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Abstract— Named data networking (NDN) is a new paradigm
for the future Internet wherein interest and data packets carry
content names rather than the current IP paradigm of source and
destination addresses. Security is built into NDN by embedding a
public key signature in each data packet to enable verification of
authenticity and integrity of the content. However, existing heavy-
weight signature generation and verification algorithms prevent
universal integrity verification among NDN nodes, which may
result in content pollution and denial of service attacks. Further-
more, caching and location-independent content access disables
the capability of a content provider to control content access,
e.g., who can cache a content and which end user or device can
access it. We propose a lightweight integrity verification (LIVE)
architecture, an extension to the NDN protocol, to address these
two issues seamlessly. LIVE enables universal content signature
verification in NDN with lightweight signature generation and
verification algorithms. Furthermore, it allows a content provider
to control content access in NDN nodes by selectively distributing
integrity verification tokens to authorized nodes. We evaluate the
effectiveness of LIVE with open source CCNx project. Our paper
shows that LIVE only incurs average 10% delay in accessing con-
tents. Compared with traditional public key signature schemes,
the verification delay is reduced by over 20 times in LIVE.

Index Terms— Next generation networking, access control,
data security.

I. INTRODUCTION

NAMED data networking (NDN) is recently proposed
to solve several fundamental problems of the existing
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IP networks, e.g., using in-network caching to optimize
bandwidth use, and location-independent content access for
multi-path forwarding and mobility management [1]. The
NDN design has many security advantages. For example,
each data packet in NDN is digitally signed by an entity
(e.g., its publisher), such that its integrity and authenticity
can be verified by network nodes and end users, no matter
where they retrieve the data packet. However, the NDN design
also faces several important security challenges. First, existing
signature generation and verification algorithms are heavy-
weight such that universal content integrity verification is
hard to achieve for network nodes, especially for Internet-
scale content routers. Secondly, the current NDN design allows
arbitrary content caching and accessing such that any network
node of a domain (e.g., an Internet Service Provider) that
enables NDN can arbitrarily cache contents when the contents
are delivered by them, without any approval from Content
Providers (CP). Similarly, users can arbitrarily request and
access any content that they want from network caches, which
is also out of CP’s control.

Traditionally, content caching and access control are per-
formed in application-level services, such as encryption-based
access control or delegation-based services [2]. We seek
to address efficient integrity verification and content access
(including caching) control with a single solution in the
network layer, by leveraging the existing security mechanism
in NDN with a minimal extension. Particularly, our design
is based on the fact that the current NDN design requires
a signature field in each content packet for content integrity
verification [1]. Intuitively, NDN nodes, i.e., content routers
and end users (devices), are willing to cache or consume a data
packet only after its integrity is successfully verified, which
means that the packet is not tampered or faked. By controlling
the capability of verifying the integrity of a content object
in network nodes and end devices, our solution achieves
lightweight content access control with efficient integrity
verification.

Towards these, we propose LIVE, a lightweight integrity
verification architecture for NDN. It controls the verification
capability of content integrity and authenticity for NDN nodes
(content routers and end users) with an efficient key update
mechanism, such that unauthorized nodes cannot successfully
verify and thus drop content packets. With such a selective
integrity verification mechanism, to prevent unauthorized con-
tent access, a CP can generate integrity status for each content
packet with respect to the content name and the NDN nodes
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requesting it. Thereby, LIVE can ensure that content access
performed by each NDN node is under the CP’s control since
NDN nodes cannot access corrupted contents.

There are several challenges to realize efficient integrity
verification in our architecture. Traditional signature schemes
impose three important challenges in NDN. (i) Lightweight:
Traditional signature schemes (e.g., RSA and DSA) are heavy-
weight, and introduce significant computation overhead, which
may not be acceptable for NDN nodes serving content packets
for large-scale traffic. Specially, routers have limited computa-
tion resources that are used primarily for content routing and
forwarding. (ii) Practicality: In traditional signature schemes,
it is not easy to revoke public keys so that it may not be
possible to revoke content verification permissions assigned to
content routers or users at run time. (iii) Simplicity: Traditional
signature schemes require public key management infrastruc-
tures which require verifying the “trust chain” of public keys
before verifying signatures. This complexity impedes their
deployment.

To address these challenges, LIVE adopts one-way hash
functions [3], [4] to produce content signatures such that
integrity verification is done by verifying hash-based signa-
tures. In particular, it uses Merkle Hash Tree algorithm [3]
to generate tokens to sign and verify contents, and uses
standard hash functions, such as SHA-1/SHA-2, to generate
final content signatures. Tokens are generated for NDN nodes
according to a CP’s security policies. In this setting, content
integrity verification performed by NDN nodes are com-
pletely controlled by the CP. Thus, LIVE achieves: (i) Light-
weight: one-way hash functions are lightweight enough
for NDN nodes to verify signatures and content integrity;
(ii) Practicality: content caching can be easily revoked by CPs
by changing tokens used to sign contents; (iii) Simplicity:
Tokens are easily generated and flexibly distributed by CPs
with a flat architecture that does not require “trust chain”
among different tokens.

The contributions of this paper are three-fold:
• We propose a lightweight integrity verification architec-

ture (LIVE) that emphasizes controlling content access in
NDN by leveraging content integrity verification. We also
analyze CPs’ security policies for content access in
NDN nodes to ensure secure content access.

• We propose a lightweight signature scheme by leveraging
hash functions to realize lightweight, practical, and simple
integrity verification in LIVE. Therefore, it effectively
minimizes the computation overhead in verifying content
integrity and authenticity so as to enforce CPs’ security
policies in a lightweight manner.

• We implement LIVE in CCNx [5]. Our experimen-
tal results show that it introduces acceptable overhead.
In particular, LIVE only incurs 350μs delays in content
access, and achieves more than 20 times improvements
compared to traditional signature schemes.

The paper is organized as follows. We briefly review the
NDN design and discuss its security challenges in Section II.
Section III presents the overview of LIVE. Section IV
presents the lightweight integrity verification schemes.
Implementation and performance evaluation are presented

Fig. 1. An example of NDN communication among nodes.

in Section V. Related work is discussed in Section VI. The
paper concludes in Section VII.

II. BACKGROUND

A. Basics of NDN

NDN is a new network architecture that delivers packets by
content names but not packet addresses [1]. An end user or
device sends an interest packet with desired content name to
NDN. NDN routers forward the interest via a name prefix-
based routing table called forwarding information base (FIB),
and record the request in a table called pending interest
table (PIT). When the interest reaches the content owner or
publisher, it responds with a data packet. The intermediate
routers forward the data packet to the original requester by
checking their PITs. At the same time, each router caches
the data packet in its local content store (CS), which can be
used to satisfy future interests with the same content name.
In general, a content object (e.g., a video file) may be split into
multiple data packets, each of which has the same name prefix
but different full packet name, e.g., with block id as part of
the packet name [1]. Open source project CCNx implements
basic data structures and protocols of NDN [5]. A daemon
program ccnd is implemented on each network node to
forward interest and data packets, and cache data packets.
Also, ccnd can be set up as a client to process interests and
deliver data packets to applications.

In this paper, we understand an NDN router to be a general
network node running ccnd. Users are nodes requesting
and consuming contents. An NDN node is either an
NDN router or a user device which runs ccnd and implements
NDN functionalities.

Figure 1 shows an example of communication in NDN. User
Bob’s device sends a content request by sending out an interest
packet with the content name. According to the setup of the
FIB in Bob’s ccnd, the interest is forwarded to router R2,
which first checks if its local CS has the data packet with the
same name, and if so it returns the data. Otherwise, R2 checks
if the same request has been recorded in its PIT, if so it adds
the requesting interface to the PIT entry and drops the request.
Otherwise, it forwards the interest to next hop by checking its
FIB which indicates which interfaces it should forward the
interest to, based on the content name prefix carried in the
interest packet. In Figure 1, R2 forwards the interest to R1,
which does similar checks and forwards the interest to the CP.

When a data packet is returned from the CP or any
NDN router, the ccnd forwarding logic in a router along the
down-stream path forwards the packet to all interfaces that
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Fig. 2. Securing NDN with the LIVE architecture.

have sent requests for that content, by checking its local PIT,
and flushes the corresponding PIT entries. In the meanwhile,
the ccnd delivers the data packet to its local CS for content
caching. At the end, the data packet is forwarded back to
the requesting device, where the ccnd forwards it to the
requesting application that consumes the data. In this paper,
we understand content accessing to mean content caching in
NDN routers and content consumption in end devices.

B. Content Protection Challenges in NDN

Previous work has identified several security benefits and
challenges in different aspects of NDN design [1], [6], [7]. For
example, an NDN router directly uses content names to request
contents and content request packets do not have address
notations. This achieves certain level of privacy protection
for client by default. Furthermore, each content data packet
is digitally signed such that any NDN node can verify the
integrity and authenticity of the content, no matter where the
content is retrieved, e.g., from its original CP or any other
NDN router. However, towards content protection, we identify
that NDN has two important security challenges.

1) Uninsured Content Integrity: NDN nodes cannot effi-
ciently verify content integrity and authenticity because of
the verification cost, though NDN design demands signature
provisions in data packets [7]. Therefore, malicious users
or routers can arbitrarily inject corrupted and fake contents
into the networks with the names of benign contents so that
NDN routers or users cannot obtain the correct contents. For
example, R1 in Figure 1 can respond to the requests from
R2 with fake data packets whose name matches that specified
in interest packets. As discussed in [7], implementing a
heavyweight integrity verification mechanism in NDN routers
introduces DoS threats to the network infrastructure.

2) Unauthorized Content Access: For many cases, e.g.,
business conflicts or privacy reasons, a CP usually has policies
on which network domains or routers can cache its contents in
network. Similarly, a CP usually has strong incentive to control
the end users which can access its contents, although the
contents are cached in the network. In the current NDN design,
a CP loses the control of content access after the contents are
delivered. For example, R2 in Figure 1 can arbitrarily cache
contents when it delivers the contents, though the CP does

not approve it. In actual practice CPs may only allow limited
network routers to cache contents that are delivered over
NDN routers, e.g., only R1 is allowed to cache the contents
from the CP in Figure 1. Also, the user in Figure 1 can easily
access contents that are cached by NDN routers by specifying
the content names in interest packets. Thus, NDN should
enable controllable content access performed by different
NDN nodes.

For an intuitive approach to prevent unauthorized content
access, one can leverage end-to-end content encryption to
enable content access control in NDN [6], [8], [9]. However,
end-to-end content encryption may greatly restrict the benefits
to NDN, since NDN aims to improve content forwarding
performance by providing caching mechanisms. Contents may
be encrypted with different keys along with time to ensure
temporal access control. Hence, the end-to-end encryption
may disable the mechanism because the cached contents can
only be decrypted in some specific nodes and cache retrieval
by other nodes is in vain. Moreover, these approaches can
be only used to secure contents with high confidentiality
because enabling encryption for all contents introduces signif-
icant delays during content forwarding. Specially, routers may
not have enough computation resources to process encrypted
contents in NDN [7]. Therefore, it is important to design a
generic and lightweight content access control architecture for
NDN to prevent unauthorized content access in NDN and
enhance its security.

III. LIVE OVERVIEW

A. Overview

LIVE aims to achieve the following design goals:
• Lightweight content integrity and authenticity verification

to prevent NDN routers and users from accessing
“corrupted” or “fake” contents.

• Lightweight content security policy enforcement to
prevent unauthorized content accessing performed by
NDN routers and users.

The main mechanism of LIVE lies in generating dif-
ferent content integrity status for a single content object,
which allows a CP to control content access performed by
NDN nodes. As shown in Figure 2, it introduces a signa-
ture generation module in CP to generate content signatures,
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which express content integrity and authenticity status, and an
integrity verification module in NDN nodes, i.e., NDN routers
and end devices, to verify the content status. With LIVE,
CPs can efficiently generate signatures for contents, and
NDN nodes will mandatorily verify content signatures before
accessing the contents. LIVE leverages one-time signature
schemes [3], [4] to realize lightweight content verification.
This section gives a brief overview, and next section presents
the detailed design.

1) LIVE Initiation and Token Retrieval: A CP classifies
different NDN nodes into two categories for a content object
(or a collection of content objects) according to its security
policies, and generates different tokens for them. Specifically,
NDN nodes that are authorized to access the content are in
one category, which obtain private tokens, and others retrieve
public tokens For example, as Figure 2 shows, assume R1 is
not authorized to access the content from the CP, thus it
obtains public token P� from the CP, and the user node
attached to R1 that is authorized to access the content can
retrieve private key P from the CP. Different NDN nodes
need to explicitly request tokens from the CP before accessing
contents.

2) Content Signing: A CP generates one-time content sig-
natures [3], [4] with different tokens using the signature
generation module. Normally, the CP generates two signatures
for each content data packet, with the tokens P† and P that
are assigned to routers and users, respectively. For example,
as shown in Figure 2, the CP uses the tokens corresponding
to P† and P to sign the outgoing content. The content is
then forwarded back to the content requesting user with the
signatures piggybacked.

3) Content Verification: An NDN router forwards content
data packets to requesters according to its PIT. In the mean-
while, the verification module of the node verifies content
status by verifying the attached content signatures before
delivering them to content store (CS) or user applications.
If a signature is verified, it means that the content packet
is not corrupted and the node is authorized to cache the
data. Otherwise, integrity verification module drops the packet
to prevent corrupted or unauthorized content accessing. For
example, in Figure 2, R1 forwards a data packet to its next hop.
In the meanwhile, it uses P� to verify the content signature
in the integrity verification module. Based on the signature
generation in the CP, R1 cannot successfully verify it with P�

since the content signature is generated with P . Therefore,
the verification shows that the packet is “corrupted”, and R1
does not save it in its local CS. Similarly, on a user node, the
integrity verification module verifies integrity with received
token before the packet is delivered to a local application.
Here, the user node can verify the content signature with P
and then the packet is delivered to the application.

We note that content integrity verification is not performed
in ccnd forwarding logic (see Figure 2) but before content
packets are delivered to CS or user applications. Therefore,
LIVE does not incur any content forwarding delay introduced
by the integrity verification processes. If a data packet is not
retrieved from an NDN router’s Content Store, the content
integrity verification is left to end users, which eventually

prevents the user accessing corrupted contents. We present the
details of our signature scheme in Section IV.

4) Content Confidentiality: For highly sensitive content,
confidentiality is a desired requirement, i.e., only authorized
end users can obtain the content. Access control relying on
integrity verification is not sufficient for this requirement.
LIVE adopts a lightweight encryption mechanism, where
encryption keys are derived from integrity verification tokens.
With this option, a CP can seamlessly support strong content
access control for confidentiality by controlling who can obtain
the tokens.

B. NDN Security Polices

In LIVE, CPs realize content access control by enforcing
security policies. Security policies for each content object
(or objects with same name prefix) can be defined by assigning
different security levels with respect to the nodes in the
network. Content objects in NDN can be at the following three
security levels.
• Non-Cacheable: Content should not be cached by any

NDN router, and only authorized users are allowed to
access the content.

• 1-Cacheable: Content can only be cached by one
NDN router1 after it is sent out to one of its CPs’
neighbors, and only authorized users are allowed to
access the content.

• All-Cacheable: Content can be cached by all
NDN routers or accessed by users. Content at this level
is publicly available in the network.

Note that, according to the NDN design, a CP cannot know
requesting users and delivery paths, and it also cannot know
any remote NDN routers that are requesting the contents.
Therefore, for 1-Cacheable level, what the CP can do is only
to allow content access performed by users and its first hop
neighbor NDN routers. It is usually meaningless for a CP to
make contact with any remote NDN router and allow it to
cache contents in networks. If any NDN router wants to make
contract with the CP and cache contents from the CP, it is
required to build a peering link with the CP, which is similar to
the practice of inter-domain routing operations in the current
Internet [10]. Since the security level of 1-cacheable is not
for universal control over all content objects but for sensitive
ones that need protection, it does not violate the design goal
of NDN. Actually, CPs can easily extend the content security
level of 1-cacheability to k-cachability, where 1 ≤ k ≤ m and
m is the number of NDN nodes in the forwarding path between
the CP and the destination, by distributing private tokens to
the corresponding NDN nodes (see Section IV). In this paper,
for simplicity but without loss of generality, we only discuss
the enforcement of above three security levels.

Here, we assume that a CP has complete identity informa-
tion of authorized NDN nodes. Since each NDN node has an
assigned public key, which is specified in NDN design [5],
we can directly use the hash value of the public key as the
identity of the node. The authorized NDN nodes are classified

1In practice, a set of NDN routers within one domain will be authorized to
access the contents, which will be discussed in Section IV-C.
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into two sets, one set for authorized NDN routers and another
set for authorized users. For a given content name (or a name
prefix) C , its CP can include the authorized user identities
in RC , and include authorized NDN routers into R†

C . These
are the set of nodes that are authorized to access content C
and thus have to receive private tokens. Other unclassified
NDN nodes can receive public tokens by default, which means
that these routers are not authorized to cache content C . The
private tokens retrieved by NDN routers in R†

C are used to
enable 1-cacheability of C . In reality, a CP may only need to
know the identity of a domain of authorized nodes, e.g., one
router in the domain, since usually all routers in one domain
have the same privilege to cache contents.

Now we have security policies specifying content security
levels that are defined with respect to neighbor requesters.
Content security level information is embedded in content
packets and covered by content signatures that are used to
authorize NDN nodes using the corresponding tokens owned
by the nodes, which is similar to that in capability-based
systems [11], [12]. Therefore, LIVE shares the same benefits
with the capability-based system [11], [12]. Each NDN node
can be directly authorized to access the packets by using
simple cryptographic operations, e.g., signature verification,
with the packets themselves, and it does not need to contact
the packet producers to retrieve the authorization information
during runtime packet delivery. Logically, a security policy
for content C can be expressed as (R†

C �→ P1, RC �→ P2),
which states that the set of NDN routers R†

C and the set of
users RC are authorized to access C using tokens P1 and P2,
respectively. C is non-cacheable if R†

C = ∅, and C is
all-cacheable if R†

C = ∪Ri . Note that, P1 and P2 are two
different tokens generated by a CP, and are not differentiable
for different NDN nodes. NDN nodes in the same set will be
assigned with the same token to access the contents produced
by the CP. The token will be updated and synchronized during
content retrieval (see Section IV).

IV. DESIGN OF LIVE

This section presents the detailed design of content integrity
verification in LIVE. Normally, signature algorithms built
upon asymmetric cryptography algorithms, e.g., RSA and
DSA, are used to verify data integrity and authenticity. These
algorithms introduce significant computation overhead. Hash
functions are lightweight for integrity verification. However,
pure hash-based message authentication codes (MAC) are
forgeable and thus cannot be used to verify content authentic-
ity. Although keyed-hashing for MAC (HMAC) [13] is used
for authenticity purpose, it does not address how to refresh
shared keys. Inspired by one-time signature algorithms [3], [4],
we extend hash functions to generate tokens, produce signa-
tures, and verify signatures, which ensures that all operations
are lightweight and could be implemented by hardware.

In particular, we leverage the Merkle Hash Tree (MHT)
algorithm [3], a hash tree based signature algorithm, to pro-
duce tokens for signature generation. CPs realize their security
policies by producing different signatures with different tokens
for a single content packet such that the content access

can be controlled by distributing different tokens to different
NDN nodes. An NDN node can simply check content integrity
with a received token and determine if the content packet that
it is accessing is not “corrupted”.

A. LIVE Initialization and Token Generation

For a name prefix or a collection of content names,
a CP generates the following tokens:
• Public tokens: All unauthorized nodes use this token to

verify the integrity of the data packets of a content with
1- or non-cacheability, and the verification process fails.

• Private tokens: The CP generates two private tokens, for
authorized NDN routers and end users, respectively. With
a valid signature, the integrity verification with either
private token succeeds.

Note that only the CP knows whether a token is public
or private, while NDN nodes cannot distinguish them – they
are obtained by NDN nodes with same protocol and used to
verify integrity of content packets. With a private token, an
NDN node will successfully verify the integrity and access
the data; while with a public token, the NDN node will fail
the verification, and thus consider the packet is corrupted or
faked and drop it.

1) Token Generation and Distribution: To initialize LIVE,
the CP needs to produce initial tokens for different nodes.
LIVE generates a random number to construct a key vector
X that consists of n key components, and uses the key vector
to generate the tokens using standard hash algorithms, such
as SHA-1. Note that, for the purpose of reducing commu-
nication overheads for content integrity verification, we use
function f (·) to extract lower l-bits of hash values as the
seed for token generation. In this paper, we set l and n to 32.

Stage (I): Token generation

1. Generate key vectors Xk = {xk
1 , · · · , xk

j , · · · , xk
n }, where

xk
j ∈ {0, 1}λ, given n ∈ Z, where k = 0, 1, 2;

2. Pk ← h( f (h(xk
1 ))|| f (h(xk

2 ))|| · · · || f (h(xk
n ))), where P0

is in the category of public token P�, and P1 and P2 are
in the category of private tokens P† and P, respectively;

Stage (II): Policy generation

3. Generate two categories of the router sets R�
C and R†

C with
respect to content C , where R�

C denotes the set of routers

receiving public token P0 to verify C , and R†
C denotes the

router set receiving private token P1 to verify C;
4. Generate the categories of authorized user sets RC receiving

private token P2 to verify content C;
Stage (III): Token distribution

5. Receive token request from node i that are in R†
C or RC ;

6. Pk ← ENCP Ki (Pk ), where k is equal to 1 if i is in R†
C ,

otherwise it equals to 2;
7. Send out Pk to node i ;
Stage (IV): Token refreshment
8. Generate new key vectors Xk ′ = {xk

1
′, · · · , xk

j
′, · · · , xk

n
′},

for R�, R†, and R, where x j ∈ {0, 1}λ, given n ∈ Z;
9. Pk ′ ← h( f (h(xk

1
′))|| f (h(xk

2
′))|| · · · || f (h(xk

n
′)));

10. Pk ′ ← E NCPk (Pk ′) if k = 1 or 2;
11. Embed Pk ′ in the content and distribute them to different

requesters.
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Fig. 3. A signature on a sample content consisted of three content blocks.

The CP needs to generate two private tokens for authorized
routers and users, e.g., R1 and Bob in Figure 1, and a public
token for the other NDN nodes, e.g., R2 in Figure 1.

As we have discussed in Section III, for a content object C ,
the CP should classify different NDN nodes into two sets,
R�

C and R†
C . The CP should build a list of all identities of nodes

composing a given set of content nodes, e.g., authorized users.
The authorized user nodes to access content C are classified
into set RC . Two private tokens are distributed to the router
nodes in RC and the user nodes in R†

C , respectively, if these
two set are not empty. The public token is distributed to the
set of unauthorized nodes in R�

C .
Before verifying the integrity of C , a node needs to retrieve

its token from the CP, by sending out a token requesting
interest packet to the CP. The packet includes the public
key of the requesting node that is already embedded in
the NDN node [1], [5]. Since the CP knows the identity
(hash of the public key) of the authorized node, it responds
the interest with the corresponding token encrypted by the
requesters’ public key. A faked request (unauthorized node
requesting token with authorized node’s public key) will fail
since the requesting node cannot decrypt the token without
corresponding private key. This ensures that only authorized
NDN nodes can obtain the corresponding tokens. We note that
this public-key based token retrieving is one-time for a content
name or a CP on each NDN node, since the token update
for data packets is conducted by encrypting new tokens with
previous tokens and embedding them in data packets directly
(cf. Section IV-C).

Each NDN node only needs to store at most two tokens from
one CP, i.e., the public token and private one. Moreover, in
real deployment, routers in a domain, e.g., an ISP, do not need
to retrieve tokens by themselves. Normally, a domain can have
a designated router that can retrieve tokens from different CPs
and then distribute to other routers in the domain [14], [15].

B. Signing and Verifying Data Packets

Figure 4 illustrates the basic procedure of content signing
and verification. A CP uses P∗′ (which can be P� ′ or P†′)

and the content to generate a hash value g by using the
MHT algorithm. The MHT algorithm constructs a binary tree
where each node is associated with a bit string. The bit strings
of the leaves are the hash values of the contents or the new
token, and the bit strings of internal nodes are the hash values
of their left and right nodes’ bit strings. Figure 3 shows the
signing procedure for a content object which is divided into
three data blocks (packets). The content blocks together with
the tokens are the leaf nodes of MHT. Normally in NDN,
the same content may be sent from or to different neighbors
with different tokens. With MHT, NDN nodes only need to
construct a complete tree for a neighbor, and can quickly
re-construct g for other neighbors by replacing part of the
leaf nodes, i.e., the token nodes in the tree [3]. For example,
in MHT shown in Figure 3, to generate a new token, only
the right part of the tree will be recomputed. Thus, MHT can
effectively reduce computations in constructing tokens during
signature signing and verification processes. Note that, the
CP can use the precomputed tokens to efficiently generate sig-
natures. In particular, it can reuse the tokens generated during
token refreshment. Note that, token P is not directly used
to generate a signature. Therefore, any NDN node except CPs
cannot regenerate a signature using P . To prevent compromis-
ing the tokens, the tokens will be encrypted (see Section IV-C),
and then the MHT will be built upon the encrypted
tokens.

In the content signing procedure, g determines whether
part of each component in the key vector {x∗1 , · · · , x∗n } and
{x1, · · · , xn} or part of the hash value of the component is
used to produce each signature component, i.e., {s1, · · · , s2l}.
Note that, the key vectors {x∗1 , · · · , x∗n } and {x1, · · · , xn}
were previously used to generate P∗ that was received by the
corresponding authorized nodes.

The content verification procedure is similar to the signing
procedure. When the signature gets to a NDN node, the node
will use the received P∗′ and the content blocks to generate g.
A new bit vector {v1, · · · , vl } will be produced by using g
to determine if using part of si in {s1, · · · , s2l} or part of the
hash value of si as the vector component. If the concatenated
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Algorithm 1 LIVE Signing Algorithm

Input: Content C , Router Set R†
C , Key vector X� for the normal

routers, Key vector X† for CR, Key vector X for authorized user
nodes, content requester router i ;

Output: Content signature S;
1: Generate a token key vector X∗′, where X∗′ = {x∗′1, x∗′2, · · · ,

x∗′n};
2: P∗′ ← h( f (h(x∗′1))|| f (h(x∗′2))|| · · · || f (h(x∗′n)));
3: if (C is non-cacheable) then
4: {y1, y2, · · · , y2l} ← X || X ;
5: else if ((i ∈ R†

C ) && (C is 1-cacheable)) then
6: {y1, y2, · · · , y2l} ← X† || X ;
7: else if (C is all-cacheable) then
8: {y1, y2, · · · , y2l} ← X� || X ;
9: end if

10: g ← MHT(C + P∗′);
11: g ← f (g) || f (g);
12: for ( j = 1→ 2l) do
13: if (g j = 0) then
14: s j ← f (h(y j ));
15: else
16: s j ← y j ;

17: end if
18: end for
19: S ← s1||s2|| · · · ||s2l ;

value of each component in {v1, · · · , vl} is equal to P∗, which
means that the signature is successfully verified, P∗′ will be
used to update P∗ and verify the signature of the next content
from the CP.

1) Signing Procedure: Algorithm 1 illustrates the signing
algorithm in LIVE performed by a CP. To generate a signature
for a content, the CP needs to generate a new token key
vector X ′ and uses the hash algorithm to produce a new token
(steps 1-2). If a content is non-cachable, the CP generates a
new bit vector {y1, y2, · · · , y2l} by concatenating two Xs,
where X is the key vector associated with tokens delivered to
users (step 4), which ensures that only users can verify the
generated signatures. The new bit vector is used as the seeds
for signature generation. That is, the first part of the bit vector
is used to generate signatures for routers, and the second part
is used to generate signatures for users.

Similarly, if the content is 1-cachable and the content
requester is CR, the CP produces the bit vector Y by concate-
nating X† and X , where X† was generated for router i (step 6).
If the content is all-cachable, the CP needs to produce the bit
vector by concatenating public tokens X� and X . In step 10,
the CP uses the MHT algorithm to generate a bit vector g.
Then, it generates signature S according to bit vector g. Since
each g generates one part of the signatures, either for routers
or for users, we need to concatenate g to generate the signature
for both NDN routers and users (step 11). The CP uses lower
l bits of h(yi ) as part of a signature if the bit in g is equal to 1
(step 14); otherwise it directly uses yi as part of the signature
(step 16). Finally, a signature produced by concatenating all
signature parts (step 19). After the computation, a content
packet under delivery is consisted of the content payload, the
content signature, one token that is used to verify the signa-
tures and refresh the token in the NDN router node, and one
token updating the token in the user nodes (see Section IV-C).

Algorithm 2 LIVE Verification Algorithm
Input: Content C , Content Signature S = s1||s2|| · · · ||s2l , Content

public key P∗′, Local token set P ;
Output: true: accepting C; false: rejecting C;
1: g ← MHT(C + P∗′);
2: if (S is verified by routers) then
3: m ← 0;
4: else
5: m ← l;
6: end if
7: for ( j = m + 1→ m + l) do
8: if (g j = 1) then
9: v j ← f (h(s j ));

10: else
11: v j ← s j ;
12: end if
13: end for
14: V ← h(vm+1||vm+2|| · · · ||vm+l );
15: if (V matches P ∈ P) then
16: return true;
17: else
18: return false;
19: end if

2) Verification Procedure: Algorithm 2 shows the signature
verification algorithm performed in an NDN node, which
is similar to the signing algorithm. Firstly, the NDN node
computes the bit vector g with the MHT algorithm according
to the received content and the token P∗′ embedded in the
content packet (step 1). The node directly uses each signature
si in S to construct a new bit vector V . Note that if the
NDN node is a router, it only needs to use the first part of
signature components in S, i.e., s1||s2|| · · · ||sl , to generate the
components in V (step 3). Similarly, if the NDN node is a user
node, it only needs to use the second part of signature compo-
nents in S, i.e., sl+1||sl+2|| · · · ||s2l , to compute the components
in V (step 5). Similar to Algorithm 1 (see steps 12-18), the
NDN node computes all required signature parts s j according
to the bits in g (see step 7-13).

After constructing all required bit components, the algo-
rithm concatenates v j and generates the hash value to obtain
the final signature V (step 14). Now we can compare the
signature with the tokens that the NDN node previously
received from the CP. If V matches the token in P , i.e., P�,
P†, or P , it means the content integrity is successfully verified
and the node is authorized to access the content. That is, the
content can be delivered to the Content Store (if the NDN node
is a NDN router) or to user applications (if the NDN node is
a user). Otherwise, the content is simply dropped.

C. Token Refreshment

LIVE uses one-time content signature (OTS) [3], [4] to real-
ize lightweight content verification. Therefore, a token has to
be refreshed once it has been used. In general, the CP generates
new tokens to produce content signatures (see Algorithm 1).
These new tokens can be piggybacked in content packets and
updated to different nodes during content delivery so that
different NDN nodes can update their tokens. As discussed
in Section III, new generate token P∗′ is encrypted with the
previous token P∗ that were received in the last round of con-
tent delivery. For example, if P∗ = P0, P∗′ is equal to P0′ and
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used to update public token P0 in NDN routers. Otherwise,
P∗′ is used to update the private token P1. Moreover, P2 ′ is
directly piggybacked in the content packets to update P2 in
the user nodes. Authorized NDN nodes can securely refresh
the local tokens by decrypting the received tokens after suc-
cessfully verifying the content signature. As discussed above,
public tokens normally are public available and may not be
encrypted during content delivery. Note that, tokens embedded
in the contents are delivered with token version information,
which indicate whether the tokens in the NDN nodes have
been expired. If authorized NDN nodes do not receive contents
from a CP for a period, their tokens may expire. They need
to synchronize their tokens by retrieving the latest tokens
from the CP.

D. Content Encryption and Decryption

The goal of LIVE is to enable a generic and lightweight
content verification and cache access control in NDN nodes.
However, it cannot prevent attacks from malicious NDN nodes
in network. For instance, an attacker can access sensitive
contents by compromising NDN nodes and launching man-
in-the-middle (MITM) attacks. In particular, MITM attacks
can be launched by malicious nodes between two benign
NDN nodes, and the malicious nodes can capture contents
by content packet sniffing.

To address this type of attacks, we extend the basic
verification scheme and incorporate content encryption
in LIVE. If a content is sensitive, CP can encrypt the content
before it is distributed, such that the whole content cannot
be read without a decryption key even if an unauthorized
node obtains it. The encryption key is embedded in the
private token. Therefore, an attacker cannot access the content,
even if he can obtain the content by bypassing the content
verification logic. However, an authorized NDN node can still
correctly decrypt the correct content blocks during signature
verification according to the information embedded in the
tokens. the performance does not reduce significantly. Only
users who have correct tokens can verify and decrypt the
contents. Therefore, the mechanism enables ensured content
access control.

Different from the basic verification scheme discussed
in Section IV-B, before generating content signatures, the
CP encrypts the content blocks using authorized users’ tokens.
Contents can be partially or fully encrypted, e.g., only a subset
of blocks are encrypted, which is by authorized users’ tokens
as well. Algorithm 3 shows the signing algorithm with content
encryption. The CP uses token P to decide whether a content
is partially or fully encrypted and which content blocks will
be encrypted if the content will be partially encrypted. The
number of 1-bits in token P is divided by l, and the remainder
is assigned to i (step 5). If i is less than l/2, the i th content
block will be encrypted with token P as the encryption
key (steps 6-7). If i is larger than l/2, the entire content
will be encrypted (steps 8-10). The rest of the algorithm is
similar to Algorithm 1. Similarly, in the verification algorithm
(i.e., Algorithm 4), the content will be decrypted according
the computed V if V matches P (steps 1-11). Note that, the
encrypted content will be decrypted only in NDN user nodes.

Algorithm 3 LIVE Signing Algorithm With Content Encryption

Input: Content C , Router Set R†
C , Key vector X� for the normal

routers, Key vector X† for CR, Key vector X and the corre-
sponding token P for authorized user nodes, content requester
router i ;

Output: Content signature S;
1: Generate a token key vector X∗′, where X∗′ = {x∗′1, x∗′2, · · · ,

x∗′n};
2: P∗′ ← h( f (h(x∗′1))|| f (h(x∗′2))|| · · · || f (h(x∗′n)));
3: if (C is non-cacheable) then
4: {y1, y2, · · · , y2l} ← X || X ;
5: i = count(P) mod l;
6: if (i < l/2) then
7: Ci ← ENCP (Ci );
8: else if i > l/2 then
9: C ← ENCP (C);

10: end if
11: else if ((i ∈ R†

C ) && (C is 1-cacheable)) then
12: {y1, y2, · · · , y2l} ← X† || X ;
13: else if (C is all-cacheable) then
14: {y1, y2, · · · , y2l} ← X� || X ;
15: end if

{The rest of the algorithm (steps 16-25) is the same as steps 10-19
in Algorithm 1.}

Algorithm 4 LIVE Verification Algorithm With Content Decryption
Input: Content C , Content Signature S = s1||s2|| · · · ||s2l , Content

public key P∗′, Local token set P ;
Output: true: accepting C; false: rejecting C;

{The first 14 steps are omitted because they are the same as that
in Algorithm 2.}

1: if if (V matches P ∈ P) then
2: i = count(P) mod l;
3: if (local is a user node) && (i < l/2) then
4: Ci ← DECV (Ci );
5: else if (local is a user node) && (i > l/2) then
6: C ← DECV (C);
7: end if
8: return true;
9: else

10: return false;
11: end if

E. Security Analysis

LIVE generates MHT values to produce token P and signs
contents with the signature scheme (P , h), where P is the
generated token and h is a collision-resistant hash function.
We can obtain the following theorem.

Theorem 1: Given a collision-resistant hash function h and
a token P , the proposed signature scheme (P , h) in LIVE is
unforgeable.

Proof: We prove the theorem by showing that any
polynomial time algorithm breaks the unforgeability of the
proposed signature scheme only with negligible probability in
the random oracle model [16].

Recall that the proposed signature scheme is a one time
signature. Without loss of generality, we assume that in some
state the token key is X = {x1, . . . , xn} and the public key
is P = h( f (h(x1))|| . . . || f (h(xn))), and the adversary is
intending to forge a signature scheme corresponding to the
token key X .

Suppose that the adversary presents (C ′, S′), where C ′ is the
content, and S′ is the forged signature corresponding to C ′.
Given content C ′, with the token X , we can generate the
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signature S. We are interested in the probability that S = S′
given C ′, because in the verification algorithm the adversary
makes the verification algorithm output true only if S = S′.

Moreover, in order to achieve S = S′, then for those g j = 0,
the adversary has to correctly compute s′j = f (h(x j )), where
x j is unknown to the adversary. Therefore, the probability
of generating output s′j = f (h(x j )) by adversary is 1

2l

where h is modeled as a random oracle. In addition, for
g j where g j = 1, the adversary has to correctly compute
s′j = x j , where x j is unknown to the adversary. Therefore,
the probability of generating output s′j = x j is 1

2|x j | . Since
|x j | ≥ l, we can obtain that the probability of generating
output S = S′ by the adversary is less then ( 1

2l )
l .

We can conclude that ( 1
2l )

l is negligible, where l = 32.
Therefore, the probability of breaking the unforgeability of
the signature scheme by the adversary is negligible.

F. Discussion

1) Token Update and Refreshment: LIVE introduces key
management complexity for NDN routers. However, it does
not require verifying each content packet. In real deployment,
the security mechanism and key management is only enabled
by CPs producing sensitive contents. Therefore, LIVE can
be a NDN working mode, which is used for a value-added
service for CPs. Moreover, CPs can have some strategies to
update and synchronize tokens with different NDN nodes.
For example, CPs can update tokens according to per content
delivery path so that the NDN nodes in the path can always
update their tokens as long as a NDN node in the path closer
to the CP caches the content. Therefore, token distribution
triggered by token expiration does not often occur in LIVE,
and token update and refreshment will not introduce significant
computation and communication overheads to synchronize
tokens. Note that, public tokens can be cached while private
tokens are encrypted and protected.

2) Scalability of LIVE: As we discussed in Section III,
for a given content, a CP needs to maintain three tokens
for all NDN nodes, i.e., two private tokens for authorized
NDN routers and users, respectively, that are used to verify
content integrity and authenticity, one public token for other
NDN nodes to verify content integrity and authenticity. Each
NDN node needs to store one token to communicate with
a CP. Therefore, for an NDN node, the entire cost of storing
tokens is proportional to the number of CPs that the node
communicates with. For the purpose of fine-grained access
control, a CP can build different private tokens for different
NDN nodes, and group-based key management scheme can be
adopted to achieve this.

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We have implemented LIVE in CCNx [5], an open source
project implementing basic NDN data strictures and protocols.
As Figure 4 shows, the ccnd implements the main NDN logic
and sends all received data packets to CS or user appli-
cations by default. Our implementation extends ccnd with

Fig. 4. LIVE implementation in CCNx.

Fig. 5. A topology of LIVE testbed including a user node R1, a CR node R2,
a normal router node R3, and a CP node R4.

a LIVE signing and verification library and LIVE Runtime.
We implement the LIVE signing and verification library with
C code. The LIVE Runtime engages in verifying content
signatures and integrity status by calling the library functions
at runtime, and generates token requesting interest packets
to retrieve tokens from the CP. If content packets cannot be
verified by the LIVE Runtime, they are directly dropped. Note
that, the LIVE Runtime does not affect ccnd forwarding
modules via flows (1) and (2) since it operates only when
the contents are delivered to content store or user applications
(flow (4)). Before content packets are delivered to content
store, they will go through the LIVE module (flow (3))
to integrity and authenticity verification. Hence, LIVE does
not introduce any overhead to content delivery procedures.
In the next subsection, we will show that the LIVE Runtime
introduces very low overheads in accessing contents.

Note that, LIVE does not detach caching from forwarding.
With LIVE, NDN daemon will evaluate content integrity only
when it decides if the content can be cached. It will not impact
cache lookup upon an incoming interest packet.

B. Performance Evaluation

We use our prototype to determine the performance
of LIVE. Since content access delay incurred by verification is
proportional to length of content packet delivery, for simplic-
ity, we only evaluate the delay of two-hop content forwarding
with and without caching. Figure 5 shows the testbed of our
experiments, including one user node R1 and one CP node R4.
Also, it includes two machines acting as NDN routers: R2 is
a CR of the CP and can cache the contents from the CP, and
R3 is the normal router that cannot cache the contents from CP.
R3 forwards content requests received from R1 to R4.

We evaluate the performance of LIVE at R1 and R4 using
Mac laptops with 2.53 GHz Intel CPU, 4GB RAM, and
Mac OS 10.6.8. We investigate the token generation perfor-
mance in the CP and measure the computation and content
delivery delays introduced by LIVE in the user node R1.
Also, since LIVE increases the content packet size by piggy-
backing signatures, we measure the communication overhead
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Fig. 6. Performance of token construction for content signing.

Fig. 7. Content signing performance w/ and w/o token generation.

incurred by LIVE. We evaluate the LIVE performance with
different content sizes range from 150 bytes to 1480 bytes.
To demonstrate the benefits of lightweight signatures in LIVE,
we also implement a signing and verification library with the
RSA algorithm with 1024-bit RSA keys by extending the
OpenSSL library (OpenSSL-1.0.1c) [17].

1) Token Generation Performance: We measure the key
generation performance in the CP. As Figure 5 shows, the
CP needs to use different tokens to generate signatures for
R2 and R3. LIVE leverages MHT hash algorithm to quickly
reconstruct tokens for different routers. CP only needs to
have a complete key generation process for the first router
requesting the content, i.e., R2, and then reconstructs the
token for the other routers, e.g., R3. Figure 6 shows the key
generation delays for the two routers. The delays increase
with increasing content size. On average, the delay to generate
tokens for R1 is around 224μs. Since the CP only needs to
change a leaf of the MHT tree to generate a new token, the
key generation delay for the second router has a significant
reduction. The delay is about 34.2μs which is roughly 5 times
less than for the first router. Hence, token generation in LIVE
is efficient.

2) Computation Overhead: We measure the overheads for
different content packet sizes. Figure 7 and 8 show the
performance of content signing and verification. LIVE only
takes averagely 439.4μs and 386.10μs to sign and verify
contents. In particular, as we have discussed in Section IV,
The CP can generate tokens in advance so that the content
signing delay is significantly reduced. The content signing
delay without token generation is about 176.2μs. Similar to
the token generation process, the user node R1 can quickly

Fig. 8. Verification performance w/ token reconstruction.

Fig. 9. Signing and verification delay reduction by LIVE.

reconstruct tokens for content verification when it receives the
same contents from different routers. The content verification
delay can be reduced by 70% (see Figure 8).

We also observe that the lightweight signature scheme
introduces much smaller delays than RSA-based scheme. For
example, RSA introduces 14,133.90μs and 10,186.40μs to
sign and verify contents during content accessing, respectively.
Figure 9 shows that LIVE improves about 62 times in the
signing and verification computation overheads. Note that,
since the number of the hash operations in LIVE is deter-
mined by the MHT values of contents and tokens, it is not
deterministic. The signing and verification delays in RSA are
relatively stable. We observe that delay reductions vary with
different content packet sizes. LIVE has over 50 times delay
reduction in verifying small content packets compared to RSA.
In particular, as Figure 9 illustrates, LIVE obtains more
reduction in signing and verifying contents if it uses pre-
computed tokens in content signing and leverages incremental
verification in content verification.

3) Content Delivery Performance: CPs produce different
signatures to realize their security policies for the contents.
It is clear that LIVE introduces delays in accessing contents
because it checks content status by verifying the signatures.
We measure the overhead in accessing contents in user applica-
tions in R1 with different distances, i.e., 1-hop distance from
R2’s cache store and 2-hop distance from CP R4 via R3.
We observe the similar delivery delay. Figure 10 illustrates the
overhead incurred by LIVE, which indicates that LIVE only
introduces around 7.8% delay in accessing contents. However,
the RSA-based scheme incurs average 68% delay. We believe
LIVE will introduce similar overheads if it is deployed on
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Fig. 10. Content delivery overhead: LIVE vs. RSA.

Fig. 11. Introduced communication overhead.

large scale networks because the incurred delays are bounded
and not impacted by the length of content delivery paths.
To further reduce the computation overhead, we can use high
speed hardware implementations of MAC computation [18] in
content signing and verification.

4) Content Encryption/Decryption Performance: Since
intermediate NDN nodes do not decrypt content for content
caching and forwarding, the content encryption and decryption
only impact the CP and end users. In our scheme, we adopt
symmetric key algorithm for content encryption, therefore
we expect no significant performance overhead for CP and
end users with content encryption and decryption.

5) Communication Overhead: LIVE requires piggybacking
signatures in each content packet and incurs extra commu-
nication overhead. The signatures generated by RSA have a
constant size. However, signature sizes in LIVE vary
with respect to the sizes of the contents and the tokens.
It consumes similar bandwidth cost to RSA and introduces
similar communication overhead. Figure 11 illustrates the
communication overheads introduced by RSA and LIVE.
On average, RSA and LIVE incur about 50% communication
overheads. Note that, since NDN is designed for named
content delivery, the content packets normally have a larger
packet size than IP. Fortunately, we can observe that both
RSA and LIVE incur less communication overheads by
increasing content packet sizes. In particular, LIVE only
introduces average 15% communication overheads when the
content packet sizes are larger than 750 bytes. We believe
that the communication overhead is acceptable.

VI. RELATED WORK

Security has been considered in the design of content-
centric network (CCN) and NDN [1] (which are essentially

synonymous for our purpose). Gasti et. al. [7] explore the
DoS and DDoS attacks to contents in NDN, and discuss
that the current heavyweight integrity verification mechanisms
cannot prevent them but introduce new threats. Recently
Afanasyev et. al. [19] mitigate the DDoS attack to interest
tables by maintaining the interest limit in each node and
punishing malicious interests. In order to address the timing
attacks on cache, Mohaisen et. al. [20] and Acs et. al. [21] take
the approach of randomly introducing delays in responding to
content requests and mimicking a cache hit and a cache miss
for each request.

Efficient integrity verification mechanisms have
been desired from the beginning of CCN design [1].
DiBenedetto et al. [6] apply onion routing to NDN, which
uses multiple cryptogram operations to provide end-to-end
content privacy protections. Nabeel et al. apply Paillier
homomorphic cryptography to secure different messages in
publish-subscribe networks [9]. Although these approaches
can be used to prevent unauthorized content access, they may
impair the performance benefits of NDN. The NDN designs
improve the network performance using content caching
mechanisms, but end-to-end content encryptions make
content caching less efficient. Moreover, these approaches
introduce significant overheads in processing and forwarding
contents. It extends the NDN architecture and leverages
content integrity verification to realize the security goals,
i.e., verifying content integrity and authenticity and preventing
unauthorized content access. Specially, LIVE only incurs
processing overheads during content access but not in
content forwarding procedures, which is different from these
cryptography-based approaches that require encrypting and
decrypting all content packets multiple times.

Fotiou et. al. [2] propose a delegation-based access control
architecture for ICN. However, the solution relies on state
maintenance and synchronization between content routers and
access control policy servers, therefore scalability becomes a
major issue for large-scale content networks. LIVE simplifies
the access control protocol by integrating it into integrity
verification, which is more scalable and efficient.

Lauinger et al. [22] discuss different attacks to NDN.
Bianchi et al. [23] and Detti et al. [24] analyze the cost of con-
tent integrity verification with the Least Recently Used (LRU)
caching strategy. Goergen et al. [25] propose a CCN/NDN
firewall to filter CCN packets according to content names.
Cache pollution attacks and defenses are extensively discussed
in [26]–[28]. These schemes are orthogonal to LIVE that is
the first scheme that implements distributed content access
authorization in the network layer.

The security of clean-slate Internet designs is extensively
discussed in the literature [29], [30]. Some features proposed
in these designs are similar to LIVE. For example,
Koponen et al. [30] propose Data-Oriented Network
Architecture (DONA) that allows contents to piggyback sig-
natures for the purpose of integrity verification. They only
consider integrity verification by users by leveraging tradi-
tional public-key cryptography. Arianfar et al. [29] leverage
cooperation between CPs, and use unrelated contents, called
“cover” contents, to mix sensitive contents. Although the
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approach eliminates the computation overhead incurred by
cryptographic operations, it requires CPs to cooperate and
store a large volume of “cover” contents, which may introduce
heavy communication overheads between CPs. Moreover,
users are still required to retrieve some meta data about cover
contents before accessing the requested contents.

VII. CONCLUSION

In this paper, we propose LIVE, a lightweight integrity
verification mechanism for Named Data Networking to
enable universal content integrity and authenticity verification.
We further leverage LIVE to achieve efficient and scalable
content access control, which allows a content provider to
enforce flexible security policies on content caching and
access. In particular, we incorporate random encryption in
the mechanism such that LIVE can prevent or mitigate
unauthorized content access. We prototype LIVE in CCNx,
and demonstrate its benefits by experimental study, which
shows that it introduces acceptable overhead in content
access. In future, we will investigate a more efficient token
refresh scheme, and leverage group key management schemes
to enable token management for sensitive contents and to
implement CP authentication during token refreshment.
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