
Con�guring Role-Based Access Control to Enforce

Mandatory and Discretionary Access Control Policies

Sylvia Osborn

The University of Western Ontario

and

Ravi Sandhu

George Mason University

and

Qamar Munawer

George Mason University

Access control models have traditionally included mandatory access control (or lattice-based ac-
cess control) and discretionary access control. Subsequently, role-based access control has been
introduced, along with claims that its mechanisms are general enough to simulate the traditional
methods. In this paper we provide systematic constructions for various common forms of both
of the traditional access control paradigms using the role-based access control (RBAC) models of
Sandhu et al, commonly called RBAC96. We see that all of the features of the RBAC96 model
are required, and that although for the mandatory access control simulation, only one adminis-
trative role needs to be assumed, for the discretionary access control simulations, a complex set

of administrative roles is required.

Categories and Subject Descriptors: D.4.6 [Software]: Security and Protection|Access controls;
K.6.5 [Computing Millieux]: Security and Protection

General Terms: Management, Security

Additional Key Words and Phrases: role-based access control, mandatory access control, lattice-
based access control, discretionary access control

Osborn's research was supported by the Natural Sciences and Engineering Research Council of
Canada. The research of Sandhu and Munawer was partially supported by the National Science
Foundation, USA. Name: Sylvia Osborn
A�liation: Dept. of Computer Science, The University of Western Ontario, London, ON,
Canada, N6A 5B7
Name: Ravi Sandhu and Qamar Munawer
A�liation: Laboratory for Information Security Technology, MS4A4, Information and Soft-
ware Engineering Department, George Mason University, Fairfax, VA 22030, USA. Contact:
sandhu@gmu.edu, www.list.gmu.edu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � Osborn, Sandhu and Munawer

1. INTRODUCTION

Role-based access control (RBAC) has recently received considerable attention as
a promising alternative to traditional discretionary and mandatory access controls
(see, for example, Proceedings of the ACM Workshop on Role-Based Access Con-
trol, 1995-2000). In RBAC, permissions are associated with roles, and users are
made members of appropriate roles thereby acquiring the roles' permissions. This
greatly simpli�es management of permissions. Roles can be created for the vari-
ous job functions in an organization and users then assigned roles based on their
responsibilities and quali�cations. Users can be easily reassigned from one role to
another. Roles can be granted new permissions as new applications and systems
are incorporated, and permissions can be revoked from roles as needed.

An important characteristic of RBAC is that by itself it is policy neutral. RBAC
is a means for articulating policy rather than embodying a particular security policy
(such as one-directional information ow in a lattice). The policy enforced in a
particular system is the net result of the precise con�guration and interactions of
various RBAC components as directed by the system owner. Moreover, the access
control policy can evolve incrementally over the system life cycle, and in large
systems it is almost certain to do so. The ability to modify policy to meet the
changing needs of an organization is an important bene�t of RBAC.

Traditional access control models include mandatory access control (MAC), which
we shall call lattice-based access control (LBAC) here [Denning 1976; Sandhu 1993],
and discretionary access control (DAC) [Lampson 1971; Sandhu and Samarati 1994;
Sandhu and Samarati 1997]. Since the introduction of RBAC, there have been sev-
eral authors have discussed the relationship between RBAC and these traditional
models [Sandhu 1996; Sandhu and Munawer 1998; Munawer 2000; Nyanchama and
Osborn 1995; Nyanchama and Osborn 1994]. The claim that RBAC is more general
than all of these traditional models has often been made. The purpose of this paper
is to show how RBAC can be con�gured to enforce these traditional models.

Classic LBAC models are speci�cally constructed to incorporate the policy of
one-directional information ow in a lattice. This one-directional information ow
can be applied for con�dentiality, integrity, con�dentiality and integrity together, or
for aggregation policies such as Chinese Walls [Sandhu 1993]. There is nonetheless
strong similarity between the concept of a security label and a role. In particular,
the same user cleared to say Secret can on di�erent occasions login to a system at
Secret and Unclassi�ed levels. In a sense the user determines what role (Secret or
Unclassi�ed) should be activated in a particular session.

This leads us naturally to ask whether or not LBAC can be simulated using
RBAC. If RBAC is policy neutral and has adequate generality it should indeed be
able to do so, particularly since the notion of a role and the level of a login session
are so similar. This question is theoretically signi�cant because a positive answer
would establish that LBAC is just one instance of RBAC, thereby relating two
distinct access control models that have been developed with di�erent motivations.
A positive answer is also practically signi�cant, because it implies that the same
Trusted Computing Base can be con�gured to enforce RBAC in general and LBAC
in particular. This addresses the long held desire of multi-level security advocates
that technology which meets needs of the larger commercial marketplace be appli-

Con�guring RBAC to Enforce MAC and DAC � 3

cable to LBAC. The classical approach to ful�lling this desire has been to argue
that LBAC has applications in the commercial sector. So far this argument has
not been terribly productive. RBAC, on the other hand, is speci�cally motivated
by needs of the commercial sector. Its customization to LBAC might be a more
productive approach to dual-use technology.
In this paper we answer this question positively by demonstrating that several

variations of LBAC can be easily accommodated in RBAC by con�guring a few
RBAC components.1 We use the family of RBAC models recently developed by
Sandhu et al [Sandhu et al. 1996a; Sandhu et al. 1999] for this purpose. This family
is commonly called the RBAC96 model. Our constructions show that the concepts
of role hierarchies and constraints are critical to achieving this result.
Changes in the role hierarchy and constraints lead to di�erent variations of LBAC.

A simulation of LBAC in RBAC was �rst given by Nyanchama and Osborn [Nyan-
chama and Osborn 1996]; however, they do not exploit role hierarchies and con-
straints and cannot handle variations so easily as the constructions of this paper.
Discretionary access control (DAC) has been used extensively in commercial ap-

plications, particularly in operating systems and relational database systems. The
central idea of DAC is that the owner of an object, who is usually its creator, has
discretionary authority over who else can access that object. DAC, in other words,
involves owner-based administration of access rights. Whereas for LBAC, we do
not need to discuss a complex administration of access rights, we will see that for
DAC, the administrative roles developed in Sandhu, Bhamidipati, and Munawer
[1999] are crucial. Because each object could potentially be owned by a unique
owner, the number of administrative roles can be quite large. However, we will
show that the role administration facilities in the RBAC96 model are adequate to
build a simulation of these sometimes administratively complex systems.
The rest of this paper is organized as follows. We review the family of RBAC96

models due to Sandhu, Coyne, Feinstein, and Youman [1996] in section 2. This is
followed by a quick review of LBAC in section 3. The simulation of several LBAC
variations in RBAC96 is described in section 4. This is followed by a brief discussion
in Section 5 of other RBAC96 con�gurations which also satisfy LBAC properties.
Section 6 introduces several major variations of DAC. In Section 7 we show how
each of these variations can be simulated in RBAC96. Section 8 summarizes the
results. Preliminary versions of some of these results have appeared in Sandhu
[1996], Sandhu and Munawer [1998] and Nyanchama and Osborn [1995].

2. RBAC MODELS

A general RBAC model including administrative roles was de�ned by Sandhu et
al [Sandhu et al. 1996]. It is summarized in Figure 1. The model is based on
three sets of entities called users (U), roles (R), and permissions (P). Intuitively, a
user is a human being or an autonomous agent, a role is a job function or job title

1It should be noted that RBAC will only prevent overt ows of information. This is true of any
access control model, including LBAC. Information ow contrary to the one-directional require-
ment in a lattice by means of so-called covert channels is outside the purview of access control
per se. Neither LBAC nor RBAC addresses the covert channel issue directly. Techniques used to
deal with covert channels in LBAC can be used for the same purpose in RBAC.

4 � Osborn, Sandhu and Munawer

within the organization with some associated semantics regarding the authority and
responsibility conferred on a member of the role, and a permission is an approval
of a particular mode of access to one or more objects in the system.

SESSIONS

S

ADMINIS-

TRATIVE

ROLES

AR

.

.

.
user roles

HIERARCHY

ROLE

RH

ROLE

HIERARCHY

ADMINISTRATIVE

ARH

PERMISS-

IONS

P
PERMISSION

ASSIGNMENT

PA

ROLES

R

PERMISSION

APA

ADMINISTRATIVE

ASSIGNMENT

ADMIN.

PERMISS-

IONS

AP

CONSTRAINTS
U

USERS

USER

ASSIGNMENT

UA

USER

ASSIGNMENT

ADMINISTRATIVE

AUA

Fig. 1. The RBAC96 Model

The user assignment (UA) and permission assignment (PA) relations of Figure 1
are both many-to-many relationships (indicated by the double-headed arrows). A
user can be a member of many roles, and a role can have many users. Similarly,
a role can have many permissions, and the same permission can be assigned to
many roles. There is a partially ordered role hierarchy RH , also written as �,
where x � y signi�es that role x inherits the permissions assigned to role y. In the
work of Nyanchama and Osborn [Nyanchama and Osborn 1994; Nyanchama and
Osborn 1999; Nyanchama and Osborn 1995], the role hierarchy is presented as an
acyclic directed graph, and direct relationships in the role hierarchy are referred to
as edges. Inheritance along the role hierarchy is transitive; multiple inheritance is
allowed in partial orders.
Figure 1 shows a set of sessions S. Each session relates one user to possibly

many roles. Intuitively, a user establishes a session during which the user activates
some subset of roles that he or she is a member of (directly or indirectly by means

Con�guring RBAC to Enforce MAC and DAC � 5

of the role hierarchy). The double-headed arrow from a session to R indicates
that multiple roles can be simultaneously activated. The permissions available to
the user are the union of permissions from all roles activated in that session. Each
session is associated with a single user, as indicated by the single-headed arrow from
the session to U . This association remains constant for the life of a session. A user
may have multiple sessions open at the same time, each in a di�erent window on the
workstation screen for instance. Each session may have a di�erent combination of
active roles. The concept of a session equates to the traditional notion of a subject
in access control. A subject (or session) is a unit of access control, and a user may
have multiple subjects (or sessions) with di�erent permissions active at the same
time.
The bottom half of Figure 1 shows administrative roles and permissions. RBAC96

distinguishes roles and permissions from administrative roles and permissions re-
spectively, where the latter are used to manage the former. Administration of
administrative roles and permissions is under control of the chief security o�cer
or delegated in part to administrative roles. The administrative aspects RBAC96
elaborated in [Sandhu et al. 1999] are relevant for the DAC discussion in Section 6.
For the purposes of the LBAC discussion, we assume a single security o�cer is the
only one who can con�gure various components of RBAC96.
Finally, Figure 1 shows a collection of constraints. Constraints can apply to any

of the preceding components. An example of constraints is mutually disjoint roles,
such as purchasing manager and accounts payable manager, where the same user
is not permitted to be a member of both roles.
The following de�nition formalizes the above discussion.

Definition 1. The RBAC96 model has the following components:

|U , a set of users
R and AR, disjoint sets of (regular) roles and administrative roles
P and AP , disjoint sets of (regular) permissions and administrative permissions
S, a set of sessions

|PA � P �R, a many-to-many permission to role assignment relation
APA � AP �AR, a many-to-many permission to administrative role assignment
relation

|UA � U �R, a many-to-many user to role assignment relation
AUA � U�AR, a many-to-many user to administrative role assignment relation

|RH � R�R, a partially ordered role hierarchy
ARH � AR �AR, partially ordered administrative role hierarchy
(both hierarchies are written as � in in�x notation)

|user : S ! U , a function mapping each session si to the single user user(si)
(constant for the session's lifetime),
roles : S ! 2R[AR maps each session si to a set of roles and administrative roles
roles(si) � fr j (9r0 � r)[(user(si); r

0) 2 UA [AUA]g (which can change with
time)
session si has the permissions [r2roles(si)fp j (9r

00 � r)[(p; r00) 2 PA [APA]g

|there is a collection of constraints stipulating which values of the various compo-
nents enumerated above are allowed or forbidden.

6 � Osborn, Sandhu and Munawer

3. LBAC (OR MAC) MODELS

Lattice based access control is concerned with enforcing one directional information
ow in a lattice of security labels. It is typically applied in addition to classical
discretionary access controls, but in this section we will focus only on the MAC
component. A simulation of DAC in RBAC96 is found in Section 7. Depending
upon the nature of the lattice, the one-directional information ow enforced by
LBAC can be applied for con�dentiality, integrity, con�dentiality and integrity
together, or for aggregation policies such as Chinese Walls [Sandhu 1993]. There are
also variations of LBAC where the one-directional information ow is partly relaxed
to achieve selective downgrading of information or for integrity applications [Bell
1987; Lee 1988; Schockley 1988].
The mandatory access control policy is expressed in terms of security labels

attached to subjects and objects. A label on an object is called a security classi-
�cation, while a label on a user is called a security clearance. It is important to
understand that a Secret user may run the same program, such as a text editor, as
a Secret subject or as an Unclassi�ed subject. Even though both subjects run the
same program on behalf of the same user, they obtain di�erent privileges due to
their security labels. It is usually assumed that the security labels on subjects and
objects, once assigned, cannot be changed (except by the security o�cer). This
last assumption, that security labels do not change, is known as tranquillity. (Non-
tranquil LBAC can also be simulated in RBAC96 but is outside the scope of this
paper.) The security labels form a lattice structure as de�ned below.

Definition 2. (Security Lattice) There is a �nite lattice of security labels SC
with a partially ordered dominance relation � and a least upper bound operator. 2

An example of a security lattice is shown in Figure 2. Information is only permitted
to ow upward in the lattice. In this example, H and L respectively denote high
and low, and M1 and M2 are two incomparable labels intermediate to H and L.
This is a typical con�dentiality lattice where information can ow from low to high
but not vice versa.

M1 M2

H

L

Fig. 2. A Partially Ordered Lattice

The speci�c mandatory access rules usually speci�ed for a lattice are as follows,
where � signi�es the security label of the indicated subject or object.

Con�guring RBAC to Enforce MAC and DAC � 7

Definition 3. (Simple Security Property) Subject s can read object o only
if �(s) � �(o). 2

Definition 4. (Liberal ?-property) Subject s can write object o only if �(s) �
�(o). 2

The ?-property is pronounced as the star-property. For integrity reasons sometimes
a stricter form of the ?-property is stipulated. The liberal ?-property allows a low
subject to write a high object. This means that high data may be maliciously or
accidently destroyed or damaged by low subjects. To avoid this possibility we can
employ the strict ?-property given below.

Definition 5. (Strict ?-property) Subject s can write object o only if �(s) =
�(o). 2

The liberal ?-property is also referred to as write-up and the strict ?-property as
non-write-up or write-equal.
In variations of LBAC the simple-security property is usually left unchanged as

we will do in all our examples. Variations of the ?-property in LBAC whereby the
one-directional information ow is partly relaxed to achieve selective downgrading
of information or for integrity applications [Bell 1987; Lee 1988; Schockley 1988]
will be considered later.

4. CONFIGURING RBAC FOR LBAC

We now show how di�erent variations of LBAC can be simulated in RBAC96. It
turns out that we can achieve this by systematically changing the role hierarchy and
de�ning appropriate constraints. This suggests that role hierarchies and constraints
are central to de�ning policy in RBAC96.

HR

LR

M1R M2R M1W M2W

HW

LW

(a) Liberal ?-Property

HR

LR

M1R M2R HW LW M2WM1W

(b) Strict ?-Property

Fig. 3. Role Hierarchies for the Lattice of Figure 2

8 � Osborn, Sandhu and Munawer

4.1 A Basic Lattice

We begin by considering the example lattice of Figure 2 with the liberal ?-property.
Subjects with labels higher up in the lattice have more power with respect to read
operations but have less power with respect to write operations. Thus this lattice
has a dual character. In role hierarchies subjects (sessions) with roles higher in
the hierarchy always have more power than those with roles lower in the hierarchy.
To accommodate the dual character of a lattice for LBAC we will use two dual
hierarchies in RBAC96, one for read and one for write. These two role hierarchies
for the lattice of Figure 2 are shown in Figure 3(a). Each lattice label x is modeled
as two roles xR and xW for read and write at label x respectively. The relationship
among the four read roles and the four write roles is respectively shown on the left
and right hand sides of Figure 3(a). The duality between the left and right lattices
is obvious from the diagrams.
To complete the construction we need to enforce appropriate constraints to reect

the labels on subjects in LBAC. Each user in LBAC has a unique security clearance.
This is enforced by requiring that each user in RBAC96 is assigned to exactly two
roles xR and LW. An LBAC user can login at any label dominated by the user's
clearance. This requirement is captured in RBAC96 by requiring that each session
has exactly two matching roles yR and yW. The condition that x � y, that is the
user's clearance dominates the label of any login session established by the user, is
not explicitly required because it is directly imposed by the RBAC96 construction.
Note that, by virtue of membership in LW, each user can activate any write role.
However, the write role activated in a particular session must match the session's
read role. Thus, both the role hierarchy and constraints of RBAC96 are exploited
in this construction.
LBAC is enforced in terms of read and write operations. In RBAC96 this means

our permissions are read and writes on individual objects written as (o,r) and (o,w)
respectively. An LBAC object has a single sensitivity label associated with it.
This is expressed in RBAC96 by requiring that each pair of permissions (o,r) and
(o,w) be assigned to exactly one matching pair of xR and xW roles respectively.
By assigning permissions (o,r) and (o,w) to roles xR and xW respectively, we are
implicitly setting the sensitivity label of object o to x.

4.2 The General Construction

Based on the above discussion we have the following construction for arbitrary lat-
tices (actually the construction works for partial orders with a lower-most security
class). Given SC with security labels fL1 : : : Lng, and partial order �LBAC, an
equivalent RBAC96 system is given by:

Construction 1. (Liberal ?-Property)

|R = fL1R : : : LnR, L1W : : : LnW g

|RH which consists of two disjoint role hierarchies. The �rst role hierarchy con-
sists of the \read" roles fL1R : : : LnR g and has the same partial order as �LBAC;
the second partial consists of the \write" roles fL1W : : : LnW g and has a partial
order which is the inverse of �LBAC.

|P = f(o,r), (o,w) j o is an object in the systemg

Con�guring RBAC to Enforce MAC and DAC � 9

|Constraint on UA: Each user is assigned to exactly two roles xR and LW where
x is the label assigned to the user and LW is the write role corresponding to the
lowermost security level according to �LBAC

|Constraint on sessions: Each session has exactly two roles yR and yW

|Constraints on PA:
|(o,r) is assigned to xR i� (o,w) is assigned to xW
|(o,r) is assigned to exactly one role xR such that x is the label of o 2

Theorem 1. An RBAC96 system de�ned by Construction 1 satis�es the Simple
Security Property and the Liberal ?-Property.

Proof: (a) Simple Security Property: Subjects in the LBAC terminology corre-
spond to RBAC96 sessions. For subject s to read o, (o,r) must be in the permissions
assigned to a role, either directly or indirectly, which is among the roles available
to session s, which corresponds to exactly one user u. For u to be involved in this
session, this role must be in the UA for u (either directly or indirectly). Let �(u) =
z and �(s) = y. By the constraints on PA given in Construction 1, (o,r) is assigned
directly to exactly one role xR, where x = �(o), and by the construction of RH , is
inherited by roles yR such that y �LBAC x. For s to be able to read o, it must have
one of these yR in its session. By the de�nition of roles in a session from De�nition
1, any role junior to zR can be in a session for u, i.e. z �LBAC y. In other words, a
session for u can involve one reading role yR such that z �LBAC y. Therefore, the
RBAC96 system de�ned above allows subject s to read object o if �(u) �LBAC �(s)
and �(s) �LBAC �(o), which is precisely the Simple Security Property.
(b) Liberal ?-Property: Each user, u, is assigned by UA to xR, where x is the

clearance of the user. According to LBAC, the user can read data classi�ed at
level x or at levels dominated by x. It also means that the user can start a session
at a level dominated by x. So, if a user cleared to say level x, wishes to run a
session at level y, such that x �LBAC y, the constraints in Construction 1 allow
the session to have the two active roles yR and yW. Because every user is assigned
to LW, it is possible for every user to have a session with yW as one of its roles.
The structure of the two role hierarchies means that if the yW role is available to
a user in a session, the user can write objects for which the permission (o,w) is in
yW. By construction of the role hierarchy, the session can write to level y or levels
dominated by y. In LBAC terms, the subject, s, corresponds to the session, and
within a session a write can be performed if (o,w) is in the permissions of a role,
which by the construction is only if �(o) �LBAC �(s). This is precisely the Liberal
?-Property.

2

4.3 LBAC Variations

Variations in LBAC can be accommodated by modifying this basic construction in
di�erent ways. In particular, the strict ?-property retains the hierarchy on read
roles but treats write roles as incomparable to each other as shown in Figure 3(b)
for the example of our basic lattice.

Construction 2. (Strict ?-Property) Identical to construction 1 except RH
has a partial order among the read roles identical to the LBAC partial order, and
no relationships among the write roles. 2

10 � Osborn, Sandhu and Munawer

Theorem 2. An RBAC96 system de�ned by Construction 2 satis�es the Simple
Security Property and the Strict ?-Property.

The proof of this and subsequent similar results is omitted.
Next we consider a version of LBAC in which subjects are given more power than

allowed by the simple security and ?-properties [Bell 1987]. The basic idea is to
allow subjects to violate the ?-property in a controlled manner. This is achieved
by associating a pair of security labels �r and �w with each subject (objects still
have a single security label). The simple security property is applied with respect
to �r and the liberal ?-property with respect to �w. In the LBAC model of [Bell
1987] it is required that �r should dominate �w . With this constraint the subject
can read and write in the range of labels between �r and �w which is called the
trusted range. If �r and �w are equal the model reduces to the usual LBAC model
with the trusted range being a single label.
The preceding discussion is remarkably close to our RBAC constructions. The

two labels �r and �w correspond directly to the two roles xR and yW we have
introduced earlier. The dominance required between �r and �w is trivially recast
as a dominance constraint between x and y. This leads to the following construction:

Construction 3. (Liberal ?-Property with Trusted Range) Identical to con-
struction 1 except

|Constraint on UA: Each user is assigned to exactly two roles xR and yW such
that x � y in the original lattice

|Constraint on sessions: Each session has exactly two roles xR and yW such that
x � y in the original lattice 2

Lee [1988] and Schockley [1988] have argued that the Clark-Wilson integrity
model [Clark and Wilson 1987] can be supported using LBAC. Their models are
similar to the above except that no dominance relation is required between x and y.
Thus the write range may be completely disjoint with the read range of a subject.
This is easily expressed in RBAC96 as follows.

Construction 4. (Liberal ?-Property with Independent Write Range) Identi-
cal to construction 3 except x � y is not required in the constraint on UA and the
constraint on sessions. 2

A variation of the above is to use the strict ?-property as follows.

Construction 5. (Strict ?-Property with Designated Write) Identical to con-
struction 2 except

|Constraint on UA: Each user is assigned to exactly two roles xR and yW

|Constraint on sessions: Each session has exactly two roles xR and yW 2

Construction 5 can also be directly obtained from construction 4 by requiring the
strict ?-property instead of the liberal ?-property. Construction 5 can accommodate
Clark-Wilson transformation procedures as outlined by Lee [1988] and Schockley
[1988]. (Lee and Schockley actually use the liberal ?-property in their constructions,
but their lattices are such that the constructions are more directly expressed in
terms of the strict ?-property.)

Con�guring RBAC to Enforce MAC and DAC � 11

5. EXTENDING THE POSSIBLE RBAC CONFIGURATIONS

In the previous section, we looked at speci�c mappings of di�erent kinds of LBAC to
an RBAC system with the same properties. In this section we examine whether or
not more arbitrary RBAC systems which do not necessarily follow the constructions
in Section 4 still satisfy LBAC properties. In order to do this, we assume that all
users and objects have security labels, and that permissions involve only reads and
writes.
In the previous discussion, all constructions created role hierarchies with disjoint

read and write roles. This is not strictly necessary; the role hierarchy in Figure 5
could be the construction for the strict ?-property with the following modi�cations:

|Constraint on UA: Each user is assigned to all roles, xRW such that the clearance
the user dominates the security label x

|Constraint on sessions: Each session has exactly one role: yRW

|Constraints on PA:
|(o,r) is assigned to xR i� (o,w) is assigned to xRW
|(o,r) is assigned to exactly one role xR 2

HR

LR

M1R M2RLRW

M1RW

HRW

M2RW

Fig. 4. Alternate role hierarchy for Strict ?-property

Nevertheless, the structure of role hierarchies which do map to valid LBAC con-
�gurations is greatly restricted, as the examples in Nyanchama and Osborn [1995]
show. For example, a role with permissions to both read and write a high data
object and a low data object cannot be assigned to a high user as this would allow
write down, and cannot be assigned to a low user, as this would allow read up. If a
role had only read permissions for some objects classi�ed at M1, and other objects
classi�ed at M2 (cf Figure 2), a subject cleared at H could be assigned to this role.
As far as the read operation is concerned, a subject can have a role r in its session

if the label of the subject dominates the level of all o such that (o,r) is in the role.
Since the least upper bound is de�ned for the security lattice, this can always be

12 � Osborn, Sandhu and Munawer

determined. Similarly, for write operations, if a greatest lower bound is de�ned for
the security levels, then the Liberal ?-property is satis�ed in a session if the security
level of the subject dominates the greatest lower bound of all o such that (o,w) is
in the role. If such a greatest lower bound does not exist, such a role should not be
in any user's UA. (If it could be determined that �(s) � �(o) for all o such that
(o,w) is in the role, then this �(s) would be a lower bound, and then a greatest
lower bound would exist.)
We introduce the following two de�nitions to capture the maximum read level of

objects in a role, and the minimum write level if one exists.

Definition 6. The r-level of a role r (denoted r-level(r)) is the least upper
bound (lub) of the security levels of the objects for which (o,r) is in the permissions
of r.

Definition 7. The w-level of a role r (denoted w-level(r)) is the greatest lower
bound (glb) of the security levels of the objects o for which (o,w) is in the permis-
sions of r, if such a glb exists. If the glb does not exist, the w-level is unde�ned.

The following theorem follows from these de�nitions.

Theorem 3. An RBAC96 con�guration satis�es the simple security property
and the Liberal ?-Property if all of the following hold:

|Constraint on Users: ((8u 2 U) [�(u) is given])

|Constraints on Permissions:
|P = f(o,r), (o,w) j o is an object in the systemg
|((8o 2 P) [�(o) is given])

|Constraint on UA:
|((8r 2 UA) [w-level(r) is de�ned])
|((8(u; r) 2 UA) [�(u) � r-level(r)])
|((8(u; r) 2 UA) [�(u) � w-level(r)])

|Constraint on Sessions: (8s 2 sessions) [�(s) � �(u)])

An example showing a possible role hierarchy is given in Figure 5, where the
underlying security lattice contains labels funclassi�ed, secret, top secretg and roles
are indicated by, for example, (ru,rs) meaning the permissions in the role include
read of some unclassi�ed and some secret object(s) (each role may have permissions
inherited because of the role hierarchy). The roles labeled ru1 and ru3 at the
bottom have read access to distinct objects labeled unclassi�ed; ru2 inherits the
permissions of ru1 and has additional read access to objects at the unclassi�ed level.
The role labeled (ru,ws) contains permission to read some unclassi�ed objects and
write some secret objects. This role could be assigned in UA to either unclassi�ed
users or to secret users. Notice the role at the top of the role hierarchy, labeled
(ru,rs,rts,ws,wts). This role cannot be assigned to any user without violating either
the Simple Security Property or the Liberal-? Property. Note that if this role
is deleted from the role hierarchy, we have an example of a role hierarchy which
satis�es the Simple Security Property and the Liberal-? Property, and which does
not conform to any of the constructions of Section 4.
An RBAC96 con�guration satis�es the strict ?-property if all of the above con-

ditions hold, changing the Constraint on Sessions to:

Con�guring RBAC to Enforce MAC and DAC � 13

Not valid in any
User Assignment

ru,rs

ru2

ru1 ru3

In UA for
unclassified
users

ru,ws

ws,wts

ws

ru,rs
ws

ru,rs
ws,wts

In UA for Top-
Secret Users

ru,rs,rts
ws,wts

ru,rs,rts

Secret users
In UA for

Fig. 5. A Role Hierarchy and its User Assignments

|Constraint on Sessions: (8s 2 sessions) [�(s) = �(u)])

6. DAC MODELS

In this section we discuss the DAC policies that will be considered in this paper.
The central idea of DAC is that the owner of an object, who is usually its creator,
has discretionary authority over who else can access that object. In other words the
core DAC policy is owner-based administration of access rights. There are many
variations of DAC policy, particularly concerning how the owner's discretionary
power can be delegated to other users and how access is revoked. This has been
recognized since the earliest formulations of DAC [Lampson 1971; Graham and
Denning 1972].
Our approach here is to identify major variations of DAC and demonstrate their

construction in RBAC96. The constructions are such that it will be obvious how
they can be extended to handle other related DAC variations. This is an intuitive,
but well-founded, justi�cation for the claim that DAC can be simulated in RBAC.2

The DAC policies we consider all share the following characteristics.

2A formal proof would require a formal de�nition of DAC encompassing all its variations, and a
construction to handle all of these in RBAC96. This approach is pursued in [Munawer 2000].

14 � Osborn, Sandhu and Munawer

|The creator of an object becomes its owner.

|There is only one owner of an object. In some cases ownership remains �xed
with the original creator, whereas in other cases it can be transferred to another
user. (This assumption is not critical to our constructions. It will be obvious
how multiple owners could be handled.)

|Destruction of an object can only be done by its owner.

With this in mind we now de�ne the following variations of DAC with respect to
granting of access.

(1) Strict DAC requires that the owner is the only one who has discretionary
authority to grant access to an object and that ownership cannot be transferred.
For example, suppose Alice has created an object (Alice is owner of the object)
and grants read access to Bob. Strict DAC requires that Bob cannot propagate
access to the object to another user. (Of course, Bob can copy the contents
of Alice's object into an object that he owns, and then propagate access to
the copy. This is why DAC is unable to enforce information ow controls,
particularly with respect to Trojan Horses.)

(2) Liberal DAC allows the owner to delegate discretionary authority for granting
access to an object to other users. We de�ne the following variations of liberal
DAC.

(a) One Level Grant: The owner can delegate grant authority to other users
but they cannot further delegate this power. So Alice being the owner of
object O can grant access to Bob who can grant access to Charles. But
Bob cannot grant Charles the power to further grant access to Dorothy.

(b) Two Level Grant: In addition to a one-level grant the owner can allow
some users to further delegate grant authority to other users. Thus, Alice
can now authorize Bob for two-level grants, so Bob can grant access to
Charles, with the power to further grant access to Dorothy. However, Bob
cannot grant the two-level grant authority to Charles. (We could consider
n-level grant but it will be obvious how to do this from the two level
construction.)

(c) Multilevel Grant: In this case the power to delegate the power to grant
implies that this authority can itself be delegated. Thus Alice can autho-
rize Bob, who can further authorize Charles, who can further authorize
Dorothy, and so on inde�nitely.

(3) DAC with Change of Ownership: This variation allows a user to transfer
ownership of an object to another user. It can be combined with strict or liberal
DAC in all the above variations.

For revocation we consider two cases as follows.

(1) Grant-Independent Revocation: Revocation is independent of the granter.
Thus Bob may be granted access by Alice but have it revoked by Charles.

(2) Grant-Dependent Revocation: Revocation is strongly tied to the granter.
Thus if Bob receives access from Alice, access can only be revoked by Alice.

Con�guring RBAC to Enforce MAC and DAC � 15

In our constructions we will initially assume grant-independent revocation and then
consider how to simulate grant-dependent revocation. In general, we will also as-
sume that anyone with authority to grant also has authority to revoke. This cou-
pling often occurs in practice. Where appropriate, we can decouple these in our
simulations because, as we will see, they are represented by di�erent permissions.
These DAC policies certainly do not exhaust all possibilities. Rather these are

representative policies whose simulation will indicate how other variations can also
be handled.

7. CONFIGURING RBAC FOR DAC

To specify the above variations in RBAC96 it su�ces to consider DAC with one
operation, which we choose to be the read operation. Similar constructions for
other operations such as write, execute and append, are easily possible.3 Before
considering speci�c DAC variations, we �rst describe common aspects of our con-
structions.

7.1 Common Aspects

The basic idea in our constructions is to simulate the owner-centric policies of DAC
using roles that are associated with each object.

7.1.1 Create an Object. For every object O that is created in the system we
require the simultaneous creation of three administrative roles and one regular role
as follows.

|Three administrative roles in AR: OWN O, PARENT O and PARENTwith-
GRANT O

|One regular role in R: READ O

Role OWN O has privileges to add and remove users from the role PAREN-
TwithGRANT O which in turn has privileges to add and remove users from the
role PARENT O The relationship between these roles is shown in Figure 6. In
Figure 6, administrative roles are shown with darker circles than regular roles. In
Figure 6(a), the dashed right arrows indicate that the role on the left contains the
administrative permissions governing the role on the right. Figure 6(b) shows the
administrative role hierarchy, with the senior role above its immediate junior, con-
nected by an edge. For instance role OWN O has administrative authority over
roles PARENTwithGRANT O as indicated in �gure 6(a). In addition due to the
inheritance via the role hierarchy of �gure 6(a) OWN O also has administrative
authority over PARENT O and READ O.
In addition we require simultaneous creation of the following eight permissions

along with creation of each object O.

|canRead O: authorizes the read operation on object O. It is assigned to the role
READ O.

3More complex operations such as copy can be viewed as a read of the original object and a write
(and possibly creation) of the copy. It can be useful to associate some default permissions with
the copy. For example, the copy may start with access related to that of the original object or
it may start with some other default. Speci�c policies here could be simulated by extending our
constructions.

16 � Osborn, Sandhu and Munawer

OWN_O READ_O

(a)

OWN_O

PARENTwithGRANT_O

PARENT_O

(b)

PARENT_OPARENTwithGRANT_O

Fig. 6. (a)Administration of roles associated with an object (b) Administrative role hierarchy

|destroyObject O: authorizes deletion of the object. It is assigned to the role
OWN O.

|addReadUser O, deleteReadUser O: respectively authorize the operations to add
users to the role READ O and remove them from this role. They are assigned to
the role PARENT O.

|addParent O, deleteParent O: respectively authorize the operations to add users
to the role PARENT O and remove them from this role. They are assigned to
the role PARENTwithGRANT O.

|addParentWithGrant O, deleteParentWithGrant O: respectively authorize the
operations to add users to the role PARENT O and remove them from this role.
They are assigned to the role OWN O.

These permissions are assigned to the indicated roles when the object is created
and thereafter they cannot be removed from these roles or assigned to other roles.

7.1.2 Destroy an Object. Destroying an object O requires deletion of the four
roles namely OWN O, PARENT O, PARENTwithGRANT O and READ O and
the eight permissions (in addition to destroying the object itself). This can be done
only by the owner, by virtue of exercising the destroyObject O permission.

7.2 Strict DAC

In strict DAC only the owner can grant/revoke read access to/from other users.
The creator is the owner of the object. By virtue of membership (via seniority) in
PARENT O and PARENTwithGRANT O, the owner can change assignments of
the role READ O. Membership of the three administrative roles cannot change, so
only the owner will have this power. This policy can be enforced by imposing a
cardinality constraint of 1 on OWN O and of 0 on PARENT O and PARENTwith-

Con�guring RBAC to Enforce MAC and DAC � 17

GRANT O.
This policy could be simulated using just two roles OWN O and READ O, and

giving the addReadUser O and deleteReadUser O permissions directly to OWN O
at creation of O. For consistency with subsequent variations we have introduced all
required roles from the start.

7.3 Liberal DAC

The three variations of liberal DAC described in Section 6 are now considered in
turn.

7.3.1 One-Level Grant. The one-level grant DAC policy can be simulated by
removing the cardinality constraint of strict DAC on membership in PARENT O.
The owner can assign users to the PARENT O role who in turn can assign users to
the READ O role. But the cardinality constraint of 0 on PARENTwithGRANT O
remains.

7.3.2 Two-Level Grant. In the two level grant DAC policy the cardinality con-
straint on PARENTwithGRANT O is also removed. Now the owner can assign
users to PARENTwithGRANT O who can further assign users to PARENT O.
Note that members of PARENTwithGRANT O can also assign users directly to
READ O, so they have discretion in this regard. Similarly the owner can assign
users to PARENTwithGRANT O, PARENT O or READ O as deemed appropri-
ate. (N-level grants can be similarly simulated by having N roles, PARENTwith-
GRANT ON�1, PARENTwithGRANT ON�2, . . . , PARENTwithGRANT O, PAR-
ENT O.)

7.3.3 Multilevel Grant. To grant access beyond two levels we authorize the role
PARENTwithGRANT O to assign users to PARENTwithGRANT O. We achieve
this by assigning the addParentWithGrant O permission to the role PARENTwith-
GRANT O when object O is created. As per our general policy of coupling grant
and revoke authority, we also assign the deleteParentWithGrant O permission to
the role PARENTwithGRANT O when O is created. This coupling policy is ar-
guably unreasonable in the context of grant-independent revoke, so the deletePar-
entWithGrant O permission could be retained only with the OWN O role if so
desired. For grant-dependent revoke the coupling is more reasonable.

7.4 DAC with Change of Ownership

Change of ownership can be easily accomplished by suitable rede�nition of the ad-
ministrative authority of a member of OWN O. Recall that change of ownership
in this context means transfer of ownership from one user to another. Thus the
OWN O role needs a permission that enables this transfer to occur and this per-
mission can only be assigned to this role. A member of OWN O can assign another
user to OWN O but at the cost of loosing their own membership.

7.5 Multiple Ownership

Multiple ownership can also be accommodated by removing the cardinality con-
straint on membership in the OWN O role. Since all members of OWN O have
identical power, including the ability to revoke other owners, it would be appropri-

18 � Osborn, Sandhu and Munawer

ate with grant-independent revoke to distinguish the original owner. Alternately,
we can have grant-dependent revoke of ownership.

7.6 Grant-Dependent Revoke

So far we have considered grant-independent revocation where revocation is in-
dependent of granter. Now �nally we consider how to simulate grant-dependent
revoke in RBAC96. In this case only the user who has granted access to another
user can revoke the access (with possible exception of the owner who is allowed to
revoke everything).

U1_PARENT_O

U2_PARENT_O

Un_PARENT_O

U1_READ_O

U2_READ_O

Un_READ_O

.

.

.

.

.

.

.

.

.

. .

Fig. 7. Read O Roles associated with members of PARENT O

Speci�cally, let us consider the one level grant DAC policy simulated earlier
by allowing members of PARENT O role to assign users to READ O role. To
simulate grant-dependent revocation with this one level grant policy we need a
di�erent administrative role U PARENT O and a di�erent regular role U READ O
for each user U authorized to do a one-level grant by the owner. These roles are
automatically created when the owner authorizes user U. We also need two new
administrative permissions created at the same time as follows.

|addU ReadUser O, deleteU ReadUser O: respectively authorize the operations
to add users to the role U READ O and remove them from this role. They are
assigned to the role U PARENT O.

Ui PARENT O manages the membership assignments of Ui READ O role as indi-
cated in Figure 7 for user Ui. U PARENT O has a membership cardinality con-
straint of one. Moreover, its membership cannot be changed. Thus user U will be
the only one granting and revoking users from U READ O. The U READ O role
itself is assigned the permission canRead O at the moment of creation. As before
all of this enforced by RBAC96 constraints. We can allow the owner to revoke
users from the U READ O role by making U PARENT O junior to OWN O in

Con�guring RBAC to Enforce MAC and DAC � 19

the administrative role hierarchy. Simulation of grant-dependent revocation can be
similarly simulated with respect to the PARENT O and PARENTwithGRANT O
roles. Extension to multiple ownership is also possible.

8. CONCLUSIONS

We have shown that the common forms of LBAC and DAC models can be simulated
and enforced in RBAC96 with systematic constructions. All of the components of
the RBAC96 model shown in Figure 1 were required to carry out these simulations.
Users and permissions are essential to express any access control model. The Role
Hierarchy is important in the LBAC simulation. The Administrative Role Hierarchy
is essential in the enforcement of DAC policies, as is the administrative user to role
assignment relation. We observe however that the permissions that have been
granted to users in a DAC system can give an arbitrarily rich role hierarchy, as was
noted in a conversion of relational database permissions to role graphs by Osborn,
Reid, and Wesson [1996]. Constraints play a role in all of the constructions. It is
important to note that the LBAC simulation assumes a single administrative role,
whereas the DAC simulation requires a large number of administrative roles, which
are dynamically created and destroyed.

RBAC Models

One Administrative Role Complex Administrative Roles

of Section 7of Section 4

of Section 5

a. LBAC construction

b. other LBAC configurations

c. DAC configurations

Fig. 8. Containment of Models

We can represent some of our �ndings using the Venn diagram in Figure 8. The
area on the left of the �gure indicates that in this subset of RBAC96 con�gurations,
there is no need for administrative roles except for an assumed single administrative
role. On the right, the administrative part of the RBAC96 model is fully utilized.
Part (a) represents the subset of possible RBAC96 con�gurations which are built
by constructions 1 and 2. Area (b) shows that there are other con�gurations not
built by these two constructions which still satisfy LBAC properties. Part (c) of
the diagram represents in general the RBAC96 con�gurations built by the various

20 � Osborn, Sandhu and Munawer

constructions in Section 7. Note that these latter constructions all fall in the region
where the administrative roles of the RBAC96 model are being fully utilized.
Future work should now focus on what happens in the rest of the RBAC96

Models not included in the areas constructed in this paper. Models for decentralized
role administration which fall in between these extremes have been proposed by
Sandhu, Bhamidipati, and Munawer [1999]. These models allow for large numbers
of administrative roles but this number is expected to be much smaller than the
number of objects in the system.
In conclusion, then, we have shown with various systematic constructions how to

simulate and enforce traditional LBAC and DAC access control models in RBAC96.

REFERENCES

Bell, D. 1987. Secure computer systems: A network interpretation. In Proceedings of 3rd

Annual Computer Security Application Conference (1987), pp. 32{39.

Clark, D. and Wilson, D. 1987. A comparison of commercial and military computer
security policies. In Proceedings of IEEE Symposium on Security and Privacy (Oakland,
CA, May 1987), pp. 184{194.

Denning, D. 1976. A lattice model of secure information ow. Communications of the

ACM 19, 5, 236{243.

Graham, G. and Denning, P. 1972. Protection { principles and practice. In AFIPS Spring

Joint Computer Conference (1972), pp. 40:417{429.

Lampson, B. 1971. Protection. In 5th Princeton Symposium on Information Science and

Systems (1971), pp. 437{443. Reprinted in ACM Operating Systems Review 8(1):18{24,
1974.

Lee, T. 1988. Using mandatory integrity to enforce \commercial" security. In Proceedings

of IEEE Symposium on Security and Privacy (Oakland, CA, May 1988), pp. 140{146.

Munawer, Q. 2000. Administrative Models for Role-Based Access Control. PhD Thesis,
George Mason University (Adviser: Ravi Sandhu).

Nyanchama, M. and Osborn, S. 1996. Modeling mandatory access control in role-based
security systems. In Database Security VIII: Status and Prospects. Chapman-Hall.

Nyanchama, M. and Osborn, S. L. 1994. Access rights administration in role-based se-
curity systems. In J. Biskup, M. Morgenstern, and C. E. Landwehr Eds., Database
Security, VIII, Status and Prospects the IFIP WG11.3 Working Conference on Database

Security (1994), pp. 37{56. North-Holland.

Nyanchama, M. and Osborn, S. L. 1995. Modeling mandatory access control in role-
based security systems. In D. Spooner, S. Demurjian, and J. Dobson Eds., Proceedings
of the IFIP WG 11.3 Ninth Annual Working Conference on Database Security (1995), pp.
129{144. Chapman & Hall.

Nyanchama, M. and Osborn, S. L. 1999. The role graph model and conict of interest.
ACM TISSEC 2, 1, 3{33.

Osborn, S., Reid, L., and Wesson, G. 1996. On the interaction between role based access
control and relational databases. In P. Samarati and R. Sandhu Eds., Proceedings of

the Tenth Annual IFIP WG 11.3 Working Conference on Database Security (Aug. 1996).
Chapman & Hall.

Sandhu, R. 1996. Role hierarchies and constraints for lattice-based access controls. In Com-
puter Security - ESORICS 96, LNCS1146 (1996), pp. 65{79. Springer Verlag.

Sandhu, R., Bhamidipati, V., and Munawer, Q. 1999. The ARBAC97 model for role-
based administration of roles. ACM Trans. on Information and Systems Security 2, 1
(Feb.), 105{135.

Sandhu, R., Coyne, E., Feinstein, H., and Youman, C. 1996a. Role-based access control
models. Computer 29, 38{47.

Con�guring RBAC to Enforce MAC and DAC � 21

Sandhu, R. and Munawer, Q. 1998. How to do discretionary access control using roles.

In 3rd ACM Workshop on Role-Based Access Control (1998), pp. 47{54.

Sandhu, R. and Samarati, P. 1994. Access control: Principles and practice. IEEE Com-

munications 32, 9, 40{48.

Sandhu, R. S. 1993. Lattice-based access control models. IEEE Computer 26, 11 (Novem-
ber), 9{19.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. 1996. Role-based
access control models. IEEE Computer 29, 2 (February), 38{47.

Sandhu, R. S. and Samarati, P. 1997. Authentication, access control and intrusion de-
tection. In A. B. Tucker Ed., The Computer Science and Engineering Handbook , pp.
1929{1948. CRC Press.

Schockley, W. 1988. Implementing the Clark/Wilson integrity policy using current tech-
nology. In Proceedings of NIST-NCSC National Computer Security Conference (1988), pp.
29{37.

