
A File Provenance System

Salmin Sultana
Purdue University

ssultana@purdue.edu

Elisa Bertino
Purdue University

bertino@cs.purdue.edu

ABSTRACT
A file provenance system supports the automatic collection
and management of provenance i.e. the complete process-
ing history of a data object. File system level provenance
provides functionality unavailable in the existing provenance
systems. In this paper, we discuss the design objectives for
a flexible and efficient file provenance system and then pro-
pose the design of such a system, called FiPS. We design
FiPS as a thin stackable file system for capturing prove-
nance in a portable manner. FiPS can capture provenance
at various degrees of granularity, can transform provenance
records into secure information, and can direct the resulting
provenance data to various persistent storage systems.

Categories and Subject Descriptors
C.5 [Computer System Implementation]: General

General Terms
Reliability, Security

Keywords
Data Provenance, Operating Systems, File System

1. INTRODUCTION
Provenance refers to the history of ownership and the ac-

tions performed on a data object. Provenance has been
widely used in the scientific and grid computing domains
in order to document workflows, data generation, and pro-
cessing. For scientific experiments, provenance contains in-
put datasets, experimental procedures, parameters, etc. in-
formation which are sufficient to enable reproduction and
validation of results [1]. A number of domain specific prove-
nance systems, such as Chimera [2], ESSW [3] have been
developed for various experimental systems. They capture
provenance for scientific data and record provenance at the
semantic level of application. Other application level prove-
nance systems capture provenance at the level of business
objects, lines of source code or other units with semantic
meaning to the application. The fundamental problem with
domain-specific approaches is that the data object and the
provenance are managed by two separate data management
systems (i.e. data by file system and provenance by database

Copyright is held by the author/owner(s).
CODASPY’13, February 18–20, 2013, San Antonio, Texas, USA.
ACM 978-1-4503-1890-7/13/02.

system) [5]. Consequently, data and provenance do not re-
main tightly coupled and thus the provenance may not com-
pletely reflect the data processing history. Moreover, the
application specific provenance systems require the users to
manually track provenance by building appropriate prove-
nance collection tools. In this context, it has been suggested
that the provenance collection should be a responsibility of
the operating system (OS) that can also generate system
level provenance meta data [5].

In this paper, we propose the design of a file provenance
system, named as FiPS, which is a file system that not only
manages files but also transparently captures, stores and
manages the file provenance. FiPS autonomically collects
sufficient metadata in order to recreate a file i.e. to re-
enact the series of actions that generated the content of the
file. We design FiPS as a thin layer operating between the
Virtual File System (VFS) and the underlying file system.
In contrast to a system-call based provenance approach [5],
we intercept file system calls passed through the VFS layer
and then generate provenance records. System call level ap-
proaches often fail to see how a system call activity is trans-
lated into multiple actions in the lower layers of the OS.
Memory-mapped I/O can only be traced at the file system
level. In addition, server-side operations of network file sys-
tem (NFS) are performed directly in the kernel, not through
system calls.

To make the provenance system useful, we also incorpo-
rate flexibility and security into our design. To be flexible,
FiPS allows provenance to be captured based on fine-grained
conditions. This feature also helps capture and store only
desired information, making the solution efficient in space
and time. To be secure, FiPS can apply appropriate secu-
rity function on a file provenance in order to protect it from
unauthorized access. The system can also write provenance
to a local or networked storage. Our implementation is still
a work in progress. To layer FiPS on top of any conven-
tional file system, we implement our functionalities on the
stackable wrapper file system Wrapfs [6]. We use in-kernel
Berkeley DB [4] to manage granularity and security policies.

2. DESIGN OBJECTIVES
Based on the features of the existing file system prove-

nance solutions and their limitations, we outline the follow-
ing design goals required to build a robust file provenance
system:

Portability: The file provenance system should capture
provenance for any file system, without modifying the OS or
the provenanced file system. FiPS is designed as a stackable

153



filesystem and thus can be layered on top of any conven-
tional file system. In addition, FiPS is to be implemented
as a kernel module which requires no kernel modification in
order to collect provenance.

Efficiency: It is essential that provenance capture and man-
agement do not add too much overhead to the file system
operations with respect to space and time. The provenance
system should provide fast, high-throughput provenance op-
erations in order to avoid impacting operating system and
application performance. The system must record enough
provenance metadata to serve the desired purpose but not
any unintended information. Hence, it should distinguish
between data objects that are required to be provenanced
and data objects that are not. On the other hand, cap-
turing provenance information by intercepting system calls
often misses information about how a system call activity
is translated into multiple actions in the lower layers of the
OS. Also NFS servers cannot work with system call level
logging since they operate directly in kernel, not through
system calls. Finally, it is more natural to manage file sys-
tem provenance in terms of file system instead of system
calls. We design FiPS as a thin layer between the Virtual
File System (VFS) and any other file system which results
in space and time efficiency.

Flexibility: Traditionally provenance-aware file systems col-
lect a specific detail of the provenanced objects which in
some cases are inadequate. On the other hand, PASS cap-
tures a good amount of information for each provenanced
object which results in a huge volume of provenance records
when integrated with an end-to-end provenance solution. To
be productive, the provenance system should be flexible by
supporting a wide range of fine grained policies on prove-
nance collection. The policies should allow one to specify
the granularity of provenance information to be captured
based on applications, users, file names, attributes, etc.

Security: The system must capture and store provenance in
a way so that the information is kept secure against attacks
and subversion. Besides, the provenance information may
require access control to be protected from unauthorized
user access. Our in-kernel system design provides stronger
security. Moreover, we incorporate security policies used
to apply appropriate security mechanisms (e.g. encryption,
signature) while sending provenance to persistent storage.

Redundancy Elimination: Recording provenance for file
system operations may result in large amount of data which
are difficult to store, manage and query efficiently and effec-
tively. Hence, mechanisms for provenance pruning or com-
pression should be provided, e.g., for replacing a part of the
provenance graph with the end result of the modification.

Queries on Provenance: Collecting data provenance is
not useful unless the provenance can be accessed and uti-
lized easily. Hence, the file provenance system must provide
support for a structured storage of provenance which in turn
will facilitate provenance queries. The management system
should also respond quickly to the relationship queries lead-
ing to the generation of ancestry or descendancy graphs.

3. FIPS - THE PROPOSED PROVENANCE
FRAMEWORK

FiPS is designed to collect and store provenance for the

data objects at a file granularity. However, the provenance
can be tracked easily at finer or coarser granularities by
defining the granularity policies accordingly. We define the
provenance of a data object (file) as the documented history
of the actors, process, operations, inter-process/operation
communications, input/output data, the hardware and OS
environment related to the creation and modification of the
object. The complete provenance of a data object form a
directed acyclic graph (DAG), referred to as the provenance
graph.

We design FiPS as a stackable file system [6] that can
work on top of any underlying file system. Figure 1(a)
shows how FiPS is placed between the Virtual File System
(VFS) and any other file system. In a traditional file sys-
tem, the system calls related to file operations invoke VFS
calls which in turn invoke underlying file system procedures.
When integrated, FiPS intercepts the VFS calls, extract ar-
guments and other necessary information from kernel data
structures, and translates them into in-memory provenance
records. While recording the provenance metadata for a
data object, the level of details to be stored is determined
according to the associated granularity policy. At the end,
FiPS sends the in-memory provenance records to a persis-
tent storage, either to a local disk or to a remote server.

Figure 1(b) shows the detailed architecture of the FiPS
layer. The key components are: the provenance logger which
records the provenance metadata and translates them into
in-memory provenance records, and the provenance writer
that stores in-memory records into persistent storage. To
control the granularity and security of provenance, the com-
ponents act upon two databases: the granularity policy DB
and the security policy DB, respectively. Below, we briefly
discuss the components and the policy databases:

Logger: The role of a logger is to record provenance data or
VFS calls and then to ensure that these records are passed
to the destination file system for attachment to the appro-
priate files. FiPS supports multiple logger threads where the
intercepted VFS calls pertaining to an application/process
will be handled by one logger. Such a design will increase the
speed of the provenance tracking for simultaneous processes
and make it easier to deal with the granularity policies.

As in PASS, all files and processes in our system are con-
sidered provenanced kernel objects. The logger generates a
provenance record for each provenance related VFS call and
stores the record in an intermediate storage. This interme-
diate storage may be a buffer or in-kernel Berkeley Database
(KBDB). The metadata to be captured in the provenance
record may vary depending on the associated granularity
policy. For example, a provenance record may include a sub-
set of Process ID, input files, User ID, command line, kernel
version, etc. information. In addition, granularity policies
may specify when the system should not capture provenance
(e.g. for a particular application, file, etc.) or when the in-
termediate results should not be recorded, etc. Unlike PASS,
our system can distinguish between provenanced and non-
provenanced file systems and does not retain provenance in-
memory for non-provenanced files.

Granularity Policy DB: This database stores the gran-
ularity policies which determine how much information has
to be captured as provenance. The policies may be associ-
ated with a process, application, user, file or file attributes.
The policy database may be populated with policies during

154



(a) (b)

Figure 1: (a) FiPS as a stackable file system. (b) Architecture of the FiPS layer.

the OS start or with application specific policies when the
application executes.

We design this database as an in-kernel Berkeley DB. The
policy database has the object and the unique object ID (e.g.
file and inode) as the key and a 4 or 8 byte value containing
the policy bits as the data. The policy bits include: (i) OB-
JECT - specifies the object for which the policy is defined;
(ii) ATTRIBUTES - the set of attributes of the respective
objective, used to check the condition in the policy; (iii) AC-
TION - specifies the action taken if the condition is satisfied.
The actions include capture-all, no-capture, capture-set, no-
intermediate-data, etc.

Security Policy DB: This database, also designed as a
KBDB, stores security policies which are applied to the in-
memory provenance records when they are stored in a per-
sistent storage. The design of the database is similar to the
granularity policy DB with a difference in the taken actions.
The actions here include applicable security mechanisms,
such as encryption, signature, etc.

Writer: A writer writes out the in-memory provenance
records to the persistent storage. The output media may
be a regular file on local disk, a raw device or a socket.
When writing to a socket, the writer connects to a TCP
socket at a remote location and sends the provenance over
the network. This is particularly useful when storing prove-
nance in a remote NFS server. To ensure desired security for
the provenance, the writer first finds out the security policy
associated with the provenanced data object, performs the
security action and then writes the secure provenance to the
destination storage. The system activates multiple writers
to fasten the performance.

In addition, we include a redactor which compresses and
prunes long term history for older files. The redactor may be
a user level or a system process. Provenance pruning/compression
may be managed by the system wide retention policies or
user-specified policies for a file, a group of files, or a di-
rectory. The redactor periodically examines the file system
and uses the policies to decide when and which files can be
left to carry on with a compressed provenance graph. This
approach allows users to indicate the files for which it is
required to keep detailed provenance and versioning infor-
mation.

4. CONCLUSION
We present the modular design of a low-overhead and

flexible file provenance system (FiPS) that collects prove-
nance by operating below the VFS layer. Unlike system call
tracing, FiPS can handle memory mapped I/O and NFS
server operations easily. FiPS incorporates granularity poli-
cies which provides flexibility in provenance capturing and
security policies to ensure the desired security. Currently,
we are implementing the system which is bringing forth var-
ious design and implementation issues. In future, we plan to
extend the system to collect provenance at virtual machine
monitors.

5. ACKNOWLEDGMENTS
The work reported in this paper has been partially funded

by NSF under Award 1111512 “Privacy-Enhanced Secure
Data Provenance”.

6. REFERENCES
[1] P. Buneman, S. Khanna, and W.-c. Tan. Why and

where: A characterization of data provenance. ICDT,
1973:316–330, 2001.

[2] I. Foster, J. Vöckler, M. Wilde, and Y. Zhao. Chimera:
A virtual data system for representing, querying, and
automating data derivation. In Proc. of the Conference
on Scientific and Statistical Database Management
(SSDBM), pages 37–46, 2002.

[3] G. Janée, J. Mathena, and J. Frew. A data model and
architecture for long-term preservation. In Proc. of the
conference on Digital libraries, pages 134–144, 2008.

[4] A. Kashyap. File system extensibility and reliability
using an in-kernel database. Technical Report
FSL-04-06, Master’s Thesis, Stony Brook University,
2004.

[5] K.-K. Muniswamy-Reddy, D. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. In Proc.
of the USENIX Annual Technical Conference, 2006.

[6] E. Zadok and I. Badulescu. A stackable file system
interface for linux. Technical Report CUCS-021-98,
Columbia University, 1998.

155




