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Abstract—Large-scale sensor networks are being deployed
in numerous application domains, and often the data they
collect are used in decision-making for critical infrastructures.
Data are streamed from multiple sources through intermediate
processing nodes that aggregate information. A malicious
adversary may tamper with the data by introducing addi-
tional nodes in the network, or by compromising existing
ones. Therefore, assuring high data trustworthiness in such a
context is crucial for correct decision-making. Data provenance
represents a key factor in evaluating the trustworthiness of
sensor data. Provenance management for sensor networks
introduces several challenging requirements, such as low en-
ergy and bandwidth consumption, efficient storage and secure
transmission. In this paper, we propose a novel light-weight
scheme to securely transmit provenance for sensor data. The
proposed technique relies on in-packet Bloom filters to encode
provenance. In addition, we introduce efficient mechanisms for
provenance verification and reconstruction at the base station.
We evaluate the proposed technique both analytically and
empirically, and the results prove its effectiveness and efficiency
for secure provenance encoding and decoding.
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I. INTRODUCTION

Sensor networks are becoming increasingly popular in
numerous application domains, such as cyberphysical in-
frastructure systems, environmental monitoring, power grids,
etc. Data are produced at a large number of sensor node
sources and processed in-network at intermediate hops on
their way to a base station that performs decision-making.
The diversity of data sources creates the need to assure the
trustworthiness of data, such that only trustworthy informa-
tion is considered in the decision process. Data provenance
is an effective method to assess data trustworthiness, since
it summarizes the history of ownership and the actions
performed on the data. Recent research [1] highlighted the
key contribution of provenance in systems where the use of
untrustworthy data may lead to catastrophic failures (e.g.,
SCADA systems for critical infrastructure). Although prove-
nance modeling, collection, and querying have been inves-
tigated extensively for workflows and curated databases [2],
[3], provenance in sensor networks has not been properly
addressed. In this paper, we investigate the problem of secure
and efficient provenance transmission and processing for
sensor networks.

In a multi-hop sensor network, data provenance allows
the base station to trace the source and forwarding path of
an individual data packet since its generation. Provenance
must be recorded for each data packet, but important chal-
lenges arise due to the tight storage, energy and bandwidth
constraints of the sensor nodes. Therefore, it is necessary

to devise a light-weight provenance solution which does not
introduce significant overhead. Furthermore, sensors often
operate in an untrusted environment, where they may be
subject to attacks. Hence, it is necessary to address security
requirements such as confidentiality, integrity and freshness
of provenance. Our goal is to design a provenance encoding
and decoding mechanism that satisfies such security and per-
formance needs. We propose a provenance encoding strategy
whereby each node on the path of a data packet securely
embeds provenance information within a Bloom filter, that
is transmitted along with the data. Upon receiving the data,
the base station extracts and verifies the provenance.

As opposed to existing research that employs separate
transmission channels for data and provenance [4], we only
require a single channel for both. Such an approach is more
practical. Furthermore, traditional provenance security solu-
tions use intensively cryptography and digital signatures [5],
and they employ append-based data structures to store
provenance, leading to prohibitive costs. In contrast, we use
Bloom filters (BF), which are fixed-size data structures that
compactly represent provenance. BFs makes efficient usage
of bandwidth, and even if they only provide probabilistic
decoding guarantees, they yield very low error rates in
practice. Our specific contributions are:

∙ We formulate the problem of secure provenance trans-
mission in sensor networks, and identify the challenges
specific to this context;

∙ We propose an in-packet BF provenance-encoding
scheme;

∙ We design efficient techniques for provenance decoding
and verification at the base station;

∙ We perform a detailed security analysis and perfor-
mance evaluation of the proposed technique.

The rest of the paper is organized as follows: Section II sets
the problem background and describes the system, threat
and security models. Section III introduces the provenance
encoding scheme. Section IV presents the security analy-
sis. Section V provides a theoretical performance analysis,
whereas Section VI presents the experimental evaluation
results for the proposed scheme. We survey related work
in Section VII and conclude in Section VIII.

II. BACKGROUND AND SYSTEM MODEL

In this section, we introduce the network, data and prove-
nance models used. We also present the threat model and
security requirements. Finally, we provide a brief primer on
Bloom filters, their fundamental properties and operations.
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Figure 1. Provenance graph for a sensor network.

Network Model. We consider a multihop wireless sensor
network, consisting of a number of sensor nodes and a base
station (BS) that collects data from the network. The network
is modeled as a graph 𝐺(𝑁,𝐿), where 𝑁 = {𝑛𝑖∣, 1 ≤ 𝑖 ≤
∣𝑁 ∣} is the set of nodes, and 𝐿 is the set of links, containing
an element 𝑙𝑖,𝑗 for each pair of nodes 𝑛𝑖 and 𝑛𝑗 that are
communicating directly with each other. Sensor nodes are
stationary after deployment, but routing paths may change
over time, e.g., due to node failure. Each node reports its
neighboring (i.e. one hop) node information to the BS after
deployment. The BS assigns each node a unique identifier
𝑛𝑜𝑑𝑒𝐼𝐷 and a symmetric cryptographic key 𝐾𝑖. In addition,
a set of hash functions 𝐻 = {ℎ1, ℎ2, ..., ℎ𝑘} are broadcast
to the nodes to use during provenance embedding.

Data Model. We assume a multiple-round process of data
collection. Each sensor node generates data periodically,
and individual values are routed and aggregated towards
the BS using any existing hierarchical (i.e., tree-based)
dissemination scheme, e.g., [6]. A data path of 𝑝 hops is
represented as < 𝑛𝑙, 𝑛1, 𝑛2, ..., 𝑛𝑝 >, where 𝑛𝑙 is a leaf
node representing the data source, and node 𝑛𝑖 is 𝑖 hops
away from 𝑛𝑙. Each non-leaf node in the path aggregates the
received data and provenance with its own locally-generated
data and provenance.

Each data packet contains (i) a unique packet sequence
number (ii) a data value, and (iii) provenance. The sequence
number is attached to the packet by the data source, and all
nodes use the same sequence number for a given round [7].
The sequence number integrity is ensured through message
authentication codes (MAC), as discussed in Section III.

Provenance Model. We consider node-level provenance,
which encodes the nodes that are involved at each step
of data processing. This representation has been used in
previous research for trust management [1] and for detecting
selective forwarding attacks [8].

Given a data packet 𝑑, its provenance is modeled as a
directed acyclic graph 𝐺(𝑉,𝐸) where each vertex 𝑣 ∈ 𝑉 is
attributed to a specific node 𝐻𝑂𝑆𝑇 (𝑣) = 𝑛 and represents
the provenance record (i.e. nodeID) for that node. Each
vertex in the provenance graph is uniquely identified by a
vertex ID (VID) which is generated by the host node using

cryptographic hash functions. The edge set 𝐸 consists of
directed edges that connect sensor nodes.

Definition 1 (Provenance): Given a data packet 𝑑, the
provenance 𝑝𝑑 is a directed acyclic graph G(V,E) satisfying
the following properties: (1) 𝑝𝑑 is a subgraph of the sensor
network 𝐺(𝑁,𝐿); (2) for 𝑣𝑖, 𝑣𝑗 ∈ V, 𝑣𝑖 is a child of 𝑣𝑗 if
and only if HOST (𝑣𝑖) = 𝑛𝑖 participated in the distributed
calculation of 𝑑 and/or forwarded the data to HOST (𝑣𝑗)
=𝑛𝑗 ; (3) for a set U = {𝑣𝑖} ⊂ V and 𝑣𝑗 ∈ V, U is a
set of children of 𝑣𝑗 if and only if HOST (𝑣𝑗) collects
processed/forwarded data from each HOST(𝑣𝑖 ∈ U) to
generate the aggregated result.

Figure 1 shows two provenance examples in sensor net-
works. In Figure 1(a), the leaf node 𝑛𝑙 generates a data
packet 𝑑 and each intermediate node aggregates its own
sensory data with 𝑑 then forwards it towards the BS. Hence,
the provenance corresponding to 𝑑 is < 𝑣𝑙, 𝑣1, 𝑣2, 𝑣3 >,
which can be represented as a simple path. In Figure 1(b),
the internal node 𝑛1 generates the data 𝑑 by aggregating data
𝑑1 , ..., 𝑑4 from 𝑛𝑙1 , ..., 𝑛𝑙4 and then passes 𝑑 towards the
BS. Here, 𝑛1 is an aggregator and the aggregated provenance
< {𝑣𝑙1 , 𝑣𝑙2 , 𝑣𝑙3 , 𝑣𝑙4}, 𝑣1, 𝑣2, 𝑣3 > is represented as a tree.

Threat Model and Security Objectives. We assume that
the BS is trusted, but any other arbitrary node may be
malicious. An adversary can eavesdrop and perform traffic
analysis anywhere on the path. In addition, the adversary is
able to deploy a few malicious nodes, as well as compromise
a few legitimate nodes by capturing them and physically
overwriting their memory. These malicious nodes might
collude to attack the system. If an adversary compromises a
node, it can extract all key materials, data, and codes stored
on that node. The adversary may drop, inject or alter packets
on the links that are under its control. We do not consider
denial of service attacks such as the complete removal of
provenance, since a data packet with no provenance records
will make the data highly suspicious [5] and hence generate
an alarm at the BS. Instead, the primary concern is that an
attacker attempts to misrepresent the data provenance. Our
objective is to achieve the following security properties:
∙ Confidentiality: An adversary cannot gain any knowl-

edge about data provenance by analyzing the contents
of a packet. Only authorized parties (e.g., the BS) can
process and check the integrity of provenance.

∙ Integrity: An adversary, acting alone or colluding with
others, cannot add or remove non-colluding nodes from
the provenance of benign data (i.e. data generated by
benign nodes) without being detected.

∙ Freshness: An adversary cannot replay captured data
and provenance without being detected by the BS.

Bloom Filters (BF). A Bloom filter is a space-efficient
data structure for probabilistic representation of a set of
items 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} using an array of 𝑚 bits with
𝑘 independent hash functions ℎ1, ℎ2, ..., ℎ𝑘. The output of
each hash function ℎ𝑖 maps an item 𝑠 uniformly to the
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Figure 2. A Bloom filter with 𝑛 = 4, 𝑚 = 16 and 𝑘 = 3.

range [0, m-1] and is interpreted as an index pointing to
a bit in a 𝑚-bit array. Hence, the BF can be represented as
{𝑏0, . . . , 𝑏𝑚−1}. Initially each of the 𝑚 bits is set to 0.

To insert an element 𝑠 ∈ 𝑆 into a BF, 𝑠 is hashed with all
the 𝑘 hash functions producing the values ℎ𝑖(𝑠)(1 ≤ 𝑖 ≤ 𝑘).
The bits corresponding to these values are then set to 1 in the
bit array. Figure 2 illustrates an example of BF insertion.To
query the membership of an item 𝑠′ within 𝑆, the bits at
indices ℎ𝑖(𝑠

′)(1 ≤ 𝑖 ≤ 𝑘) are checked. If any of them is 0,
then certainly 𝑠′ ∕∈ 𝑆. Otherwise, if all of the bits are set to
1, 𝑠′ ∈ 𝑆 with high probability. There exists a possibility of
error which arises due to hashing collision that makes the
elements in 𝑆 collectively causing indices ℎ𝑖(𝑠

′) being set
to 1 even if 𝑠′ ∕∈ 𝑆. This is called a false positive. Note that,
there is no false negative in the BF membership verification.

The cumulative nature of BF construction inherently sup-
ports the aggregation of BFs of a same kind, by performing
bitwise-OR between the bitmaps.

III. SECURE PROVENANCE SCHEME

We propose a distributed mechanism to encode prove-
nance in a data packet and a centralized algorithm at the BS
to decode the provenance. The technical core of our proposal
is an in-packet Bloom filter (iBF) [9]. Each packet consists
of a unique sequence number, data value, and an iBF which
holds the provenance. We focus on transmitting provenance
graph vertices over an iBF.

We emphasize that our focus is on securely transmitting
provenance to the BS. In an aggregation infrastructure,
securing the data values is also an important aspect, but that
has been already addressed in previous work (e.g., [10]). Our
secure provenance technique can be used in conjunction with
existing work to obtain a complete solution that provides
security for data, provenance and data-provenance binding.

A. Provenance Encoding

For a data packet, provenance encoding refers to generat-
ing the vertices in the provenance graph and inserting them
into the iBF. Each vertex originates at a node in the data
path and represents the provenance record of the host node.
A vertex is uniquely identified by the vertex ID (VID). The
VID is generated per-packet based on the packet sequence
number (𝑠𝑒𝑞) and the secret key 𝐾𝑖 of the host node. We
use a block cipher function to produce this ID in a secure
manner. Thus for a given data packet, the VID of a vertex
representing the node 𝑛𝑖 is computed as

𝑣𝑖𝑑𝑖 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑉 𝐼𝐷(𝑛𝑖, 𝑠𝑒𝑞) = 𝐸𝐾𝑖
(𝑠𝑒𝑞) (1)

where 𝐸 is a secure block cipher such as AES, etc.
Whenever a source node generates a data packet, it also

creates a BF (referred to as 𝑖𝑏𝑓0), initialized to all 0’s. The
source then generates a vertex according to Eq. 1, inserts the
VID into 𝑖𝑏𝑓0 and transmits the BF as a part of the packet.

Upon receiving the packet, each intermediate node 𝑛𝑗

performs data as well as provenance aggregation. If 𝑛𝑗

receives data from a single child 𝑛𝑗−1, it aggregates the
partial provenance contained in the packet with its own
provenance record. In this case, the iBF 𝑖𝑏𝑓𝑗−1 belonging to
the received packet represents a partial provenance i.e. the
provenance graph of the sub-path from the source upto 𝑛𝑗−1.
On the other hand, if 𝑛𝑗 has more than one child, it generates
an aggregated provenance from its own provenance record
and the partial provenance received from its child nodes.
At first, 𝑛𝑗 computes a BF 𝑖𝑏𝑓(𝑗−1) by bitwise-ORing the
iBFs received from the children. 𝑖𝑏𝑓𝑗−1 represents a partial
but aggregated provenance from all of the child nodes. In
either case, the ultimate aggregated provenance is generated
by encoding the provenance record of 𝑛𝑗 into 𝑖𝑏𝑓(𝑗−1). To
this end, 𝑛𝑗 creates a vertex using Eq. 1, inserts the VID
into 𝑖𝑏𝑓(𝑗−1) which is then referred to as 𝑖𝑏𝑓𝑗 .

When the packet reaches the BS, the iBF contains the
provenance records of all the nodes in the path i.e. the full
provenance. We denote this final record by 𝑖𝑏𝑓 .

Example: We illustrate the encoding mechanism by using
the example network in Fig. 3(a). The data path considered
is < 1, 4, 7 >, where node 1 is the data source. We use a
10-bit BF and a set of 3 hash functions 𝐻 = {ℎ1, ℎ2, ℎ3}
for BF operations. When node 1 generates a data packet
with sequence number 𝑠𝑒𝑞, it creates the BF 𝑖𝑏𝑓0 which is
set to all 0’s. The node then creates a vertex corresponding
to its provenance record and computes the VID as 𝑣𝑖𝑑1 =
𝐸𝐾1

(𝑠𝑒𝑞). To insert 𝑣𝑖𝑑1 into 𝑖𝑏𝑓0, node 1 generates three
indices as ℎ1(𝑣𝑖𝑑1) = 1, ℎ2(𝑣𝑖𝑑1) = 3, ℎ3(𝑣𝑖𝑑1) = 8. The
VID is then inserted by setting 𝑖𝑏𝑓0[1], 𝑖𝑏𝑓0[3], and 𝑖𝑏𝑓0[8]
to 1. The updated 𝑖𝑏𝑓0 along with the packet is then sent
towards the BS.

Upon receiving the packet, node 4 performs data and
provenance aggregation. Since the node has one child, it
only aggregates its own provenance record with 𝑖𝑏𝑓0. For
this purpose, the node generates a VID 𝑣𝑖𝑑4; computes 3
indices as ℎ1(𝑣𝑖𝑑4) = 3, ℎ2(𝑣𝑖𝑑4) = 6, ℎ3(𝑣𝑖𝑑4) = 9; and
inserts 𝑣𝑖𝑑4 into 𝑖𝑏𝑓0 by setting bits 3, 6, 9 of the iBF to
1. This updated iBF is referred to as 𝑖𝑏𝑓1. The data packet
with 𝑖𝑏𝑓1 is then forwarded to node 7 which repeats the
provenance aggregation steps. At the end, the BS receives
the packet with the final iBF (𝑖𝑏𝑓2 from node 7) and stores
this iBF for further processing.

B. Provenance Decoding

When the BS receives a data packet, it executes the
provenance verification process, which assumes that the BS
knows what the data path should be, and checks the iBF to
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(a) (b)

Figure 3. (a) Mechanism for encoding provenance (node 1 is data source). (b) Provenance processing workflow at the BS upon receiving a packet.

see whether the correct path has been followed. However,
right after network deployment, as well as when the topology
changes (e.g., due to node failure), the path of a packet sent
by a source may not be known to the BS. In this case, the
provenance collection process is executed, which retrieves
provenance from the received iBF and thus the BS learns the
data path from a source node. Afterwards, upon receiving a
packet, it is sufficient for the BS to verify its knowledge of
provenance with that in the packet. Below we discuss these
two processes in more details:

Algorithm 1 ProvenanceVerification

Input: Received packet with sequence seq and iBF ibf.
Set of hash functions 𝐻 , Data path 𝑃 ′ = < 𝑛′

𝑙1
, ..., 𝑛′

1, ..., 𝑛
′
𝑝 >

𝐵𝐹𝑐 ← 0 // Initialize Bloom Filter

for each 𝑛′
𝑖 ∈ 𝑃 do

𝑣𝑖𝑑′𝑖 = generateVID (𝑛′
𝑖, 𝑆𝑒𝑞 𝑁𝑜)

insert 𝑣𝑖𝑑′𝑖 into 𝐵𝐹 𝑐 using hash functions in 𝐻
endfor
if (𝐵𝐹𝑐 = 𝑖𝑏𝑓 ) then

return true // Provenance is verified
endif

return false

Provenance Verification: The BS conducts the verifica-
tion process not only to verify its knowledge of provenance
but also to check the integrity of the transmitted provenance.
Algorithm 1 shows the steps to verify provenance for a given
packet. We assume that the knowledge of the BS about this
packets path is 𝑃 . At first, the BS initializes a Bloom filter
𝐵𝐹𝑐 with all 0s. The BF is then updated by generating
the VID for each node in the path 𝑃 and inserting this ID
into the BF. 𝐵𝐹𝑐 now reflects the perception of BS about
the encoded provenance. To validate its perception, the BS
then compares 𝐵𝐹𝑐 to the received iBF 𝑖𝑏𝑓 . The provenance
verification succeeds only if 𝐵𝐹𝑐 is equal to 𝑖𝑏𝑓 . Otherwise,

if 𝐵𝐹𝑐 differs from the received iBF, it indicates either a
change in the data flow path or a BF modification attack. The
verification failure triggers the provenance collection process
which attempts to retrieve the nodes from the encoded
provenance and also to distinguish between the events of
a path change and an attack.

Provenance Collection: As illustrated in Algorithm 2, the
provenance collection scheme makes a list of potential ver-
tices in the provenance graph through the 𝑖𝑏𝑓 membership
testing over all the nodes. For each node 𝑛𝑖 in the network,
the BS creates the corresponding vertex (i.e. 𝑣𝑖 with VID
𝑣𝑖𝑑𝑖) using Eq. 1. The BS then performs the membership
query of 𝑣𝑖𝑑𝑖 within 𝑖𝑏𝑓 . If the algorithm returns true, the
vertex is very likely present in provenance, i.e., the host node
𝑛𝑖 in the data path. Such an inference might introduce errors
because of false positives (a node not on the route is inferred
to be on the route). However, as shown in Section V, the
false positive probability obtained is very low.

Once the BS finalizes the set of potential candidate nodes
S = < 𝑛′𝑙1 , ..., 𝑛

′
1, 𝑛

′
2, ..., 𝑛

′
𝑝 >, it executes the provenance

verification algorithm on this set. This step is required to
distinguish between the cases of a legitimate route change
and that of malicious activity. If the verification succeeds,
we decide that there was a natural change in the data path
and we have been able to determine the path correctly.
Otherwise, an attack has occurred.

A possible attack is the all-one attack where all bits in
the provenance are set to 1, which implies the presence of
all nodes in the provenance. To address the issue, we use a
density metric 𝛾 introduced in [11]. 𝛾 reflects the number of
1’s in the provenance (i.e. the iBF) as a fraction of the total
size. To consider the provenance valid, we require that the
density is equal or below a certain threshold: 𝛾 ≤ 𝛾𝑚𝑎𝑥.
Such a requirement is reasonable since in a BF with 𝑛

elements and 𝑘 hash functions, there may be at most 𝑘𝑛
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bits marked as ’1’. Hence, we can always find an upper
bound for the number of 1’s in a BF. Thus, the maximum
number of allowable 1’s is 𝑚𝛾𝑚𝑎𝑥.

Algorithm 2 ProvenanceCollection

Input: Received packet with sequence seq and iBF ibf.
Set of nodes (𝑁 ) in the network, Set of hash functions 𝐻

1. Initialize

Set of Possible Nodes 𝑆 ←<>
Bloom Filter 𝐵𝐹𝑐 ← 0 // To represent S

2. Determine possible nodes in the path and build the represen-
tative BF

for each node 𝑛𝑖 ∈ 𝑁 do
𝑣𝑖𝑑𝑖 = generateVID (𝑛𝑖, 𝑠𝑒𝑞)

if (𝑣𝑖𝑑𝑖 is in 𝑖𝑏𝑓 ) then
𝑆 ← 𝑆 ∪ 𝑛𝑖

insert 𝑣𝑖𝑑𝑖 into 𝐵𝐹 𝑐 using hash functions in 𝐻
endif

endfor

3. Verify 𝐵𝐹 𝑐 with the received iBF

if (𝐵𝐹𝑐 = 𝑖𝑏𝑓 ) then
return 𝑆 // Provenance has been determined correctly

else
return NULL // Indicates an in-transit attack

endif

Within this bound, an attacker may also randomly flip
some bits to add or delete a legitimate node. The chance
of being successful in this attack is very small since the
attacker has to identify 𝑘 bit positions corresponding to
the node, which again change for each packet. If each
bit is guessed randomly, the probability that the attacker
guesses all of them correctly is given by 1

2𝑚 . Moreover, an
attempt of blindly altering some bits is detected since the
verification process at the end of the provenance collection
phase does not succeed. A successful attack occurs when the
bits set by the attacker (limited by 𝛾𝑚𝑎𝑥) make all the 𝑘 bits
corresponding to a legitimate node turn out to be ’1’. If the
data provenance includes 𝑛 nodes, the 𝑘𝑛 hash results may
map to at least one and at most 𝑚𝛾𝑚𝑎𝑥 bits. Thus a smart
attacker marks upto (𝑚𝛾𝑚𝑎𝑥 − 1) bits. The total number of
bit patterns by (𝑚𝛾𝑚𝑎𝑥 − 1) hash computations is

𝐵 =

(𝑚𝛾𝑚𝑎𝑥− 1)∑
𝑖=1

(
𝑚

𝑖

)

Randomly guessing one of them has 1
𝐵

chance of success.
Hence, the success in manipulation attack has a very small
probability. The workflow shown in Fig. 3(b) summarizes
the provenance decoding process.

IV. SECURITY DISCUSSION

Confidentiality. Provenance is encoded using BF hashing
functions, and the hashed value takes into account the secret
key 𝐾𝑖 of each node as part of the vertex VIDs (Eq. 1),
as well as a unique sequence number. Hence, even if an

attacker collects a large sample of iBFs, it cannot perform
a dictionary attack without knowing the node secret key.

Integrity. First, an attacker cannot add legitimate nodes to
the provenance of data generated by the compromised nodes.
Assume the attacker attempts to frame some uncompromised
nodes < 𝑛𝑙, 𝑛1, 𝑛2, . . . , 𝑛𝑝 > to make them responsible for
false data. Provenance embedding requires the node secret
key 𝐾𝑖 to compute the 𝑉 𝐼𝐷𝑖, which the attacker does not
have. Hence, the attack is not successful.

Second, an attacker cannot selectively add or remove
nodes from the provenance of data generated by uncom-
promised nodes. Assume that nodes 𝑛𝑒 and 𝑛𝑚 collude
to execute an attack. A benign packet with provenance
< 𝑛𝑙, ..., 𝑛1, 𝑛2, ..., 𝑛𝑝 > is routed through 𝑛𝑒, and 𝑛𝑒

attempts to remove 𝑛2 from the provenance and to replace
it with another legitimate node 𝑛2. When the packet reaches
𝑛𝑒 , it contains the partial provenance < 𝑛𝑙, ..., 𝑛1, ..., 𝑛𝑒 >

encoded in the iBF 𝑖𝑏𝑓𝑝𝑝. To remove 𝑛2 from provenance, at
first 𝑛𝑒 has to construct the Bloom filter 𝐵𝐹2 containing the
provenance record of 𝑛2. The bitwise-AND of the negated
value of 𝐵𝐹2 with 𝑖𝑏𝑓𝑝𝑝 removes the information of 𝑛2

from the provenance. Assume the modified iBF is 𝑖𝑏𝑓𝑝𝑝. To
add 𝑛′2 to the provenance after the removal of 𝑛2, the BF
corresponding to 𝑛2 should be built and then OR-ed with
𝑖𝑏𝑓𝑝𝑝. In both cases, the attackers are unable to construct a
BF representing uncompromised nodes, due to the absence
of the secret keys of legitimate nodes.

Freshness. Provenance replay attacks are detected by our
proposed scheme, since provenance is derived using a unique
packet sequence number and the secret key of the node. An
attempt to change the sequence number of a packet without
having the key will be detected at the BS, according to the
integrity property discussed above.

V. PERFORMANCE ANALYSIS

We present an analysis of the space and energy overhead
of the proposed scheme. To the best of our knowledge, no
secure provenance scheme has been proposed for sensor
networks. Hence, we use the following two benchmarks:

(i) We adapt the generic secure provenance framework
𝑆𝑃𝑟𝑜𝑣 [5] to sensor networks. In this lightweight version
of the scheme, referred to as 𝑆𝑆𝑃 , we simplify the prove-
nance record at a node 𝑛𝑖 as 𝑃𝑖 =< 𝑛𝑖, ℎ𝑎𝑠ℎ(𝐷𝑖), 𝐶𝑖 >,
where ℎ𝑎𝑠ℎ(𝐷𝑖) is a cryptographic hash of the up-
dated data, and 𝐶𝑖 contains an integrity checksum as
𝑆𝑖𝑔𝑛(ℎ𝑎𝑠ℎ(𝑛𝑖, ℎ𝑎𝑠ℎ(𝐷𝑖)∣𝐶𝑖−1)).

(ii) We also consider a MAC-based provenance scheme,
referred to as MP, where a node transmits the nodeID and
a MAC computed on it as the provenance record.

Space Complexity. To implement SSP, we use SHA-1
(160 bit) for cryptographic hash operations and the TinyECC
library [12] to generate 160-bit digital signatures (ECDSA).
The nodeID has length 2 bytes, thus the length of each
provenance record is 42 bytes. For MP, we use TinySec

105105105



library [13] to compute a 4-byte CBC-MAC. Hence, a
provenance record has 6 bytes in this case. As each node in
the path encodes its own provenance record, the provenance
size increases linearly with the number of hops. For a 𝐷-hop
path, the provenance is 42𝐷 bytes in SSP and 6𝐷 bytes in
MP.

Since our approach is based on BF, the provenance length
depends on parameter selections for the BF. The false
positive probability for a BF is defined as [14]

𝑃𝑓𝑝 =
𝑛𝑎 − 𝑛

𝑛𝑡 − 𝑛

where 𝑛𝑡 is the total number of distinct elements in the
element space, 𝑛 is the number of elements actually encoded
in the BF and 𝑛𝑎 is the number of elements retrieved by
querying the BF. Let 𝑚 be the BF size, 𝑘 the number of
hash functions and 𝐷 the maximum number of nodes in
any path. The false positive probability is equal to that of
getting 1 in all the 𝑘 array positions computed by the hash
functions while querying the membership of an element that
was not inserted in the BF. This probability is

𝑃𝑓𝑝 = (1− (1−
1

𝑚
)𝑘𝐷)𝑘 ≈ (1− 𝑒−

𝑘𝐷

𝑚 )𝑘 (2)

For a given 𝑚 and 𝐷, the number of hash functions that
minimizes the false positives can be computed as

𝑘𝑜𝑝𝑡 =
𝑚

𝐷
𝑙𝑛2 (3)

Given 𝐷 and a desired false positive probability 𝑃𝑓𝑝, the
required number of bits 𝑚 can be computed by substituting
the optimal value of 𝑘 in Eq. (2) and then simplifying it to

𝑙𝑛(𝑃𝑓𝑝) = −
𝑚

𝐷
∗ (𝑙𝑛2)2 ⇒ 𝑚 =

−𝐷 ∗ 𝑙𝑛(𝑃𝑓𝑝)

(𝑙𝑛2)2

This means that in order to maintain a fixed false positive
probability, the length of a BF should grow with the number
of elements to be inserted. If we consider 𝑃𝑓𝑝 = 0.02 and
a 14-hop path, the BF size 𝑚 is computed as 114 bits
and 𝑘𝑜𝑝𝑡 = 6. Thus, a 120-bit (15 byte) BF is sufficient
to encode provenance while maintaining low false positives.
In practice, we bound 𝑃𝑓𝑝 by a small constant 𝛿 (> 0) such
that 𝑃𝑓𝑝 < 𝛿. To find the appropriate value of 𝑚 we have

𝑙𝑛(𝑃𝑓𝑝) > 𝑙𝑛𝛿 ⇒ −
𝑚

𝐷
∗ (𝑙𝑛2)2 > 𝑙𝑛𝛿 ⇒ 𝑚 <

𝐷𝑙𝑛 1
𝛿

(𝑙𝑛2)2

Energy Consumption. For a 𝐷-hop path, SSP has to
transmit 42 ∗𝐷 bytes (= 336 ∗𝐷 bits), MP transmits 6 ∗𝐷
bytes (= 48 ∗ 𝐷 bits) whereas our scheme requires 𝑚 bits
transmitted. SSP, MP and our scheme consume a radio
energy proportional to (336 ∗𝐷), (48 ∗𝐷) and 𝑙𝑛 1

𝛿

(𝑙𝑛2)2 ∗𝐷,
respectively. Although all of the terms are proportional to
𝐷, the constant coefficient in the first two terms are much
larger than the last one. For example, if we set 𝛿 = 10−4

then the coefficient in our scheme is 19.17 which is much

smaller than the coefficients in SSP and MP. Another part of
overhead comes from the signature, MAC and hash compu-
tations. However, in sensor networks, usually computation
overhead is much smaller than that of communication and
adds only marginal energy consumption [15].

VI. SIMULATION RESULTS

We implemented and tested the proposed technique using
the TinyOS simulator (TOSSIM) [16], and we have used the
micaz energy model. We consider a network of 100 nodes
and vary the network diameter from 2 to 14. All results are
averaged over 100 runs with different random seeds.

a) Provenance Decoding Error: The provenance de-
coding process retrieves the provenance from the in-packet
Bloom filter, and consists of the verification and collection
phases. To quantify the accuracy and efficiency of our
provenance scheme, we measure decoding error in both the
above phases, i.e., verification and collection error.

Algorithm 1 shows that the verification fails when the
provenance graph in the packet does not match with the
local knowledge at the BS. This may happen when there
is a data flow path change or upon a BF modification
attack. Provenance verification failure rate (VFR) measures
the ratio of packets for which verification fails. Fig. 4(a)
shows the VFR for paths of 2 to 12 hops with various
BF sizes. For each path length, the VFR is averaged over
1000 distinct paths. The results show that the provenance
verification process fails only for a very small fraction of
packets. Thus, for most packets the lightweight verification
process is sufficient to retrieve the provenance. The more
costly provenance collection process is executed only for a
very few packets when verification fails. As expected, VFR
increases linearly with the increase of the path length. On the
other hand, VFR is not significantly influenced by BF size,
proving that even small BF sizes provide good protection.
Fig 4(b) shows the variation of VFR over time, as the
number of packet transmissions increases. As the network
gets stable with time, the data paths do not change often,
and hence the VFR approaches 0.

Fig. 4(c) and 4(d) plot the percentage of provenance
collection error for different number of hops and the cor-
responding false positive rates, respectively. Recall that,
the collection phase is executed when provenance verifi-
cation fails. Fig. 4(e) and 4(f) show the collection error
corresponding to various BF sizes and the related false
positives, respectively. The number of hash functions used
are determined using Eq. (3). The resulting false positive
rates vary from 0 ∼ 0.013 and it is observed that the
collection error becomes negligible when the false positive
rate drops at or below 10−4. It is also seen that a BF size
of 16 bytes is enough to ensure no decoding error for up
to 8-hop paths. The empirical BF size required is much less
than the theoretical one(∼ 20 bytes for a 8-hop path).
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Figure 4. (a) Provenance VFR vs path length. (b) VFR variation with time as network stabilizes. (c)(d)(e)(f) Collection Error and False Positive Rate for
various path lengths and BF sizes.

b) Space Complexity and Energy Consumption:
Fig. 5(a) shows a comparison among SSP, MP and our
provenance mechanism in terms of bytes required to transmit
provenance. The provenance length in SSP and MP increases
linearly with the path length. For our scheme, we empirically
determine the BF size which ensures no decoding error.
Although the BF size increases with the expected number of
elements to be inserted, the increasing rate is not linear. We
see that even for a 14-hop path, a 30 byte BF is sufficient
for provenance decoding without any error.
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Figure 5. (a) Provenance length. (b) Aggregate energy consumption.

We also measure the energy consumption due to prove-
nance construction and transmission for various hop counts.
Note that, modern sensors use ZigBee specification for high
level communication protocols which allows upto 104 bytes
as data payload. Hence, SSP and MP can be used to
embed provenance (in data packet) for maximum 2 and
14 nodes, respectively. Figure 5(b) compares the aggregate
energy consumption of MP with that of our scheme over
100 packet transmissions. The results confirm the energy
efficiency of our solution.

VII. RELATED WORK

Pedigree [17] captures provenance for network packets
in the form of per packet tags that store a history of all
nodes and processes that manipulated the packet. However,

the scheme assumes a trusted environment which is not
realistic in sensor networks. ExSPAN [18] describes the
history and derivations of network state that result from
the execution of a distributed protocol. This system also
does not address security concerns and is specific to some
network use cases. SNP [19] extends network provenance
to adversarial environments. Since all of these systems are
general purpose network provenance systems, they are not
optimized for the resource constrained sensor networks.

Hasan et al. [5] propose a chain model of provenance
and ensure integrity and confidentiality through encryption,
checksum and incremental chained signature mechanism.
Syalim et al. [20] extend this method by applying digital
signatures to a DAG model of provenance. However, these
generic solutions are not aware of the sensor network spe-
cific assumptions, constraints etc. Since provenance tends to
grow very fast, transmission of a large amount of provenance
information along with data will incur significant bandwidth
overhead, hence low efficiency and scalability. Vijaykumar et
al. [21] propose an application specific system for near-real
time provenance collection in data streams. Nevertheless,
this system traces the source of a stream long after the
process has completed. Close to our work, Chong et al. [22]
propose a scheme for embedding the provenance of data
source within the dataset. While it reflects the importance
of issues we addressed, it is not intended as a security
mechanism, hence, does not deal with malicious attacks.
Besides, practical issues like scalability, data degradation,
etc. have not been well addressed. In our earlier work [23],
secure transmission of the provenance requires several dis-
tinct packet transmissions. The underlying assumption is
that the provenance remains the same for at least a flow
of packets. In this work, we relinquish that assumption.

While BFs are commonly used in networking applica-
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tions, iBFs have only recently gained more attention being
utilized in applications such as credential based data path
security [11], IP traceback [24], source routing and mul-
ticast [25], [26] etc. The basic idea in these works is to
encode the link identifiers constituent to the packet routing
path into an iBF. However, the encoding of the whole path
is performed by the data source, whereas the intermediate
routers check their membership in the iBF and forward
the packet further based on this decision. This approach is
infeasible for sensor networks where the paths may change
due to several reasons. Moreover, an intermediate router
only checks it own membership which may leave several
integrity attacks such as all-one attack, random bit flips etc.,
undetected. Our approach resolves these issues by encoding
the provenance in a distributed fashion.

VIII. CONCLUSION

We address the problem of securely transmitting prove-
nance for sensor networks. We propose a light-weight
provenance encoding and decoding scheme based on Bloom
filters. The security features of the scheme include con-
fidentiality, integrity and freshness. Experimental results
evaluating the scheme show that it is efficient, light-weight
and scalable. In future work, we plan to protect against
attackers that drop data packets entirely, rather than just
modifying them. Also, we will implement a real system
prototype of our technique.
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