11th IEEE International Enterprise Distributed Object Computing Conference

A Model-driven Framework for
Trusted Computing based Systems

Masoom Alam' Jean-Pierre Seifert? Xinwen Zhang?
muhammad.alam @uibk.ac.at, {xinwen.z,j.seifert} @sisa.samsung.com
! University of Innsbruck, AUSTRIA
2 Samsung Information Systems America, San Jose, CA,USA

Abstract

Existing approaches for Trust Management through soft-
ware alone — by their very principle — are uncompromising
and have inherent weaknesses. Once the information leaves
the service provider platform, there is no way to guaran-
tee the integrity of the information on the client (or service
requestor) platform. The Trusted Computing Group pro-
posed a quantum leap in security, a hardware based “root
of trust” by which the integrity of a platform — be a client
or service provider can be verified. However, there is no
approach for the integration of this novel but essentially
straight forward concept into the distributed application de-
velopment. We believe that the complexity of Trusted Com-
puting (TC) is one of the key factors that will hinder its suc-
cessful integration within the web services based distributed
application realm. Model-driven techniques offer a promis-
ing approach to alleviate the complexity of platforms. This
contribution has three objectives. First, we detail SECTET
— a model-driven framework for leveraging TC concepts at
a higher level of abstraction. We secondly elaborate the
integration of platform-independent XACML policies with
the platform-specific SELinux policies. Thirdly, we share
our experiences regarding the implementation results of the
SECTET on TC based systems.

1. Introduction

Service Oriented Architectures (SOAs) with underlying
technologies like web services and web services orches-
tration have opened the door to a wide range of novel
application scenarios, especially in the context of inter-
organizational cooperation and business process integra-
tion. Applications built on web service technologies use
plenty of standards like WS-Trust for trust negotiation, WS-
security for the fulfilment of security requirements like con-
fidentiality and integrity and eXtensbile Access Control

1541-7719/07 $25.00 © 2007 IEEE
DOI 10.1109/EDOC.2007.52

75

Markup Language (XACML) for the specification of ac-
cess policies to name a few. These open standards enable
the agreement and inter -operability at the technical level,
while abstracting the heterogeneity of different proprietary
and legacy applications. Due to this flexibility, on the one
hand, business processes having common business goals
can connect their enterprise applications regardless of their
platform or technology in use. However, on the other hand,
this decentralized management has increased the exposure
of enterprise applications and therefore, requires thorough
investigations of their security implications.

One of the biggest security issues in SOAs is secure in-
formation sharing. Secure information sharing is defined as
“...share but protect because of the sensitivity of the con-
tent, be it for business, personal or national security rea-
sons”, cf. [33]. There is a high-level difference between
secure information sharing and retail Digital Rights Man-
agement (DRM). According to [33], “.. . the business model
for generating revenue is much more relevant to determine
these trade-offs in the case of retail DRM whereas this is
much less so for (secure) information sharing. In the latter
case the sensitivity of the information typically directly ties
to mission objectives”.

According to current best practices, secure information
sharing is mostly enforced through legislation or social con-
sent. Businesses, agencies and organizations simply pledge
themselves to adhere. As a matter of fact, the information
owner actually has lost control over his information once
it is given away. Access control is enforced on the server
side only. Information once on the client, is out of con-
trol. It is impossible to impose constraints on its usage, fur-
ther dissemination to non authorized third parties as a worst
case is a matter of clicks. Information owners are becoming
aware of the implications of these system-inherent weak-
nesses and are increasingly reluctant to give away or share
information. If not countered, that trend could ultimately
materialize into the biggest stumbling block for the realiza-
tion of the information society. This leads to the conclu-
sion that an appropriate security concept for modern com-

IEEE
computer
psouety

puting systems must empower the information owner with
total control over his information, regardless of whether it
left the owner’s trust domain.

1.1. Problem Statement

Considering the state of the art and best practices of
security solutions in almost any commercial deployment
scenario, the need for secure information sharing is high
at stakes. Increasing trust and confidence in computing
systems — the building block to successful e-business, e-
government or e-health — by software alone has obvious
limitations, cf. [27]. A prerequisite to effective secure in-
formation sharing is the establishment of trustworthiness.
This can only be achieved through TC services running
on trusted platforms (e.g., platform state monitoring, run-
time integrity measuring, and attestation services) (e.g.,
[14, 27, 31]). Trusted platforms consist of a security-
enhanced operating system (e.g., SELinux [2]) and stacked
on-top of trusted hardware (e.g., Intel’s LaGrande [14] or
AMD’s Pacifica [13] extensions). With trusted platforms
offering most of the low-level security controls needed for
security enforcement, the systematic and correct implemen-
tation of security-critical systems remains an overly com-
plex task, which, in many aspects, is bound to low-level
technical knowledge and hence error-prone. As an example,
consider the configuration of the SELinux operating system,
a topic that has attracted a lot of attention lately, even in the
scientific community (e.g., see [1] and [17]).

What strikes even more, is the fact that with effective
enforcement of TC-based security requirements in the op-
erating system (OS), the application layers or (even worse)
the services layer still poses unresolved challenges. This
gap often leads to a situation where the consideration of se-
curity concerns is postponed to the end of an engineering
project, or — at best but with a similar outcome — the real-
ization is commonly left over to developers with little or no
expertise in security. Even in case of a satisfying implemen-
tation of security requirements by security experts, usually
endorsing a very technical notion of security narrowed to
mechanisms, algorithms and protocols, the costs of contin-
ually adapting workflows and systems to match changing
business (and hence security-) requirements are very often
too high. As a consequence, applications and systems re-
main static and optimizations are hardly feasible.

Towards addressing some of the former issues, this paper
makes the following contributions:

1. We present a framework for model-driven security
which bridges the gap between the specification of
application- and operating system-level security objec-
tives and their respective implementation through TC
technologies. We illustrate our approach through a real
life scenario from healthcare.

76

2. We investigate the stacking of web service security
standards on top of SELinux policy model.

The rest of the paper is organized as follows. Section
2 sketches the background of our work. In Section 3, we
present the conceptual foundation of the framework. Sec-
tion 4 describes the extensions to the conceptual founda-
tions of our framework. Section 5 elaborates the salient fea-
tures of the implementation. Section 6 summarizes related
work and finally, in Section 7, a conclusion is drawn.

2. Background
2.1. Model Driven Security

The engineering of security requirements during the sys-
tem design is usually neglected. model-driven security en-
gineering is based on model-driven software engineering
and Object Management Group’s related standardization
initiative Model Driven Architecture (MDA) in so far as
high-level security requirements are realized at the model-
level and are kept separate from the underlying security ar-
chitecture. As an engineering discipline, model-driven se-
curity engineering is concerned with the integration of se-
curity requirements in to all phases of system development
like analysis, design, implementation, testing etc.

In our framework, we specialize the concept of MDA to
Model Driven Security (MDS) by providing a framework
in which low-level security requirements of a B2B scenario
are modelled at a higher level of abstraction and merged
with the business requirements modelled as Platform inde-
pendent Model (PIM). These security enhanced PIMs are
transformed to different open standard specifications (Plat-
form Specific Model) which in turn configure our compo-
nent based reference architecture [23].

The approach of model-driven software engineering
builds upon two key concepts. The Domain Specific Lan-
guage (DSL) helps to model concepts in specific applica-
tion domains such as e-government and online health-care
services. Domain specific languages are formalized using
metamodels which are used to describe relationships among
concepts in a domain. The Transformation rules take var-
ious aspects of the models in the problem domain as input
and then synthesize implementation artefacts from the mod-
els of the problem domain.

2.2. Trusted Computing (TC)

The term “Trusted Computing” refers to a technology —
introduced in the very months by the Trusted Computing
Group (TCG) [4], in which PCs, consumer electronic de-
vices, PDA’s and other mobile devices are equipped with
a special hardware chip called Trusted Platform Module

(TPM). In accordance with other security hardware exten-
sions, cf. [13, 14], the TPM is empowered with crypto-
graphic mechanisms to (1) certify remotely the integrity of
the (application/system) software running on the device, (2)
to protect I/O and storage of data inside the device and, (3)
to strictly isolate the data residing inside memory from other
potentially malicious applications. This practice is well de-
signed to effectively fight against malicious code, viruses,
privacy violations, etc. The reason is that current practices
for fighting against malicious code and other threats purely
at the software level by their very nature are uncompromis-
ing. Indeed, it has been learned from past experiences that a
trusted and tamper-proof security basis cannot be achieved
using software based solutions alone [14, 27].

2.3. Security Enhanced Linux (SELinux)

In computer security, Discretionary Access Control
(DAC) is an access control model in which a subject with
owner permissions is capable of passing permissions to
any other subject. However, the fundamental weakness
in the DAC model is that the ability to grant and use ac-
cess creates a big security hole, where by malicious soft-
ware can get control of important system resources. Secu-
rity Enhanced Linux (SELinux) — an initiative by the Na-
tional Security agency (NSA) uses Mandatory Access Con-
trol (MAC) mechanisms that provides only such necessary
accesses a program needs to perform its job — also known
as the principle of least privilege.

SELinux associates an access control attribute of the
form user:role:type to all subjects (processes) and
objects (files, IPC, sockets, etc.) which is called Security
Context. Within the security context, the type attribute
represents the type of the subject or the object e.g. file, di-
rectory etc. The identification of subjects, objects and their
access enforcement by means of types is formally known as
Type Enforcement (TE). The role attribute within the se-
curity context is built upon the type attribute. This means
that access control in SELinux is primarily enforced via
Type Enforcement. Instead of directly associating a user
with a type, SELinux associates a user with a role and
role with a type. The role merely simplifies the man-
agement of users and access control is still enforced by the
TE system [25].

We believe that SELinux policies are best suited for se-
cure information sharing because MAC policies can enable
continued control of the service provider, even after the re-
lease of the information. However, the current SELinux se-
curity context is limited to Type Enforcement only. Thus,
we stack the XACML Policy model on top of SELinux
policy model to enable continued control of the service
provider, using TC mechanisms (cf. Section 5).

7

3. SECTET-framework — Domain Architecture

The SECTET project cluster — an engineering frame-
work for model-driven security — facilitates the design
and implementation of secure inter-organizational work-
flows. Based on the SOA paradigm, the objective of
the SECTET-framework is to design and implement inter-
organizational workflows in a peer-to-peer environment —
i.e. without central control. Case studies from the do-
main of healthcare and e-government provided the oppor-
tunity to apply the SECTET-framework in real life sce-
narios [28, 20, 29, 21, 19, 9]. The framework weaves
the ideas about Model Driven Architecture, Model Driven
Engineering and web services standards together for an
inter-organizational workflow conceptual framework, that
is more than the sum of its parts. The framework caters
to the needs of a rather broad domain defined as ”Security
Critical Inter-organizational workflows Scenarios”. Due
to its genericity, the SECTET-framework potentially cov-
ers a large set of component based applications from do-
mains such as e-government, e-health, e-education etc. The
modeling of security critical inter-organizational workflows
with the help of domain specific language SECTET, fol-
lowed by a transformation process and the execution on
a web services based target architecture, are the pillars of
SECTET-Domain Architecture. Subsequently, we provide
a rough sketch of these building blocks of the SECTET Do-
main Architecture.

3.1. Domain Specific Language (DSL)

Generic security concepts like authentication, authoriza-
tion etc., stay principally the same for different application
domains [22]. The SECTET-framework provides a high-
level repository for generic security concepts, which are
adapted to specific, component-based application domains.
This occurs through abstract languages defined within the
SECTET-framework — defined as DSLs. Security require-
ments such as workflow security requirements, trust man-
agement requirements and the like are modelled using DSLs
at the design level, and seamlessly integrated as security
patterns, in to the business requirements models.

The SECTET-DSL is composed of two sub languages
namely SECTET-UML and SECTET-PL. SECTET-UML is
a UML profile for visually rendering business requirements
such as data type and static security requirements such
as roles and their respective hierarchies [30]. The UML
profiles devise an extension mechanism for building UML
models in specific domains and, is a collection of such ex-
tensions that together describe some particular modelling
problem and facilitate modelling constructs in that domain.
In this way, syntax is provided for constructs that do not
have a UML notation.

1

ModelManagement

PR

<<baseElement>> <<baseElement>

AN

I 1

| |

! /o1, <<baseClement>
! <baseElement>> /1 LN

I ! | \ N
| i | \ \
| / |

! / i i
1

I

S
] \
/- <<beseElenent> | <<baseEleingri>>

I

I

I

I

I

I

I

| |

: |

I

I

I

i A N |

/o sECTETUML % i

/’ | \ X |

{ | \ \ I

/ | \ \ |
/ |

\

<<Sigreotype>>

!
<<Steraatype>> <<Sterectype>>
rightsD i del ivacyModel

yP:
roleModel

Figure 1. Virtual metamodel for the stereo-
types of UML Packages within SECTET-UML
(adopted from [5])

Description Methodology for SECTET-UML: Figure 1
and 2 shows the virtual metamodel for the stereotypes
defined by SECTET-UML. The virtual metamodel is ex-
pressed via a class diagram. Each stereotype plays the
client role in a dependency relationship with the UML meta
class that it extends. These dependencies are stereotyped
<<baseElement>>. Each stereotype is expressed via a
classifier box, even though a stereotype is not a classifier.
The keyword <<baseElement>> does not represent a
stereotype itself, it is simply a notational marker for the un-
derlying stereotype metaclass [5]. SECTET-UML extends
the following standard UML packages.

e Core

e ModelManagement

Description: Figure 1 shows the virtual metamodel
for the stereotypes used for UML packages within the
SECTET-UML. For example, the UML package with the
stereotype <<documentModel >> contains a UML class
diagram which defines the data type view for the documents
travelling between the partners in an inter-organizational
workflow (see Fig. 3 for an example instance). In addition
to exchanged document data types, it also provides an ab-
stract view of the attributes and the resources and their rela-
tionships in the form of associations. Within the Document
Model, the UML class with the stereotype <<actor>>
hosts exclusively the attribute set that are common to all
the actors within the system and all actor classes specializes
the actor class (cf. Fig 2). The attribute with the stereo-
type <<key>> is used as a primary key and is used during
navigation to locate a particular object of the entity. The
interface with the stereotype <<external >> contains ex-
ternal functions which are used to map the requestor to its

78

internal representation in the Document Model.

I

Core

e e ._>‘ Interface ‘ ‘Constraint‘ ‘ Class ‘ ’ Attribute |<_f<_b_a§e_E_Ie_m_ewnt>>
A

I

i

| VT
_________ 1 i/ Vol
<<baseElement>>

SECT/E'TUML \
A

i
L
]
I
I
] /
\
|
I
I
I
I

\ CaseElem>> |

! \
<<baseElemgfit-> <<baseElement>>
!

\
/ \ I

|
<<Stereotype=>
key

L
<<Stereotype>>
domainRole

!
<Seralpes>
accessConstraint

!
<<Stereotype>>
external

<Sereoypes>
partnerRole

Y
actor

Figure 2. Virtual metamodel for the stereo-

types of UML 1Interface, Attribute,
Constraint, Class
The UML package with the stereotype

<<interfaceModel>> defines the Interface Model
which contains an abstract set of (UML-) operations
representing services the component offers to its clients
(cf. Fig 1). The types of the parameters are either basic
types or classes in the Document Model. Additionally,
pre- and post-conditions (in OCL style) may specify the

behaviour of the abstract services (see Fig. 5a for an
example instance).
The UML package with the stereotype

<<roleModel>> defines roles having access to the
services in the form of a UML class diagram (cf. Fig 1).
The package with the stereotype <<accessModels>>
contains the permission assignment constraints which are
attached to the services defined in the Interface Model.
Within the Role Model, classes with the stereotype
<<partnerRoles>> represents different partners in
an inter-organizational workflow. The classes with the
stereotype <<domainRole>> identifies the roles specific
to the domain of each <<partnerRole>> (cf. Fig 2). In
this way, a classification is made between the roles assigned
to the partners in an inter-organizational workflow and
entities within those partners (see Fig. 5b for an example
instance).

In order to model dynamic security requirements,
SECTET-UML is combined with a predicative language
called SECTET-PL. SECTET-PL [7, 18, 20] — a predica-
tive language in Object Constraint Language (OCL) style
[26] — is tightly integrated with the SECTET-UML. Using
SECTET-PL predicates, positive and negative permissions
can be specified in the Access Model with respect to any
UML class diagram. These dynamic security requirements
can be transformed to any middle-ware, object-oriented se-

«rdocumentModel»
DataTypeVYiew

Name

«interfacer Disease

Actor

-+ actortName| . first ; string

Date =
+ wkey» d

+ name : String

d : String

+ getCurrentDate {)
+ getCurrentMonth ()
+ getCurrentYear {)

+ confidential : Boolean
+ area : String

w
+ patientDisease

+ «key» actorId : String M 1
+ hospitalld : String
+ hopitalName : String
+ dob : Date
+ gender : String
+ age : Integer

+ last : String

winterfacen
Time:

i

+ getSystemTime {)

Nurse Patient

Physician Administrator

+ ward : String

1 : Strir] 1. + patients + Insuranceld : String
+ specialization : String

+ InsuranceName : String
«

o.*

+pep | * spe.cializatiun : String + administeredWard : String

+ platformIntegrity : String |+

+ patients 1

fon : String
+ vacationStatus : Boolean

«externaly»
ExternalFunctions

+map ()

+ cannotSpreadFurther ()
+ location ()

+ registeredComputer ()
+ latestAnitSpyware ()

+ wardsPatients

Figure 3. Sample Document Model (taken from [7])

curity platform.

In this paper, we extend the SECTET-DSL for model-
ing advanced access control scenarios from the domain of
trusted computing.

Security Domain Boundaries

XACML Context

SECTET-PL
Policy
Editor

<7

Conversion

i ——

to
XML Schema

Plain SOAP
Request

Secured SOAP
Request

Document
Access
Plain SOAP
Response

Secured SOAP
response

Figure 4. Target Architecture (taken from [20])

3.2. Target Reference Architecture (TA)

The Reference Architecture implemented as XACML
dataflow model provides the backbone and the enabling
technology for the artefacts defined at the model-level. The
component employs various web services standards such
as WSDL, SOAP and XACML etc. The Policy Enforce-
ment Point (PEP) is an application level gateway that inter-
cepts each incoming and outgoing message. At the service
provider end, this application level gateway intercepts in-

79

bound (and outbound) SOAP requests. It first authenticates
the service requester either by itself (if requester belongs to
its own domain) or forwards the request to the correspond-
ing domain. We assume that domain information is part of
the service request (for information about PEP authentica-
tion handling mechanisms please see [35]). The PEP gen-
erally applies a series of security-related processing steps
to the message structure in order to extract security tokens,
check the signatures and decrypt message elements and to
coordinate the interaction with supporting security compo-
nents. In case of a successful authentication the PEP as-
signs a role to the request according to the credentials pro-
vided and queries a Policy Decision Point (PDP) to allow
(or deny) access to web services (cf. Fig 4). The PDP in
turn selects the applicable policy from a Policy Repository
using RBAC and decides on the result of the access query.

The Policy Decision Point is primarily responsible for
making authorization decisions with the help of XACML
policies. After a suitable policy is found, the PDP asks the
Policy Information Point (PIP) for attribute values neces-
sary for policy evaluation. The PIP gathers the attributes
locally or queries the appropriate partner. We use the term
Front End Authorization for the access control performed
by the PDP at the service provider end. In case authenti-
cation could not be performed by the service provider, the
request is forwarded to the corresponding domain and the
role assigned subsequently. In either case, the partner pos-
sessing the attributes initially receives an SAML attributes
request query. These requests present a set of identifying
credentials that identify the service provider to the attribute
authority and include the definition of the requested web
service by the service requester at the service provider end
as well as credentials of the service requester himself. The

attribute authority uses this information to identify and eval-
uate potential Attribute Release Policies (ARP) attached to
protected attributes (i.e. to whom these attribute can be
released and under which condition). If the requested at-
tributes are protected by an ARP, the PEP queries the PDP
for an authorization decision. The PDP evaluates the ARP
and returns the result.

Finally, the PEP either gives the attributes to the request-
ing party (service provider) in the form of an SAML at-
tributes response or returns a negative response. The access
control performed by the PDP at the attribute authority end
for the release of attributes is called Back End Authoriza-
tion.

Once the complete set of requester attributes is known
to the PIP at the service provider end, all return values are
formulated as XACML attributes and presented to the PDP.
The PDP makes the access decision on the basis of the user
attributes required for the policy execution and informs his
PEP about the response.

3.3. Model Transformation and Code Gen-
eration

Transformations play a key role in the MDE paradigm
and are used to generate target platform specific models
from the source platform independent models [8]. A trans-
formation converts models offering a particular perspective
from one level of abstraction to another, usually from a
more abstract to a less abstract view, by adding more details
supplied by the transformation rules. Further, a transforma-
tion process takes as input a model confirming to a given
metamodel and produces as output another model confirm-
ing to a given metamodel. Considering software and system
development as a set of model refinements, the transfor-
mations between models become first class elements of the
software development process. As a result, defining trans-
formations requires specialized knowledge of the business
domain and the technologies used for the implementation.

Czarnecki K. et al [12] have broadly classify the trans-
formations into two categories: Template-based and Visitor-
based transformation. In Template-based, a template usu-
ally consists of the target text containing splices of meta-
code to access information from the source and to perform
code selection and iterative expansion. We transform the
Document, the Interface, the Role Model and parts of Ac-
cess, Rights Delegation and Privacy Models to the corre-
sponding XACML policy files using template-based trans-
formations.

In visitor-based transformations, a visitor mechanism is
used to traverse the internal representation of a model and
then write code to a text stream. The SECTET-PL predi-
cates are transformed to the corresponding X-Path/X-Query
expressions using visitor-based transformations.

80

The Transformation component is prototypically im-
plemented as a java-based tool [20] using ANTLR [10].
The prototypical tool performs the syntax analysis of the
SECTET-PL predicates and afterwards verifies the pred-
icates against the model information specified via XMI
files. After the successful syntax and semantic analysis, the
SECTET-PL predicates are transformed to XACML policy
files.

Model-to-model transformations based on the MDA
standard MOF-QVT. The mappings translate platform
independent models into platform specific artefacts target-
ing the reference architecture. For an in-depth account
on MOF-QVT based model-to-code transformation in the
SECTET framework, please refer to [22].

4. SECTET Domain Architecture Extensions
4.1. Motivating Example

In order to illustrate some of the extended SECTET-
framework’s functionality, we take an example application
scenario from a medical domain. In our case, doctors,
nurses and administrators are given restricted access to re-
sources (or patient’s data) at the hospital’s main site. Take
a service requestor, attempting to access the online patient
records, the following steps are performed during authenti-
cation and authorization:

1. A service requestor authenticates herself to the hospi-
tal site and is assigned to a role (e.g., surgeon, nurse,
general practitioner etc.).

2. After authentication, the security gateway evaluates
the service requestor’s eligibility for the requested re-
source according to his role, as well as static and dy-
namic constraints (e.g., access on working days only).

3. If access is granted, the security gateway attaches a
policy (e.g., XACML Obligations Policy) to the infor-
mation released.

4. The XACML Obligation policy will be shipped with
the released object/information. The platform inde-
pendent XACML Obligation policy is transformed to
platform specific SELinux policies. And, by using TC
key-concepts, the SELinux policy enforces constraints
on the future usage of the object or information on the
service requestor’s platform. The correct enforcement
of the SELinux policies is verified through the TC-
function called Remote Attestation [31].

«roleModebs

Raleode! gpurposeModel:
wusen Purposes
winterfaceModebs
Interfaces «domainRales
NurseRole i
«interface» i,Lf Treatment
MedicalSystem 7 ﬁ «partnerRoles
«domainRoles «domainRoles Hospital “pUrposes

-1 SurgeonRole PhysicianRole

+ getPatientRecordforRead {)

+ getPatientRecordforivrite ()

+ makesppointrment {)
+ emergencyCall ()

e,
-1 «domainRale>
PatientRole

Administration

1

«pul’pose»
Surgery

«domainRales
AdminRole

—

(@)

(b)

(<)

Figure 5. Sample ((a) Interface Model (b) Role Model (taken from [7])) (c) Purpose Model

4.2. Purpose Model

Being associated to the Interface View, the model type
Purpose Model (cf. Fig 5¢) represents a standard entity that
defines reasons for the data collection or the intended use
of the data [3]. It formulates the possible purposes in the
form of a UML class diagram which is suitable for most
business environments. Purposes play a key role in mak-
ing access decisions in privacy and TC-aware access con-
trol management systems. In extended SECTET, a service
requestor must state a purpose for the usage of the requested
attributes to a service provider. Figure 5c defines three enti-
ties in the Purpose Model. The purpose Surgery inherits
from the purpose Treatment which means that if some
attributes can be released for the purpose Treatment,
then the same set of attributes can also be released for the
purpose Surgery since the latter is the subclass of the for-
mer. These purposes and their respective hierarchies are
checked against the stated purpose of the service requestor
using SECTET-PL described in next Section.

4.3. Predicative Specification of Access
Rights in Trusted Access Model

context webService : op(x1: Ty, X2:To, ..., Xp:Tp)

perm[role] : pcondExp;
proh[role] : ncondExp;
oblig[roley] : oactExpy

Figure 6. General form of Trusted Access
Model

SECTET-PL [20, 7] — a predicative language in OCL-

81

style — allows the specification of fine-grained data depen-
dent access permissions based on roles. Originally devel-
oped with the goal of integrating aspects of authorization
in use case based development [11], we use this language
in the extended SECTET framework to specify permissions
and actions for calling web services. We extend the Access
Model for the specification of TC dependent constraints and
call it Trusted Access Model. Like access rules, these rules
are described at the model level in the predicative language
SECTET-PL. The permission predicates in the Trusted Ac-
cess Model are specified according to the general structure
given in Figure 6.

The positive rule perm[role;] : pcondExp; describes
the condition pcondFExp; under which some role role;
is permitted to call web service op. The negative
rule proh(role;] : ncondExp; describes the condition
ncondExp; under which some role role; is prohibited
to call web service op. The Access Model is extended
to include the obligtaion constraints. The obligation rule
oblig[role;] : oactExp describes a sequence of actions
oact Expy, that some role roley, is obligated to perform af-
ter the release of the requested information.

The conditions are permission predicates over the formal
parameters of the web service (1 : Ty, 29 : To, ..., Ty :
T,,). Permission predicates allow navigation through XML
documents, comparison of expressions and the connection
of predicates by logical operators.

The example Access Rules (ARs) in Figure 7 refer to the
Document, Interface, Role and Purpose Model in Figures
3, 5a, 5b and 5c respectively. We first describe the content
independent constraints followed by TC and content depen-
dent constraints.

The Content Independent constraints make use of con-
text function classes within the Document Model such as
Date, Time etc. These context functions return domain spe-
cific values such as current date, system time or other sys-
tem dependent values (cf. AR1). Further, the web service
parameters can also be verified against some user-defined

AR1: An administrator is allowed to check the medical records in working hours only.

context MedicalSystem:getPatientRecordforRead (patID:String, patDiseaseId:String)
perm|[AdminRole] :
Time.getSystemTime ()>=8 and Time.getSystemTime ()<=17;

AR2: A person, identified by his or her patient number, is allowed to make an appointment
only for weekdays.

context MedicalSystem:makeAppointment (patID:String,phyID:String, Day:String)
proh[PatientRole]: Day = "Saturday" or Day = "Sunday";

AR3: A patient, identified by his/her patient number can read his/her own medical records
only.

context MedicalSystem:getPatientRecordforRead (patId:String)
perm[PatientRole]:let pat=subject.map(Patient) in
ph.actorId=patId;

ARA4: A nurse can read the medical records of every patient for her specialization and her
platform should be in a known good state. But she shall not be permitted to read the
medical records of the patient if patient disease is marked confidential.

context MedicalSystem:getPatientRecordforRead (patId:String, patDiseaseld:String)
perm[NurseRole]: let nr = subject.map (Nurse) in
nr.patients.selectone (actorId=patID). patientDisease.
select (diseaseId = patDiseaseld and area = nr.specialization)
nr.platformintegrity = 1;

.notEmpty () and

proh[NurseRole]: let nr = subject.map (Nurse) in
nr.patients.selectone (actorId = patId). patientDisease. select (diseaseld =
patDiseaseId and confidential = true).notEmpty();
ARS5: A physician can modify any medical record for which he or she is the designated
primary care physician for treatment purposes only. But the service requestor should not
further disclose it to any third party. Moreover, the medicai records shouid be accessible
from a registered computer at the office and some mechanism should be used to prevent
possible information leak.

context MedicalSystem:getPatientRecordforlrite (patId:String)
perm[PhysicianRole]: let ph=subject.map(Physician) in
ph.patients.select (actorId=patId) .notEmpty () and
subject.confirmPurpose (ph.statedPurpose) ;
oblig[PhysicianRoles] :
subject.hoursAllowed (48) ;
subject.medicalSoftwareIntegrity (1) ;

Figure 7. Sample Access Rules
values (cf. AR2).

The Content Dependent constraints depend on the inter-
nal representation of the calling actor (service requestor).
The underlying XML documents are provided by the pa-
rameters of the web services on the one side, and by the spe-
cial construct subject .map (T) on the other side which
is supported through a library of external functions. The
Document Model hosts the library of external functions
in the interface ExternalFunctions stereotyped with
<<externals>>. This stereotype indicates that the corre-
sponding interface is not transformed to XML schema but
refers to the security infrastructure in order to verify a cer-
tain relationship between the caller of the web service and
a particular element of the Document Model (e.g. map).
The identification variables (e.g. subject) associated
with these external functions distinguishes different types
of callers, e.g., subject .map (T) allows the connection
of the calling actor with his/her internal representation to
the business logic enabling permissions like “the actor has
access to his/her own data”.

In AR3, an association between the calling Patient
whose identity is passed as parameter is required. In
order to provide this connection, we make use of the
subject .map construct mapping the calling actor (in the
PatientRole) to its internal representation in the form

82

of entity Patient.

Used in some permission or prohibition expressions,
the special construct subject .map (T) authenticates the
caller of the web service (where the way how authentica-
tion is done can be freely chosen), checks if the caller is in
the specified role and maps it an to an internal representa-
tion in the Document Model. In case the caller belongs to
the some other domain, the subject .map (T) requests
the attribute values that are not present locally from the cor-
responding domain through an attribute requesting service
[9].

The trusted computing dependent constraints verify the
integrity of the software and hardware on the service re-
questor platform, before an access is granted to the re-
quested information. The integrity of the service re-
questor’s platform is represented as attributes within the
internal representation of the service requestor. For ex-
ample, platformIntegrity is an attribute within the
entity Nurse, whose value depends on the trust wor-
thiness of the service requestor platform such as the
trustworthiness of its memory, protected I/O, and se-
cure ports. For simplicity, we represent the hard-
ware integrity as one attribute — platformInegrity.
In practise, many such domain specific attributes such
as medicalSoftwareIntegrity etc could be aug-
mented to the internal representation of the service re-
questor.

The trusted computing dependent attributes are re-
quested from the service requestor as part of the trust ne-
gotiation, before an access is granted (see e.g. [32]). Fur-
ther, these trusted computing dependent attributes are veri-
fied against some known values. In our setting, 1 represents
a KNOWN_GOOD_STATE, 2 represents INTERMEDIAY and
0 represents NOT_GOOD_STATE. The next example shows
a combination of positive, negative and trusted computing
dependent constraints.

The obligation constraints define a sequence of actions
that must be fulfilled by the service requestor once the re-
quested information is released and reaches the service re-
questor platform. Basically, the obligations restrict the ser-
vice requestor regarding the future usage of the released in-
formation by means of Security Enhanced Linux (SELinux)
[2] policies (described in the next Section). These obli-
gations are specified as external functions which obligate
the service requestor for the verification of certain hard-
ware/software requirements on her platform. The obliga-
tion constraints are transformed to XACML and SELinux
policies by applying a series of transformation steps.

In addition to content dependent constraint, in ARS,
the obligation constraints restrict the service requestor
(PhysicianRole in this case) regarding the maximum
duration, the released information can be viewed and that
the integrity of the medical software should be in a “known

good state”.

The most important functionality of a TC-platform is to
remotely certify to third parties in enciphered form, which
software is running, whether malicious code has modified
the corresponding software, status of the hardware compo-
nents etc. This feature enables the service providers to de-
ploy their services across geographical boundaries. How-
ever, recent research [15] shows that there are several short-
comings of this traditional way of remote attestation. For
example, what is desired in a remote attestation is the be-
haviour of the software running, but what is attested is the
fact that a particular binary is run [15]. Our approach to-
wards addressing this problem is the attestation of all those
properties included in the obligations. Since obligations
defines the expected behaviour of the client platform, the
client platform is restricted to report the properties included
in the obligations to the data provider (cf. Section 5.3).

The permission constraint in ARS uses the external func-
tion confirmPurpose which returns a Boolean value de-
pending on the match of the stated purpose of the service
requestor against the purpose set for the modification of the
patient record by the corresponding patient. The operation
also takes purpose hierarchy into account as described in
Section 4.

4.4. Transformations

Transformations play a key role in MDE paradigm and
are used to generate target platform specific models from
the source platform independent models. Due to space re-
strictions, only a bird eye view of the overall transformation
workflow is included for the sake of continuity.

In the SECTET-framework, we transformed the high-
level access control specifications to XACML policies us-
ing QVT [22]. The generated XACML policies are then
interpreted by the policy decision point in the target archi-
tecture. Consider an example policy in Figure 8 The policy
formalizes the high-level security requirement that a physi-
cian identified by PhysicianRole can access the hospi-
tal site between 9 AM and 5 PM. (Note the example is given
in simplified syntax).

XACML Obligations are post conditions which must be
fulfilled by the service requestor. The obligation part re-
stricts the service requestor regarding the future usage of
the released information. The Obligations in example pol-
icy (cf. Fig 8) specify that in order to access the medical
record, the medical application at the client platform should
be in “known good state” and the medical record can be
viewed for 48 hours only.

In the extended SECTET, the XACML obligations are
shipped with the protected object, and handed over to the
transformation component at the client platform. It then
constructs two types of policies from the shipped obli-

<PolicySet>
<Target>
<Subjects> PhyicianRole </Subjects>
<Resources>
MedicaiSystem
</Resources>
<Actions>
getPatientRecordforWrite
</Actions>

(I RN WS I N I RN

</Target>
1" <Rule Effect="permit*>
<Condition functionld="Between”>
<Apply Functionld= "CurrentTime">
<AttributeValue> 9AM </AttributeValue>

Server Platform Policy

</Apply>
<Apply Functionld="CurrentTime">
<AttributeValue> 5PM </AttributeValue>
</Condition>
</Rule>

<Obligations>
<Obligation Obligationld="medicalSoftwarelntegrity" FulfillOn="Permit">|
<AttributeAssignment Attributeld="IntegrityValue" >
1

</AttributeAssignment>
<Obligation Obligationld="hoursAllowed" FulfillOn="Permit">
<AttributeAssignment Attributeld="hours" >
48
</AttributeAssignment>
</Obligation>

</Obligations> Client Platform Policy

83

</PolicySet>

Figure 8. Sample XACML Policy

gations: 1) the XACML policy, which also includes the
shipped obligations and; 2) the SELinux Loadable Policy
Modules (LPM). Both of these policies are described in the
next Section.

5. Implementation and Results

In this Section, we present the current status of the im-
plementation within the extended SECTET. The implemen-
tation results are compiled in a way that provide a high-level
view and several low-level implementation details (e.g. PKI
etc) are omitted for the sake of clarity.

5.1. XACML and SELinux LPM

At the client platform, the policy decision point
makes the allow/deny decisions as a last step in the
usage control. An example XACML policy at the client
platform looks like the same as the XACML policy
shown in Figure 8 except 1) the <Resource> ele-
ment holds the absolute path of the protected object e.g.
<Resource>/usr/medicalObject</Resource>
and; 2) the <condition> element contains client specific
constraints. Moreover, the obligations are combined with
the client XACML policy and enforced via SELinux LPM.

SELinux LPM is a way to create self-contained policy
modules that are linked to existing SELinux policy with-
out re-compiling the policy source each time. The SELinux
LPM removes the key hindrance in SELinux regarding the
entire policy re-compilation every time for minor changes

such as adding a user or role. The LPM also supports
conditional policy extensions of SELinux which enable run-
time modifications to SELinux policy by associating certain
parts of the policy with conditional expressions. Depending
on a particular scenario, the Boolean variables within the
conditional expressions can be transitioned at run-time by
user space applications [25].

policy_module(medicalApp,1.0)
require {
type fs_t;

type medicalObject_t;

type medicalApp_t;

bool medicalSoftwarelntegrity false;

bool hourAllowed false;

allow medicalObject t fs_t filesystem: associate
10 | allow medicalApp_t fs_t filesystem: associate
11 | If (medicalSoftwarelntegrity && hourAllowed) {

O oo ~NOO O WN =

12 allow medicalApp_t medicalObject_t file: {read getattr search}
13 | }else{
14 allow medicalApp_t medicalObject_t file : {getattr}

15 | }

Figure 9. Sample SELinux LPM

Figure 9 shows an example SELinux conditional LPM
generated from the XACML obligations. Line 5&6 declares
a type medicalObject_t and medicalApp._t. Line
7&8 declares two SELinux Boolean variables. A set of per-
missions are defined afterwards. In particular, the first per-
missions allows the association of corresponding types to
their actual objects in the file system (i.e. medicalApp_t
with the medical application and medicalObject_t
with the file containing the medical record). The ac-
tual permission that the medicalApp_t can read the
medicalObject_t defined at line 12. This permis-
sions is made conditional on the basis of Boolean variables
medicalSoftwareIntegrity and hoursAllowed.
These Boolean variables correspond to the obligations de-
fined within the XACML policy (cf. Fig 8). Different dae-
mons (services) within the client platform are responsible
for transitioning these Boolean variables. In the following,
a brief introduction is presented to the implemented dae-
mons and their underlying technologies.

5.2. Integrity and Duration Verification

The Integrity Verification Daemon (IVD) is based on In-
tegrity Measurement Architecture (IMA) — a system soft-
ware for the Linux developed by IBM to provide verifiable
evidence regarding the integrity of a system on which it is
running. Instead of relying on the trustworthiness’ of the
software environment of a system, IMA builds on a hard-
ware extension of the measured system (based on TPM).
The current version of IMA requires SELinux to be dis-
abled at boot time. However, our implementation features

84

the IMA built on top of SELinux, a detailed account on this
integration is outside the scope of this paper.

The IMA has two key components: The Integrity Mea-
surement component is responsible for measuring SHA1
hash over each file and storing it in a hash table called
kernel list. After taking the hash of the file, the Integrity
Protection component stores the hash of the kernel list
into a specific Platform Configuration Register (PCR) — a
volatile memory built within the TPM. Beside kernel list,
IMA also provides mechanism to measure and protect the
integrity on the user request. This is done through the
/sys/kernel/measure file; any file or binary listed in
the /sys/kernel/measure will also be measured by
the IMA.

In the current project state, the IVD has two main
parts: 1) It writes the absolute path of the medical
application to the /sys/kernel/measure, which is
then integrity measured and protected by the IMA. 2)
The second component of IVD is responsible for tran-
sitioning the corresponding SELinux Boolean variables
to true or false (whenever an access request to the
medical object is made) based on the integrity mea-
sured by the IMA in the kernel list. If the integrity
of the medical application is in a “known good state”,
the medicalSoftwareIntegrity SELinux Boolean
variable is transitioned to true, otherwise false. Once
the variable is set to false e.g., SELinux will block all
accesses to the medical object.

The duration daemon is a session oriented daemon,
which keeps track of the number of hours a file is allowed
based on the current system time. We assume that the sys-
tem time is protected by the TPM and any illegal change
in the system time will deny access to the protected medi-
cal object. The duration daemon sets the hoursAllowed
Boolean variable based on the usage of the medical object.

5.3. Remote Attestation

The Remote Attestation Daemon (RAD) uses the
open source Trusted computing Software Specifications
(TSS) implementation by IBM called TrouSerS [37]. The
TrouSerS project aims at implementing TSS specification
and providing an API that enable an application’s use of
a platform TPM. That is to access the TPM chip and its
configuration registers from the user space applications.
For example, the integrity of the medical application is
remotely attested to the data provider (the hospital) in the
following steps:

1) The Remote Attestation Daemon creates a public-
private signing key pair by calling the function
Tspi key createKey (). The key is attested by
the storage root key (SRK) which is burned into the
hardware chip — TPM. 2) After creating the key, the

Daemon, queries the specific Platform Configuration
Register (PCR) for the hash of the kernel list using the
function Tspi_composite_getPCRValue (). 3) The
hash is the signed using the Tspi_hash_sign function
which takes (as input) the hash and the public part of the
signing key. 4) The signature and the public key are stored
in separate files and sent to the data provider over a web
service.

A Properties Verification Daemon (PVD) at the data
provider site then uses OpenSSL to verify and attest the
properties sent by the client platform. Assuming a Certifica-
tion Authority (CA) have verified the pubic key sent by the
data consumer, the Properties Verification Daemon uses the
RSA_Public Decrypt () to first decrypt the signature
with the public key, extract the medical application hash
from the kernel list and then compare it with the original
hash of the medical application stored with the data provider
(using memcpy () function).

We came to the conclusion that the combination of
SELinux and XACML policies provide a generic solution,
as it can express fairly complex TC based secure informa-
tion sharing scenarios. Currently, we are extending our
framework to include automatic transformations from the
high-level SECTET-PL specifications to SELinux policies.

6. Related Work

Sandhu et al [33, 34] described a model framework
called PEI for secure information sharing with TC technolo-
gies, which is within the same problem space as our work.
The framework consists of three model layers: policy, en-
forcement, and implementation. Our work presented in this
paper can be regarded as within the policy and enforcement
models in PEI. Particularly, we develop extended SECTET
for high level policy specifications through UML and pred-
icate languages, and we leverage TC and SELinux for en-
forcement mechanisms. However, our work has some no-
table difference from PEI. First of all, instead of focusing
in small-scale and group-based object distribution environ-
ment in PEI, our work targets on highly distributed web ser-
vices architecture such as a healthcare network. Secondly,
in PEI, the policies are typically formal or semi-formal,
while the policy modelling in our work is more engineering-
oriented, and we are developing automated tools to trans-
form high level policies to SELinux polices that can be
enforced in verified platforms. Thirdly and most impor-
tantly, in PEI-based information sharing, TC requirements
are enforced with high-level attestation protocols. However,
our work integrates TC-related requirements with SELinux
such that the policy model of SELinux is fundamentally ex-
tended, thus we can leverage the fine-grained access control
of SELinux to dynamically enforce TC requirements.

Remote Attestation for web services called WS-

85

Attestation has been proposed in [38] and with a slight
variation in [36]. However, both approaches directly bind
the web services standards to the TCG technologies to in-
crease trust and confidence in integrity reporting. In our
case, shipping extended SELinux policies with the pro-
tected object/information are better suited for secure infor-
mation sharing and leverages policy oriented TC approach
which is a novel aspect.

A distributed usage control policy language and its en-
forcement requirements are presented in [24, 6]. Similar to
our objective, this work targets on control over data after its
release to third parties. However, the significant difference
between this and our work is that our work relies on the
underlying TC services of a platform.

Jaeger et al [16] have recently proposed a framework
called PRIMA which is an extension to IMA [32]. Their
framework is basically concerned with the improvement
of efficiency during the integrity measurement of the plat-
form by limiting the number of measured entities. How-
ever, compared to our approach, PRIMA does not discuss
the specification of TC-related requirements by any means.
Their proposed model can be incorporated within the ex-
tended SECTET for efficient integrity measurement.

7 Conclusion & Evaluation & Outlook

In this paper, we present SECTET — a model-driven
framework for rendering TC-related requirements at a
higher level of abstraction. To the best of our knowledge,
this is the first approach for the integration of TC-related
requirements into distributed application development with
an emphasis on modelling approach. We also demonstrate
the use of SECTET-PL — a predicative language for the
specification of TC dependent constraints (or obligations).
SECTET-PL predicates are then transformed to equivalent
XACML and SELinux policies.

Our performance evaluation shows that there are two
most expensive operations 1) fingerprinting the file for the
first time and maintaining it in the kernel list (5765 us) and
2) the signature generation which is attested by the TPM
SRK (2141927 ps). The reason is obvious: TPM is a slow
chip and depending on the size of the files, it can take even
longer to perform hardware related steps.

Currently, we are extending the implementation frame-
work to tie the remote attestation with the decision process
at the client platform. In order to provide, automatic trans-
formations, we are also developing an eclipse plug-in based
tool support for QVT.

References

[1] Experiences Implementing a Higher-Level Policy Lan-
guage for SELinux in Second Annual SELinux Sym-

(2]
(3]
(4]
(5]
(6]

(71

(8]

(9]

(10]
(11]

(12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

posium, 2006. Baltimore, Maryland.
symposium.org/2006/abstracts.php.
Security-Enhanced Linux
www.nsa.gov/selinux/.

The Platform for Privacy Preferences 1.0 (P3P1.0) Specifi-
cation. W3C Recommendation 16 April 2002.
Trusted computing group
https://www.trustedcomputinggroup.org/specs/.
Uml profile for corba components, may 2003. OMG Docu-
ment mars/03-05-09.

A. Pretschner et al. Distributed usage control. Communica-
tions of the ACM, 49(9):39—44, September 2006.

M. Alam, R. Breu, and M. Hafner. Model-Driven Secu-
rity Engineering for Trust Management in SECTET. JOUR-
NAL OF SOFTWARE, VOL. 2, NO. 1, FEBRUARY 2007,
ACADEMY PUBLISHER.

M. Alam, M. Hafner, and R. Breu. Constraint based Role
Based Access Control for modelling administrative con-
straints in the SECTET. In Proceedings of the ACM PST
2006 - International Conference on Privacy, Security and
Trust, October 30th, 2006 - November 1st, 2006.

M. Alam, M. Hafner, and R. Breu. Modeling Authorization
in a SOA based Distributed Workflow. In IASTED Software
Engineering 2006, isbn 0-88986-572-8.
http://www.antlr.org.

R. Breu and G. Popp. Actor-centric modelling of access
rights. In FASE 2004. Springer LNCS Vol. 2984, p. 165-
179, 2004.

K. Czarnecki and S. Helsen. Administration Model for
Or-BAC. In Classification of Model Transformation Ap-
proaches, volume 19, OOPSLA’03 Workshop on Generative
Techniques in the Context of Model-Driven Architecture.
A. M. Devices. AMD Secure Virtual Machine Architecture
Reference Manual. AMD, 2005.

D. Grawrock. The Intel Safer Computing Initiative
Building Blocks for Trusted Computing. Intel Press,
http://www.intel.com/intelpress/sum_secc.htm, 2005.

V. Haldar, D. Chandra, and M. Franz. Semantic remote attes-
tation - a virtual machine directed approach to trusted com-
puting.

T. Jaeger, R. Sailer, and U. Shankar. PRIMA: policy-reduced
integrity measurement architecture. In SACMAT ’06: Pro-
ceedings of the eleventh ACM symposium on Access con-
trol models and technologies, pages 19-28, New York, NY,
USA, 2006. ACM Press.

T. Jaeger, R. Sailer, and X. Zhang. Resolving constraint con-
flicts. In SACMAT ’04: Proceedings of the ninth ACM sym-
posium on Access control models and technologies, pages
105-114, New York, NY, USA, 2004. ACM Press.

M. Alam. Model-Driven Security Engineering for the re-
alization of Dynamic Security Requirements in Collabora-
tive Systems . Appeared in PhD Symposium of IEEE/ACM
Models 2006 LNCS 4364.

M. Alam et al. Model Driven Security for Web Services
(MDS4WS). In INMIC 2004,Digi Obj Id 10.1109/IN-
MIC.2004.1492930.

M. Alam et al. Modeling Permissions in a (U/X)ML World.
In IEEE ARES, 2006.

http://selinux-

(SELinux).

(tcg).

86

(21]

(22]

(23]

[24]

[25]
[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

M. Hafner et al. Modeling Inter-organizational Workflow
Security in a Peer-to-Peer Environment. In [EEE ICWS
2005,ISBN: 0-7695-2409-5.

M. Hafner, M. Alam, R. Breu. A MOF/QVT-based Domain
Architecture for Model Driven Security . In IEEE/ACM
Models 2006 LNCS 4199.

M. Hafner., R. Breu, and M. Breu. A Security Architec-
ture For Inter-organizational Workflows-Putting WS Secu-
rity Standards Together. In ICEIS 2005,ISBN: 972-8865-19-
8.

M. Hilty et al. Usage control requirements in mobile and
ubiquitous computing applications. In Proc. of Intl. Conf.
on Systems and Networks Communications, 2006.

F. Mayer, K. MacMillan, and D. Caplan. SELinux by exam-
ple: using Security Enhanced Linux. 2006.
UML 2.0 OCL
http://www.omg.org/docs/ptc/03-10-14.pdf.
S. Pearson. Trusted Computing Platforms: TCPA Technol-
ogy in Context. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2002.

R. Breu et al Model Driven Security for Inter-
Organizational Workflows in e-Government. In TCGOV
2005, Proceedings. ISBN 3-540-25016-6.

R. Breu et al. Web service engineering - advancing a new
software engineering discipline. In ICWE 2005, LNCS 3579
Springer 2005.

Role Based Access Control avialable at. csrc.nist.gov/rbac/.
R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn.
Attestation-based policy enforcement for remote access. In
CCS "04: Proceedings of the 11th ACM conference on Com-
puter and communications security, pages 308-317, New
York, NY, USA, 2004. ACM Press.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a tcg-based integrity measurement archi-
tecture. In USENIX Security Symp., 2004.

R. Sandhu, K. Ranganathan, and X. Zhang. Secure infor-
mation sharing enabled by trusted computing and pei mod-
els. In ASIACCS ’06: Proceedings of the 2006 ACM Sym-
posium on Information, computer and communications se-
curity, pages 2—12, New York, NY, USA, 2006. ACM Press.
R. Sandhu, X. Zhang, K. Ranganathan, and M. J. Covington.
Client-side access control enforcement using trusted com-
puting and pei models. In Journal of High Speed Network,
Special issue on Managing Security Polices: Modeling, Ver-
ification and Configuration, pages 15(3): 229 — 245, 2006.
Shiboleth protocols and profiles: August 2005.
http://shibboleth.internet2.edu/shib-intro.html.

Z. Song, S. Lee, and R. Masuoka. Trusted web service. In
The Second Workshop on Advances in Trusted Computing
(WATC ’06 Fall), 2006.

Trusted Computing Software Specification implementation,
available at. http://trousers.sourceforge.net/.

S. Yoshihama, T. Ebringer, M. Nakamura, S. Munetoh, and
H. Maruyama. Ws-attestation: Efficient and fine-grained
remote attestation on web services. In ICWS ’05: Proceed-
ings of the IEEE International Conference on Web Services
(ICWS’05), pages 743-750, Washington, DC, USA, 2005.
IEEE Computer Society.

Specification.

