
Role-based Authorization Constraints Speci�cation

GAIL-JOON AHN

University of North Carolina at Charlotte

and

RAVI SANDHU

George Mason University

Constraints are an important aspect of role-based access control (RBAC) and are often regarded
as one of the principal motivations behind RBAC. Although the importance of constraints in
RBAC has been recognized for a long time, they have not received much attention. In this
paper, we introducean intuitive formal language for specifying role-based authorizationconstraints
named RCL 2000 including its basic elements, syntax, and semantics. We give soundness and
completeness proofs for RCL 2000 relative to a restricted form of �rst-order predicate logic. Also,
we show how previously identi�ed role-based authorization constraints such as separation of duty
(SOD) can be expressed in our language. Moreover, we show there are other signi�cant SOD
properties which have not been previously identi�ed in the literature. Our work shows that there
are many alternate formulations of even the simplest SOD properties, with varying degree of

exibility and assurance. Our language provides us a rigorous foundation for systematic study of
role-based authorization constraints.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classi�ca-
tions|Constraint and logic languages; H.2.0 [Database Management]: General|Security,

integrity, and protection; K.6.5 [Management of Computing and Information System]:
Security and Protection

General Terms: Constraints, Security

Additional Key Words and Phrases: Access control models, authorization constraints, constraints
speci�cation, role-based access control

1. INTRODUCTION

Role-based access control (RBAC) has emerged as a widely accepted alternative to
classical discretionary and mandatory access controls [Sandhu et al. 1996]. Several
models of RBAC have been published and several commercial implementations are
available. RBAC regulates the access of users to information and system resources

Authors' address: Gail-JoonAhn, College of InformationTechnology, University of North Carolina
at Charlotte, 9201 University City Blvd., Charlotte, NC 28223-0001; email: gahn@uncc.edu; url:
www.coit.uncc.edu; Ravi Sandhu, Information and Software Engineering Department, Mail Stop
4A4, GeorgeMason University, Fairfax, VA 22030; email: sandhu@gmu.edu; url: www.list.gmu.edu
Permission to make digital or hard copies of part or all of this work for personal or classroomuse is
grantedwithout fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
speci�c permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 � G.-J. Ahn and R. Sandhu

on the basis of activities that users need to execute in the system. It requires
the identi�cation of roles in the system. A role can be de�ned as a set of actions
and responsibilities associated with a particular working activity. Then, instead
of specifying all the accesses each individual user is allowed, access authorizations
on objects are speci�ed for roles. Since roles in an organization are relatively
persistent with respect to user turnover and task re-assignment, RBAC provides
a powerful mechanism for reducing the complexity, cost, and potential for error
in assigning permissions to users within the organization. Because roles within an
organization typically have overlapping permissions RBAC models include features
to establish role hierarchies, where a given role can include all of the permissions
of another role. Another fundamental aspect of RBAC is authorization constraints
(also simply called constraints). Although the importance of constraints in RBAC
has been recognized for a long time, they have not received much attention in
the research literature, while role hierarchies have been practiced and discussed at
considerable length.
In this paper our focus is on constraint speci�cations, i.e, on how constraints can

be expressed. Constraints can be expressed in natural languages, such as English,
or in more formal languages. Natural language speci�cation has the advantage of
ease of comprehension by human beings, but may be prone to ambiguities. Natural
language speci�cations do not lend themselves to the analysis of properties of the
set of constraints. For example, one may want to check if there are con
icting
constraints in the set of access constraints for an organization. We opted for a formal
language approach to specify constraints. The advantages of a formal approach
include a formalway of reasoning about constraints, a framework for identifying new
types of constraints, a classi�cation scheme for types of constraints (e.g., prohibition
constraints and obligation constraints), and a basis for supporting optimization and
speci�cation techniques on sets of constraints.
To specify these constraints we introduce the speci�cation language RCL 2000

(for Role-based Constraints Language 2000, pronounced R�ickle 2000) which is the
speci�cation language for role-based authorization constraints. In this paper we de-
scribe its basic elements, syntax, and the formal foundation of RCL 2000 including
rigorous soundness and completeness proofs. RCL 2000 is a substantial generaliza-
tion of RSL99 [Ahn and Sandhu 1999] which is the earlier version of RCL 2000. It
encompasses obligation constraints in addition to the usual separation of duty and
prohibition constraints.1

Who would be the user of RCL 2000? The �rst reaction might be to say the
security o�cer or the security administrator. However, we feel there is room for a
security policy designer distinct from security administrator. The policy designer
has to understand organizational objectives and articulate major policy decisions

1A common example of prohibitionconstraints is separationof duty. We can consider the following
statement as an example of this type of constraints: if a user is assigned to purchasing manager,
he cannot be assigned to accounts payable manager and vice versa. This statement requires that
the same individual cannot be assigned to both roles which are declared mutually exclusive. We
identify another class of constraints called obligation constraints. In [Sandhu 1996], there is a
constraint which requires that certain roles should be simultaneously active in the same session.
There is another constraints which requires a user to have certain combinationsof roles in user-role
assignment. We classify such constraints as obligation constraints.

Role-based Authorization Constraints Speci�cation � 3

to support these objectives. The security o�cer or security administrator is more
concerned with day to day operations. Policy in the large is speci�ed by the security
policy designer and the actions of the security administrator should be subject to
this policy. Thus policy in the large might stipulate what is the meaning of con-

icting roles and what roles are in con
ict. For example, the meaning of con
icting
roles for a given organization might be that no users other than senior executives
can belong to two con
icting roles. For another organization the meaning might
be that no one, however senior, may belong to two con
icting roles. In another
context we may want both these interpretations to coexist. So we have a notion
of weak con
ict (former case) and strong con
ict (latter case), applied to di�erent
roles sets. RCL 2000 is also useful for security researchers to think and reason
about role-based authorization constraints.
The rest of this paper is organized as follows. In section 2 we describes the formal

language RCL 2000 including basic elements and syntax. In section 3 we describe
its formal semantics including soundness and completeness proofs. Section 4 shows
the expressive power of RCL 2000. Section 5 concludes this paper.

2. ROLE-BASED CONSTRAINTS LANGUAGE (RCL 2000)

RCL 2000 is de�ned in context of RBAC96 which is a well-known family of models
for RBAC [Sandhu et al. 1996]. This model has become a widely-cited authoritative
reference and is the basis of a standard currently under development by the National
Institute of Standards and Technology [Sandhu et al. 2000]. Here we use a slightly
augmented form of RBAC96 illustrated in �gure 1. We decompose permissions into
operations and objects to enable formulation of certain forms of constraints. Also
in �gure 1 we drop the administrative roles of RBAC96 since they are not germane
to RCL 2000.
Intuitively, a user is a human being or an autonomous agent, a role is a job func-

tion or job title within an organization with some associated semantics regarding
the authority and responsibility conferred on a member of the role, and a permission
is an approval of a particular mode of access (operation) to one or more objects in
the system. Roles are organized in a partial order or hierarchy, so that a senior role
inherits permissions from junior roles, but not vice versa. A user can be a member
of many roles and a role can have many users. Similarly, a role can have many
permissions and the same permission can be assigned to many roles. Each session
relates one user to possibly many roles. Intuitively, a user establishes a session (e.g.,
by signing on to the system) during which the user activates some subset of roles
that he or she is a member of. The permissions available to the users are the union
of permissions from all roles activated in that session. Each session is associated
with a single user. This association remains constant for the life of a session. A
user may have multiple sessions open at the same time, each in a di�erent window
on the workstation screen, for instance. Each session may have a di�erent combi-
nation of active roles. The concept of a session equates to the traditional notion of
a subject in access control. A subject is a unit of access control, and a user may
have multiple subjects (or sessions) with di�erent permissions (or roles) active at
the same time. RBAC96 does not de�ne constraints formally.
Constraints are an important aspect of role-based access control and are a pow-

erful mechanism for laying out higher level organizational policy. The construc-

4 � G.-J. Ahn and R. Sandhu

U

USERS

USER

ASSIGNMENT

UA

ROLES

R

user roles

SESSIONS

S

.

.

.

PERMISSION

ASSIGNMENT

PA

PERMISS-

IONS

P

OPERA-

TIONS

OP OBJ

OBJECTS

HIERARCHY

ROLE
RH

Fig. 1. Basic Elements and System Functions : from RBAC96 Model

tions of [Sandhu 1996; Sandhu and Munawer 1998] clearly demonstrate the strong
connection between constraints and policy in RBAC systems. The importance of

exible constraints to support emerging applications has been recently discussed
by Jaeger [Jaeger 1999]. Consequently, the speci�cation of constraints needs to be
considered. To date, this topic has not received much formal attention in context of
role-based access control. A notable exception is the work of Giuri and Iglio [Giuri
and Iglio 1996] who de�ned a formal model for constraints on role-activation. RCL
2000 considers all aspects of role-based constraints, not just those applying to role
activation. Another notable exception is the work of Gligor et al [Gligor et al.
1998] who formalize separation of duty constraints enumerated informally by Si-
mon and Zurko [Simon and Zurko 1997]. RCL 2000 goes beyond separation of
duty to include obligation constraints [Ahn 2000] such as used in the constructions
of [Sandhu 1996; Osborn et al. 2000] for simulating mandatory and discretionary
access controls in RBAC.2

One of our central claims is that it is futile to try to enumerate all interesting
and practically useful constraints because there are too many possibilities and vari-
ations. Instead, we should pursue an intuitively simple yet rigorous language for
specifying constraints such as RCL 2000. The expressive power of RCL 2000 is
demonstrated in section 4, where it shown that many constraints previously iden-
ti�ed in the RBAC literature and many new ones can be conveniently formulated
in RCL 2000.

2.1 Basic Components

The basic elements and system functions on which RCL 2000 is based are de�ned
in �gure 2. Figure 1 shows the RBAC96 model which is the context for these de�-
nitions. RCL 2000 has six entity sets called users (U), roles (R), objects (OBJ), oper-

2Intuitively, Prohibition Constraints are constrains that forbid the RBAC component from doing
(or being) something which is not allowed to do (or be). Most of SOD constraints are included
in this class of constraints. And Obligation Constraints are constraints that force the RBAC
component to do (or be) something.

Role-based Authorization Constraints Speci�cation � 5

|U = a set of users, fu1; :::;ung.

|R= a set of roles, fr1; :::; rmg.

|OP = a set of operations, fop1; :::;opog.

|OBJ = a set of objects, fobj1; :::;objrg.

|P = OP � OBJ, a set of permissions, fp1; :::;pqg.

|S = a set of sessions, fs1; :::; srg.

|RH � R � R is a partial order on R called the role hierarchy or role dominance relation,

written as �.

|UA � U � R, a many-to-many user-to-role assignment relation.

|PA � P � R = OP � OBJ � R, a many-to-many permission-to-role assignment relation.

|user : S ! U, a function mapping each session si to the single user.

user : R ! 2U, a function mapping each role ri to a set of users.

|roles : U [P [S ! 2R, a function mapping the set U, P, and S to a set of roles R.

roles� : U [P [S ! 2R, extends roles in presence of role hierarchy.

roles(ui) =fr 2 R j (ui ; r) 2 UAg

roles�(ui) =fr 2 R j (9 r
0

� r)[(ui ; r
0

) 2 UA]g

roles(pi) = fr 2 R j (pi ; r) 2 PAg

roles�(pi) = fr 2 R j (9 r
0

� r)[(pi ; r
0

) 2 PA]g

roles(si) � fr 2 R j (sessions (si); r) 2 UAg

roles�(si) = fr 2 R j (9 r
0

� r)[r
0

2 roles(si)]g

|sessions : U ! 2S, a function mapping each user ui to a set of sessions.

|permissions : R ! 2P, a function mapping each role ri to a set of permissions.

permissions� : R ! 2P, extends permissions in presence of role hierarchy.

permissions(ri) = fp 2 P j (p; ri) 2 PAg

permissions�(ri) = fp 2 P j (9 r � ri)[(p; ri) 2 PA]g

|operations : R � OBJ ! 2OP, a function mapping each role ri and object obji to a set

of operations.

operations(ri; obji) = fop 2 OP j (op;obji ; ri) 2 PAg

|object : P ! 2OBJ, a function mapping each permission pi to a set of objects.

Fig. 2. Basic Elements and System Functions : from the RBAC96 Model

6 � G.-J. Ahn and R. Sandhu

(QE2)

Quality
Engineer 2

(PE1)
Engineer 1
Production Quality

Engineer 1
(QE1)

Engineering Department (ED)

Employee (E)

Director (DIR)

Project lead 1 (PL1)

Engineer 1 (E1)

Project lead 2 (PL2)

Engineer 2 (E2)

Project 1 Project 2

Production

(PE2)
Engineer 2

Fig. 3. Example of role hierarchies

ations (OP), permissions (P), and sessions (S). These are interpreted as in RBAC96
as discussed above. OBJ and OP are not in RBAC96. OBJ is the passive entities that
contain or receive information. OP is an executable image of a program, which upon
execution causes information
ow between objects. P is an approval of a particular
mode of operation to one or more objects in the system.
The function user gives us the user associated with a session and roles gives

us the roles activated in a session. Both functions do not change during the life of
a session. This is a slight simpli�cation from RBAC96 which does allow roles in a
session to change. RCL 2000 thus builds in the constraint that roles in a session
cannot change.
Hierarchies are a natural means for structuring roles to re
ect an organization's

lines of authority and responsibility (see Figure 3). By convention, senior roles
are shown toward the top of this diagram and junior roles toward the bottom.
Mathematically, these hierarchies are partial orders. A partial order is a re
exive,
transitive, and antisymmetric relation, so that if x � y then role x inherits the
permissions of role y , but not vice versa. In �gure 3, the junior-most role is that
of Employee. The Engineering Department role is senior to Employee and thereby
inherits all permissions from Employee. The Engineering Department role can
have permissions besides those it inherited. Permission inheritance is transitive,
for example, the Engineer1 role inherits permissions from both the Engineering
Department and Employee roles. Engineer1 and Engineer2 both inherit permissions
from the Engineering Department role, but each will have di�erent permissions
directly assigned to it.
The user assignment relation UA is a many-to-many relation between users and

roles. Similarly the permission-assignment relation PA is a many-to-many relation

Role-based Authorization Constraints Speci�cation � 7

|CR = a collection of con
icting role sets, fcr1; :::; crsg, where cri = fri ; :::; rtg � R

|CP = a collection of con
icting permission sets, fcp1; :::; cpug, where cpi = fpi ; :::;pvg � P

|CU = a collection of con
icting user sets, fcu1; :::; cuw g, where cui = fui ; :::;uxg � U

|oneelement(X) = xi , where xi 2 X

|allother(X) = X - fOE(X)g

Fig. 4. Basic Elements and Non-deterministic Functions: beyond RBAC96 Model

between permissions and roles. Users are authorized to use the permissions of roles
to which they are assigned. This is the essence of RBAC.
The remaining functions de�ned in �gure 2 are built from the sets, relations and

functions discussed above. In particular, note that the roles and user functions
can have di�erent types of arguments so we are overloading these symbols. Also
the de�nition of roles� is carefully formulated to re
ect the role inheritance with
respect to users and sessions going downward and with respect to permissions going
upward. In other words a permission in a junior role is available to senior roles,
and activation of a senior role makes available permissions of junior roles. This is a
well-accepted concept in the RBAC literature and is a feature of RBAC96. Using
a single symbol roles� simpli�es our notation so long as we keep this duality of
inheritance in mind.
Additional elements and system functions used in RCL 2000 are de�ned in �g-

ure 4. The precise meaning of con
icting roles, permissions and users will be speci-
�ed as per organizational policy in RCL 2000. For mutually disjoint organizational
roles such as those of purchasing manager and accounts payable manager, the same
individual is generally not permitted to belong to both roles. We de�ned these
mutually disjoint roles as con
icting roles. We assume that there is a collection CR

of sets of roles which have been de�ned to con
ict.
The concept of con
icting permissions de�nes con
ict in terms of permissions

rather than roles. Thus the permission to issue purchase orders and the permission
to issue payments are con
icting, irrespective of the roles to which they are assigned.
We denote sets of con
icting permissions as CP. As we will see de�ning con
ict
in terms of permissions o�ers greater assurance than de�ning it in terms of roles.
Con
ict de�ned in terms of roles allows con
icting permissions to be assigned to the
same role by error (or malice). Con
ict de�ned in terms of permissions eliminates
this possibility. In the real world, con
icting users should be also considered. For
example, for the process of preparing and approving purchase orders, it might be
company policy that members of the same family should not prepare the purchase
order, and also be a user who approves that order.
RCL 2000 has two non-deterministic functions, oneelement and allother. The

oneelement(X) function allows us to get one element xi from set X.We usually write
oneelement as OE. Multiple occurrences of OE(X) in a single RCL 2000 statement
all select the same element xi from X. With allother(X) we can get a set by taking
out one element. We usually write allother as AO. These two non-deterministic
functions are related by context, because for any set S , fOE(S)g [AO(S) = S , and
at the same time, neither is a deterministic function.
In order to illustrate how to use these two functions to specify role-based con-

8 � G.-J. Ahn and R. Sandhu

straints, we take the requirement of static separation of duty (SOD) property which
is the simplest variation of SOD. For simplicity assume there is no role hierarchy
(otherwise replace roles by roles�).

Requirement: No user can be assigned to two con
icting roles. In other
words, con
icting roles cannot have common users. We can express this
requirement as below.
Expression: j roles(OE(U)) \ OE(CR) j� 1

OE(CR) means a con
icting role set and the function roles(OE(U)) returns all roles
which are assigned to a single user OE(U). Therefore this statement ensures that
a single user cannot have more than one con
icting role from the speci�c role
set OE(CR). We can interpret the above expression as saying that if a user has
been assigned to one con
icting role, that user cannot be assigned to any other
con
icting role. We can also specify this property in many di�erent ways using
RCL 2000, such as OE(OE(CR)) 2 roles(OE(U)) =) AO(OE(CR)) \ roles(OE(U)) = �

or user(OE(OE(CR))) \ user(AO(OE(CR))) = �.
The expression j roles(OE(sessions(OE(U))))\OE(CR) j� 1 speci�es dynamic sep-

aration of duties applied to active roles in a single session as opposed to static
separation applied to user-role assignment. Dynamic separation applied to all ses-
sions of a user is expressed by j roles(sessions(OE(U))) \ OE(CR) j� 1.
A permission-centric formulationof separation of duty is speci�ed as roles(OE(OE(CP)))\

roles(AO(OE(CP))) = �. The expression roles(OE(OE(CP))) means all roles which
have a con
icting permission from say cpi , and roles(AO(OE(CP))) stands for all
roles which have other con
icting permissions from the same con
icting permission
set cpi . This formulation leaves open the particular roles to which con
icting per-
missions are assigned but requires that they be distinct. This is just a sampling of
the expressive power of RCL 2000 to be discussed in section 4.
RCL 2000 system functions do not include a time or state variable in their struc-

ture. So we assume that each function considers the current time or state. For
example, the sessions function maps a user ui to a set of current sessions which
are established by user ui . Elimination of time or state from the language simpli�es
its formal semantics. RCL 2000 thereby cannot express history or time-based con-
straints. It will need to be extended to incorporate time or state for this purpose.
As a general notational device we have the following convention.

|For any set valued function f de�ned on set X,
We understand f (X) = f (x1) [f (x2) [:::[f (xn), where X=fx1; x2; x3; :::; xng.

For example, suppose we want to get all users who are assigned to a set of roles R =
fEmployee;Engineer1;Engineer2g. We can express this using the function user(R)
as equivalent to user(Employee) [user(Engineer1) [user(Engineer2).

2.2 Syntax of RCL 2000

The syntax of RCL 2000 is de�ned by the syntax diagram and grammar given in
�gure 5. The rules take the form of
ow diagrams. The possible paths represent
the possible sequence of symbols. Starting at the beginning of a diagram, a path
is followed either by transferring to another diagram if a rectangle is reached or by
reading a basic symbol contained in a circle. Backus Normal Form (BNF) is also

Role-based Authorization Constraints Speci�cation � 9

token

expression

statement

token

token

size

set

|

expression

statement

expression

>

< > =< >= ==

| set

function (set

op

)

term

term|

term

(OE

(AO

|

op ::=2j \ j [

size ::= � j 1 j ::: j N

set ::= U j R j OP j OBJ j P j S j CR j CP j CU

function ::= user j roles j roles� j sessions j permissions j permissions� j

operations j object j OE j AO

Fig. 5. Syntax of Language

10 � G.-J. Ahn and R. Sandhu

used to describe the grammar of RCL 2000 as shown in the bottom of �gure 5.
The symbols of this form are: ::= meaning \is de�ned as" and j meaning \or."
Figure 5 shows that RCL 2000 statements consist of an expression possibly followed
by implication (=)) and another expression. Also RCL 2000 statements can be
recursively combined with logical AND operator (^). Each expression consists of a
token followed by a comparison operator and token, size, set, or set with cardinality.
Also token itself can be an expression. Each token can be just a term or a term
with cardinality. Each term consists of functions and sets including set operators.
The sets and system functions described earlier in section 2.1 are allowed in this
syntax. Also, we denote oneelement and allother as OE and AO respectively.

3. FORMAL SEMANTICS OF RCL 2000

In this section we discuss the formal semantics for RCL 2000. We do so by identi-
fying a restricted form of �rst order predicate logic called RFOPL which is exactly
equivalent to RCL 2000. Any property written in RCL 2000, called a RCL 2000
expression, can be translated to an equivalent expression in RFOPL and vice versa.
The syntax of RFOPL is described later in this section. The translation algorithm,
namely Reduction, converts a RCL 2000 expression to an equivalent RFOPL ex-
pression. This algorithm is outlined in �gure 6. Reduction algorithm eliminates AO
function(s) from RCL 2000 expression in the �rst step. Then we translate OE terms
iteratively introducing universal quanti�ers from left to right. If we have nested
OE functions in the RCL 2000 expression, translation will start from innermost OE
terms. This algorithm translates RCL 2000 expression to RFOPL expression in
time O(n), supposing that the number of OE term is n.
For example, the following expression can be converted to RFOPL expression

according to the sequences below.

Example 1

OE(OE(CR)) 2 roles(OE(U)) =) AO(OE(CR)) \ roles(OE(U)) = �

(1) OE(OE(CR)) 2 roles(OE(U)) =) (OE(CR)� fOE(OE(CR))g) \ roles(OE(U)) = �

(2) 8 cr 2 CR: OE(cr) 2 roles(OE(U)) =) (cr � fOE(cr)g) \ roles(OE(U)) = �

(3) 8 cr 2 CR, 8 r 2 cr : r 2 roles(OE(U)) =) (cr � frg) \ roles(OE(U)) = �

(4) 8 cr 2 CR, 8 r 2 cr , 8 u 2 U: r 2 roles(u) =) (cr � frg) \ roles(u) = �

Example 2

j roles(OE(U)) \ OE(CR) j � 1

(1) 8 u 2 U :j roles(u) \ OE(CR) j � 1

(2) 8 u 2 U, 8 cr 2 CR :j roles(u) \ cr j � 1

The resulting RFOPL expression will have the following general structure.

(1) The RFOPL expression has a (possibly empty) sequence of universal quanti�ers
as a left pre�x, and these are the only quanti�ers it can have. We call this
sequence the quanti�er part.

Role-based Authorization Constraints Speci�cation � 11

Reduction Algorithm

Input: RCL 2000 expression ; Output: RFOPL expression

Let Simple-OE term be either OE(set), or OE(function(element)), where
set is an element of fU, R, OP, OBJ, P, S, CR, CU, CP, cr, cu, cpg and
function is an element of fuser, roles, roles�, sessions, permissions, permissions�,
operations, objectg
1. AO elimination

replace all occurrences of AO(expr) with (expr - fOE(expr)g);
2. OE elimination

While There exists Simple-OE term in RCL 2000 expression
choose Simple-OE term;
call reduction procedure;

End

Procedure reduction

case (i) Simple-OE term is OE(set)
create new variable x ;
put 8x 2 set to right of existing quanti�er(s);
replace all occurrences of OE(set) by x ;

case (ii) Simple-OE term is OE(function(element))
create new variable x ;
put 8x 2 function(element) to right of existing quanti�er(s);
replace all occurrences of OE(function(element)) by x ;

End

Fig. 6. Reduction

Construction Algorithm

Input: RFOPL expression ; Output: RCL 2000 expression

1. Construction RCL 2000 expression from RFOPL expression
While There exists a quanti�er in RFOPL expression

choose the rightmost quanti�er 8 x 2 X;
pick values x and X from the chosen quanti�er;
replace all occurrences of x by OE(X);

End

2. Replacement of AO
if there is (expr - fOE(expr)g) in RFOPL expression
replace it with AO(expr);

Fig. 7. Construction

12 � G.-J. Ahn and R. Sandhu

op
term

))function element

,

set element) - { })

element

Fig. 8. Syntax of restricted FOPL expression

(2) The quanti�er part will be followed by a predicate separated by a colon (:), i.e.,
universal quanti�er part : predicate

(3) The predicate has no free variables or constant symbols. All variables are
declared in the quanti�er part, e.g., 8 r 2 R, 8 u 2 U : r 2 roles(u).

(4) The order of quanti�ers is determined by the sequence of OE elimination. In
some cases this order is important so as to re
ect the nesting of OE terms in the
RCL 2000 expression. For example, in 8 cr 2 CR, 8 r 2 cr ,8 u 2 U : predicate;
the set cr , which is used in the second quanti�er, must be declared in a previous
quanti�er as an element, such as cr in the �rst quanti�er.

(5) Predicate follows most of rules in the syntax of RCL 2000 except term syntax
in �gure 5. Figure 8 shows the syntax which predicate should follow to express
term.

Because the reduction algorithm has non-deterministic choice for reduction of OE
term, we may have several RFOPL expressions that are translated from a RCL 2000
expression. As we will see in lemma 4 these expressions are logically equivalent, so
it does not matter semantically which one is obtained.
Next, we discuss the algorithm Construction that constructs a RCL 2000 ex-

pression from an RFOPL expression. The algorithm is described in �gure 7. This
algorithm repeatedly chooses the rightmost quanti�er in RFOPL expression and
constructs the corresponding OE term by eliminating the variable of that quanti�er.
After all quanti�ers are eliminated the algorithm constructs AO terms according to
the formal de�nition of AO function. The running time of the algorithm obviously
depends on the number of quanti�ers in RFOPL expression.
For example, the following RFOPL expression can be converted to RCL 2000

expression according to the sequence described below.
RFOPL expression:
8 cr 2 CR, 8 r 2 cr , 8 u 2 U: r 2 roles(u) =) (cr � frg) \ roles(u)=�

RCL 2000 expression :

(1) 8 cr 2 CR, 8 r 2 cr : r 2 roles(OE(U)) =) (cr � frg) \ roles(OE(U))=�

(2) 8 cr 2 CR: OE(cr) 2 roles(OE(U)) =) (cr � fOE(cr)g) \ roles(OE(U))=�

(3) OE(OE(CR)) 2 roles(OE(U)) =) (OE(CR)� fOE(OE(CR))g) \ roles(OE(U))=�

(4) OE(OE(CR)) 2 roles(OE(U)) =) AO(OE(CR)) \ roles(OE(U))=�

Role-based Authorization Constraints Speci�cation � 13

Unlike the reduction algorithmwe can observe the following lemma,where C(expr)
denotes the RCL 2000 expression constructed by Construction algorithm.

Lemma 1. C(�) always gives us the same RCL 2000 expression �.

Proof: Construction algorithmalways choose the rightmost quanti�ers to construct
RCL 2000 expression from RFOPL expression. This procedure is deterministic.
Therefore, given RFOPL expression �, we will always get the same RCL 2000
expression �. 2

We introduced two algorithms, namely Reduction and Construction, that can
reduce and construct RCL 2000 expression. Next we show the soundness and
completeness of this relationship between RCL 2000 and RFOPL expressions.

3.1 Soundness Theorem

Let us de�ne the expressions generated during reduction and construction as in-
termediate expression collectively called IE. These expressions have mixed form of
RCL 2000 and RFOPL expressions, that is, they contain quanti�ers as well as OE
terms. Note that RCL 2000 and RFOPL expressions are also intermediate expres-
sions.
In order to show the soundness of RCL 2000, we introduce the following lemma.

Lemma 2. If the intermediate expression
 is derived from RCL 2000 expression
� by reduction algorithm in k iterations then construction algorithm applied to

will terminate in exactly k iterations.

Proof: It is obvious that
 has k quanti�ers because the reduction algorithm
generates exactly one quanti�er for each iteration. Now the construction algorithm
eliminates exactly one quanti�er per iteration, and will therefore terminate in k
iterations. 2

This leads to the following theorem, where R(expr) denotes the RFOPL expres-
sion translated by Reduction algorithm. We de�ne all occurrences of same OE term
in an intermediate expression as a distinct OE term.

Theorem 1. Given RCL 2000 expression �, � can be translated into RFOPL
expression �. Also � can be reconstructed from �. That is, C(R(�)) = �.

Proof: Let us de�ne Cn as n iterations of reduction algorithm, and Rn as n
iterations of reduction algorithm. We will prove the stronger result that Cn (Rn (�))
= � by induction on the number of iterations in reduction R (or, C under the result
of lemma 2).
Basis: If the number of iterations n is 0, the theorem follows trivially.
Inductive Hypothesis: We assume that if n=k , this theorem is true.
Inductive Step: Consider the intermediate expression
 translated by reduction
algorithm in k + 1 iterations. Let

0

be the intermediate expression translated by
reduction algorithm in the k th iteration.
 di�ers from

0

in having an additional
rightmost quanti�er and one less distinct OE term. Applying the construction algo-
rithm to
, eliminates this rightmost quanti�er and brings back the same OE term in
all its occurrences. Thus the construction algorithm applied to
 gives us

0

. From
this intermediate expression

0

, we can construct � due to the inductive hypothesis.
This completes the inductive proof. 2

14 � G.-J. Ahn and R. Sandhu

3.2 Completeness Theorem

In order to show the completeness of RCL 2000 relative to RFOPL, we introduce
the following lemma analogous to lemma 2.

Lemma 3. If the intermediate expression
 is derived from RFOPL expression
� by construction algorithm in k iterations then reduction algorithm applied to

will terminate in exactly k iterations.

Proof: It is obvious that
 has k distinct OE terms because the construction algo-
rithm generates exactly one distinct OE term for each iteration. Now the reduction
algorithm eliminates exactly one distinct OE term per iteration, and will therefore
terminate in k iterations. 2

Next we prove our earlier claim that even though the reduction algorithm is
non-deterministic, all RFOPL expressions translated from the same RCL 2000 ex-
pression will be logically equivalent. More precisely we prove the following result.

Lemma 4. Let � be an intermediate expression. If R(�) gives us �1 and �2, �1
6= �2 then �1 � �2.

Proof: The proof is by induction on the number n of OE terms in �.
Basis: If n is 0 the lemma follows trivially.
Inductive Hypothesis: We assume that if n=k , this lemma is true.
Inductive Step: Let n = k+1. By de�nitionR reduces a simple OE term. Clearly
the choice of variable symbol used for this term is not signi�cant. The choice of
term does not matter so long as it is a simple term. Thus all choices for reducing
a simple OE term are equivalent. The Lemma follows by induction hypothesis. 2

The �nal step to our desired completeness result is obtained below.

Lemma 5. There exists an execution of R such that R(C(�)) = �

Proof: We prove the stronger result that there is an execution of R such that
Rn (C n (�)) = � by induction on the number of iterations in construction C (or, R
under the result of lemma 3).
Basis: If the number of iterations n is 0, the theorem follows trivially.
Inductive Hypothesis: We assume that if n=k , this theorem is true.
Inductive Step: Consider the intermediate expression
 constructed by construc-
tion algorithm in k + 1 iterations. Let

0

be intermediate expression after the k th

iteration.
 di�ers from

0

in having one less quanti�er and one more distinct
OE term. Applying one iteration of the reduction algorithm to
, we can choose
to eliminate this particular OE term and introduce the same variable in the new
rightmost quanti�er. This gives us

0

. By inductive hypothesis from

0

there is an
execution of Rk that will give us �. 2

Putting these facts together, we obtain the theorem which shows the completeness
of RCL 2000, relative to RFOPL.

Theorem 2. Given RFOPL expression �, � can be translated into RCL 2000
expression �. Also any �

0

retranslated from � is logically equivalent to �. That is,
R(C(�)) � �

0

.

Proof: Lemma1 states that C(�) gives us a unique result. Let us call it �. Lemma5
states there is an execution of R that will go back exactly to � from �. Lemma 4

Role-based Authorization Constraints Speci�cation � 15

states that all executions of R for � will give an equivalent RFOPL expression.
The theorem follows. 2

In this section we have given a formal semantics for RCL 2000 and have demon-
strated its soundness and completeness. Any property written in RCL 2000 could
be translated to an expression which is written in a restricted form of �rst order
predicate logic, which we call RFOPL. During the analysis of this translation, we
proved two theorems which support the soundness and completeness of the speci-
�cation language RCL 2000 and RFOPL respectively.

4. EXPRESSIVE POWER OF RCL 2000

In this section we demonstrate the expressive power of RCL 2000 by showing how
it can be used to express a variety of separation of duty (SOD) properties. In [Ahn
2000] it is further shown how the construction of [Sandhu 1996] and [Osborn et al.
2000] to respectively simulatemandatory and discretionary access controls in RBAC
can be expressed in RCL 2000. As a security principle, SOD is a fundamental
technique for prevention of fraud and errors, known and practiced long before the
existence of computers. It is used to formulate multi-user control policies, requiring
that two or more di�erent users be responsible for the completion of a transaction
or set of related transactions. The purpose of this principle is to minimize fraud by
spreading the responsibility and authority for an action or task over multiple users,
thereby raising the risk involved in committing a fraudulent act by requiring the
involvement of more than one individual. A frequently used example is the process
of preparing and approving purchase orders. If a single individual prepares and
approves purchase orders, it is easy and tempting to prepare and approve a false
order and pocket the money. If di�erent users must prepare and approve orders,
then committing fraud requires a conspiracy of at least two, which signi�cantly
raises the risk of disclosure and capture.
Although separation of duty is easy to motivate and understand intuitively, so far

there is no formal basis for expressing this principle in computer security systems.
Several de�nitions of SOD have been given in the literature. For the purpose of
this paper we use the following de�nition.

Separation of duty reduces the possibility for fraud or signi�cant er-
rors (which can cause damage to an organization) by partitioning of tasks
and associated privileges so cooperation of multiple users is required to
complete sensitive tasks.

We have the following de�nition for interpreting SOD in role-based environments.

Role-Based separation of duty ensures SOD requirements in role-
based systems by controlling membership in, activation of, and use of
roles as well as permission assignment.

There are several papers in the literature over the past decade which deal with
separation of duty. During this period various forms of SOD have been identi�ed.
Attempts have been made to systematically categorize these de�nitions. Notably,
Simon and Zurko [Simon and Zurko 1997] provide an informal characterization,
and Gligor et al. [Gligor et al. 1998] provide a formalism of this characterization.
However, this work has signi�cant limitations. It omits important forms of SOD

16 � G.-J. Ahn and R. Sandhu

Properties Expressions

1. SSOD-CR j roles�(OE(U))\ OE(CR) j � 1

2. SSOD-CP j permissions(roles�(OE(U)))\ OE(CP) j � 1

3. Variation of 2 (2) ^ j permissions�(OE(R))\ OE(CP) j � 1

4. Variation of 1 (1) ^ j permissions�(OE(R))\ OE(CP) j � 1
^ permissions(OE(R))\ OE(CP) 6= �=)OE(R)\ OE(CR) 6= �

5. SSOD-CU (1) ^ j user(OE(CR)) \ OE(CU) j � 1

6. Yet another variation (4) ^ (5)

Table 1. Static Separation of Duty

including session-based dynamic SOD needed for simulating lattice-based access
control and Chinese Walls in RBAC [Sandhu 1993; Sandhu 1996]. It also does not
deal with SOD in the presence of role hierarchies. Moreover, as will see, there are
additional SOD properties that have not been identi�ed in the previous literature.
Here, we take a di�erent approach to understand SOD. Rather than simply enu-

merating di�erent kinds of SOD we show how RCL 2000 can be used to specify the
various separation of duty properties.

4.1 Static SOD

Static SOD (SSOD) is the simplest variation of SOD. In table 1 we show our
expression of several forms of SSOD. These include new forms of SSOD which have
not previously been identi�ed in the literature. This demonstrates how RCL 2000
helps us in understanding SOD and discovering new basic forms of it.
Property 1 is the most straightforward property. The SSOD requirement is that

no user should be assigned to two roles which are con
icting each other. In other
words, it means that con
icting roles cannot have common users. RCL 2000 can
clearly express this property. This property is the classic formulation of SSOD
which is identi�ed by several papers including [Gligor et al. 1998; Kuhn 1997;
Sandhu et al. 1996]. It is a role-centric property.
Property 2 follows the same intuition as property 1, but is permission-centric.

Property 2 says that a user can have at most one con
icting permission acquired
through roles assigned to the user. Property 2 is a stronger formulation than prop-
erty 1 which prevents mistakes in role-permission assignment. This kind of property
has not been previously mentioned in the literature. RCL 2000 helps us discover
such omissions in previous work. In retrospect property 2 is an \obvious property"
but there is no mention of this property in over a decade of SOD literature. Even
though property 2 allows more
exibility in role-permission assignment since the
con
icting roles are not prede�ned, it can also generate roles which cannot be used
at all. For example, two con
icting permissions can be assigned to a role. Property
2 simply requires that no user can be assigned to such a role or any role senior to
it, which makes that role quite useless. Thus property 2 prevents certain kinds of
mistakes in role-permissions but tolerates others.
Property 3 eliminates the possibility of useless roles with an extra condition,

jpermissions�(OE(R))\OE(CP) j � 1. This condition ensures that each role can have
at most one con
icting permission without consideration of user-role assignment.
With this new condition, we can extend property 1 in presence of con
icting

Role-based Authorization Constraints Speci�cation � 17

permissions as property 4. In property 4 we have another additional condition that
con
icting permissions can only be assigned to con
icting roles. In other words,
non-con
icting roles cannot have con
icting permissions. The net e�ect is that a
user can have at most one con
icting permission via roles assigned to the user.
Property 4 can be viewed as a reformulation of property 3 in a role-centric man-

ner. Property 3 does not stipulate a concept of con
icting roles. However, we
can interpret con
icting roles to be those that happen to have con
icting per-
missions assigned to them. Thus for every cpi we can de�ne cri = fr 2 R j
cpi \ permissions(r) 6= �g. With this interpretation, properties 3 and 4 are es-
sentially identical. The viewpoint of property 3 is that con
icting permissions get
assigned to distinct roles which thereby become con
icting, and therefore cannot
assigned to the same user. Which roles are deemed con
icting is not determined a
priori but is a side-e�ect of permission-role assignment. The viewpoint of property
4 is that con
icting roles are designated in advance and con
icting permissions must
be restricted to con
icting roles. These properties have di�erent consequences on
how roles get designed and managed but essentially achieve the same objective with
respect to separation of con
icting permissions. Both properties achieve this goal
with much higher assurance than property 1. Property 2 achieves this goal with
similar high assurance but allows for the possibility of useless roles. Thus, even in
the simple situation of static SOD, we have a number of alternative formulations
o�ering di�erent degrees of assurance and
exibility.
Property 5 is a very di�erent property and is also new to the literature. With a

notion of con
icting users, we identify new forms of SSOD. Property 5 says that two
con
icting users cannot be assigned to roles in the same con
icting role set. This
property is useful because it is much easier to commit fraud if two con
icting users
can have di�erent con
icting roles in the same con
icting role set. This property
prevents this kind of situation in role-based systems. A collection of con
icting
users is less trustworthy than a collection of non-con
icting users, and therefore
should not be mixed up in the same con
icting role set. This property has not
been previously identi�ed in the literature.
We also identify a composite property which includes con
icting users, roles and

permissions. Property 6 combines property 4 and 5 so that con
icting users cannot
have con
icting roles from the same con
ict set while assuring that con
icting roles
have at most one con
icting permission from each con
icting permission sets. This
property supports SSOD in user-role and role-permission assignment with respect
to con
icting users, roles, and permissions.

4.2 Dynamic SOD

In RBAC systems, a dynamic SOD (DSOD) property with respect to the roles acti-
vated by the users requires that no user can activate two con
icting roles. In other
words, con
icting roles may have common users but users can not simultaneously
activate roles which are con
icting each other. From this requirement we can ex-
press user-based Dynamic SOD as property 1. We can also identify a Session-based
Dynamic SOD property which can apply to the single session as property 2. We can
also consider these properties with con
icting users such as property 1-1 and 2-1.
Additional analysis of dynamic SOD properties based on con
icting permissions
can also be pursued as was done for static SOD.

18 � G.-J. Ahn and R. Sandhu

Properties Expressions

1. User-based DSOD j roles�(sessions(OE(U)))\ OE(CR) j � 1
1-1. User-based DSOD with CU j roles�(sessions(OE(OE(CU))))\ OE(CR) j � 1
2. Session-based DSOD j roles�(OE(sessions(OE(U))))\ OE(CR) j � 1
2-1. Session-based DSOD with CU j roles�(OE(sessions(OE(OE(CU)))))\ OE(CR) j � 1

Table 2. Dynamic Separation of Duty

5. CONCLUSION

In this paper we have described the speci�cation language RCL 2000. This lan-
guage is built on RBAC96 components and has two non-deterministic functions
OE and AO. We have given a formal syntax and semantics for RCL 2000 and have
demonstrated its soundness and completeness. Any property written in RCL 2000
could be translated to an expression which is written in a restricted form of �rst
order predicate logic, which we call RFOPL. During the analysis of this transla-
tion, we proved two theorems which support the soundness and completeness of the
speci�cation language RCL 2000 and RFOPL respectively.
RCL 2000 provides us a foundation for studying role-based authorization con-

straints. It is more natural and intuitive than RFOPL. The OE and AO operators
were intuitively motivated by Chen and Sandhu [Chen and Sandhu 1995] and for-
malized in RCL 2000. They provide a viable alternative to reasoning in terms of
long strings of universal quanti�ers. Also the same RCL 2000 expression has multi-
ple but equivalent RFOPL formulations indicating that there is a unifying concept
in RCL 2000.
There is room for much additional work with RCL 2000 and similar speci�cation

languages. The language can be extended by introducing time and state. Analysis
of RCL 2000 speci�cations and their composition can be studied. The e�cient
enforcement of these constraints can also be investigated. A user-friendly front-end
to the language can be developed so that it can be realistically used by security
policy designers.

Acknowledgement

This work is partially supported by the National Science Foundation and the Na-
tional Security Agency.

REFERENCES

Ahn, G.-J. January 2000. The RCL 2000 Language for Specifying Role-Based Authoriza-

tion Constraints. PhD Thesis, George Mason University (Adviser: Ravi Sandhu).

Ahn, G.-J. and Sandhu, R. 1999. The RSL99 language for role-based separation of duty
constraints. In Proceedings of 4th ACM Workshop on Role-Based Access Control (Fairfax,
VA, October 28-29 1999), pp. 43{54. ACM.

Chen, F. and Sandhu, R. 1995. Constraints for role based access control. In Proceedings

of the 1st ACM Workshop on Role-Based Access Control (Gaithersburg, MD, November
30-December 1 1995), pp. 39{46. ACM.

Giuri, L. and Iglio, P. 1996. A formal model for role-based access control with constraints.
In Proceedings of 9th IEEE Computer Security Foundations Workshop (Kenmare, Ireland,
June 1996), pp. 136{145. IEEE.

Role-based Authorization Constraints Speci�cation � 19

Gligor, V. D., Gavrila, S. I., and Ferraiolo, D. 1998. On the formal de�nition of
separation-of-duty policies and their composition. In Proceedings of IEEE Symposium on

Research in Security and Privacy (Oakland, CA, May 1998), pp. 172{183. IEEE.

Jaeger, T. 1999. On the increasing importance of constraints. In Proceedings of 4th ACM

Workshop on Role-Based Access Control (Fairfax, VA, October 28-29 1999), pp. 33{42.
ACM.

Kuhn, D. R. 1997. Mutual exclusion of roles as a means of implementing separation of duty
in role-based access control systems. In Proceedings of 2nd ACM Workshop on Role-Based

Access Control (Fairfax, VA, November 6-7 1997), pp. 23{30. ACM.

Osborn, S., Sandhu, R., and Munawer, Q. 2000. Con�guring role-based access control
to enforce mandatory and discretionary access control policies. ACM Transactions on In-

formation and System Security 3, 2 (May).

Sandhu, R. 1993. Lattice-based access control models. IEEE Computer 26, 11 (November),
9{19.

Sandhu, R., Ferraiolo, D., and Kuhn, R. 2000. The nist model for role-based access
control: Towards a uni�ed standard. In Proceedings of 5th ACM Workshop on Role-Based

Access Control (Berlin, Germany, July 2000). ACM.

Sandhu, R. and Munawer, Q. 1998. How to do discretionary access control using roles. In
Proceedings of 3rd ACM Workshop on Role-Based Access Control (Fairfax, VA, October
22-23 1998), pp. 47{54. ACM.

Sandhu, R. S. 1996. Role hierarchies and constraints for lattice-based access controls. In
E. Bertino Ed., Proc. Fourth European Symposium on Research in Computer Security.
Rome, Italy: Springer-Verlag. Published as Lecture Notes in Computer Science, Computer

Security{ESORICS96.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. 1996. Role-based
access control models. IEEE Computer 29, 2 (February), 38{47.

Simon, R. and Zurko, M. 1997. Separation of duty in role-based environments. In Pro-

ceedings of 10th IEEE Computer Security Foundations Workshop (Rockport, Mass., June
1997), pp. 183{194. ACM.

