
DEMO: Demonstrating a Lightweight Data Provenance
for Sensor Networks

Bilal Shebaro, Salmin Sultana, Shakthidhar Reddy Gopavaram, Elisa Bertino
Cyber Center and CERIAS, Purdue University, West Lafayette, IN 47907, USA

{bshebaro, ssultana, sgopavar, bertino}@purdue.edu

ABSTRACT
The popularity of sensor networks and their many uses in
critical domains such as military and healthcare make them more
vulnerable to malicious attacks. In such contexts, trustworthiness
of sensor data and their provenance is critical for decision-making.
In this demonstration, we present an efficient and secure approach
for transmitting provenance information about sensor data. Our
provenance approach uses light-weight in-packet Bloom filters that
are encoded as sensor data travels through intermediate sensor
nodes, and are decoded and verified at the base station. Our
provenance technique is also able to defend against malicious
attacks such as packet dropping and allows one to detect the
responsible node for packet drops. As such it makes possible
to modify the transmission route to avoid nodes that could be
compromised or malfunctioning. Our technique is designed to
create a trustworthy environment for sensor nodes where only
trusted data is processed.

Categories and Subject Descriptors
E.0 [Data]: General

Keywords
Provenance, Sensor networks, Bloom filters, Malicious attacks,
Data trustworthiness

1. INTRODUCTION
The goal of this work is to demonstrate a secure and light-weight

provenance scheme for wireless sensor networks that can guarantee
secure and efficient data transmission.
Motivations. Sensor networks support the real-time collection and
transmission of large amounts of data from many different sources.
Once acquired by the source sensors, this data is transferred
through intermediate nodes on their way to the base station. In
many application domains, such data is used for real-time decision
making and other critical actions and thus the data must be trusted.
Data provenance represents an important factor that can used,
together with other factors, to assess whether data can be trusted
as it conveys information about data origin, ownership, and usage.
The importance of data provenance is highlighted by Lim et al. [6]
in their approach for assessing of data trustworthiness in sensor
networks, and by showing how untrusted data could lead to severe
failures. Even though several researchers [3, 4] have applied data
provenance in many applications such as databases and workflows,

Copyright is held by the author/owner(s).
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
ACM 978-1-4503-1651-4/12/10.

it is more challenging to build data provenance in sensor networks
due to their limited power budget and processing capabilities, as
well as their dynamic topology [1]. We thus propose a light-weight
provenance encoding and decoding scheme for sensor data based
on Bloom filters to trace the source and the path of every individual
data packet. Our experimental results show that our scheme is
efficient, light-weight and scalable.
Related Work. Conventional provenance security solutions use
cryptography and digital signatures [5] that require encryption,
checksum, and incremental chained signature mechanisms. Syalim
et al. [9] also uses digital signatures for a DAG model of
provenance. Such solutions cannot be applied on sensor networks
due to their specific constrained resources. Vijaykumar et
al. [10] propose a near real-time provenance for application
specific systems that trace the source of data streams after the
process has completed. However, the real time operations in
sensor networks require immediate responses before processing the
data to prevent malicious activities that could cause catastrophic
failures [11]. Other approaches capture provenance of network
packets in the form of per packet tags [7] that store the history of all
nodes. However, such approaches have high memory requirements
especially in large scale sensor networks. Chong at al. [2] proposes
a scheme that embeds the provenance of a data source within a
dataset. However, such approach is not intended as a security
mechanism and does not deal with malicious attacks. Our approach
has been designed to specifically protect from malicious attacks
while at the same time assuring good performance.
Contributions. In this demonstration, we show how provenance of
sensor data is encoded as it travels from the source node towards
the base station at every intermediate node. With a low power
consumption and light-weight processing, the provenance of every
packet is encoded using Bloom filters, which use their cumulative
property to add information of every nodes on its path. The
encoded provenance is finally decoded at the base station node that
verifies its path and the trustworthiness of its data. In the case of
verification failure, the base station performs some further analysis
to determine the cause of the failure. Our approach is able to
differentiate between normal network misbehavior and malicious
attacks, such as packet dropping. Our approach also allows one
to determine and localize the responsible node for such behavior,
so that it is possible to dynamically switch to an alternative trusted
route without affecting the overall network behavior.

Our approach requires a single channel for both data and
provenance as opposed to other approaches that require separate
transmission channels for each [8]. Moreover, it is based on fixed
size Bloom filters in contrast to traditional provenance security
solutions based on cryptography and digital signatures which may
overload the limited sensor resources.

1022

This demonstration paper is organized as follows: Section 2
describes our data provenance mechanism. Then Section 3
introduces the scenarios that we plan to show in order to
demonstrate the various aspects of our approach. Finally some
conclusions are outlined in Section 4.

2. BASIC PROVENANCE SCHEME
Our approach encodes the provenance within the data packet

in a distributed manner, and decodes it at the base station. Each
data packet consists of a sequence number, its own data, and an
in-Bloom filter iBF field containing the provenance. Every sensor
node stores the location of its neighbor nodes that can connect to
directly as well as the packet sequence number of the last seen
packet for every source. This will serve to detect if any packet has
been dropped during the next round of packet transmission, and to
localize the responsible node. In what follows, we will discuss how
provenance is encoded and decoded, as well how dropped packets
are detected and the responsible nodes located.

can be generated in various ways to serve the purpose. To keep the
solution simpler, we transmit packet sequence number to acknowl-
edge a packet. For any j-th packet, a node !! creates a vertex "!

and the vertex ID as follows

"#$! = %&!&'()&* +, (!!, .&/, 01&/!) (5)
= 2"!(.&/ ∣∣ 01&/!)

where .&/ is the sequence number attached to the current packet
and 01&/! is the stored information at !! about the sequence num-
ber of the (3 − 1)-th packet. To update the provenance graph of
the packet, !! then inserts "#$! into the associated iBF. To be noted

Figure 4: Extended provenance framework to detect packet
dropping attack and identify the malicious link. Provenance
encoding at a sensor node. It is a simple extension to the basic
encoding scheme.

that, a node must maintain a per-flow record to store the previous
packet sequence for each data flow passed through it. Whenever
a node processes/forwards a packet, it updates the previous packet
record of the appropriate data flow with the recently process packet
sequence. If a node receives packet from a data flow for which it
has no packet sequence information, then it may use a pre-specified
special purpose identifier, such as 0. It addresses the case of rout-
ing path change where a new node in the path can use this special
identifier for encoding provenance. Moreover, if a node does not
receive packets from a data flow for a long time, it can erase the
previous packet information for that flow to reduce space overhead.
Anyway, the node can get updated and maintain this record when it
receives packets from that flow more frequently.
2. Provenance Decoding at the BS: The BS also stores the se-
quence number of the most recent packet processed for each data
flow. Upon receiving a packet, the BS retrieves the sequence of the
last packet transmitted by the source node from the packet header,
fetches the previous packet sequence for the flow from its local
storage and then compares these two sequence numbers. If there is
no packet dropping attack, each node in the path as well as the BS
receives all packets in the flow and thus possesses the same previ-
ous packet sequence. Otherwise, if the BS observes a difference
between these two sequence numbers, it infers about a possible
packet loss and then takes necessary actions to confirm the event
and to localize the faulty link. However, the provenance verifica-
tion and/or collection are performed according to the algorithms 1
and 2, respectively. The only difference is that, the BS now creates
the vertex ID corresponding to a node according to the Eq. 5.
3. Faulty Link Identification using Provenance: Assume, a data
packet $[3] has been dropped at an intermediate node !!. Thus,
the nodes !#, !1, ..., !! received $[3] and updated their lastly seen
packet sequences to .&/[3]. On the contrary, nodes !!+1, ..., !$ as
well as the BS did not observe $[3], They have no way to update

Figure 5: Packet loss detection and faulty link identification
using provenance.

the preceding packet sequence but to retain the same old identifier
.&/[3−1]. Upon receiving the next packet in the flow, !#, !1, ..., !!−1

certainly include .&/[3] in the provenance metadata whereas
!!+1, ..., !$ use .&/[3−1] for this purpose. However, the malicious
node !! may either (i) use .&/[3], which leads the BS to detect 5!
as faulty (ii) use .&/[3 − 1], in which case the link 5(!−1) is identi-
fied as faulty. In any case, an adjacent link to the malicious node is
identified and held responsible for. Without the loss of generality,
we assume that the malicious node encodes .&/[3 − 1].

Figure 5 shows the algorithm to identify an earlier packet loss,
to localize the faulty link, and also to ensure that no other attack
has been encountered on the current packet. It uses the received
iBF to identify the contributing nodes and to collect their encoded
provenance records. For this purpose, it checks the membership
of all nodes in the network within the iBF using a two step pro-
cess. The first query is performed with the previous packet iden-
tifier (01&/) contained in the packet header and the next one with
the sequence number (01&/%) recorded at the BS. Let, the set of
nodes found in the first and second step are respectively 11 = <
!′

#, !
′
1, ..., !

′
(!−1) > and 12 = < !′

!, ..., !
′
$ >. The BF constructed

with 11 and 12 are 891 and 892, respectively. The final Bloom
filter 89& is constructed as a bitwise-OR of 891 and 892. If 89&

and the received iBF #:; completely matches, the event of a packet
loss is confirmed. In this case, the path constructed on the set of
nodes S = 11 < 12 is equivalent to the path = as well as 11 =
< !#, !1, ..., !(!−1) > and 12 = < !!, ..., !$ >. Thus, we can
conclude that the link 5(!−1) is faulty and causes the packet loss.
4. Certification of Attack: To confirm that the faulty link 5(!−1) is
actually malicious (i.e. causes packet dropping attack), the BS ob-
serves more packets. Whenever the BS identifies a packet loss and
the responsible link 5(!−1), it updates the empirical loss rate &5(!−1)

for the link. Assume, the drop rate threshold for a link is >, where
> is greater than the natural loss rate of any link. If after a number
of packet transmissions, &5(!−1) > >, then the BS convicts 5(!−1)

as a malicious link.

Figure 1: Provenance encoding at a sensor node.

2.1 Provenance Encoding
Figure 1 shows the encoding steps of our provenance mechanism

that are performed at every node. Initially when a source node
generates a data packet, it creates a corresponding Bloom filter
(ibf0) initialized to all 0′s. The node then generates a vertex
according to equation 1 below and inserts the vertex ID (VID)
in to ibf0, which then transmits the Bloom filter (BF) as part of
the data packet. At every intermediate node, the VID is generated
dynamically based on the node ID (ni), the current packet sequence
number (seq), the previous packet sequence number from the
same source (pSeq), and the node secret Ki. The provenance is
aggregated at every node using the cumulative nature of Bloom
filters until it reaches the base station with the full encoded
provenance ibf.

(1)

2.2 Provenance Decoding
Figure 2 shows the provenance mechanism decoding steps.

When the base station receives a data packet, it checks for all
possible safe paths of packets from the same source node of this
packet. These paths have been previously saved by the base
station. It then computes the provenance of these paths by using

Figure 2: Provenance decoding at the Base Station (BS).

the information in the packet, and compares it to the provenance
encoded by Bloom filter enclosed with the data packet. If there is a
match, the data is considered for further processing and analysis.
If there is a mismatch, then the arrived data packet has either
taken a new route that could be safe but had not been previously
saved at the base station node, or a previous packet(s) of the same
source node has (have) been dropped while on its way to the base
station. In the former case, the base station traces back the path
and computes the provenance at each node until it reaches the
source node. If the provenance matches, then the base station
adds this new route to its set of safe paths. If there is still
a mismatch, then the data packet has been tampered either by
inserting a malicious node in to the network or by compromising
an existing node. In this case, we check for compromised nodes
and change the route dynamically to avoid such nodes. In the
latter case where a mismatch is caused by a dropped packet,
this dropping may be due to non-malicious network errors, or
to malicious attacks. In the latter case, the base station traces
back the node responsible for dropping packets and analyzes the
frequency of dropped packets by this node to determine whether it
is a normal behavior or an attack. This procedure is executed by
tracing back every intermediate node starting from the base station
and comparing the components used for encoding the provenance,
and finally comparing the node’s last sequence number of the data
packet (pSeq) with the current sequence number of the passing data
packet (Seq) from the corresponding source node.

2.3 Detecting Packet Dropping Attacks
Every intermediate node stores the last sequence number of the

data packet (pSeq) that passed through it for every source node.
When the same source node sends another packet through the same
intermediate node, it uses the (pSeq) together with the current
sequence number of the passing data packet (Seq) to encode the
provenance. This approach helps the base station locate the node
that dropped certain data packets when there is a mismatch in the
provenance by checking the last processed packet coming from the
same source. The base station will be checking the variables at
every intermediate node to find which node dropped the packet that
could have caused the mismatch in the computed provenance. By
comparing its own (pSeq) and (Seq) for the corresponding source

1023

node with every intermediate node in the path, the base station
can determine the responsible node for packet dropping, and it
measures the frequency of dropped packets at that particular node
to determine whether a packet dropped attack exists or not.

3. SCENARIOS
For demonstration purposes, we have simulated the entire sensor

network on a single computer. Each node in the network is running
its own Java program on a separate port acting as a sensor node,
where the network map identifies the nodes by their corresponding
port number. Our goal is to show different scenarios that reflect
the main contribution of our work allowing the audience to interact
with our system and test its efficiency.

Scenario 1: Multiple source nodes will send packets towards the
base station. We will show how the provenance is encoded at every
intermediate node and how it is decoded once it arrives the base
station. The goal is to see the provenance decoding code running at
the base station and to see a matching provenance.

Scenario 2: While source nodes are sending packets to the base
station, some malicious nodes are introduced into the network. The
purpose of this scenario is to show how the base station raises the
flag at untrusted data received by the network.

Scenario 3: We will show how the base station detects packet
dropping attacks and locates the responsible node.

We believe the above scenarios will demonstrate the importance
of our approach by showing its effectiveness and efficiency on
sensor data for secure data transmission. Figure 3 shows how our
audience will visualize the path that every data packet takes and the
Bloom filter provenance encoding at every node as in figure 4.

Figure 3: Complete path of a data packet from source node 12
to base station node 10.

4. CONCLUSION
In this demonstration, we develop a light weight scheme for

securely transmitting provenance for sensor networks. Our scheme
uses Bloom filters to encode and decode the provenance, and
is capable of detecting packet dropping attacks and localizing
malicious sensor nodes as well as to dynamically change the route
of data packets to avoid using such nodes.

5. ACKNOWLEDGMENTS
The work reported in this paper has been partially supported by

the Northrop Grumman Cybersecurity Research Consortium, and
NSF under grants NSF-CNS 0964294 and NSF CNS-1111512.

Figure 4: Final Bloom filter based provenance at the base
station node 10.

6. REFERENCES
[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci.

A survey on sensor networks. Communications Magazine,
IEEE, 40(8):102 – 114, Aug 2002.

[2] S. Chong, C. Skalka, and J. A. Vaughan. Self-identifying
sensor data. In Proceedings of the 9th ACM/IEEE
International Conference on Information Processing in
Sensor Networks, IPSN ’10, pages 82–93, New York, NY,
USA, 2010. ACM.

[3] I. Foster, J. VÃűckler, M. Wilde, and Y. Zhao. Chimera: A
virtual data system for representing, querying, and
automating data derivation. In 14th Conference on Scientific
and Statistical Database Management, pages 37–46, 2002.

[4] A. Ghani and P. Nikander. Secure in-packet bloom filter
forwarding on the netfpga. In Proceedings of the European
NetFPGA Developers Workshop, 2010.

[5] R. Hasan, R. Sion, and M. Winslett. The case of the fake
picasso: Preventing history forgery with secure provenance.

[6] H.-S. Lim, Y.-S. Moon, and E. Bertino. Provenance-based
trustworthiness assessment in sensor networks. In
Proceedings of the Seventh International Workshop on Data
Management for Sensor Networks, DMSN ’10, pages 2–7,
New York, NY, USA, 2010. ACM.

[7] T. M. . F. N. Ramachandran A., Bhandankar K. Packets with
provenance. Technical report, Georgia Institute of
Technology, 2008.

[8] Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data
provenance in e-science. SIGMOD RECORD, 34:31–36,
2005.

[9] A. Syalim, T. Nishide, and K. Sakurai. Preserving integrity
and confidentiality of a directed acyclic graph model of
provenance. In Proceedings of the 24th annual IFIP WG
11.3 working conference on Data and applications security
and privacy, DBSec’10, pages 311–318, Berlin, Heidelberg,
2010. Springer-Verlag.

[10] N. N. Vijayakumar and B. Plale. Towards low overhead
provenance tracking in near real-time stream filtering. In
Proceedings of the 2006 international conference on
Provenance and Annotation of Data, Berlin, 2006.

[11] M. N. Wybourne. National cyber security, research and
development challenges related to economics, physical
infrastructure and human behavior. Technical report, Institute
for Information Infrastructure Protection (I3P), Dartmouth
College, 2009.

1024

