
MAuth: A Fine-grained and User-Centric Permission Delegation Framework for
Multi-Mashup Web Services

Masoom Alam∗, Xinwen Zhang†, Muhammad Nauman∗, Sohail Khan∗ and Quratulain Alam∗
∗Security Engineering Research Group

Institute of Management Sciences, Peshawar, Pakistan
Email: {masoom,nauman,sohail.khan,quratulain}@imsciences.edu.pk

†Samsung Information Systems America, San José,USA

Email: xinwen.z@samsung.com

Abstract—Mashups are a new breed of interactive web
applications that aggregate and stitch together data retrieved
from one or more sources to create an entirely new and
innovative set of services. The paradigm is not limited to social
networks and many enterprises are redesigning their business
processes to create interactive systems in the form of mashups.
However, protecting users’ private data from unauthorized
access in mashups is a challenging security problem. Existing
solutions for addressing the various authorization problems are
limited due to all-or-nothing policy, third party dependence
and scalability issues. In this paper, we present a general
permission delegation model for mashups that is fine-grained,
user centric and scalable. This contribution has the following
objectives: We formally specify the dependency relationships
among multiple web applications. Dependency relationships are
categorized on the basis of specific data items. We present an
extensible reference architecture for configuring multiple web
applications and a session management protocol.

Keywords-Mashup, Security, Access Control, Permission Del-
egation

I. INTRODUCTION

Mashups are a new breed of web applications that aggre-

gate and stitch together data retrieved from one or more

sources to create an entirely new and innovation set of

services [1]. This technology has its roots in the current

state-of-the-art Internet technologies such as Asynchronous

Javascript and XML (AJAX), and Service Oriented Ar-

chitectures and is informally known as Web 2.0 [2]. It

is fast becoming a de-facto standard for web applications

ranging for connecting web services together in the from

of social networks to e-Government to enterprise resource

management [3], [4], [5], [6]. Initially the concept of

mashups was limited to social networks. However, many

enterprises are redesigning their business processes to create

interactive systems in the form of mashups [7]. For example,

cartographic data from Google Maps can be combined to

real-estate data [8]. Another example is the collection of

crime information from a law enforcement agency and

depicting it on Google Maps [9]. In this way, a new

and distinct web service is created that was not originally

provided by either source.

Today, majority of mashups are focused on gathering

data from backend services that do not require user au-

thentication. However, with the increasing use of enterprise

mashups, private data of users is involved that requires

authentication and authorization mechanisms to be enforced.

This means that the user must delegate a mashup the right

to access data from a web application that hosts her private

data. This is the problem of delegation in mashups and have

many aspects. Firstly, the user must have provision to choose

specific data items among others for delegation. Further,

the use of third-parties is a common solution for complex

delegation scenarios. But, if more than one web applications

or mashups – called multi-mashups – are involved, user data

has to pass from multiple hops and thus requires permission

management at each hop. Therefore, user issued delegations

can also be misused if a web application or mashup is

malicious. To summarize, current authorization techniques

used in mashups have the following problems.

Problem Statement:

1) Based on all-or-nothing policy: This means that ei-

ther complete delegation occurs or none at all. For

example, a user cannot restrict the list of friends

accessible to a web application. She has to release

all the information or no information at all;

2) Dependence on third parties: Upon user request a third

party must issue a delegation permit to the mashup

for accessing user data. This leads to synchronization

overhead between third parties and backend services;

3) Are not scalable: This means that mashups authoriza-

tion solutions are limited to scenarios in which a user

gets data from multiple backend services through a

single mashup. But as the number of web applications

increases authorization becomes more complex and

infeasible. For example, combining a list of friends

from a social network with Google maps service to

create a friend finder service requires simple autho-

rization. However, if the web application responsible

for collecting friends list also take data from another

web application, the authorization among multiple

2010 IEEE 6th World Congress on Services

978-0-7695-4129-7/10 $26.00 © 2010 IEEE

DOI 10.1109/SERVICES.2010.112

56

web applications requires thorough analysis.

Contributions: In this paper, we present a general dele-

gation model for mashups that addresses the aforementioned

limitations. In particular, it provides a delegation mechanism

for web applications that is fine-grained, requires zero-

dependence on third-parties and is scalable for multi-mashup

scenarios where multiple web applications are connected

with each other in order to accomplish a task. Our con-

tribution in this paper are three-fold:

1) We formally specify the relationship among multiple

web applications on the basis of specific data items.

This enables a fine-grained user centric permission

delegation in mashups.

2) Dependent data items are formalized in the form of a

graph. A session management mechanism is derived

from the dependency relationships among multiple

web applications regarding specific data items.

3) Finally, an extensible reference architecture coupled

with a session management protocol among multiple

web applications for specific data items is presented.

Outline: The rest of the paper is organized as follows:

Section II presents a motivating example which will be

used through out the paper to describe our approach and

related work. Section III formally describes our approach.

The reference architecture and the protocol is detailed in

Section IV. Section V concludes and presents an outlook of

the paper.

II. BACKGROUND

A. Motivating Example

To demonstrate the limitation of the existing approaches

towards authorization in mashups and to present our own

approach, we take an example application scenario (cf. Fig-

ure 1). User Bob wants to calculate the tax returns by

applying his local government policy available at gov.com1

to his finances. There are a number of web applications avail-

able for this purpose but Bob chooses financial.com.

However, financial.com needs Bob’s expenditure
report and payment information, which are avail-

able at mintoo.com. Bob’s expenditure report is

derived from the utility bills and other payments

he has made through mintoo.com. For this purpose,

mintoo.com has access to Bob’s bank statement
through mybank.com and utility bills through

utilitiybills.com.

We use this example application scenario throughout the

paper to explain our approach and to consider the limitations

of existing approaches.

1All of the web addresses mentioned in this paper are for purposes of
illustration only a re not related to the actual sites hosted at these addresses.

mintoo.com

Bank

Utility Bills

Bank Statement

Utility Bill
financial.com

gov.com

Tax Rules
Tax

Rebate

User

Tax Returns

Figure 1. Use Case of a Multi-Mashup Scenario

B. Related Work

Due to the ever increasing popularity and utility of free

and enterprise mashups, several problems related to these

scenarios are being studied in the scientific community. In

this section, we discuss the shortcomings of the various

existing approaches for solving the authorization problems

in mashups. We begin with a discussion on the current best

practices available on the web for mashups authorization and

their corresponding problems.

A fairly simple solution to the mashup authorization

problem is that user is asked for login credentials such

as username/password for the backend service. For ex-

ample, financial.com asks user Bob for his login

credentials at mintoo.com. These credentials are then

used by financial.com for accessing user data at

mintoo.com. Examples of such mashups are Tweet-

deck.com [10] and yodlee.com [11] etc.

The obvious problem in this solution is the misuse of

the login information of the user [12]. Since the mashup

provides the username and password, the backend service

considers the mashup as an owner and allows it to perform

all actions that are permitted to the user. Also it is possible

for the mashup to save the login information and misuse

it in the future without the consent of the user. This

approach utilizes an all-or-nothing policy. Moreover, using

this simple authorization solution may increase the security

risk in multi-mashup scenarios as user credentials may be

floating around the web due to being shared by several web

applications.

OAuth [13] provides an open set of specifications for

authorization in a mashup scenario. Web application in

an OAuth specs requests an unauthenticated token from a

backend service. This unauthenticated token is forwarded to

the corresponding user which authenticates it by providing

login credentials at the backend service. The user is redi-

rected to the backend service for this purpose. For example,

financial.com redirects the user to mintoo.com with

an unauthenticated token. Bob authenticates this token by

logging in to mintoo.com using this security token.

The financial.com can then access user data from

mintoo.com. This protocol provides very limited forms

of permission choice to derive flexlible and/or user centric

arguments. Moreover, an important issue is the usability

of this approach. In the presence of a single backend

57

service and a mashup, the approach works fine. However,

when mashups are further connected to other mashups, the

handling of enormous number of tokens quickly becomes

infeasible at the user end. Moreover, more than one mashups

between user and backend services can cause too many

redirections between user and different mashups and thus,

may confuse the user resulting in the selection of fake

websites.
AuthSub [14] is a propreitary protocol for authorization

for Google services. Third party applications can access user

accounts on behalf of users using AuthSub call. The user

is redirected to an access consent page where it logs in

to the Google account and grants or denies access to the

corresponding service. Likewise, this protocol too has very

limited forms of permission choice. Upon grant access, the

user is redirected to the web application site. Otherwise, the

user stays at the google site. The authentication token is an

opaque identifier and is used for references purposes only. A

major disadvantage of the protocol is all-or-nothing policy.
The approach of PermitMe [12] suggests a Permit Grant

Service (PGS) for handling the delegation issues. The PGS

sits between the user and the mashup and issues a delegation

permit to the web application. These encrypted delegation

permits are stored with the web application and thus may be

misused, which is a severe security problem. The approach

only shifts the responsibility of authorization from backend

service to the PGS with significant redirection overhead.

PGS requires security requirements and/or policies of the

backend service to delegate permission, which is only viable

for a small set of backend services like Google services, not

for general Internet-based web services.
Currently, browsers level security for mashups is being

studied at length [15], [16], [17]. Our focus in this paper is

on the delegation issues in server-side mashups.
We come to the conclusion that delegation in mashups

is quite different from the existing delegation models [18],

[19]. In such scenarios, user has to specify delegation

policies in each step of delegation. For example, Bob has to

specify rights for mintoo.com and other web applications.

We believe that a general delegation model is needed that

addresses the following concerns:

1) Fine-grained delegation: A delegation model that can

specify the relationship among multiple web applica-

tions on the basis of specific data items.

2) Zero-dependence on third parties: A user-centric

mechanism is needed that can reduce third party trust

dependency management. Thus, a user is in charge of

all his private information.

3) Multi-mashups: Finally, the delegation model for

mashups shall be extensible to incorporate multi-

ple web applications. The underlying protocol shall

clearly make a separation between security and session

management. This means that a user can configure

multiple web applications that are dependent on each

d2

d3D,C

I

D,S

D,C

I

I

I Independent D,S

D,C

Tax
Rebate

Tax
Rules

Tax
Returns

Payment
Record

Utility
Bills

Bank
Statement

Dependant, Singular

Dependent, Composite Revocation

Figure 2. Dependency Graph

other regarding specific data items.

Below, we describe our delegation model formally that

incorporates these differences to specify delegation in multi-

mashup scenarios.

III. USER-CENTRIC PERMISSION DELEGATION IN

MASHUPS

Traditionally, mashups are considered as independent web

applications that can only combine data from backend

services. This categorization itself limits the potential value

of web applications. Rather than dividing them into mashups

or backend services, we term both types as web applications.

In our settings, it is possible that a web application can

purely act as a mashup – collects data from external sources

only, as a backend service – where data is locally stored or

as a hybrid in which case it can store as well as combine data

from external sources. Thus, web applications may depend

on other web applications regarding some data items. These

dependencies can be resolved by assigning rights to the

source web applications for accessing private data hosted at

a target web application. For example, Bob can configure at

mintoo.com the rights for accessing his expenditure
report by financial.com. Section III-A presents the

dependency resolution mechanism in our delegation model.

A. Dependency Resolution

We define a web application as a software that can be

accessed by thin clients i.e. browsers over a network such

as Internet or intranet. It is a set of services that a user can

access with the help of her browser. These services provide

access to a set of data items available locally or retrieved

from external sources. Formally:

Definition 1: A web application provides a set of services

S = {s1, s2, . . . , sn} that provide access to a set of data

items D. δ = {(d1, v1), (d2, v2), . . . , (dn, vn)} is a set

of pairs comprising of data items and their corresponding

values where vi ∈ dom(di) and di ∈ D.

A web application may receive data from any number

of external sources. For example, financial.com col-

lects tax returns from mintoo.com and tax rules
from gov.com. Thus, tax rebate at financial.com

58

depends on tax rules and tax returns from

gov.com and mintoo.com respectively. The relationship

between data items is defined as a Dependency Graph.

Definition 2: A Data Item Dependency Graph, or simply

Dependency Graph, is a directed, acyclic graph (D, E)
where D is a set of nodes representing data items and E
is a set of edges representing the dependency relationship

between data items. An edge directed from di to dj repre-

sents that di is dependent on dj . This dependency is denoted

as: di � {dj}. We write dj ∈ η(di) if di is dependent on

dj where η : D → 2D is a function that takes a data item

as input and returns a set of data items on which the input

depends.

Each data item in the dependency graph has a category
and a type. The category is either independent or dependent.
An independent data item has no dependency relationship

with other data items i.e. an independent data item has no

outgoing edge in the dependency graph. A dependent data

item, on the other hand, may depend on one or more data

items.

Definition 3: Category function ς : D →
{dependent, independent} maps each data item to

one of two categories: dependent or independent. The Type

Function θ : D → {singular, composite} maps each data

item node in the dependency graph to either singular or

composite data type. Data items belonging to the singular

type must depend only on one data item. Formally:

ς(di) = independent ⇐⇒ η(di) = φ
ς(di) = dependent ⇐⇒ η(di) �= φ
|η(di)| = 1 ⇐⇒ θ(di) = singular
|η(di)| > 1 ⇐⇒ θ(di) = composite

For example, in Figure 2, tax rebate is

dependent on tax rules and tax returns.

Data item tax returns is dependent on

payment record, which is constituted from bank
statement and utility bills. Formally,

paymentrecord � {bankstatement, utilitybills} or

η(paymentrecord) = {bankstatement, utilitybills}.

Similarly, θ(paymentrecord) = composite,

ς(paymentrecord) = dependent, ς(bankstatement) =
independent and so on.

A web application asks permission to access specific

data items from other web applications through a Policy

Authorization Request (PAR).

Definition 4: Policy Authorization Request (PAR) is de-

fined as a set of data item names and the rights requested on

these data items. PAR = {(d1, r1), (d2, r2), . . . , (dk, rk)} is

a request and PAR ⊆ D ×R, where R is the set of rights.

Rights are not just limited to read/write, but it is left

on the discretion of the target web application. For example,

MoveCalendar, ChangeDate etc., all are rights, that

can be defined by a backend service. Based on the user

preferences, a web application can define a set of policies.

These policies are defined as a set of requests that are

permitted and the set of requests that are denied by the

policy. A 2-valued access policy P is a function mapping

each PAR to a value in {Y, N}. RP
Y , and RP

N denote

the set of requests permitted and denied by the policy P
respectively and Req is a set of PARs where Req = RP

Y

∪ RP
N and RP

Y ∩ RP
N = ∅. As an in charge, a user has

to decide for each corresponding PAR. For example, once a

PAR has been generated by financial.com for accessing

expenditure report at mintoo.com, Bob gives his

consent regarding this PAR. We define user consent as

follows:

Definition 5: User Consent (UC) is defined as a set of

attribute names and their corresponding rights. UC ⊆
PAR ∪ C where C is set of constraints such that the user

consent restricts the set of data items requested through the

PAR.

This user consent is called the delegation policy token,

which defines the rights that the user allows for each data

item requested by the web application.

Revocation on the other hand is more simpler in such

delegation scenarios. For example, a user can restrict the

access of a specific data item (such as the duration after

which revocation should take place) through her consent.

Another possibility is that user can directly revoke the

rights from a web application. Figure 2 shows that if the

right for accessing bank statement has been revoked by

bank.com, the payment record can no longer be constituted

and thus the delegation chain is not valid.

B. Session Derivation

After a user has resolved the dependencies related to all

data items, the corresponding data items can be retrieved by

the configured web application. In order to avoid misuse of

the delegation policy token, a common session must exist

between dependent hosting web applications. A common

session ensures that a web application can only access the

data items when the user is currently logged in. Sessions can

be depicted through graphs, where each node represents a

web application and each edge represents an active session

between their hosting application for a specific data item.

Formally:

Definition 6: A Session Graph is a directed, acyclic

graph (W, F) where W is a set of nodes representing

web applications hosting the data items and F is a set of

edges representing the corresponding data items for which

web applications are dependent on each other. An edge

directed from wi to wj represents that there is an active

session between wi and wj regarding d and is written as

wi
d→ wj . Further, data items are mapped to their hosting

web applications using the data item association function

π : D → W . If a data item d is hosted by a web application

w, we write π(d) = w.

Session graphs can be derived from data item depen-

dency graphs automatically. Figure 3 shows three cases of

59

Algorithm 1 Session Derivation Algorithm

Input: dependency graph

Output: set of session graphs

1) // set the current state to startNode at the beginning

2) current = getStartNode(dependency graph)

3) independentItems = {x|ς(x) = independent}
4) allPaths = ∅
5) visited’ = visited ∪{current}
6) foreach target in independentItems do
7) findPath(current, target, path, null, visited);

8) end for
9) transformDataItemsToWebApps(allPaths)

10) normalizeSessionGraph(allPaths)

11) begin function findPath(current, target, path, previous,

visited)

12) if current = target then
13) path’ = path ∪{current → target}
14) allPaths’ = allPaths ∪{path}
15) return
16) end if
17) if current ∈ visited then
18) return
19) end if
20) path’ = path ∪{previous → current}
21) if ς(current) = dependent then
22) if θ(current) = singular then
23) findPath(η(current), target, path, current, visited)

24) end if
25) if θ(current) = composite then
26) foreach node in η(current) do
27) findPath(node, target, path, current, visited)

28) end for
29) end if
30) end if
31) visited’ = visited ∪{current}
32) allPaths’ = allPaths ∪{path}
33) end function

how fragments of a dependency graphs can be converted

to session graphs. In Figure 3.a the initial data item is

dependent on a single data item that is independent. For this

type of scenarios, the session needs to exist between web

applications hosting d2 and d1 and the user u i.e. w1
d2→ w2.

In the second case (Figure 3.b), the initial data item again

depends on one data item (d2) but d2 again depends on d3.

Formally, w1
d2→ w2 ∧ w2

d3→ w3. The third case (Figure 3.c)

is similar except that d2 depends on d3, which is itself

dependent and composite. It depends on two data items d4

and d5. Since there are two terminal independent data items,

two sessions must exist for the proper resolution of data

d1 d2

w1 w2 w1 w2

d3

d4

d5

w1 w2

a) b)
c)

I

d1 d3

I

d2

D,S

w3

d1

D,S

d2

w3 w4

w1 w2 w3 w5

D,C

I

I

d2 d2 d3 d2 d3 d4

d2 d3 d5

Figure 3. Three Cases in Session Derivation

items at runtime.

Based on these three cases, we have defined an algorithm

that takes the dependency graph as input and derives the

session graphs based on the dependencies of data items

in the input graph. It first collects all independent items

using the ς function (Line 3). It then loops over the set

of these items collecting paths representing sessions over

the dependency graph in allPaths variable (Line 4). The

findPath function takes the current and the target node,

the path variable, previous node visited and the set of all

visited nodes as input. It calculates the path from the current

to the target node (Lines 7, 11). If the current node is the

same as the target node (Line 12), it returns adding the

current node to the graph. Otherwise, it adds the step from

the previous node to the current node to the path variable

(Line 20).

If the current node is a dependent singular node,

findPath calls itself recursively to calculate the path from

the current node to the target node (Line 23). Otherwise, if

the current node is dependent composite, it iterates over all

the nodes that the current node is dependent on collecting

the paths in the recursive call (Line 23).

The transformation function (Line 9) applies the π
function on all nodes of the allPaths variable to convert

nodes representing data items into those representing their

corresponding web applications and dependent data item is

represented over the edge.

The normalization function (Line 10) reduces the resultant

session graphs by applying the following two cases: Case I:
wi

d1→ wj ∧ wi
d2→ wj . In this case, wi and wj are connected

through two edges representing d1 and d2 respectively

that shows two different sessions. Since a session can be

shared at a target web application for multiple data items,

normlization function removes one edge and places the

second data item over the first edge i.e. wi
d1,d2→ wj .

Case II: wi
d1→ wj ∧ wj

d2→ wj . In this case, one data item

60

Tax Returns

fi mi mb

gvfi

Tax Rules

Bank Statement

Tax Returns

fi mi ub

Utility Bills

1

2

3

fi = financial.com, gv = gov.com, mi = mintoo.com,
mb = mybank.com, ub = utilitybills.com

Figure 4. Session Graphs Derived for Usecase Shown in Figure 1

of a single web application depends on another data item

of the same web application. In this case, we get an edge

directed from a node to itself. Since sessions do not need to

exist between a web application and itself, we normalize the

session graph that removes all such edges. Figure 4 shows

the sessions derived from the usecase given in Figure 1.

Based on the model described in Section III-A and III-B,

the following section highlights the sequence of activities

involved in both configure-time and runtime protocols.

IV. PROPOSED ARCHITECTURE AND PROTOCOLS

A user configures a web application such that other

web applications can access her data. Policy Authorization

Protocol is used to configure web applications with user

preferences (cf. Section IV-A). After configuration, web

applications can work with others in order to achieve a

common task. The runtime management issues such as

session management among multiple web applications while

accessing dependent data items is the concern of session

management (cf. Section IV-B).

A. Policy Authorization Protocol

The Policy Authorization Protocol takes place the first

time a user tries to use a web application that requires

data from other web applications. The steps involved in the

protocol are as follows (cf. Figure 5):

1) Alice logs in at the web application using the link

http://www.financial.com/login.

2) After authentication, Alice is shown a set of data items

(e.g. tax returns) that the web application needs for its

normal operation. These data items might belong to

different web applications for each of which the user

has to repeat the following steps.

3) Upon Alice’s consent, she is redirected to

mintoo.com for the protected data item (e.g.

tax returns). It is important to note that some

data items might be unprotected such as tax
rules from gov.com and are thus available

without authentication. For protected data items,

Alice logs in at the corresponding web application

(mintoo.com) and presents a token, which can

be used by mintoo.com to fetch the Policy

Authorization Request from financial.com.

4) As described in Section III, Policy Authorization

Request contains a set of attributes for data item

names and their corresponding rights. The Policy

Authorization Request is shown to Alice in a listing.

This visual depiction helps her in understanding which

data items are requested and for what purpose.

5) If all the data items are available locally, the user pref-

erences along with the Policy Authorization Request

is transformed to a policy token called the Delegation

Policy Token. This delegation token can be encrypted

and is used by the source web application for accessing

the specified resources at the target web application.

6) If some of the the data items are not available locally,

then Step 2, 3 and 4 are repeated for each individual

data item not available locally.

B. Session Management

After configuration using the Policy Authorization Pro-

tocol, the user can access the data items at the first web

application. The first web application has been assigned

a delegation token for accessing dependent data items.

However, the target web application also needs a session

token in order to avoid misuse of the delegation token by

the source web application. This ensures that if a user is

currently logged in, only then the web application will be

able to release the corresponding data item. In our session

management protocol, whenever a web application requests

a data item from a target web application, the target web

application can handle the request in the following manner.

If the data item is locally available, the web application

needs to verify that the user is currently logged in before

releasing the data item. On the other hand, if the data

item is dependent and the web application requires it from

another web application, it asks for the dependent data item

along with the delegation policy token. If the data item is

composite, the same step is performed for each of the data

items on which the requested data item depends.

In order to have a collaboration between these web

applications, session management is of utmost importance

and requires that the user log in to each of the involved web

applications before data items can be released. The number

of logins may increase drastically with the increasing num-

ber of web application. To remedy this problem, we propose

the use of a single sign-on mechanism for providing login

status information to different web applications.

In our target architecture, we use OpenID [20] as the

single sign-on mechanism. OpenID provides a mechanism

for identifying users across multiple websites based on

their login status at their identity provider web application.

OpenID can be applied in Policy Authorization Protocol

for reducing the security risks associated with multiple

username/password pairs for multiple web applications.

61

mintoo.com

Utility Bills

Tax returns (d2)

Payment
Record

d4 = Bank Statement

d5 = Utility Bill
financial.com

Tax
Return

gov.com

d1 = Tax Rules

Tax Rebate

Alice

SSO
Provider

mintoo.com requests the
following data items. Please
select which ones you wish to
allow access to:

Bank statement
Day�to�day transactions
Current balance

Bank

Configure-time request

Runtime request

SSO login status

<PolicyAuthorizationRequest>
<Subject>mintoo.com</Subject>
<Request>
<DataItems>

<DataItem>
Bank Statement

</DataItem>
<Right>read</Right>

</DataItems>
</Request>

</PolicyAuthorizationRequest>

Figure 5. Target Architecture

User mintoo.comfinancial.com gov.com mybank.com utilitybills.com

getTaxRebate()

getTaxReturns

getTaxRules()

getBankStatement

getUtilityBills()

TaxRules

BankStatement

UtilityBills

checkSession

TaxReturns

checkSession

checkSession

TaxRebate

Figure 6. Sequence Diagram for Multi-mashup Data Item Retreival

The protocol for retrieval of data items follows these steps

(cf. Figure IV-A):

1) Alice requests a service from financial.com.

We assume that the data item and its dependencies

have been resolved at configure-time using the Policy

Authorization Protocol (cf. Section III-A).

2) financial.com accesses mintoo.com for ac-

quiring tax returns.

3) mintoo.com checks to see if Alice is currently

logged in through the OpenID provider.

4) The target web application (mintoo.com) checks

to see that the session token is valid and that the

delegation policy (generated as a result of PAR and

user consent) allows the release of the requested data

item.

5) Each web application after receiving the required data

item releases the generated data item to the requesting

web application; in case of independent data items,

the only requirement is the validity of the session and

delegation token.

Note that in the runtime portion of our protocol, the user

does not have to perform any step other than logging in

to the source OpenID provider and allowing the different

web applications access to status information (which is

a one-time operation). This allows for a usable protocol,

which requires minimum user intervention, thus limiting the

possibility of threats such as phishing attacks.

V. OUTLOOK

Mashups are an architectural paradigm in which data

is retrieved from one or more sources into a single inte-

62

grated whole to create entirely new and innovative services.

However, allowing mashups to retrieve sensitive data on

behalf of the user may lead to security concerns. In this

paper, we presented a general delegation model for mashups,

which is fine-grained as the web applications are dependent

on each other on the basis of specific data items. Our

approach is user-centric, which allows zero-dependence on

third parties for issuing delegation permits and is capable

of handling multiple web applications. We also presented a

session management protocol based on single sign-on so-

lutions in order to avoid multiple username/passwords. Our

protocol is capable of configuring multiple web application

through policy authorization requests. We have developed

a prototype implementation using Eclipse in a Web Tools

Platform (WTP) [21] for developing web applications. In our

current implementation, each web application is composed

of a set of services. These services are used to configure

user preferences and access data items respectively. Each

respective service can be either categorized as a configure

service or runtime service. Configure services are used to

configure the user preferences regarding accessing specific

data items. Runtime services on the other hand allow the

user or a web application to access the corresponding data

items, upon presenting the issued delegation policy token.

These services take XML documents as input and process

them using FastXML parser [22]. Our evaluation shows that

once, these services are configured, with the help of single

sign-on solution such as OpenID, it is very easy to get

multiple web applications work simultaneously. Currently,

we are planning to develop open source API and libraries

that can be used for interacting with configure-time and

runtime services in our protocol.

REFERENCES

[1] D. Merrill, “Mashups: The new breed of Web app,” IBM Web
Architecture Technical Library, 2006.

[2] What Is Web 2.0 - O’Reilly Media, available at:
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.html.

[3] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl,
L. Mau, Y.-H. Ng, D. Simmen, and A. Singh, “Damia: a
data mashup fabric for intranet applications,” in VLDB ’07:
Proceedings of the 33rd international conference on Very
large data bases. VLDB Endowment, 2007, pp. 1370–1373.

[4] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and
A. Ranganathan, “Wishful search: interactive composition
of data mashups,” in WWW ’08: Proceeding of the 17th
international conference on World Wide Web. New York,
NY, USA: ACM, 2008, pp. 775–784.

[5] J. Wong and J. Hong, “Making mashups with marmite:
towards end-user programming for the web,” in Proceedings
of the SIGCHI conference on Human factors in computing
systems. ACM New York, NY, USA, 2007, pp. 1435–1444.

[6] R. Ennals and M. Garofalakis, “MashMaker: mashups for
the masses,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM New
York, NY, USA, 2007, pp. 1116–1118.

[7] A. Jhingran, “Enterprise information mashups: integrating
information, simply,” in VLDB ’06: Proceedings of the 32nd
international conference on Very large data bases. VLDB
Endowment, 2006, pp. 3–4.

[8] HousingMaps, available at: http://www.housingmaps.com.

[9] Chicago Crime Data, available at: http://chicago.everyblock.
com/crime/.

[10] TweetDeck: a Simple and Fast Way to Experience Twitter,
available at: http://www.tweetdeck.com.

[11] Yodlee - Innovative Bill Pay, Personal Finance and Online
Account Opening Tools, available at: http://www.yodlee.com.

[12] R. Hasan, M. Winslett, R. Conlan, B. Slesinsky,
and N. Ramani, “Please permit me: Stateless
delegated authorization in mashups,” in Computer
Security Applications Conference, 2008. ACSAC 2008.
Annual, 2008, pp. 173–182. [Online]. Available:
http://dx.doi.org/10.1109/ACSAC.2008.24

[13] OAuth - An open protocol to allow secure API authorization,
available at: http://www.oauth.net.

[14] Authentication for Web Applications - Account Authentica-
tion API, available at: http://code.google.com/apis/accounts/
docs/AuthForWebApps.html.

[15] J. Howell, C. Jackson, H. Wang, and X. Fan, “Mashu-
pOS: Operating system abstractions for client mashups,” in
Proceedings of the Workshop on Hot Topics in Operating
Systems, 2007.

[16] F. De Keukelaere, S. Bhola, M. Steiner, S. Chari, and
S. Yoshihama, “Smash: secure component model for cross-
domain mashups on unmodified browsers,” 2008.

[17] C. Jackson and H. Wang, “Subspace: secure cross-domain
communication for web mashups,” in Proceedings of the 16th
international conference on World Wide Web. ACM New
York, NY, USA, 2007, pp. 611–620.

[18] M. Blaze, J. Feigenbaum, and A. Keromytis, “KeyNote: Trust
management for public-key infrastructures,” Lecture Notes in
Computer Science, vol. 1550, no. 59-63, pp. 33–60, 1999.

[19] N. Li, B. Grosof, and J. Feigenbaum, “Delegation logic:
A logic-based approach to distributed authorization,” ACM
Transactions on Information and System Security, vol. 6,
no. 1, pp. 128–171, 2003.

[20] OpenID Developers, available at: http://openid.net/
developers/.

[21] Eclipse Web Tools Platform, available at: http://www.eclipse.
org/webtools/.

[22] FastXml.net: Fast XML Processing, available at: http://www.
fastxml.net/.

63

