the requests from the
subjects to execute the usage control commands. The down-
ward arrows denote the successful execution of usage con-
trol commands, also called as the command instances.

The sequence of solid circles denotes one possible
sequence of usage configurations created as a result of a
sequence of usage command instances. The dotted circles
denote the starting usage configurations of possible alterna-
tive sequences of usage configurations. The set of reachable
usage configurations in a PreUCONid

A system is the collec-
tion of all such sequences of configurations. It is denoted by
the larger square which includes all the circles in the figure.
The smaller square denotes the set of usage configurations
reachable in 1 or less number of steps.

The set of configurations reachable from U�init in
unbounded number of steps is symbolically denoted bycU�init"�. In general cU�init"� is countably infinite, since the
number of objects that can be created is unbounded. Each
newly created object by definition results in a new configu-
ration. However, for a fixed k the set of reachable configura-
tions is finite as shown in Lemma 5.2 in [4].

Definition 5.23. Two sets of usage configurations cU�X and cU�Y

are said to be v-equivalent, written cU�X �v
cU�Y , if and only if

bf�vðcU�XÞ ¼ bf�vðcU�Y Þ.
Example 5.24. In the Example 5.18, for cPv in the Example

5.22, cU�T1 6�v
cU�T2 . Let

cU�T3 ¼ fU�t; U�t0 ; U�t00 g, then cU�T3 �vcU�T2 .

This brings us to the central result of this paper.

Theorem 5.25. cU�init"vmax �v
cU�init"�.

Proof. Follows from Lemmas 5.26 and 5.27 below. tu
Lemma 5.26. Suppose there exists k such that cU�init"kþ1 �vcU�init"k. Then for all n
 kþ 2, cU�init"n �v

cU�init"k.

Proof. By assumption, cU�init"kþ1 �v
cU�init"k.

Assume for contradiction that cU�init"kþ2 6�v
cU�init"kþ1.

Since bf�vðcU�init"kÞ ¼ bf�vðcU�init"kþ1Þ, the above contra-
diction can occur only if there is some U�p 2 cU�init"kþ2

and 8q, U�q 2 cU�init"kþ1, bf�vðU�qÞ 6¼ bf�vðU�pÞ. Such a U�p

must be the result of executing some command
uctðsx; oyÞ, for some sx; oy, enabled in a U�r 2 cU�init"kþ1

and not enabled by any configuration in cU�init"k. We
prove that our usage control authorization scheme does
not have any such commands.

Case a: Let us suppose that uctðsx; oyÞ is a non-creating
command guarded with the a-predicate conjunct Pat

and the b-predicate conjunct Pbt. If the predicate conjunct

Pat ^ Pbt is satisfied for an sx; oy in U�r 2 cU�init"kþ1 then

there must exist some s0x; o
0
y in someU�r0 2 cU�init"k that sat-

isfies the same predicate conjunct Pat ^ Pbt. Therefore, if

the non-creating command uct is enabled in cU�init"kþ1

then it must be enabled in cU�init"k aswell. Further, the exe-

cution of uct in U�r0 must produce a configuration U�s,

U�s 2 cU�init"kþ1, bf�vðU�sÞ ¼ bf�vðU�pÞwhich is a contradic-

tion to 8q; U�q 2 cU�init"kþ1; bf�vðU�qÞ 6¼ bf�vðU�pÞ. Other-

wise, cU�init"kþ1 �v
cU�init"k would not have been true.

Case b: Let us suppose that uctðsx; oyÞ is a creating com-
mand guarded with the a-predicate conjunct Pat and the
b-predicate conjunct Pbt. If the predicate conjunct Pat ^ Pbt

is satisfied for some sx in U�r 2 cU�init"kþ1 then there must
exist some s0x in some U�r0 2 cU�init"k that satisfies the same
predicate conjunct Pat ^ Pbt. Therefore, if the creating com-

mand uct is enabled in cU�init"kþ1 then it must be enabled in
cU�init"k as well. Further, the execution of uct in U�r0 must

produce a configuration U�s, U�s 2 cU�init"kþ1, bf�vðU�sÞ ¼bf�vðU�pÞ which is a contradiction to 8q; U�q 2 cU�init"kþ1;bf�vðU�qÞ 6¼ bf�vðU�pÞ. Otherwise, cU�init"kþ1 �v
cU�init"k

would not have been true.

Therefore, the assumption cU�init"kþ2 6�v
cU�init"kþ1 can-

not be true, by contradiction. This argument can be
applied inductively for n > kþ 2. Note that, if the attri-
bute update operations are allowed to use arithmetic
operations like add and subtract then this argument
would not be valid. tu

Lemma 5.27. cU�init"vmaxþ1 �v
cU�init"vmax .

Proof. There are at most vmax predicate conjuncts that can
be added to bf�vðcU�init"�Þ from a given bf�vðcU�init"0Þ. The
longest chain of such additions is at most vmax (which
would happen if only one new predicate conjunct is
added at each step). Thus it is not possible to have a con-

junct Pq 2 bf�vðcU�init"vmaxþ1Þ and Pq 62 bf�vðcU�init"vmaxÞ. tu
Theorem 5.28. The set cU�init"vmax is computable and can be

used to answer any safety question �ðrÞ.

Proof. By definition �ðrÞ can be true if and only if there is

some Pai ^ Pbi in bf�vðcU�init"�Þ which is the pre-condition

of a creating or non-creating command that grants r.

Procedure Qv given below computes cU�init"vmax from

which bf�vðcU�init"vmaxÞ can be trivially computed. LetcU�init"¼k denote the set of configurations that can be

reached from U�init by using exactly k usage control com-

mands. This is similar to Definition 5.19 except for requir-

ing exactly k commands rather than k or less.

474 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

Procedure Qv:
Let cU�init"¼0 ¼ fU�initg;
Let cU�init"0 ¼ fU�initg;
Let k ¼ 1;
While k � jcPvj do begincU�init"¼k ¼ ;;
For each U�p 2 cU�init"¼k�1 do begin
Add all U�q reachable from U�p

in one command to cU�init"¼k

without any duplicates;
end for;cU�init"k ¼ cU�init"k�1 [cU�init"¼k;
k ¼ kþ 1;

end while;

By the argument given in the proof of Lemma 5.2
in [4], each iteration of the for loop above is computable,
and thereby Procedure Qv computes cU�init"vmax . tu
Computation of v�equivalent usage configurations in

context of Example 4.8 is given in Appendix E, available in
the online supplemental material.

6 ILLUSTRATION OF EXPRESSIVENESS

We illustrate the expressiveness of PreUCONid
A using authori-

zation policies applicable for Massive Online Open Course
(MOOC) type learning portals that support unbounded num-
ber of subjects and objects. Though the attributes of the objects
are exclusively meant to store object identifiers, this model
can express interesting policies such as consumable rights,
regenerative rights, separation of duty constraints, and data
provenance over potentially infinite number of objects. To the
best of our knowledge the safety decidablemodels in the prior
literature do not support these policy features.

6.1 Application of PreUCONid
A in Learning Portals

An object schema OSv eportal and the set of usage rights UR
for an example e-learning portal are defined as follows.

(i) OSv eportal = [id : ID; studentid : ID; courseid : ID; examid :

ID; facultyid : ID; advisor : ID; nadvisor1 : ID; nadvisor2 :
ID; examiner1 : ID; examiner2 : ID; referee : ID�

(ii) UR ¼ fBuyVoucher; TakeExam;ChangeAdvisor;
EvaluateCopy; InductFacultyg

The following provides examples of policy statements and
their expression in our authorization scheme.

(i) Consumable and Regenerative Rights: Students in a
course can buy examination vouchers. A voucher is valid
for taking examination one time.

UC1: PermitBuyVoucherðs; oÞ UC2: PermitTakeExamðs; oÞ
PreCondition: PreCondition:

ðs:id 6¼ fÞ ^ ðs:id 6¼ fÞ ^ ðo:id 6¼ fÞ ^
ðs:studentid ¼: s:idÞ ^ ðs:courseid ¼: o:courseidÞ ^
ðs:courseid 6¼ fÞ ðs:id ¼: o:studentidÞ^

ðo:examid ¼ fÞ
PreUpdate: PreUpdate :

create o; o:examid :¼ s:courseid;

o:courseid :¼ s:courseid;

o:studentid :¼ s:id;

A student with a voucher can take the exam. Each time
he takes the exam, the TakeExam right gets consumed and
each time he buys a voucher, the TakeExam right gets
regenerated. Meaning of the predicates and attribute
updates are kept intuitively consistent with their names.

(ii) Relationships Among Objects: Students may change
their advisor two times during the course.

UC3 : PermitCh:Advisorðs; oÞ UC4 : PermitCh:Advisorðs; oÞ
PreCondition: PreCondition:

ðs:studentid 6¼ fÞ ^ ðs:studentid 6¼ fÞ^
ðo:facultyid 6¼ fÞ ^ ðo:facultyid 6¼ fÞ^
ðs:advisor 6¼ fÞ ^ ðs:advisor 6¼ fÞ^
ðs:nadvisor1 ¼ fÞ ðs:nadvisor1 6¼ fÞ^

ðs:nadvisor2 ¼ fÞ
PreUpdate : PreUpdate :

s:nadvisor1 :¼ s:nadvisor2 :¼
o:facultyid; o:facultyid;

A student s can choose a faculty member o as his new advi-
sor and he can execute his right to change the advisor two
times. This right is a consumable right, that is, a student can-
not change his advisor more than two times.

(iii) Dynamic Separation of Duty: Each answer sheet must
be evaluated by two different examiners.

UC5: PermitEv:Copyðs; oÞ UC6: PermitEv:Copyðs; oÞ
PreCondition: PreCondition:

ðs:id 6¼ fÞ ^ ðo:id 6¼ fÞ ^ ðs:id 6¼ fÞ ^ ðo:id 6¼ fÞ^
ðs:courseid ¼: o:courseidÞ ðs:courseid ¼: o:courseidÞ
^ ðo:examid 6¼ fÞ ^ ^ ðo:examid 6¼ fÞ ^
ðs:id ¼: s:facultyidÞ ^ ðs:id ¼ s:facultyidÞ ^
ðo:examiner1 ¼ fÞ ^ ðo:examiner1 6¼: s:idÞ ^
ðo:examiner2 ¼ fÞ ðo:examiner2 ¼ fÞ
PreUpdate : PreUpdate :

o:examiner1 :¼ s:id; o:examiner2 :¼ s:id;

The students cannot evaluate the answers and the faculty
members cannot take the exam. Further, the second examiner
must be different from the first examiner. With additional
attributes we can enrich this policy with additional exam-
iners and constraints on Teaching Assistants, Certification
Authority etc.

(iv) Decentralized Delegation of Authority: A faculty mem-
ber of a course can induct a new faculty member.

UC7: Permit InductFaculty (s,o)

PreCondition: PreUpdate: create o;
(s:id 6¼ f) ^ o:courseid :¼ s:courseid;
(s:facultyid ¼: s:id) ^ o:referee :¼ s:id;
(s:courseid 6¼ f) o:facultyid :¼ o:id;

This policy permits any faculty member of a course to
induct a new faculty member and the new faculty member
can have same rights as the other faculty members. The new
faculty member can further induct additional faculty mem-
bers. Such delegation of authorities can also be constrained
with additional predicates.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH IDENTIFIER ATTRIBUTE DOMAINS 475

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

6.2 Decentralized Administration and Automation

Safety decidable PreUCONA models are amicable for
decentralized administration and automation of security
administration. In practice, security administration of
large information systems are often managed with delega-
tion of administrative responsibilities to multiple admins
in a decentralized manner. The PreUCONid

A model sup-
ports administrators to add new administrators to share
their duties as well as to delegate some of their duties to
the existing administrators. In the learning portal example
given in the Section 6.1, policies like inducting new faculty
members and teaching assistants illustrate the decentral-
ized administration within the learning portal. When the
administrative rights are delegated to multiple administra-
tors, it is important to ensure that the organization’s cen-
tral policies are not violated. In the the learning portal
example, a student can become TA and a faculty member
can also enroll in a course and become a student. How-
ever, the portal should not allow the students to evaluate
their own answer sheets. Manually checking such policy
violations is a difficult task. In the PreUCONid

A model, we
can express such violations as unsafe usage right and
apply the safety decision procedure to automatically check
if any of the reachable usage configuration can permit
such an unsafe usage right.

7 DISCUSSION AND FUTURE WORK

Besides the features mentioned in Section 6, the PreUCONid
A

model also has its own limitations. For example, it cannot
express policies like (i) a faculty member can claim incen-
tives based on the number of exam copies he evaluates in a
semester, and (ii) top 10 percent of students in the course
are permitted to become student ambassadors for the high
schools. Expression of these policies requires explicit arith-
metic operations in the update functions which are lacking
in PreUCONid

A . Further, the attributes of the objects also
need to be extended beyond the domain of object identifiers
such as integer domains.

The inclusion of integer valued attributes in the object
schema of PreUCONid

A and integer-valued functions in the
pre-update part of the usage control commands would help

in expressing usage control policies beyond PreUCONid
A .

However, determining the safety decidability status of such
an integrated model is a difficult problem. One part of the
difficulty essentially comes from identifying a safety decid-
able fragment of PreUCONA with integer valued functions
in the pre-update part of the usage control commands.
Another part of the difficulty comes from checking effect of
combining the identifier attributes and the integer domain
attributes in a usage control authorization scheme. We dis-
cuss both these issues separately below.

First, we discuss the issues in the safety analysis of
PreUCONInteger

A with integer attributes without identifier
attributes. In this model, the integer domain attributes of
the objects can take potentially unbounded number of dif-
ferent values as the subjects can execute the usage control
commands an unbounded number of times and each such
execution can change the values stored in the attributes of
the objects. In such models, the authorization predicates
may become true after unbounded number of changes in

the objects’ attribute values. Whereas in the PreUCONid
A

model, the pre-update part of the usage control commands
allows only copying object identifiers from one attribute to
another attribute. Further, arithmetic operations over the
object identifiers are not allowed, therefore, safety analysis
can be performed by tracking changes in the satisfiability
of set of all the atomic predicates, in the usage control com-
mands, which checks equality between stored values in
the attributes of the objects in each of the new configura-

tions. This approach will not work for PreUCONInteger
A

since the attribute values are updated with arithmetic
functions. We conjecture that PreUCONInteger

A without
object creation itself can simulate the two-counter
machine [35] and finding a safety decidable fragment of
the PreUCONInteger without identifier attributes itself is a
non-trivial problem.

Second part of the problem is to check the effect of com-
bining two safety decidable models which we explore in
detail in the following section.

7.1 Safety in PreUCONidþfinite
A is Undecidable

PreUCONid
A can express various relationships between

objects in systems with unbounded object creation and it is
not so flexible in expressing policies having arithmetic
nature as the update functions are constrained. On the other
hand, safety decidable PreUCONfinite

A with finite domain
attributes [4] supports unconstrained update functions,
therefore, it is flexible in expressing policies with arithmetic
operations but has limitations in expressing relationships.
In this section, we examine the possibilities of combining
the features of these two safety decidable models
PreUCONid

A and PreUCONfinite
A . Let us call the combined

model as PreUCONidþfinite
A .

PreUCONidþfinite
A has both infinite identifier attributes

and finite domain attributes. The update constraints of iden-
tifier attributes remain the same as in PreUCONid

A . The finite
domain attributes can be updated without any restriction as
in PreUCONfinite

A . We define a usage control authorization
scheme Uv:f in PreUCONidþfinite

A with the combined features
and analyze safety in the combined model.

Definition 7.1. Usage control authorization scheme Uv:f has
three components as follows.

(i) an object schema OSv:f ,
(ii) a set of usage rights URv:f ¼ fr1; r2; . . . ; rmg,
(iii) a set of usage control commands UCv:f ¼ fUC1;

UC2; . . . ; UCng.
Usage rights remain the same as in Uv. The changes in the
remaining components of the scheme are as follows.

Definition 7.2. The object schema OSv:f is of the form ½id :
ID; a2 : ID; a3 : ID . . . an : ID; b1 : FD1; b2 : FD2 . . . bm : FDm�,
where the first n attributes are identifier domain attributes and
the remainingm attributes are finite domain attributes.

Definition 7.3. The predicate Pg is defined as any Boolean func-
tion that takes finite domain attributes of the subject, object
pair and returns true or false.

The structure of a creating command UCi in Uv:f is as
follows.

476 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

Command Namecreateðs; oÞ

PreCondition:Pa

^
Pb

^
Pg

PreUpdate : Createo;

s:ai1 :¼ fai1ðs; o:idÞ; s:bk1 :¼ fbk1ðsÞ;
.

s:aip :¼ faipðs; o:idÞ; s:bkr :¼ fbkrðsÞ;
o:aj1 :¼ faj1ðs; o:idÞ; o:bl1 :¼ fbl1ðsÞ;

.

o:ajq :¼ fajqðs; o:idÞ; o:bls :¼ fblsðsÞ;

In this command s is an input parameter and o is an out-
put parameter. Pa and Pb are the a-predicate conjunct and
the b-predicate conjunct, respectively, defined over the
identifier domains attributes of the subject s and the o:id
attribute. Pg is a conjunction of Boolean functions defined
over the finite domain attributes of s.

The create operation carries the usual meaning. The
update functions whose names start with fa are identifier
domain functions which return a value from the identifier
attributes of s or return o:id. Likewise, the functions whose
names start with fb are finite domain functions which take
finite domain attributes of s as input and return a value
from the appropriate finite domain. Due to space limitations
the structure of the non-creating commands is given in
Appendix F, available in the online supplemental material.

PreUCONidþfinite
A can express relationships between

infinite number of objects and unconstrained policies over
finite security attributes. Though the safety in both sub-
models PreUCONid

A and PreUCONfinite
A are individually

decidable, even if we add one finite attribute of
PreUCONfinite

A into PreUCONid
A the safety becomes undecid-

able in PreUCONidþfinite
A .

Theorem 7.4. Safety in PreUCONidþfinite
A with one finite

domain attribute is undecidable.

Similar to other proofs of undecidability of safety [2], [5],
[13], we reduce the halting problem to the safety problem in
PreUCONidþfinite

A . Our proof of undecidability of safety uses
just one finite domain attribute. The proof details are given in
Appendix G, available in the online supplementalmaterial.

7.2 Future Work

The above result shows that simply combining two decid-
able safety models can lead to undecidable safety. A viable
strategy might be to consider constraints on finite attributes
that are combined with the safety decidable PreUCONid

A

model developed in this paper. For example, DRM applica-
tions can require users to pay/repay certain amount for a
certain number of usage of resources [1]. Such policies can
be expressed with a counting functions with reset features.

The safety decidable PreUCONid
A with identifier attribute

domains is restrictive. The model does not support feature
like multiple updates on attributes, set-valued attributes
and array-valued attributes. Safety analysis of a sub-model
with the above mentioned feature may require a data flow
analysis on different attributes of infinite number of objects
and it is a non-trivial work. It would be interesting to find if

safety in the sub-models of PreUCONA with above men-
tioned features are decidable.

Safety analysis of the on-going authorization model is
also an important problem; they are applicable in protecting
resources in reactive systems like web services. Besides the
attribute domain and update functions the on-going autho-
rization model has an additional layer of difficulty due to
interleaved and nonterminating executions of usage control
commands. Extending the decidability result to similar sub-
models in OnUCONA is also non-trivial work. Lemma 5.2
in [4] would not hold as the usage control commands in the
on-going authorization models may create unbounded
number of new objects while executing one usage right.
Note that an execution of usage control command may not
terminate in OnUCONA unless the on-going authorization
predicates become false or until the subject explicitly termi-
nates the execution. Therefore, we may need to develop a
different proof strategy for such models.

There are many avenues for future work in safety analysis
of various sub-models in usage control besides pre-authoriza-
tionmodel. Undecidability proofs, alongwith other results, in
Theorems A.5 and A.6, available in the online supplemental
material, may help as demarcating tools in developing vari-
ous safety decidable sub-models ofUCONABC in future.

8 CONCLUSION

In this work, we presented a safety decidability result for
PreUCONid

A model with object identifier attributes. The
safety decidable model can support interesting policies that
are useful in today’s information systems with unbounded
resources. We conjuncture that (i) adding array attributes
with constant size, integer attributes, and type attributes
into the object schema would not affect the safety decidabil-
ity of the model, and (ii) adding unrestricted arithmetic
update operations on integer attributes would make the
models safety undecidable. Further, studying safety decid-
ability of the UCON with obligations, conditions, combina-
tion of finite and infinite attributes are interesting problems
to explore. However, detailed analysis on such extensions
are outside the scope of this article.

ACKNOWLEDGMENTS

This research is partially supported by US National Science
Foundation Grants CNS-1111925 and CNS-1423481.

REFERENCES

[1] J. Park and R. Sandhu, “The UCONABC usage control model,”
ACM Trans. Inf. Syst. Secur., vol. 7, pp. 128–174, Feb. 2004.

[2] X. Zhang, R. Sandhu, and F. Parisi-Presicce, “Safety analysis of
usage control authorization models,” in Proc. ACM Symp. Inf.
Comput. Commun. Secur., Mar. 21–24, 2006, pp. 243–254.

[3] P. V. Rajkumar, “Formal and semi-formal methods for application
specific usage control and security,” PhD dissertation, School of
Information Technology, Indian Institute of Technology Kharagpur,
Kharagpur,West Bengal, India, Aug. 2012.

[4] P. V. Rajkumar and R. Sandhu, “Safety decidability for pre-
authorization usage control with finite attribute domains,”
IEEE Trans. Depend. Secure Comput., vol. 13, no. 5, pp. 582–590,
Sep./Oct. 2016.

[5] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in operating
systems,” Commun. ACM, vol. 19, pp. 461–471, Aug. 1976.

[6] M. V. Tripunitara and N. Li, “The foundational work of Harrison-
Ruzzo-Ullman revisited,” IEEE Trans. Depend. Secure Comput.,
vol. 10, no. 1, pp. 28–39, Jan. 2013.

RAJKUMAR AND SANDHU: SAFETY DECIDABILITY FOR PRE-AUTHORIZATION USAGE CONTROLWITH IDENTIFIER ATTRIBUTE DOMAINS 477

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

[7] R. Lipton and L. Snyder, “A linear time algorithm for deciding
subject security,” J. ACM, vol. 24, pp. 455–464, Aug. 1977.

[8] R. Sandhu, “The schematic protection model: Its definition and
analysis for acyclic attenuating schemes,” J. ACM, vol. 35, no. 2,
pp. 404–432, 1988.

[9] R. Sandhu, “Expressive power of the schematic protection mod-
el,” J. Comput. Secur., vol. 1, no. 1, pp. 59–98, 1992.

[10] V. Varadharajan and C. Calvelli, “Extending the schematic protec-
tion model—I. Conditional tickets and authentication,” in Proc.
IEEE Symp. Res. Secur. Privacy, May 16–18, 1994, pp. 213–229.

[11] V. Varadharajan, “Extending the schematic protection model—II.
Revocation,” ACM SIGOPS Operating Syst. Rev., vol. 31, pp. 64–77,
Jan. 1997.

[12] P. E. Ammann and R. Sandhu, “Safety analysis for the extended
schematic protection model,” in Proc. IEEE Comput. Soc. Symp.
Res. Secur. Privacy, May 20–22, 1991, pp. 87–97.

[13] R. Sandhu, “The typed access matrix model,” in Proc. IEEE Symp.
Secur. Privacy, May 04–06, 1992, pp. 122–136.

[14] M. Soshi, M. Maekawa, and E. Okamoto, “The dynamic-typed
access matrix model and decidability of the safety problem,”
IEICE Trans. Fundam., vol. E87-A, pp. 190–203, Jan. 2004.

[15] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based
access control models,” IEEE Comput., vol. 29, no. 2, pp. 38–47,
Feb. 1996.

[16] D. F. Ferraiolo, R. Sandhu, D. R. Kuhn, and R. Chandramouli,
“Proposed NIST standard for role-based access control,” ACM
Trans. Inf. Syst. Secur., vol. 4, pp. 224–274, Aug. 2001.

[17] E. Bertino, P. A. Bonatti, and E. Ferrari, “TRBAC: A temporal role-
based access control model,” ACM Trans. Inf. Syst. Secur., vol. 4,
pp. 191–233, Aug. 2001.

[18] J. Joshi, E. Bertino, and A. Ghafoor, “An analysis of expressiveness
and design issues for the generalized temporal role-based access
control model,” IEEE Trans. Depend. Secure Comput., vol. 2, no. 2,
pp. 157–175, Apr.–Jun. 2005.

[19] I. Ray and M. Toahchoodee, “A spatio-temporal role-based access
control model,” in Proc. 21st Annu. IFIP WG 11.3 Work. Conf. Data
Appl. Secur., Jul. 2007, pp. 211–226.

[20] R. Sandhu, V. Bhamidipati, and Q. Munawer, “The ARBAC97
model for role-based administration of roles,” ACM Trans. Inf.
Syst. Secur., vol. 2, pp. 105–135, Feb. 1999.

[21] J. Crampton and G. Loizou, “Administrative scope: A foundation
for role-based administrative models,” ACM Trans. Inf. Syst.
Secur., vol. 6, pp. 201–231, May 2003.

[22] A. Schaad, J. Moffett, and J. Jacob, “The role-based access control
system of a european bank: A case study and discussion,” in Proc.
6th ACM Symp. Access Control Models Technol., May 2001, pp. 3–9.

[23] S. Stoller, P. Yang, C. Ramakrishnan, and M. Gofman, “Efficient
policy analysis for administrative role based access control,” in
Proc. 14th ACM Conf. Comput. Commun. Secur., Oct. 29–Nov. 02,
2007, pp. 445–455.

[24] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca, “A logical frame-
work for reasoning about access control models,” ACM Trans. Inf.
Syst. Secur., vol. 6, pp. 71–127, 2003.

[25] S. Osborn, “Information flow analysis of an RBAC system,” in
Proc. 7th ACM Symp. Access Control Models Technol., Jun. 03–04,
2002, pp. 163–168.

[26] A. L. Ferrara, P. Madhusudan, and G. Parlato, “Security analysis of
role-based access control through program verification,” in Proc.
IEEE 25th Comput. Secur. Found. Symp., Mar. 2012, pp. 113–125.

[27] A. Armando and S. Ranise, “Scalable automated symbolic analy-
sis of administrative role-based access control policies by SMT sol-
ving,” J. Comput. Secur., vol. 20, pp. 309–352, Jul. 2012.

[28] N. Li, J. Mitchell, and W. Winsborough, “Design of a role-based
trust-management framework,” in Proc. IEEE Symp. Secur. Privacy,
May 12–15, 2002, pp. 114–130.

[29] N. Li and M. V. Tripunitara, “Security analysis in role-based
access control,” ACM Trans. Inf. Syst. Secur., vol. 9, pp. 391–420,
Nov. 2006.

[30] K. Jayaraman, V. Ganesh, M. V. Tripunitara, M. C. Rinard, and
S. J. Chapin, “Automatic error finding in access-control
policies,” in Proc. ACM Conf. Comput. Commun. Secur., Oct. 2011,
pp. 17–21.

[31] K. Jayaraman, M. V. Tripunitara, V. Ganesh, M. C. Rinard, and
S. J. Chapin, “MOHAWK: Abstraction-refinement and bound-esti-
mation for verifying access control policies,” ACM Trans. Inf. Syst.
Secur., vol. 15, Apr. 2013, Art. no. 18.

[32] J. Shahen, J. Niu, and M. V. Tripunitara, “Mohawk+T: Efficient
analysis of administrative temporal role-based access control
(ATRBAC) policies, Vienna, Austria,” in Proc. 20th ACM Symp.
Access Control Models Technol., Jun. 2015, pp. 15–26.

[33] Z. Zhigang, W. Jiandong, and M. Yuguang, “Study and safety
analysis on UCONonA model,” in Proc. 1st Int. Workshop Database
Technol. Appl., Apr. 25–26, 2009, pp. 103–106.

[34] S. Ranise and A. Armando, “On the automated analysis of safety
in usage control: A new decidability result,” in Proc. 6th Int. Conf.
Netw. Syst. Secur., Nov. 21–23, 2012, pp. 15–28.

[35] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages, and Computation. New York, USA: Pearson
Education, Apr. 2012.

P.V. Rajkumar received the PhD degree from Indian Institute of
Technology Kharagpur, India. He is an Assistant Professor of Computer
Information Systems and Analytics with the University of Central
Missouri, Warrensburg, MO 64093, USA. Previously, he served on the
faculty at Texas Southern University, Houston, TX 77004. He also
worked as a postdoctoral fellow at the Institute of Cyber Security,
University of Texas at San Antonio, TX 78249. He is a member of the
IEEE and ACM. His research interests are cyber security and formal
methods.

Ravi Sandhu is the founding executive director of the Institute for Cyber
Security, University of Texas at San Antonio where he holds an
Endowed chair in cyber security. He is an inventor on 30 patents. He is
a past editor-in-chief of the IEEE Transactions on Dependable and
Secure Computing, a past founding editor-in-chief of the ACM Transac-
tions on Information and System Security, and a past chair of the ACM
SIGSAC. He founded ACM CCS, SACMAT, and CODASPY, and has
been a leader in numerous other security conferences. His research
has been focused on security models and architectures, including the
seminal role-based access control models. His papers have accumu-
lated more than 38,000 Google Scholar citations, including more than
8,000 citations for the RBAC96 paper. He is a fellow of the ACM, IEEE,
and AAAS. He has received numerous awards including the IEEE Inno-
vation in Societal Infrastructure award.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

478 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on June 24,2020 at 23:22:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

