
17

Virtualization: Issues, Security Threats, and Solutions

MICHAEL PEARCE, The University of Canterbury
SHERALI ZEADALLY, University of The District of Columbia
RAY HUNT, The University of Canterbury

Although system virtualization is not a new paradigm, the way in which it is used in modern system architec-
tures provides a powerful platform for system building, the advantages of which have only been realized in
recent years, as a result of the rapid deployment of commodity hardware and software systems. In principle,
virtualization involves the use of an encapsulating software layer (Hypervisor or Virtual Machine Monitor)
which surrounds or underlies an operating system and provides the same inputs, outputs, and behavior that
would be expected from an actual physical device. This abstraction means that an ideal Virtual Machine
Monitor provides an environment to the software equivalent to the host system, but which is decoupled from
the hardware state. Because a virtual machine is not dependent on the state of the physical hardware, mul-
tiple virtual machines may be installed on a single set of hardware. The decoupling of physical and logical
states gives virtualization inherent security benefits. However, the design, implementation, and deployment
of virtualization technology have also opened up novel threats and security issues which, while not particu-
lar to system virtualization, take on new forms in relation to it. Reverse engineering becomes easier due to
introspection capabilities, as encryption keys, security algorithms, low-level protection, intrusion detection,
or antidebugging measures can become more easily compromised. Furthermore, associated technologies
such as virtual routing and networking can create challenging issues for security, intrusion control, and
associated forensic processes. We explain the security considerations and some associated methodologies by
which security breaches can occur, and offer recommendations for how virtualized environments can best
be protected. Finally, we offer a set of generalized recommendations that can be applied to achieve secure
virtualized implementations.

Categories and Subject Descriptors: Software [Operating Systems, Security and Protection, Perfor-
mance]; Computer Communication Networks [Network Protocols, Local and Wide-Area Networks,
Network Operations, Network Architecture and Design]

General Terms: Design, Security, Reliability, Performance

Additional Key Words and Phrases: Encryption, virtualization, threat, virtual machine, virtual machine
monitor

ACM Reference Format:
Pearce, M., Zeadally, S., and Hunt, R. 2013. Virtualization: Issues, security threats, and solutions. ACM
Comput. Surv. 45, 2, Article 17 (February 2013), 39 pages.
DOI = 10.1145/2431211.2431216 http://doi.acm.org/10.1145/2431211.2431216

Authors’ addresses: M. Pearce, Department of Computer Science and Software Engineering, The Univer-
sity of Canterbury, Christchurch, New Zealand; S. Zeadally (corresponding author), Department of Com-
puter Science and Information Technology, University of the District of Columbia, Washington, DC; email:
szeadally@udc.edu; R. Hunt, Department of Computer Science and Software Engineering, The University of
Canterbury, Christchurch, New Zealand.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 0360-0300/2013/02-ART17 $15.00

DOI 10.1145/2431211.2431216 http://doi.acm.org/10.1145/2431211.2431216

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:2 M. Pearce et al.

1. INTRODUCTION

Although it may seem that system virtualization1 is a development of the last decade
or so, it has a history of research going back over 40 years [Fuchi et al. 1969; Rosin
1969], with some of the foundational research undertaken in the early 1970s [Goldberg
1973, 1974]. The last decade has seen an explosion of development in the area of
system virtualization, as the applications of virtualization of commodity hardware
have spurred an ever-increasing set of uses.

In essence, system virtualization is the use of an encapsulating software layer that
surrounds or underlies an operating system and provides the same inputs, outputs,
and behavior that would be expected from physical hardware. The software that per-
forms this is called a Hypervisor, or Virtual Machine Monitor (VMM). This abstraction
means that an ideal VMM provides an environment to the software that appears
equivalent to the host system, but is decoupled from the hardware state2. For system
virtualization, these virtual environments are called Virtual Machines (VMs), within
(or upon) which operating systems may be installed. Since a VM is not dependent on
the state of the physical hardware, multiple VMs may be installed on a single set of
hardware.

Figure 1 shows an example implementation of system virtualization, where replicas
of seven physical systems (running six different operating systems) at the top of the
figure execute on a single hardware system (at the bottom) through the use of a VMM.

A virtual machine is the logical equivalent of a physical one, and multiple VMs on the
same hardware are (ideally) as logically separate as air-gapped machines are physically,
or (if networked) as logically separate as different systems on the same network. This
isolation of VMs, when combined with the equivalence mentioned earlier, has many
implications for security. However, the realities of a system’s security implications in
the real world are set not just by theory, but also by factors such as assumptions,
implementation specifics, and user priorities. System virtualization is no exception.

This work is intended as an introduction to the security concerns, considerations,
and implications arising from use of virtualized systems. In Section 2, we present some
basic concepts of system virtualization. Section 3 presents the system virtualization
architecture. We describe some of the motivating factors for virtualization’s use to
improve security in Section 4. We discuss what security means in virtualization in
Section 5. The security threats that arise as a result of strong virtualization properties
are presented in Section 6. We present some security implications that can result from
weak virtualization properties in Section 7. We discuss security implications resulting
from the virtualization control and network channels in Section 8. We make some rec-
ommendations that can be deployed to achieve secure virtualization implementations
in Section 9. Finally, we make some concluding remarks in Section 10.

2. BACKGROUND

2.1. Basic Concepts

Most computer systems require the running of more threads than the processor can
support directly. On a single-core consumer machine there is only a single thread of CPU
execution.3 Operating Systems (OSs) allow a higher level of interface for software by not
only offering process multiplexing, but also handling many of the underlying hardware

1Also known as platform virtualization, but we will continue to use the term system virtualization.
2However, in reality most VMMs do not provide fully equivalent environments, merely sufficiently similar
ones.
3For simplicity we ignore features such as hyperthreading.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:3

Fig. 1. Seven physical systems (top) and a virtualized equivalent implementation (bottom).

management issues. Thus, operating systems offer a level of abstraction above the
hardware, on which multiple processes can run concurrently. This arrangement only
enables a single operating system to operate on a single hardware system at any given
time in most circumstances.

Operating systems operate on the hardware as privileged software, and are generally
able to perform any operation the hardware supports, whereas programs running inside
an operating system are less privileged, and generally cannot perform operations except
those that the operating system permits. These privilege levels are often called rings,
with the lower numbered ring (i.e., ring 0) having higher privileges than those with
higher designations [Bratus et al. 2009]. Operating system kernels generally run in
the lowest ring, and thus have control over everything running in the lower privilege
(higher numbered) rings.

A Virtual Machine Monitor is a highly privileged piece of software that runs either
alongside or under an operating system, it is designed to be “an efficient, isolated
duplicate of the real [physical] machine” [Popek and Goldberg 1974]. Furthermore, it
is possible for a single VMM to run on multiple networked physical systems. In this
article we will discuss VMMs as they relate to a single hardware system.

A virtual machine monitor is distinct from an emulator. An emulator intercepts all
instructions, whereas a virtual machine monitor need only intercept sensitive instruc-
tions (those which could interfere with the operation of the VMM itself). All nonsensi-
tive instructions should be executed directly on the hardware where possible.

There are two main types of virtual machine monitor: Type I (Bare Metal) and
Type II (Hosted). These are described briefly next, and illustrated in Figure 2.

—A classical Type-I VMM is installed as the primary boot system on the hardware. The
VMM executes at the highest level of privilege and has full control over any virtual
machines that use it.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:4 M. Pearce et al.

Fig. 2. Generalized architectures for Type-I (left) and Type-II (right) Virtual Machine Monitors [Sugerman
et al. 2001].

—A hosted (including Type II) VMM, as popularized by products such as VMware
Workstation, has a more complicated architecture.4 A hosted VMM sits alongside or
above a host operating system above the hardware, and may share drivers from the
host operating system to handle Input/Output (I/O). This cooperative model results
in a VMM system that does not require hardware-specific drivers for VMM I/O
operations, and allows the use of virtual machines within an existing environment.
As a result entry barriers to VM use are reduced, as the existing OS does not need to
be overwritten or migrated to a multiple boot arrangement [Sugerman et al. 2001].

2.2. Motivations for System Virtualization

System virtualization is widely used for a variety of applications, such as, among other
things, the consolidation of physical servers [Scott et al. 2010], isolation of guest OSs,
and software debugging [Bratus et al. 2008].

There are many other uses to which system virtualization lends itself, and many
different motivators for adoption of system virtualization technologies. System virtu-
alization has been attracting a lot of attention, particularly in the last case, because of
various technological trends. Some of these trends include increasing commodity oper-
ating system complexity, increasing cost of supporting hardware and software systems,
and the availability of inexpensive, powerful, and flexible commodity hardware [Ivanov
and Gueorguiev 2008; Wlodarz 2007].

A modern commodity OS such as Windows or Linux is very complex (tens of millions
of Lines Of Code (LOC) in the latest desktop OSs), and this results in a much larger
vulnerability surface than can be easily or provably secured [Franklin et al. 2008a;
Seshadri et al. 2007]. Furthermore, OSs add a single point of failure for everything
(processes and data) in them. This difficulty in securing a single complicated point
of failure represents a security risk for the data and processes on the system. Conse-
quently, with ever-decreasing commodity hardware costs, most organizations achieve

4Although strictly speaking a Type-II VMM is hosted, a hosted VMM is not necessarily a Type-II VMM. A
hosted VMM is so-called due to its reliance upon a host OS. Simply speaking, a Type-II VMM sits roughly
alongside the host OS and shares drivers, whereas a hosted VMM may sit above the host OS, share no
drivers, and handle all hardware calls via the host OS. In this work we shall use the term hosted in the
broadest sense.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:5

Fig. 3. The extra layer of abstractions that a VMM offers.

different operational and security-based requirements through the use of multiple
physical systems.

The deployment of multiple physical systems to mitigate potential security risks
stemming from a single point of failure has been enabled by increasing performance and
flexibility, and reductions in the price of commodity hardware and networks. However,
physical systems are associated with other significant costs (that include operational,
physical, and technical) in addition to the initial purchasing outlay. Each physical
machine requires physical space, cabling, energy, cooling, and software administration.
Additionally, physical separation adds communication overheads such as data transfer
and storage latencies. For some classes of problems workarounds and optimizations
exist (such as improved caching for frequently accessed data, or power management to
reduce energy costs) but for others these costs are hard to overcome or justify. Since
every physical system has a cost, one of the most important issues that arises to be
avoided is systems that are underutilized.

Underutilization of computer systems comes in two main relevant forms: desktop
machines that are rarely used to their full potential (for instance, systems left opera-
tional overnight for maintenance purposes, but generally remaining idle [Domingues
et al. 2005; Newsham and Tiller 1994]), and organizational systems or servers that
are not running efficiently [Vasan et al. 2010; Kist 2009; Barroso and Hölzle 2007].
The spare cycles are available for use on desktop systems, and organizations have an
interest in consolidating physical hardware where possible to keep overheads low and
efficiency up.

2.3. Implications of Virtualization

By removing the dependency of operating systems on a system’s physical state, sys-
tem virtualization allows multiple operating systems to be installed on a VMM, and
thus multiple operating system VMs (called guest operating systems) can be installed
on each physical system. Allowing multiple VMs on the same hardware offers many
advantages. Near-complete isolation between guest operating systems on the same
hardware protects against OSs being a single point of failure. It also allows OS consol-
idation from different machines as is necessary to reduce system underutilization and
maintain efficiency of operation.

This abstraction from the hardware state allows not only multiple operating systems
to coexist on the same hardware, but for one VMM to run on multiple different net-
worked physical systems concurrently. By utilizing a VMM to mediate between the OS
and the hardware, virtualization changes the one-to-one mapping of OSs to hardware
(as shown in the top part of Figure 1) to many-to-many (as shown in Figure 3).

Although many real-world systems implement this model only loosely, as a VM does
not usually run on multiple systems concurrently, allowing one VMM to be migrated
across multiple physical systems seamlessly while running has improved the offerings
for high-performance and high-availability systems and cloud computing, as well as

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:6 M. Pearce et al.

for the commoditization of processing power in general. While we focus in this article
on system virtualization, there are many other virtualization technologies that overlap
with what we discuss, such as storage virtualization and network virtualization. We
discuss these briefly in Section 2.6.

2.4. System Virtualization

The requirements for system virtualization are defined and discussed in detail in Popek
and Goldberg’s Formal Requirements for Virtualizable Third-Generation Architectures
[Popek and Goldberg 1974]. The requirements and definitions given are still used to
define virtualization, and their criteria are used to assess VMMs, although the criteria
have become broader (as we discuss when we describe hybrid virtualization strategies
later). Virtualization as we describe it in this section is classical virtualization as
defined by Popek and Goldberg [1974] and used in Adams and Agesen [2006]. In the
later section of this work, we describe methods of virtualization that do not strictly fit
these requirements. To explain the requirements for a classically virtualizable CPU
architecture, we need to define two properties an instruction must have, and three
properties of a virtualized architecture. A more in-depth discussion on virtualizability
of CPU architectures can be found in Adams and Agesen [2006].

Two Instruction Properties[Popek and Goldberg 1974]:

Privilege level: Privileged, or nonprivileged. Does this instruction require a process to be highly privileged
to call it directly? If the CPU traps and switches control to supervisory software (running in low rings)
when the instruction is called from a process running in user mode (high rings) then the instruction is
privileged, as it requires privilege to be executed.

Sensitivity: Sensitive or innocuous. Does this instruction have the capacity to interfere with something
that the VMM should have complete control of? (A sensitive instruction has the capacity to interfere with
VMM operation, whereas an innocuous one does not.) For example, reading VMM program memory will
not interfere with VMM behavior, but writing to it could.

Three Virtualized Architecture Properties [Popek and Goldberg 1974]:

The Efficiency Property states that a VMM must run innocuous instructions directly on the CPU, and
not intervene where it is not necessary.

The Resource Control Property requires that a VMM retain full control over resources, and it must
not be possible for a virtualized guest to access or manipulate resources without the VMM’s explicit
authorization.

The Equivalence Requirement Property requires that a VMM perform indistinguishably from a physical
machine given the same context, with two exceptions added by VMM overheads: namely, timing and
resource availability. Timing will differ because of processing overheads introduced by the VMM, and
resources available will differ because the VMM utilizes some resources.

In order to be virtualizable, an architecture must be capable of trapping all sensitive
instructions and calling the VMM. An architecture is fully virtualizable “...if the set of
sensitive instructions for that computer is a subset of the set of privileged instructions”
[Popek and Goldberg 1974] If this is not the case, and some sensitive instructions are
not capable of being trapped, then the architecture is not virtualizable (as shown in
Figure 4).

For nonvirtualizable architectures, other measures can be taken to construct a
Hybrid Virtual Machine, where the problem instructions (as shown in Figure 4) are
dealt with by nonvirtualized means. This will involve not strictly meeting the efficiency
property in order to maintain the resource control property. The efficiency property is
what differentiates virtualization from emulation: a full VMM will intervene only on

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:7

Fig. 4. The relationships between instruction sensitivity and privilege as relates to architecture virtualiz-
ability.

sensitive instructions, and the innocuous instructions will be executed on the hard-
ware without VMM intervention. Conversely, a full emulator will intercept instruc-
tions whether sensitive or innocuous. This makes a VMM usually, but not always, far
more computationally efficient than an emulator (as we explain in the case of binary
translation in the next section).

It is also worth noting that with regard to resources, a modern VMM can actually offer
a very different level of resources than strictly equivalent to the host minus overheads.
This is because of additional features such as disk compression, I/O virtualization,
deduplication, and shared paging.

2.5. Virtualizing Nonvirtualizable Architectures

The x86 architecture is not fully virtualizable [Adams and Agesen 2006; Garfinkel
et al. 2007; Rose 2004; Rosenblum and Garfinkel 2005], so various methods have been
taken to achieve the widespread virtualization of these systems now in use. The most
important of these are paravirtualization, binary translation, and hardware-assisted
virtualization [Advanced Micro Devices 2008]. For more in-depth discussion on each of
these methods and their relative performances refer to Adams and Agesen [2006].

Binary translation is very similar to emulation, and involves running guest code
(both OS and application code) on an interpreter that handles any sensitive instruc-
tions correctly. However, this method can have a heavy performance overhead, which
optimizations are used to overcome. Examples of optimizations include switching be-
tween virtualized and translated instructions depending on the privilege level of the
code according to the guest VM, and adaptive binary translation, which changes the
code being translated in an effort to improve performance (in some cases outperform-
ing a classical VMM because intercepting instructions causes a context switch which
uses a lot of clock cycles on current hardware, a situation which binary translation can
minimize [Adams and Agesen 2006]).

Paravirtualization involves porting guest operating systems so that they do not use
Nonprivileged sensitive instructions, but instead use ones that better cooperate with
the VMM [Barham et al. 2003; Rose 2004]. The necessary guest OS modifications have
been publicly released for the Linux kernel [Yamahata 2008], and the process has
been discussed (but no working port released due to intellectual property reasons) for
Windows XP [Barham et al. 2003]. There are, however, various paravirtualized device
drivers available for Windows XP that come with some commercial and open-source
products. Paravirtualized device drivers are designed to operate using Nonsensitive
instructions from the guest OS (in which they are installed), and to interface in a way
that minimizes context switching while operating in a way that is transparent to the
guest OS.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:8 M. Pearce et al.

Hardware assisted virtualization. Intel and AMD have implemented additional func-
tionality to their CPUs to support hardware virtualization. The x86 hardware virtual-
ization technologies used at present are Intel’s Virtualization Technologies VT-X and
VT-I [Uhlig et al. 2005]), and AMD’s AMD-V [Advanced Micro Devices 2010] (formerly
Secure Virtual Machine or SVM). The use of these technologies for virtualization offers
a better level of CPU equivalence, and when combined with other technologies that can
assist virtualization such as I/O Memory Management Units (IOMMU) (which handle
VM memory to physical mappings in hardware)5, very high levels of execution trans-
parency and performance can be achieved. Note that the concept of full transparency
remains controversial, as discussed briefly in Section 6.2. Virtualization is used in more
than just physical systems, as we will discuss in the next section.

2.6. Other Virtualization Types

Virtualization is used to abstract resources and devices in general. The most important
types discussed in this work are as follows.

—System (platform or server) virtualization is the main focus of this work.
—Network virtualization can be of two types:

—External: imposing a logical view of a physical network, used in Virtual Local
Area Networks (VLANs), and Virtual Private Networks (VPNs) [Chowdhury and
Boutaba 2009].

—Internal: a “network in a box” implementing networks using pseudo network de-
vices that appear to behave like physical devices. This is used to control commu-
nications between software, virtual machines, or to provide the appearance of a
network to external devices.

In addition, the following technologies and uses of the term virtualization are often
encountered.

—Storage virtualization: providing a different logical view of physical storage. Usu-
ally this is a single consolidated volume that spans multiple physical devices. Stor-
age Area Networks (SANs) are a common example of this type of virtualization
[Soundararajan and Anderson 2010], and are also often used to store the disk im-
ages from system virtualization.

—Application or container virtualization: this is a technique where the underlying
operating environment of an application is virtualized. This will commonly be the
operating system surroundings, and the result is an isolated container in which
the application can run. Examples of this include application virtualization [Reuben
2007], FreeBSD-style jails, and some methods of sandboxing [Laadan and Nieh 2010].

—Desktop virtualization has two quite different usages.
—Thin client - remote desktop usage which is similar to application streaming, except

that it is targeted at the user experience. The entire operating OS appears to the
user to be running locally, but is in fact running elsewhere. This is also referred to
as Virtual Desktop Infrastructure (VDI) [Miller and Pegah 2007].

—System virtualization in a Type-II environment - used by some to refer to the
running of a virtualized machine on a standard workstation. Generally this is an
incorrect usage of the term desktop virtualization, as the whole OS is virtualized
and not just the desktop.

5An IOMMU allows hardware management of memory mapping.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:9

2.7. Scope of This Work

This work will focus on particular areas and issues of importance in areas related
to the security of system (or platform) virtualization, of which network virtualization
is an important part. The virtualization market has many vendors/manufacturers at
present. Some of the most important ones include VMware, Citrix, and Microsoft, but
there are many other offerings both open-source and commercial. However, it is worth
noting that most of the published literature has been focusing on VMware products,
Xen and Xen-based products, Microsoft’s products, and the open-source projects KVM,
QEMU, and Bochs.

Our security discussions on virtualization will remain generally platform indepen-
dent, and we will not focus on any specific provider’s products. However, we will use
predominant products in examples, since most research efforts discuss or use them.
The commodity hardware we will refer to is the most common at present, the x86 and
x64 architectures. The virtualization platforms we focus on will be proprietary VMware
products and the open-source Xen hypervisor due to the volume of research literature
available on them.

In this work we do not discuss desktop, storage, or application virtualization be-
cause of space limitations. Furthermore, we also do not discuss many of the delivery
methodologies or models for virtualized services. Therefore, we will not discuss cloud
computing delivery models or similar issues. A more in-depth discussion of security is-
sues in cloud computing can be found in Subashini and Kavitha [2011], Christodorescu
et al. [2009], Ristenpart et al. [2009] and Siebenlist [2009].

3. SYSTEM VIRTUALIZATION ARCHITECTURE

Virtualization has a large number of functional components, and most are used to
improve the way it is used and controlled. It is worth noting that the architecture
and data flows we discuss in this work are fairly broad, and do not apply in every
case of virtualization. Some virtualization implementations do some things differently,
although most of the core components are the same.

3.1. Key System Components

Figure 5 shows the components in a simplified Type-II VMM system with two guest
operating systems installed and VMM components labeled. Note that a Type-I VMM
system is comprised of a subset of the components given in Figure 5, and does not
contain a host OS (5), VMM drivers6 (6), a VM application (7), or any applications
executing over the host OS.

A virtualized system will then generally always have some hardware (4), a VMM (3),
and at least one virtual machine that consists of virtual hardware (2) running a guest
operating system (1). The guest operating system also has applications running on it.
This is a general model, and different implementations may use slightly different ways
to structure and organize components and separation.7

3.2. High-Level Data Flows and Entry Points

The control and data flows inside a platform that implements system virtualiza-
tion are of two primary types: software or control channels, and network channels.
Figure 6 gives a detailed view of the data flow between the important components of

6Drivers which may be shared with the host OS, may access hardware directly, or alternatively may not be
used, with all device calls going via the host OS.
7For instance, some Type-I implementations implement a control VM that runs in a trusted domain and is
used to configure the VMM operation (e.g., Xen, Terra). We have not shown the control VM in this diagram,
but it is included in the data flow diagram Figure 6.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:10 M. Pearce et al.

Fig. 5. The core components in virtualization architectures.

virtualization systems (both Type-I and Type-II components are shown on the same
diagram). Similar to Figure 5 we have included Type-I and Type-II components on the
same diagram.

It is worth pointing out that in Figure 6 much of the overall architecture follows a
layered stack model, with each component communicating with the components above
and below it in the stack. There are a few communication flows that do not strictly
fit this model, with some horizontal communications between applications and the
network, as shown in Figure 6.

3.3. Control Channel Data Flows

A VMM which performs anything other than the minimal core requirements (supply-
ing a virtualized system, with no additional features such as cloning or networking)
requires control channels to allow configuration and management of the VMM and
its child VMs. Such management operations include changing settings, controlling the
operational status of VMs and the VMM, and facilitating screen and keyboard access.
These control channels can be either software or network based, but in either case
they offer a high level of access should they be compromised. The main channels are to
control the VMM and the VM.

The VM control channels (as described shortly) are used to control and automate
actions in the guest operating system that are useful to the VMM by interacting with
drivers or other software installed. Examples of these actions include initiating op-
erating system shutdown, transferring files, and running software on the guest OS.
The VMM control channels (described in Section 8.1) are used to control more general
operations (such as shutting down or restarting VMs, and changing VM settings) to
the virtual machine and VMM.

3.4. Network Communication Data Flows

Software is no more secure simply by virtue of being in a virtualized environment. It
is, however, true that software resides in a more tightly managed environment as a
result of virtualization. Furthermore, since virtualization is often used for networked
software, the software is exposed to both internal and external threats on the network.
Threats that come through networking can affect the VMM, software, and operating
systems running in the VMM, and other software applications.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:11

Fig. 6. Data flow composite for Type-I and Type-II VMM implementations. (Type-I systems use components
above and to the left of the VMM, while Type-II VMMs use components above and to the right of the VMM.)

3.5. Network Operations

Networking of virtual machines is achieved with the VMM either bridging the virtual
adapter to a physical adapter, or acting as a (virtual) network hub/switch on a logical
virtual network and facilitating further network routing or bridging from the virtual
hub to other networks (virtual or not). The basic types are internal/isolated, bridged
(to a host adapter), routed/switched (through the host adapter), and Network Address
Translation (NAT) routed (through the host’s IP address). A bridged adapter does not
need to use virtual networks, through the use of virtual hubs/switches, but the other
types use them. Figure 7 shall be used to discuss the related concepts.

A bridged virtual network adapter will send and receive traffic on a VM’s virtual
network adapter directly to a network adapter on the host at layer 2. A bridged adapter
appears to be directly connected to the network, and can send, receive, and listen to
traffic on the physical network. This usually occurs with little to no traffic intervention
from the host (firewall rules, MAC address, or NAT modifications, etc.)8. Thus (in
Figure 7) operating systems 1 and 2 appear to be on physical network 1, and can

8However, whether or not it can act in a promiscuous fashion and see all traffic including that not addressed
to it is dependent upon the VMM, drivers, and security policy in use.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:12 M. Pearce et al.

Fig. 7. Ten VMs connected to virtual networks in various arrangements.

communicate with all devices on it, and each other, while operating system 11 can see
and send traffic on physical network 2 and only communicate with other systems that
the network is connected to.

A virtual network has all of its devices connected to the same virtual hub, and
connects these hubs to each other, or the real world, via virtual routers. Operating
systems 3, 4, and 5 (shown in Figure 7) are on the same virtual network hub, while 5,
6, 7, and 8 are on another and 9 and 10 are on another still (5 is on two different virtual
networks). Virtual networks may be isolated, routed, or NAT routed to an external
network.

For networking of devices that should not be bridged, the VMM supplies isolated
virtual networks, to which virtual adapters in the guests may be connected. An isolated
network can only communicate among its own devices, and possibly to the host, but may
not communicate with other networks, virtual or not. Devices on it can communicate
among themselves. In Figure 7, the virtual network that 9 and 10 are on is isolated.
Thus, OS9 can communicate with 10 via the network, but not any other system.

A virtual network may also be routed such that traffic to or from it goes through
the VMM and is routed at layer 3. The VMM translates the layer-2 information and
does not reveal Medium Access Control (MAC) addresses. A VM with a routed adapter
does not need to be on the same subnet as devices with which it communicates. A
NAT routed virtual network translates traffic at layer 4, and uses the host’s IP and
MAC addresses. Thus, it cannot be directly addressed by hosts external to the virtual
network, but can make outbound communications (and accept inbound connections via
port forwarding if the VMM supports it).

Which type of virtual networking administrators may wish to use depends upon the
isolation and segmentation that they require, in addition to any security concerns. A
bridged connection usually allows full LAN access at the MAC level as if the VM were
physically on the network switch (and thus full two-directional visibility below the IP
level), a routed network offers layer-3 (IP) level two way visibility as if the VM were on
another network connected to the router, whereas a NAT routed network offers layer-4
(TCP/UDP) outbound visibility only (unless static port forwarding is used).

4. MOTIVATING FACTORS FOR VIRTUALIZATION’S USE IN SECURITY

The properties of system virtualization offer the promise of improved data and pro-
cess security in terms of confidentiality, integrity, and availability which are achieved
through properties we shall term isolation, oversight, and duplication, respectively.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:13

Fig. 8. A VMM offers a bottleneck that should be less complex to provably secure.

However, not all of the assumptions behind these properties are fully correct, and in
other cases the principles underlying the additional security may be undermined by
other VMM features, as we shall discuss later.

4.1. Isolation (Improved Confidentiality)

By placing operating systems inside virtual machines, a higher degree of isolation
can be achieved not only between software running on the same hardware, but also
between the guest operating systems and the hardware itself [Ormandy 2007]. This
allows risky services to be run in a VM alongside critical ones in a different VM with
a lower risk of the critical service becoming compromised via the OS [Madnick and
Donovan 1973; Wimmer 2008; Wlodarz 2007]. Intrusion and malware analysis are
simplified too, because specimen or sample malicious code may be run in an isolated
virtual environment over which the analyst has full control, without requiring the
setup of a full physical machine for each sample [Dinaburg et al. 2008; Ferrie 2007a;
2007b; Raffetseder et al. 2007; Wimmer 2008].

That isolation of guest code offers a higher degree of isolation than a complex operat-
ing system alone is due to not only the properties of VMMs, but also the fact that VMMs
usually have a significantly smaller codebase. The core of a VMM can be built with
tens of thousands of lines of code, whereas a modern operating system has millions to
tens of millions [Bugnion et al. 1997; Garfinkel and Rosenblum 2003; Seshadri et al.
2007]. The use of a VMM can offer a higher level of containment because it is a single,
hopefully less vulnerable, chokepoint which must be breached to break isolation. We il-
lustrate this chokepoint in Figure 8 the database server and the file server are running
on a single operating system made of millions of LOC, thus the attack surface between
them which must be secured in order to isolate them is quite large. Conversely the Web
server is separated from the other servers by a common choke point of only thousands
of LOC, which is a smaller surface to secure.

A (hypothetical) fully equivalent virtualized system (where the VMM offers perfect
efficiency and resource control) should offer an isolated, yet logically identical envi-
ronment to a physical one. However, unlike the physical environment, full data and
processing oversight can be used. However, the increasing complexity and feature set
of modern VMMs (especially their additional control and management channels, dis-
cussed later) has led some to question whether this is indeed a valid argument.

4.2. Oversight (Integrity/Repudiation) and Duplication (Availability)

The resource control property of a VMM ensures that nothing happens in the VM that
the VMM cannot observe or intervene in9. Thus the VMM has not only full low-level
visibility of operation, but can intervene in operation of guests. As a result of this,
VM operations can be observed irrespective of VM or guest OS state, and this state
can be captured, analyzed, replayed, and restored easily. This low-level visibility of
VM operation, sometimes called introspection [Garfinkel and Rosenblum 2003], is very

9However, there are methods to obscure data contents from the VMM, as we discuss later.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:14 M. Pearce et al.

useful for Intrusion Detection Systems [Garfinkel and Rosenblum 2003], malware, and
rootkit detection/analysis [Jones et al. 2008; Wimmer 2008; Xuan et al. 2009], and
software development/patch testing.

The ability to capture and restore system state is a very useful property of VMs, and it
allows for very rapid capture and restoration of the state of entire guest OSs to file (with
each capture referred to as a snapshot). A snapshot can capture the memory, hard disk,
and device states of the virtual machine (either while shut down, or while running)
and then record the differences from the time the snapshot was taken. Previously
captured snapshots can be restored very quickly [Collier et al. 2007], and some VMMs
can restore snapshots even while the virtual machine is running, with little downtime.
This ability to store and restore multiple past states of a VM has made them very
popular for uses such as malware analysis, honeypots, and intrusion detection systems
[Kourai and Chiba 2005; Payne et al. 2007].

The ease with which the VM state can be captured and duplicated, combined with the
abstraction away from the hardware, significantly improves the availability of virtual
machines. Virtual machines may be load balanced, moved between different hardware
platforms with negligible downtime (live migration), and backups may be very quickly
restored [van Cleeff et al. 2009; Rosenblum and Garfinkel 2005; Whitaker et al. 2005].
As a result of this, VMs offer very high availability levels [Jansen et al. 2008].

5. SECURITY IN VIRTUALIZATION

The properties of virtualization are not only advantageous for security, they can also
be detrimental. As virtualization is a large and very vibrant field of research, with new
research and threats coming out daily, any coverage can never be fully comprehensive.
As stated in the Introduction, this work is intended as an introduction to the security
concerns, considerations, and implications arising from use of virtualized systems.

Consequently, this work proposes a general coverage of the security issues surround-
ing virtualization. We are concerned with threats affecting the following agents: the
VMM, VMs, OSs in VMs, software running on those OSs, and the operational environ-
ment such as the network. Since we are undertaking a very general approach, there are
situations where a specific example will be covered very briefly. For more information
we encourage the reader to refer to the appropriate references.

Security, in the context of this work, refers to the disclosure and alteration of data
and operations which may be considered sensitive. Related threats are both breaches of
expected privilege (those that should not be able to be altered or read without explicit
permission) and breaches of other controls that, while often implicitly permitted, may
be applied on a case-by-case basis to suit the situation.

Sensitive data includes, but is not limited to, the confidentiality, integrity, and avail-
ability of:

—software data (program data in memory, on disk, or in other forms of storage);
—software and hardware operational state (resource allocation levels, program execu-

tion paths, etc.);
—control and network channels.

Here “software” refers to the VMM, VM, OSs in VMs and applications running in
VMs as discussed before.

5.1. Threat Model in a Virtual Environment

The secure design of any system or application requires an accompanying threat model.
This model should address two key aspects: (i) the key security design aspects of
a virtual model (including what is considered potentially sensitive information) and
(ii) definitions of a set of possible attacks to consider. A threat model can be developed

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:15

Fig. 9. Primary steps in the process of threat modeling [Microsoft 2010].

with a focus on the attack or penetration method (a software-centric focus as typified
by Microsoft’s Security Development Lifecycle), or by an asset-centric model (in which
the value of assets is the focus of such a model). This may entail a set of small threat
models relating to a specific set of attacks which could occur in specific circumstances
or are related to specific assets. Such a set of threat models can assist in assessing
the likely harm, priority issues, and ability to limit or recover from such attacks. A
generalized threat model that attempts to address all types of attacks, penetrations,
and leakages concerning every possible configuration of virtual platforms utilizing
any type of supporting hardware (and/or software) and protecting every type of asset
is very likely to be too general to be of significant value. Thus, the focus in both
academic research and within organizations that have an important stake in threat and
intrusion control (e.g., OWASP (Open Web Application Security Project), Microsoft’s
SDL) [OWASP 2010; Microsoft 2010] has been to develop models related to specific
operational scenarios to be used for evaluation.

When commencing any system design in general–and virtualization in particular–it
is necessary to apply threat risk modeling to avoid risks associated with (real or virtual
system): stability, malfunction, misuse, or information leakage. Various methods of
risk assessment exist, but the choice of method is far less important than actually
performing a threat risk modeling process. OWASP recommends Microsoft’s threat
modeling process because it works well for addressing the issues facing Web application
security and is equally applicable to virtualization architecture.

Figure 9 shows the classic threat modeling process which (when applied to virtual-
ization in particular) enables stakeholders to:

—define the security requirements and risk appetite for the system under development
(Vision);

—communicate security design aspects of the VMM/VM system (Diagram);
—analyze components for potential security issues using a proven methodology

(Validate);
—discover and mitigate issues that could put VM infrastructures at risk, as well as

prioritize and plan efforts to address significant threats such as backup, failover,
resource misallocation and dysfunction caused by malicious software (Identify
Threats);

—manage mitigations for security issues, particularly as a result of the complex inter-
action between VM Monitor, host operating system, drivers, VM operating systems
and applications (Mitigate). This enables better security efforts to be conducted for

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:16 M. Pearce et al.

both new and existing IT infrastructure components in a practical and cost-effective
manner.

Two significant papers have become cornerstones in the development of computer
security taxonomies [Landwehr et al. 1994; Lindqvist and Jonsson 1997]. Although
written before recent resurgence of virtualization, both have applicable contributions
to make in the development of taxonomies for virtualization.

Lindqvist and Jonsson [1997] proposed a taxonomy for use in incident reporting,
statistics, alerts, and intrusion detection systems. Unlike previous proposals, they
take the viewpoint of the system owner rather than that of system developers and
vendors. Their work focuses on external observations of attacks, as the system owner
may not normally be able to categorize security flaws in detail. This arises because
most software and hardware is purchased from system vendors where source-code and
structural design are proprietary and not available from the vendor. Their approach to
a taxonomy is based upon intrusion techniques and intrusion results. Their intrusion
techniques and classification of intrusion results only have limited applicability in the
case of virtual machines, since such an architecture can be viewed externally (owner)
or internally (system designer).

However, their work does address classical security vulnerabilities such as bypassing
controls, active and passive misuse of resources, data leakage, denial of service, and
erroneous output. Landwehr et al. [1994] provides a taxonomy which has become, and
remains, foundational for many years. The authors make it clear that a general tax-
onomy addressing intrusions, devices and systems, attack categories and techniques,
network categories, and protection systems is too broad to be of a great deal of use and
they support this by including combinations of some 50 examples of different systems,
architectures, and flaws. Interestingly however, they do follow the concepts developed
of a taxonomy based on time of introduction (when), location (where), and origin (how)
as discussed in Section 9 (recommendations). Subdivisions are provided within each
of these categories. However, as the authors state “often, especially at the finer levels,
such a partitioning is infeasible, and completeness of the set of categories cannot be
assured” [Landwehr et al. 1994].

Many papers relating to attacks, intrusions, and threat models have been written
over the last two decades. However, it is the intention in this section to only focus on
key contributions which have the potential to enable development of specific threat
models relevant to particular implementations of virtualized architectures.

Given the highly integrated nature of virtual architectures and the crucial impor-
tance of the security of operating system software, the work of Rashid et al. [2003] is
valuable in respect of threat models. The focus here is on when, where, what, and how
changes can occur to VM architecture.

The issue of when focuses on chronological issues such as when a change such as
an upgrade or patch should be made, as well as the systems necessary to support
this change. For example, upgrades and patches to the VM Monitor or Management
VM may not necessarily occur at the same time as changes to various VM operating
systems.

The issue of where relates to what parts of the software such changes can be made in
and which supporting mechanisms are affected. For example, changes to Type-I VMMs
may not (necessarily) be applicable to Type-II VMMs. This leads to the very important
issues of granularity, change propagation, and systemwide impact.

The issue of what changes should occur relates to the type of issue involved, such as
issues of availability, extensibility, and others. For example, in a VM architecture, the
choice of what drivers might need to be upgraded may well affect the availability of
a critical system. A trigger from an IDS engine indicating that firewall rule(s) might

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:17

Table I. Simplified Change Taxonomy Based upon “When, Where, What and How” (adapted from Rashid (2003))

Taxonomy Group Property Examples
When (chronological issues) Time of change

Frequency of change
Change history

System upgrades, patches
Coordination with VMM components
Version control in conjunction with

support of applications
Where (in the system) Object

Granularity
Effect of change
Dissemination of change

Type II VMMs upgrade
Change to virtual object, class, package
Affecting a single VM or VM Monitor
Change to base VM operating system

What (assets of system) Availability
Reactivity
Extendibility

Up time of respective VMs
Respond to malware at VM Monitor/OS

level
How plugins are handled in VM

environment
How (manual or automated) Automation

Process control
System function modification

Auto-distribution of patches across
VMs

Logging of malware protection events
across VM platform

Implementation of upgraded drivers
across multiple VMs

need to be changed within a critical period of time can have significantly advantageous
(or correspondingly disastrous) consequences.

Finally, the issue of how changes should be made can have a critical effect on the
operation of VMM architecture. Changes can be made manually, which may imply
temporarily taking a VMM system offline (thus affecting when) and affecting the au-
tomation of the system. Automated tools can be used to manage, control, and measure
software changes. However, such procedures require checking and verification that the
changes were successful and, in the case of VMM systems, to ensure no catastrophic
flow on effects.

It is important to note that these four properties are not necessarily mutually ex-
clusive. For example, a decision what to do may well have consequences as to whether
or not it is carried out in a timely manner (when). Another example might be that a
change to a Type-II VMM (where) could have implications on how this is carried out in
order to maintain full availability of the system.

Table I represents a simple sample model, based upon the “when, where, what, and
how” threat architecture described before.

The answers to these questions can be used to develop a taxonomy relating to the
characteristics of software change and the factors which lead to such change(s). The
purpose of such a taxonomy is to: (i) define specific software development tools and
techniques within the domain of virtualization, (ii) provide an architecture for com-
paring specific tools and techniques used in virtualization, and (iii) evaluate the use of
software development tools or techniques for maintenance and change control.

For this work we have not provided a generalized threat taxonomy, as the general
nature of the considerations we give precludes the production of a meaningful and valid
taxonomy. We are not presenting a summary of threats to any one area, or to any one
type of system. This work discusses considerations for not only virtualized systems,
but the software which resides upon these systems. This software often has directly
competing security requirements.

Thus, while some of the threats presented are indeed simple to categorize, oth-
ers are not due to conflicting viewpoints and motivations among stakeholders. For
example, fully transparent virtualization can be considered a threat, a security feature,

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:18 M. Pearce et al.

or a complete irrelevancy depending upon the particular situation and implementation
considerations at stake. We have structured the following sections to follow on from the
overall system virtualization properties described earlier. In them we discuss consid-
erations around and stemming from strong virtualization properties, those stemming
from weak virtualization properties, those stemming from control and communication
channels, and those related to use of additional software.

6. SECURITY THREATS RESULTING FROM STRONG VIRTUALIZATION PROPERTIES

The same properties and requirements that define a virtualized system (Efficiency,
Resource Control, Equivalence) have security implications that must be considered in
a fully virtualized system. Many of these implications are two-sided, where a property
of virtualized systems can have effects that can both enhance and compromise security.
For instance, some of the motivators given earlier can be quite undesirable if the VMM
is not trusted. These threats occur as a result of the VMM trust model, the transparent
nature of an ideal VMM, and the introspection capabilities that the resource control
requirement allows.

6.1. Untrusted Components and the VMM Trust Model

The implicit trust in a virtualized platform is a major vulnerability area in system
virtualization. In a physical system the OS trusts the hardware to a large degree.
Likewise, in a VM the operating system is required to trust the virtual hardware, and
thus the VMM. The VMM is a single point of failure, and a malicious, compromised,
or otherwise problematic VMM may observe or interfere with the VM. Thus secure
virtualization relies on the authenticity and integrity of the VMM, and in some cases
upon the security or identity of the underlying hardware [Perez et al. 2008]. If any un-
derlying component is compromised it becomes far more difficult to have an assurance
of security. For example, for an application running in a guest OS to be secure, it needs
to trust the Guest OS, the VMM, and the hardware.

Some authors have proposed the use of the Trusted Computing Group’s [TCG 2010]
(TCG) Trusted Platform Module (TPM) to offer assurance of hardware and VMM in-
tegrity and authenticity. The TPM is a tamper-resistant hardware module that offers a
small amount of secure storage, and secure cryptographic functionality outside of the
CPU. It is also used by AMD and Intel to offer a dynamic root of trust in their secure
computing platforms.Through the use of a chain of trust these technologies can offer
attestation of the integrity or state of both hardware and software system components
at system boot time, and while a system is running. The root of this trust chain lies
either in the TPM hardware, or in a key held in the TPM hardware [Perez et al. 2008].
(More information on Intel’s secure computing platform and AMD’s platform can be
found in Intel [2003, 2009] and Strongin [2005] respectively. Discussion of trusted com-
puting in general can be found in Irvine and Levitt [2007], Oppliger and Rytz [2005],
Sailer et al. [2004], and Trusted Computing Group [2007].)

Attestation can be used to secure applications and operating systems to ensure
they will only run in an environment with an attestation chain to a trusted root.
In Windows, the trusted computing technology was initially called Palladium, then
later renamed to Next-Generation Secure Computing Base (NGSCB) and is discussed
in Oppliger and Rytz [2005], Perez et al. [2008], and Wang et al. [2010], however, it
was reportedly cancelled in mid 2004 due to market reasons [Perez et al. 2008]. In
Linux, IBM’s Integrity Measurement Architecture (IMA) may be used [Sailer et al.
2004; Sourceforge 2010], or alternatively another Linux implementation is discussed
in Seshadri et al. [2007].

This attestation is used in virtualization to offer a degree of verification of the au-
thenticity and integrity of the hardware and the VMM. The TPM functionality has

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:19

been extended by Berger et al. [2006] to offer a virtualized TPM, or vTPM. Trusted
computing and attestation have been proposed as ways to assess the security of all
aspects of virtualization, most notably the VMM, but also the hardware, the guest OS,
and applications running on it. This attestation can be done either locally via internal
I/O channels, or remotely through a network [Baldwin et al. 2009; Haldar et al. 2004;
Berger et al. 2006; and Dalton et al. 2009]. A more detailed discussion of attestation
of VMM and secure virtualized systems is presented in Catuogno et al. [2010], Dalton
et al. [2009], Pfaff and Rosenblum [2003], and Tomlinson [2009].

Attestation of the integrity, authenticity, and state of guest software is important for
application and data security not only for guest OSs, but also for applications. This
is due to the fact that security requirements can depend not only on the integrity of
core system components or the application itself, but also on the presence and state
of additional software inside the guest OS. This could include the status of security
measures such as logging, antivirus, or intrusion detection systems.

A VM is more than the VMM and guest software: it is a container which contains
other software and data components such as VM settings, a virtual disk image, and
captured VM states. To secure these components the host’s TPM may be used to sign
and check their signatures. Furthermore, the TPM may contain keys to encrypt/decrypt
them.

There has been some discussion on circumvention of trusted execution technologies.
For instance, Wojtczuk and Rutkowska [2009] discuss the use of System Management
Mode (usually known as SMM), a highly privileged CPU operating state (conceptually
similar to ring-2, where ring-1 is hypervisor level and ring-0 is kernel level) which
did not securely run the verification and attestation checks. This was due to an im-
plementation flaw which has now been fixed [Wojtczuk and Rutkowska 2009]. This
demonstrates that even the most secure system may yet contain unknown or undis-
closed flaws. Attestation alone does not remove many security threats surrounding
virtualization. Furthermore, even an attested component may be attacked, or used in
an attack. Ultimately, the use of trusted computing techniques for virtualization raises
the same issues which arise with their use in hardware security. Further detail and
discussion of trusted computing’s overall security impact can be found in Oppliger and
Rytz [2005].

6.2. Transparent Virtualization

If all three of Popek’s properties (efficiency, resource control, equivalence) are met in
a strong (or perfect) way, then the result is a VMM that is ideal and undetectable to
software inside the VM (we will term this a fully transparent VMM). This inability to
detect a VMM can have quite serious implications for some types of software. Reverse
engineering becomes far easier due to introspection capabilities, as any encryption
keys, security algorithms, low-level protection, intrusion detection, or antidebugging
measures can become simple to compromise. The combination of the basic trust model
with transparent virtualization means that a VMM can be undetectable, and is auto-
matically trusted.

Since the equivalence property of virtualization requires VMMs to be equivalent to a
real machine, it can be very difficult to detect that software is running in a virtualized
environment. Some software and systems are exposed to additional threats if they run
in an untrusted virtualized environment. Since a VMM has full control over system
resources, it can observe or alter any data inside the VM which can cause potential
problems. Examples of software affected by issues resulting from this introspection
include time-limited trial software, since the VM can be reverted [Franklin et al. 2008a],
and software that encrypts, as encryption keys in memory can be read [King et al. 2006].
Software authors sometimes consider running security threats on virtualized systems,

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:20 M. Pearce et al.

as it allows better analysis and reverse engineering. For example, consider malware
authors and the antivirtualization measures they take [Ferrie et al. 2006; Ford and
Allen 2007; Liston and Skoudis 2006; Omella 2006; Wu and Ma 2010].

An undetectable VMM is referred to as transparent. However, some authors claim
that it is not feasible (or useful) to make a fully transparent VMM [Garfinkel et al.
2007; Gueron and Seifert 2009]. Various VMM detection measures may be used, with
the most commonly discussed being checks for discrepancies in logic, resources, or
timing between a known physical environment and a known virtualized environment
[Garfinkel et al. 2007; Gueron and Seifert 2009]. Examples of VMM detection methods
include hardware attestation (as just discussed); observing timing of instructions or
I/O (since a VMM will necessarily add some overhead when it intercepts instructions);
observing resource availability and location (since VMMs may allocate resources at
different addresses than physical machines); and checking for inconsistent or incorrect
CPU emulation (for instance by not reproducing known CPU bugs). For discussion
of technical discussions of these measures see Duflot [2008], Franklin et al. [2008b],
Garfinkel et al. [2007], and Raffetseder et al. [2007]. Near-transparency also makes
VMM-based rootkits possible [King et al. 2006]. The use of hardware virtualization
mitigates the effectiveness of some of the detection measures, but it does not eradi-
cate them. In the end, though, different parties have differing requirements, so trans-
parency can be judged to improve and/or threaten security depending upon the context
and party making the assessment.

6.3. VMM Insertion and “Hyperjacking”

Various methods exist for covert insertion of a VMM under an OS, moving the OS
from physical to virtual nearly undetectably, either on boot or while the system is
running. These VMM rootkits are a serious security risk, as they may be used to
subvert an operating system completely. The methods used to accomplish the VMM
insertion are varied. Two methods used include the use of raw disk reads to alter
device drivers that are paged out to disk, and the modification of system startup files.
For technical discussion of the concepts and proof of concept systems refer to Rutkowska
and Tereshkin [2008], Rutkowska [2006], Nomoto et al. [2010], Athreya [2010], Dai Zovi
[2006], Gebhardt et al. [2008], Skapinetz [2007], Ford and Allen [2007], Wlodarz [2007],
Security [2010], and Carbone et al. [2008]. However, this form of attack is normally
extremely hardware and VMM version specific, and to the authors’ knowledge has
never been observed in the wild.

A similar approach of migrating a running OS onto a hypervisor has also been
proposed as a host intrusion detection measure [Nomoto et al. 2010]. Much of the
strength of this approach comes from the introspection and intervention mechanisms
open to a hypervisor, as we discuss next.

6.4. Introspection and Intervention by VMM

Although the VMM requires full control of resources to function, this can range from
the minimum requirements of protecting the VMM’s own system resources, to complete
control, allowing it to observe and manipulate VM data and operation. The minimal
case presents few security issues, but the steps taken to enable this can easily result
in more control than is strictly necessary, which can enhance or weaken security as
concerns various parties.

Introspection and intervention of the VM from the VMM. is a result of the ability
of a VMM to take control of resources, and is when the VMM observes or intervenes
in the operation of a guest. Software running at a high privilege level (such as a
VMM or OS) may observe and modify system aspects affecting other software, while
remaining hidden from the lower privileged software. Process introspection allows the

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:21

VMM to observe behavior of processes within the VM. The VMM may also observe I/O
channels to, from, and within the VM. This is due to the resource control property of
virtualization, and has associated information security issues that can both improve
and threaten security.

When combined with transparency, the result is that the VMM cannot only observe
and alter any aspect of the VM, it is automatically trusted (unless trusted computing
elements are used) and undetectable (as described in Section 6.2). If the VMM is
untrusted or VMM compromise is a risk, then the security threats due to introspection
and intervention are very serious.

Consider this example: Company A has a virtual server in an outsourced datacenter
that undertakes financial transactions. Depending upon the contract with the data-
center, it is likely that the datacenter does not have permission to view or alter any
transactions undertaken (based on least need-to-know principles). However, because
Company A does not control the underlying VMM, it has no way to ensure that the
VMM has not altered transaction details or recorded credentials, a potential problem
in many ways, as any local audit trails can be similarly compromised.

The most obvious approach to mitigating introspection and intervention threats
from an untrusted VMM is to attest to the authenticity of the VMM and hardware.
Attestation has been discussed in more general terms in Section 6.1 before, and is the
approach taken by sHype [Sailer et al. 2005]. The high privilege of the VMM and hard-
ware makes protection of software from a hostile VMM difficult. Some approaches can
be taken to mitigate the threat of undesired introspection: they include cryptographic
and architectural approaches.

Cryptographic approaches attempt to obscure the contents or operation of memory
from higher privileged software such as the operating system or VMM.

Architectural approaches involve new hardware architectures or codesigned (read
as co-designed, not code-signed) VMMs, where the hardware architecture is designed
with VMM usage in mind. This technique is used for reasons other than pure security
in some VMMs/hardware (such as the IBM AS/400 or Transmeta Crusoe [Smith and
Nair 2005]), and is applied for security purposes by more recent approaches such
as Bastion [Champagne 2010]. A system utilizing a codesigned VMM has a concealed
binary translator that runs in an interface between the physical hardware and software
on the system. This VMM is very low level and, because it is essentially a part of the
hardware, hardware-level protections may be used to protect it [Champagne 2010].

The introspection capability can also be used to improve the security of a virtualized
system. The high privilege level and low-level access of a VMM allows it to observe
system aspects that may be inaccessible or hidden from the guest OS. Process intro-
spection allows the VMM to observe behavior of processes within the VM. The VMM
may also observe I/O channels to, from, and within the VM.

6.5. VM Cloning and Scaling

In physical systems, scaling up by addition of extra systems is limited by equipment
resources, whereas in virtual environments copying a VM consists of copying a file.
Since a cloned VM can be difficult or impossible to distinguish from an original, the
cloning of VMs is a threat if it happens incorrectly, or to a VM that is not bound to a
specific VMM [Garfinkel and Rosenblum 2005; van Cleeff et al. 2009]. Some cloning
methods will generate new identifiers in the VM, such as OS Security Identifiers, Hard
Drive IDs or virtual network adapter MAC addresses, but not all methods of cloning
will do this (for instance, a raw file copy of metadata and disk image files will not do
this).

The cloning of virtual machines can cause security concerns due to scaling, manage-
ment, identity, and data retention issues. Thus, the number of VMs can increase very

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:22 M. Pearce et al.

rapidly, and become hard for an organization to keep track of and manage [Garfinkel
and Rosenblum 2005]. This is complicated further by the concept of identity in virtual
machines. A clone of a VM is identical to the original, and the concept of an original
can be nearly meaningless [Garfinkel and Rosenblum 2005; Yu et al. 2010]. Locating,
tracking, and managing a VM may become very difficult, if not impossible. For example,
if an unauthorized clone can be created, then data can become spread between the two
versions or one can be used to impersonate the other.

An unauthorized or unwanted clone is a risk because not only will it inherit most per-
missions from the source, it can also cause address and name collisions on a network.
These collisions can cause problems for network resources, as different parts of trans-
actions and communications can be split between different VMs, and possibly different
physical machines. The problem is analogous to a misconfigured load-balancing sys-
tem, and can cause problems for the confidentiality, integrity, and availability of data
and systems. Countermeasures include delegating management functionality outside
of the guest OS. Detection of VMs on the network can be undertaken using normal
network measures such as network Intrusion Detection Systems (IDSs), however, care
must be taken to not cause problems for legitimate machines from which a clone was
derived [Garfinkel and Rosenblum 2005].

Data retention and control can become difficult to manage because VMs may carry
any data previously stored in them when they are cloned. This is important for sensitive
data such as personal details or encryption keys, as these must be securely destroyed
when no longer needed. Among other places, data can reside in deleted files or memory
snapshots, on virtual hard drives, or be retained in previous snapshots. It can also be
part of logging data external to the VM that the VMM undertakes [Wimmer 2008].
Methods to reduce these risks include encryption of VM data with keys unknown to
the VM, and externalizing encryption from the VM, for example, by storing encryption
keys in the VMM or hardware TPM [Dalton et al. 2009; Dewan et al. 2008; Wimmer
2008]. This approach can cause problems for VM migration if measures are not taken
to migrate or regenerate keys.

6.6. Nonlinear VM Operation and Monotonicity Issues

Since virtual machines can be cloned, and have their states captured and restored
quickly, their execution does not follow a linear path through time, but can be reversed,
forked, and subject to similar nonlinear operations. This lack of linearity is referred to
as a “lack of monotonicity” by van Cleeff et al. [2009]. The lack of monotonicity can be
problematic for data on the VM, configuration, and general logging and monitoring.
For application data, the lack of monotonicity can be a problem because snapshots,
cloning, and restoration break linear operation of programs and data. Snapshots
can fork, merge, and revert, and this behavior must be taken into account for program
operation, database operations, and data retention requirements (as for cloning) [Price
2008].

Due to the complete and indistinguishable nature of many types of state capture
and restore, applications should store settings, management information, and data
external to the VM (if the VMM does not supply partial state operations that leave
certain files untouched). Keeping some data separate from the snapshotting process
itself presents potential risks if the correct data is not stored or restored correctly, and
choosing the correct data is not a trivial problem for systems that were not designed to
allow for such operations.

If this is not properly done then threats may arise as a result including the rolling
back of updates, configuration, or user settings (such as deactivated accounts) leaving
the application vulnerable or nonfunctional. Most notably, if a VM is reverted to a
version before a patch was installed, the patch is then removed, thus leaving a system

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:23

vulnerable [van Cleeff et al. 2009; Garfinkel and Rosenblum 2005; Yunis and Hughes
2008]. Some vendor’s products allow the patching and management of snapshots, but
rollback is also a problem for local logging, where logs can be destroyed. Unless special
precautions are taken, all records can be destroyed when the system state is restored,
which is important not only for security but also for regulatory compliance. Examples
of measures to mitigate this threat include the use of a versioning file system such
as that in Peterson and Burns [2005], which stores all changes made to all files and
enables a view of files at any point in the past.

6.7. Software Decoupling from Physical and Hardware Environment

A virtualized system abstracted away from the hardware is no longer dependent upon
its location, and can even be hard to define as a single system. A virtualized system
can be duplicated (cloned), and every single instance must be found (at least logically)
before it can be managed or secured. Even when threats from cloning and snapshots
(as already discussed) are excluded, problems still arise from the abstraction of the VM
away from hardware.

Issues may include being unable to locate the physical location of a VM, and those
resulting from the implications of hardware consolidation in virtualized systems. A
system which cannot be located presents problems in management or administration,
as well as presenting potential legal or regulatory jurisdictional issues if there is a
requirement for data to stay within a certain jurisdiction. Largely consolidated hard-
ware can result in high impact failure scenarios if care is not taken, as one server
may contain a great deal more services than would normally reside on a single sys-
tem. Conversely, however, the reduced number of systems may also make backups and
redundancy easier to manage.

Threats arising from hardware independence are exacerbated by virtualized net-
working, where a physical network connection may not represent the actual logical
location of a system on the network.

Inability to locate a VM. Since a VM is not bound to a physical location it can become
complex to locate a single VM if it needs to be managed or isolated. Moreover, when
there are difficulties finding the location of a VM, difficulties can arise in managing
it. For example, normal measures such as shutting down the physical network port
can take out legitimate machines at the same time. Mitigation measures for this
type of threat include a combination of normal network intrusion detection measures,
and changing management processes to help reduce the incidence or impact of such
occurrences.

Hidden or covert VM. A VM is logically the same as a physical machine on the
network. If one is running on a system, it represents a risk potentially similar to
that of an unauthorized physical machine. Similar technical measures can be taken
to those that detect physical machines (for instance, Network Intrusion Detection
Systems (NIDS)). In addition, software measures can be taken to check for the presence
of VMM software exactly as an administrator would search for other unauthorized
software (such as games).

Additional consolidated hardware. Additional hardware is used in virtualized sys-
tems, both logical and physical. Logical hardware is used in every virtual machine to
interface to the VM. Additional physical hardware arises because more hardware is
needed to allow load balancing, as well as server consolidation of many machines into
fewer larger-scale servers. This results in a reduced hardware surface, which threatens
availability and continuity at a large scale if measures are not taken to protect against
failure or compromise. These measures should include standard operational security,

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:24 M. Pearce et al.

such as load balancing, redundancy, backup, and change management procedures as
discussed in Section 9.

Physical location issues. Although virtualization allows software to be run decoupled
from hardware, there remain issues which require at least a certain level of physical
location control. Of particular importance are any legal, regulatory, or jurisdictional
requirements that must be met to fit the appropriate legal system, privacy issues,
disclosure or privacy regulations. Such issues are inherently very complex and for
more information we refer the reader to Subashini and Kavitha [2011] and Griffin
et al. [2005].

However, more practical considerations can also be important, such as the require-
ment that it is run in a physically secured environment, on a server with ready ad-
ministrator access, or on a high availability server rather than the standard server
nearby.

7. SECURITY IMPLICATIONS FROM WEAK IMPLEMENTATION OF
CORE VIRTUALIZATION REQUIREMENTS

Many security implications arise from an improper, incomplete, or compromised im-
plementation of Popek’s [Popek and Goldberg 1974] requirements. The two main types
are transparency breaches (where any of the three requirements is imperfectly imple-
mented), and resource control breaches.

7.1. VMM Detection and Transparency Breaches

Virtualization transparency is breached when any one of the three requirements is
breached, leading to information being disclosed that can be used to deduce the presence
of a VMM. The detection of a VMM can cause problems for some uses of VMMs (such
as problems for the analysis of malware if it suspects it is being run in a virtualized
environment and behaves differently), just as the inability to detect a VMM can cause
problems in other cases. A breach in transparency can also cause problems ranging
from instability to failure in software that makes assumptions about the environment
in which it is being executed. These can include problems resulting from assumptions
that are broken by unexpected device states or timing problems. For example, it may
well be misleading to extrapolate seek times from that of a stand-alone physical disk to
that of a virtualized disk. In particular note that anything that optimizes disk layout for
speed (such as a Database Management System (DBMS)) will in a virtualized system
perceive a layout that does not necessarily correspond to the physical true layout.

7.2. VMM Compromise

Given that the VMM is the most central part of a virtualized system, if an aspect
of it is compromised then the entire system and everything running on it is at risk.
The VMM can be compromised in several ways, but in this work we discuss threats
specifically related to, respectively, VMM confidentiality (VMM introspection), VMM
integrity (VMM alteration), and VMM availability (VMM Denial-Of-Service (DOS)).

VMM introspection. Introspection and intervention are not only issues for virtual
machines. A VMM is also at risk, especially in a Type-II implementation, where a host
OS is also executing at a privileged trust level beside the VMM. Since any layers at
or below the trust level of the VMM may observe (and intervene in) VMM operation,
the system hardware is also potentially a risk. Attestation can be used to alleviate
much of the associated risk. The entire system may only be as secure as the weakest
component, so the VMM may only be as secure as the system on which it resides, and
the host system may only be as secure as the VMM. Using a hosted VMM therefore

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:25

simply increases the surface to be secured against compromise, and is probably best
avoided in situations requiring high security.

VMM alteration. If the VMM is compromised, it can affect all VMs on it, and as a
VMM has full hardware control, the underlying hardware below it is at risk too. Few
measures have been proposed to overcome this, other than security-aware develop-
ment of VMMs, and VMM integrity checking and attestation as discussed previously.
Security-aware development practices are used to make software that is thoroughly
designed and tested, although the level of assurance offered can vary. Hypervisor prod-
ucts have attained at least the Common Criteria Evaluation Assurance Level (EAL)
level-5 certification, which indicates that the system has been semiformally designed
and tested [CommonCriteria 2008]. A sufficient EAL certification is also needed to
permit the use of a product in some high security environments such as the U.S. gov-
ernment or military.

VMM Denial-of-Service. If operation of the VMM software can be interrupted,
then operation of all VMs running upon it becomes affected. VMM operation can be
negatively affected by resource starvation, or interrupted if a complete shutdown of the
VMM is caused or a restart made necessary. Both of these situations cause a Denial-
Of-Service (DOS). Should a DOS happen, then data loss can occur, as volatile data
can be lost and system data structures can become corrupted. The cause of the DOS
or disruption can occur via either bugs in the VMM, local software attack, or network
vectors.

Local DOS threats to the VMM. These can include VMM bugs and resource starva-
tion. VMM bugs can be used to crash the emulator, prevent access to administrative
channels, or execute privilege escalation attacks (discussed shortly). In our literature
research we have encountered bugs in virtualization software that caused the adminis-
trative interface to cease functioning, while VMs kept functioning normally. Ormandy
[2007] discusses research into host environment risk, and covers many different ex-
amples of VMM bugs. Resource starvation refers to resources (such as RAM, CPU,
or network bandwidth) being starved from another part of a system, and can be a
result of either intentional or accidental actions. Resource starvation can cause per-
formance problems and potential failure of some software that requires a certain level
of hardware performance. This can occur as a result of any running software, and can
significantly affect other parts of the system.

Although it is possible for this to occur from the host, most research is concerned with
resource starvation threats from VMs. Resource starvation as a result of VM activity
can, if not mitigated, threaten operation of other VMs. Most VMM implementations use
resource control to impose resource allocation limits on VMs, and thus on the software
running within them.

Overprovisioning is also a DOS risk, and can be quite complex in virtualized environ-
ments. Consider page sharing, where multiple VMs have identical memory contents
mapped to shared memory locations. This is useful for items which are generally static
such as operating system components, but if these shared pages are not taken into
account memory can be overprovisioned. Shared pages work as in the following exam-
ple: If two Windows XP systems are running, each allocated 512MB Random Access
Memory (RAM), they each believe they have 512MB accessible. If 200MB of the mem-
ory in each VM is identical, then the VM shares those sections, saving the allocation
of 200MB. So, the VMs believe they have 1024MB total accessible, but only 824MB is
allocated in the host. If this extra 200MB is allocated to a VM, and the shared mem-
ory diverges then more memory is allocated than is available, resulting in swapping
occurring on the host with a subsequent degradation in performance.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:26 M. Pearce et al.

Network VMM DOS threats. These can negatively impact the VMM, by either de-
grading performance, making the VMM cease functioning, or taking administration
capabilities and interfaces offline. This is a particularly significant threat in imple-
mentations that use network administration of the VMM and do not facilitate easy
local administration. In the same way that a VMM bug can cause a VMM DOS condi-
tion locally, a remote bug has the same potential, and the same mitigations. Network
flooding attacks should be mitigated using the same measures used in most network
flooding attacks, such as good firewalling, and the use of sink holes (network routes
that are designed to deal with dangerous network traffic safely).

Host DOS. This occurs when either the hardware or the host (in a Type-II VMM
system) causes loss of control or stops operation of the VMM and VMs [Ormandy
2007]. The mitigations and causes are related to those discussed in VMM introspection
previously (Section 6.4).

7.3. Resource Control Breaches and Privilege Escalation

For information security, resource control breaches are among the more serious for
confidentiality of data. In virtualized systems threat areas include information leakage
and privilege escalation.

VM information leakage. Information leakage with regard to virtualization comes in
two main types: leakage of information into VMs, and leakage out of VMs. Of particular
note with virtualization information leakage vectors is their potentially very large
bandwidth.

For leaks out of VMs, a virtual machine may leak information about its operation or
resource usage to other VMs through side channels. These side channels include both
software and hardware based, with some of the simpler software leakage channels
consisting of features installed to facilitate ease of operation between the VM and the
host, such as clipboard and file sharing (discussed further in the control and commu-
nications section). Leaks of operation data into VMs can include details about the host
or the state of the resources on other virtual machines.

Other leak vectors from hardware include cache-based attacks. The VM may be able
to detect things that it ought not, such as resource status on the physical machine (CPU
or memory usage, etc.), network details, or details about the operations of other VMs.
By analyzing page timings it may also be possible to detect shared pages too, thus
enabling an attacker to check for certain shared memory pages. Covert information
flows are discussed in more detail in Gebhardt & Tomlinson [2008], Jaeger et al. [2007]
while Ristenpart et al. [2009] discusses cache issues in the case of the Amazon EC2
shared compute cloud. Much research into attacks and countermeasures has also been
undertaken by other researchers [Wang and Lee 2006, 2007].

VM escape. Breaches of the isolation property of virtualized systems can allow priv-
ilege escalation of virtualized application code. Incidents of this occurring are referred
to as VM escape incidents and occur when code from a VM (thus in an unprivileged
context) somehow runs itself in a higher privileged context (such as that of the VMM).

VM escape to host. This occurs is when isolation between host and virtualized en-
vironment is breached. This occurs when code from a VM runs natively on the host
machine, without any VMM control. Caused by bugs or weaknesses in the VMM,
these threats are discussed in Criscione [2010], Gebhardt and Tomlinson [2008], Or-
mandy [2007], and Ramos [2009] and are more common in Type-II VMMs due to the
extra attack surface offered by such implementations. Vectors for attack consist of at-
tacking virtualized devices, CPU caches, and Direct Memory Access (DMA) to access
host memory directly. Several examples of such attacks are given in Criscione [2010],
Kortchinsky [2009], Ormandy [2007], and Vasudevan et al. [2010].

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:27

Prevention of escape incidents involves a combination of VMM patching, host security
measures (as would be used to secure a physical machine), and measures to detect the
malicious code in the VM (as legitimate software does not need such functionality).

VM escape to VM. This occurs is when isolation between VMs is breached and one
VM changes or views the operation or data of another VM that it should not be able to
access. Compared with the “to host” situation previously discussed the main difference
is that the VMM and host are themselves not under threat. Some research has gone
into the secure sharing of data and security policies within sets of virtual machines,
called Trusted Virtual Domains [Griffin et al 2005]. In VMMs that do not support
this functionality, one VM modifying another VM’s resources is a privilege escalation
problem generally caused by VMM bugs. In VMMs which do support virtual domains,
situations can occur due to abuse of the resource sharing functionality as well as VMM
bugs. We shall refer to these situations as VMM Trust Boundary Escape.

These classes of threat can be prevented with VMM patching and configuration man-
agement. The threats can also be mitigated if high value storage and communication
assets are encrypted, so that if they become compromised the data is of no value unless
the compromised asset is decrypted. For example, storing database records encrypted
on the virtual disk protects it if that file is compromised or read. An attack would also
require compromise of memory containing the encryption key (a less likely outcome) to
reveal the encryption key.

VM virtual network escape. This is similar to the preceding, but is at the level of
networking logic rather than general I/O. This refers to a VM circumventing intended
network bounds. Examples include bugs in the VMM, or bridging through a double
homed VM on the network. We will discuss this in more detail in the next section.

8. SECURITY IMPLICATIONS FROM CONTROL, DATA, AND SOFTWARE FLOWS

In addition to the security issues arising as a result of virtualization properties, there
are other security issues arising from the implementations of virtualization that can
result from the way virtualization is made useful. For example, while VMM and VM
data flows, VMM administrative channels, and software installed inside guests all
make virtualization useful in real deployments they can also add extra attack surfaces.
While the issues discussed previously were virtualization specific, the issues discussed
in this section overlap with more general security principles.

8.1. Security Implications from Control Channels

Control channels for VMMs are commonly used for administrative interfaces and VMM
Application Programming Interfaces (APIs). VMM APIs10 facilitate administration
of the VMM and VMs running on it. This includes functionality such as changing
the operational state of VMs (shutting them down), modifying existing VM settings,
cloning new VMs, creating new untrusted VMs, and running commands on the guest
OS. Additionally many current VMM solutions offer some form of Web-based interface,
with the resulting need to secure those interfaces (as they do not require attackers to
have special software and may be susceptible to normal Web application weaknesses).

Threats surrounding control channels consist of both unauthorized access and denial-
of-service issues. The threat presented by control channels is exacerbated as some
VMMs contain undocumented hidden control channels that function through undocu-
mented device and CPU instructions [Capelis 2007; Jaeger et al. 2007; Ormandy 2007;
Vaarala 2006].

10Examples of VMM APIs include the VMware Vix API [VMware 2010], or the Microsoft Virtual PC API
[MSDN 2010].

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:28 M. Pearce et al.

For non-network control channels (network channels are discussed later), security
measures that should be taken are primarily those that should be undertaken with
any software environment. Examples of these include keeping software up to date,
configuring (and auditing) sensible permissions using strong access controls (for
example, secure passwords and not giving all users full privileges), and disabling any
nonessential control channels (for instance, by not installing VMM helper software
in the VM unless it is needed for administrative or performance reasons). This also
includes securing critical files for VM operation, as if the virtual machine’s settings or
metadata are compromised then the VM itself can have issues, even if the VMM and
guest OS are otherwise secured.

8.2. Security Implications from Dataflows

Figure 6 illustrated many of the important data flows between components in a vir-
tualized system. These flows, both software and hardware, are primarily vertical in
function between different layers, with the exception of network channels which are
connected to many different components concurrently. Input/output flows and devices
in modern systems can be very complex and securing them is not a trivial task, par-
ticularly when performance is an issue [Karger and Safford 2008]. I/O and software
channels include those used by physical devices and virtualized devices as well as used
by VMM APIs (that extend beyond management operations which have already been
discussed).

Physical devices potentially present security threats, as they may open up side com-
munication channels that either do not go through the VMM, or use shared resources in
the VMM. If every physical device is not completely secured between VMs then the po-
tential exists for I/O side channels to enable isolation or privilege escalation breaches.
For instance, Dalton et al. [2009], and Dewan et al. [2008] discuss the potential for
VMM resource control to be circumvented through the use of DMA technologies to
access memory locations and Dowty and Sugerman [2009] discuss establishing secure
Graphics Processing Unit (GPU) isolation in virtualized situations.

Even when the physical devices are secured, however, the location and sharing of
device drivers in the VMM architecture can have important security considerations.
Karger and Safford [2008] discuss how pure isolation hypervisors (where each guest
uses a separate device and drivers) can differ from sharing hypervisors (where guests
use resources on the same device) in the security and performance that they offer. In
the example of hard disks, these would use separate hard disks and different areas
on the same disk respectively. Full and complete isolation between VMs on the same
hardware remains a very difficult problem, particularly in situations which require
sharing of display information.

Network channels. These present similar security issues to those presented by con-
trol channels and shared devices, but they present a potentially significantly higher
risk as they can be potentially accessed remotely, and may be connected to almost ev-
ery virtualization component. Hidden network channels can also be a risk, as not all
virtualized network channels are easily observed and some data sharing and control
channels happen over virtual networks too.

To secure these aspects the same normal network hardening and monitoring mea-
sures should be deployed in virtual networks as would be deployed to secure a physical
network (since a virtual network is logically equivalent to a physical network). These
measures include minimizing the attack surface by disabling unnecessary services,
deploying access control measures such as firewalls or network control measures such
as Quality-Of-Service (QOS), and deploying monitoring and prevention measures such
as Network Intrusion Detection Systems (NIDS) and Intrusion Prevention Systems
(IPSs).

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:29

8.3. Security Implications from Non-VMM Software

Many of virtualization’s security threats do not come directly from the properties
of virtualization, but from the way in which it is used and implemented. Important
examples of the causes and attack points include the decoupling of software from
the physical environment and the larger software and hardware attack surface. A
virtualized system inherently has more total software than a nonvirtualized system.
A Type-II VMM implementation adds further additional attack surface, as the host
OS is a threat to VMM components. The additional software attack surface in a VMM
implementation includes the VMM software, but in most uses will include additional
instances of operating systems and other software inside multiple virtual machines.
This means that the overall attack surface of the software running on a system is
higher, and this software can have many internal data flows as discussed next.

Guest Denial-Of-Service. In addition to threats normally present, a guest OS is po-
tentially vulnerable to certain DOS situations. Generally these attacks are undertaken
via the VMM, but not always. For hosts with multiple VMs resource usage should be
monitored, as one VM’s operation may be negatively affected by another if resources
are overutilized [Ormandy 2007]. Resource starvation is also a potential problem for
the exit point of virtual networks, as while the internal rate of virtual networks is very
high, most of the time the physical link will have less capacity, so in situations of high
load from either internal or external sources network interruption may occur.

Guest software compromise. Because a VM is an equivalent of a physical machine,
it shares similar risks if that software is compromised or insecure. This applies to
both operating systems and application software, and is exacerbated by the tendency
of virtualized environments to run multiple copies of software (one in each VM). If the
guest OS or any software running on it is out of date or misconfigured then the whole
VM is at risk.

The guest operating system usually has the same vulnerabilities as an identical soft-
ware configuration (of OS, drivers, and applications) installed on a physical machine.
These vulnerabilities can be anywhere in software, and can lead to full VM compro-
mise, and thus potentially network compromise via the compromised VM. Because
many VMs are originally cloned from a base image they are often more homogenous
in the software and versions they have installed, thus while they may be in more of
a known state to administer, this has the downside of potentially having more widely
shared vulnerabilities than would be seen in a physical setup.

Virtualization alone offers little extra protection for an OS or software running on it,
although introspection can improve detection of hidden processes. The resource control
property of VMMs can be used to improve not only detection, but also mitigation and
recovery from compromise through introspection and modification of the VMM. The
most notable version of this is the use of snapshots to restore to a known good state.

A VMM-assisted IDS or HIDS may help in detection [Garfinkel and Rosenblum
2003; Jin et al. 2009; Kourai and Chiba 2005; Laureano et al. 2004; Litty 2005; Sharif
et al. 2009], mitigation [Litty and Lie 2006; Nance et al. 2008], and recovery [Matthews
et al. 2005; and Wimmer 2008]. Additionally, approaches to protect the integrity of code
running on the guest have been proposed such as Overshadow (which encrypts memory
and decrypts only for the authorized application) [Chen et al. 2008], or SecVisor (which
ensures only approved code may run in high privilege) [Seshadri et al. 2007].

9. RECOMMENDATIONS FOR SECURE VIRTUALIZATION IMPLEMENTATIONS

The following section builds upon the system virtualization architecture previously
described in Section 3 as well as the security implications described in Sections 5–8.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:30 M. Pearce et al.

Table II. Development Processes for a Security Policy

Creation of a comprehensive security policy
[Mirzoev & Yang 2010, Gebhardt & Tomlinson 2008, Scarfone et al. 2010, Kim 2008, Kirch 2007]

An existing security
policy should be
adopted and
transformed to satisfy
the need of a
virtualized
environment. This
includes a suitable
deployment strategy.

Evaluate trust levels and zones for administrators
as well as hardware and software components.
This requires:

• Definition of trusted zones and separate servers
either at the hardware or virtual machine level.

• Where security requirements are different, we
need to create separate zones (physically as well
as virtually). Only systems with similar security
requirements should be grouped on one host.

• Evaluate separation of duties (and create sepa-
rate policies) for administrators with different re-
sponsibilities. For example: separate datacenter
administrators, VM administrators, and VMM ad-
ministrators.

Ensure consistency of
the security policy.
For example, the
same policy should
apply regardless of
whether the
application is
running on an OS
within a hypervisor
or on an OS running
on hardware.

The sections to date have provided a detailed explanation of system virtualization and
associated security issues. This section provides a template for implementation and
verification which can be used by system administrators for the practical implementa-
tion and testing of secure virtual platforms.

We focus on four key areas:

(1) rollout planning and managerial issues;
(2) hardening, threat prevention, and vulnerability detection measures;
(3) intrusion detection and prevention measures;
(4) recovery and continuity protection measures.

To a considerable degree the first, third, and fourth items are consistent with any
well-designed secure system implementation. However, item two has particular con-
cerns for system virtualization platforms and will therefore be discussed in more detail.

9.1. Rollout Planning and Managerial Issues

The creation of a comprehensive security policy with respect to virtualization follows
the same guidelines and principles applicable to any IT system development. Thus, the
frameworks defined by Sarbanes-Oxley, Cobit and ISO/IEC 27001 are equally appli-
cable to a virtual machine environment as they are to other IT environments. A brief
summary of the security policy definition process is given in Table II.

9.2. Hardening, Threat Prevention and Vulnerability Detection Measures

Hardening is the process by which the security of the virtual system is improved
by reducing its exposure to threats and vulnerabilities. In general, a single-function
system is likely to be more secure than a multifunction one. The larger the vulnerability
surface, the more the virtual machine architecture is subject to threats. Hardening
aims to reduce the number of attack vectors, while threat prevention and vulnerability
detection measures aim, respectively, to close entry points for attack vectors and to
detect them should they exist.

Hardening processes, such as removal of unnecessary usernames and logins, removal
of unnecessary software, and disabling unnecessary services, aim to result in a platform
which is robust, well-managed, and provides enterprise-grade service for the virtual
system users. The virtual architecture should thus be less vulnerable to malware,
intrusions, and other threats. Table III provides a summary of the methodology by
which such hardening can be achieved.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:31

Table III. Methodology for Platform Hardening in Virtual Systems

Methodology for Platform Hardening and Prevention of Threats
[Tolnai & Solms 2010]

Secure
hardware

• Use attestation for verification where supported
• Control physical access
• Use BIOS passwords to prevent reboot attacks
• Remove unnecessary hardware

Secure host
operating
system

• Use attestation for verification
• OS Hardening: Follow standard hardening procedures used for

OSs
◦ Patch and control change management
◦ Full disk encryption if possible
◦ Disable/remove unnecessary services and software
◦ Install Host IDS and anti-virus

• Implement standard network security measures

Secure
hypervisor • Use attestation and integrity checks

• Patch and update attestation records
• Use care with resource allocation to VMs
• Monitor hypervisor for signs of compromise

Secure
management
interfaces

• Minimize attack surface
◦ Disable unneeded network and/or local admin interfaces
◦ Firewall access from untrusted areas
◦ Keep management networks separate from core and guest

networks
• Strong authentication, encrypted communication.
• Least privilege user access
• Log and audit events
• Secure local and remote hypervisor management interfaces
• Encrypt communications for remote administration

Secure virtual
machine • Harden guest machine as would be done with any machine in

a physical environment
◦ Patch
◦ Remove unnecessary drivers and software
◦ Only install helper software if needed
◦ Disable/remove all unnecessary virtual hardware (CPUs,

RAM, media devices)
◦ Prevent virtual machines from utilizing physical resources

• Control allocation of physical resources
• Integrity validation, signature checking, or virtual encryption

(on guest) to prevent unauthorized copying.
• Monitor change management procedures, and remote

auditing/control.
• Use some form of secure time sync functionality

Once the desired hardening measures have been applied, they should be verified and
tested thoroughly. While verification should also be undertaken during predeployment,
it should not be treated as fully comprehensive until a final, representative deployment
is tested, to ensure that no issues develop undetected right before deployment. This
testing of a representative system should involve both “white box” verification and
“black box” testing, and should also be repeated regularly to account for errors that

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:32 M. Pearce et al.

Table IV. Summary of Intrusion Detection/Prevention Measures

Detection measures (Standard)
Deploy security

mechanisms
for intrusion
detection and
prevention

• Virtual IDS/IPS systems
• Firewalls
• Anti Virus agents
• Integrity checking on all asso-

ciated VM files

These are required in virtualized data centers in
order to manage access credentials and
monitor virtual machine behavior to track
anomalies.

may occur in the configuration over time, as well as to handle new bugs and weaknesses
that were not known at the time of hardening.

“White box” verification processes use knowledge of the internal settings, compo-
nents, and component interaction to assess conformance to the planned settings and
behavior, and are able to concentrate on the system’s data flows or expected weak points
according to a threat model, if one is used.

“Black box” testing is undertaken by using tools or skilled auditors that attempt to
cause some form of undesired behavior. Black-box testing will tend to discover fewer
flaws than white-box testing, but the threats that it finds will be demonstrable rather
than merely theoretical (as many white-box threats are) and should thus receive a
greater level of attention.

Testing of system components that are facing untrusted data sources is especially
important. Commonly untrusted data sources will consist of Internet or network con-
nections, but can also consist of more subtle trust boundaries such as those surrounding
untrusted code (for example, malware under analysis) or nonsecured hardware (as of-
ten occurs in situations where hardware or space is leased).

9.3. Intrusion Detection and Prevention Measures

Intrusion Detection/Prevention System (IDS/IPS) are of paramount importance in all
computer network and host systems. Such systems are equally applicable to virtual
system architecture. This requires detecting (logging) intrusions, categorizing them,
and in some cases providing feedback to security devices in order to change rule sets,
thus achieving an IPS architecture. Further, IDS/IPS systems can be used for purposes
such as documenting existing threats, identifying problems with the security policy,
and preventing users from violating security policies. IDS/IPS systems have become a
necessary component to the security infrastructure of nearly every system. Table IV
provides a brief summary of the methods used.

9.4. Recovery and Continuity Protection Measures

Recovery and continuity planning is as equally applicable to IT systems in general as
it is to virtual systems. Neither is this process (necessarily) distinct from the processes
described in Sections 9.1–9.3 earlier, as clearly one may well be a consequence of the
other. Well-defined procedures exist for backup and recovery, which themselves are
intimately tied to the level of risk deemed appropriate. Again, such procedures are
equally applicable to virtual systems as they are to any computer or network system
architecture. Table V provides a brief summary of these processes.

Any implementation of virtual machine architectures will require a careful and
thorough application of the principles discussed in Sections 9.1–9.4. Not all aspects
will be required in every implementation. However, neglecting a meticulous process
of security policy implementation, hardening and threat prevention, intrusion anal-
ysis and recovery, and continuity measures in such an environment could well lead
to catastrophic results often seen in poorly implemented systems in other areas of

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:33

Table V. Summary of Recovery and Continuity Measures

Recovery and continuity protection measures
Normal

procedures as
with any
computer
system
recovery

• Backup regularly
• Create trusted builds and em-

ploy tight change management
controls on uses

• Integrate with integrity
checking and attestation

Recovery measures need to address
the often complex interaction of the
VM components.

computer-communications architectures. Even a simple oversight such as neglecting
to change a default password can have serious consequences.

As with any aspect of security, the secure deployment of system virtualization can-
not be undertaken with well-planned deployments and operational security alone. The
deployed architecture should have regular security audits and penetration tests per-
formed to detect any undiscovered or new types of vulnerability.

10. CONCLUSION

This survey introduced some of the foundational details of system virtualization as is
now prevalent in many computing contexts, with a focus on the security implications
thereof. While virtualization is an old paradigm, it is also one which has been given new
vitality with today’s hardware and software architectures, including both hardware
systems such as TPMs as well as software systems such as tailored and selectively
tuned operating systems designed to support specific applications. Due to the high
privilege of the VMM and hardware, few other measures can be taken at present. We
examined the various technologies associated with virtualization and in particular, the
security issues related to such a tight integration of modern hardware and software.
Furthermore, virtualization is being associated with not just multiple host operating
systems, but also virtual routing and associated virtual networking, all of which create
challenging security issues.

Virtualization has given a new dimension to software studies (for example, malware
analysis), where conventional test beds were limited in capacity and conventional simu-
lation often lacked practicality and accuracy because of the complex processes involved.
The ability to capture (multiple) snapshots and to be able to roll back and restore a
machine’s state are of significant value in today’s complex design architectures.

This article has demonstrated that implicit trust in a virtualized platform can be
a major vulnerability area in system virtualization. To a considerable degree, the
OS trusts the hardware in a physical system. Similarly, in a VM the OS trusts the
virtual hardware, and thus the VMM. The VMM is a single point of failure, and a
malicious, compromised, or otherwise problematic VMM may interfere with the VM.
Secure virtualization relies on the authenticity and integrity of the VMM, and in some
cases upon the security or identity of the underlying hardware. Since a cloned VM can
be difficult or impossible to distinguish from an original, the cloning of VMs is a threat
if it happens incorrectly, or of a VM that is not bound to a specific VMM.

A virtualized system abstracted away from the hardware is no longer dependent
upon its location, and can even be difficult to define as a single system. A virtualized
system can be duplicated (cloned), and every single instance must be found before it can
be managed or secured. Even when threats from cloning and snapshots are excluded,
threats can still arise from the abstraction of the VM away from hardware.

Some research has gone into the secure sharing of data and security policies within
sets of virtual machines, called trusted virtual domains. In VMMs that do not support
this functionality, one VM modifying another VM’s resources is a privilege escalation
problem. Although virtualization can be advantageous for security, it can also be its

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:34 M. Pearce et al.

downfall. The necessity of a thorough implementation and associated test procedures
as discussed in the previous section cannot be overemphasized.

Finally, system virtualization is a two-edged sword with regard to security. It must be
wielded with skill and care, as it not only offers improvements in the security isolation
and accountability of software, its use also brings with it risks that should be handled
with care and forethought. A well implemented, deployed, monitored, and managed
virtualization solution can offer security advantages for confidentiality, integrity, and
particularly availability, but a failure in any one of these aspects can lead to potentially
disastrous results.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their valuable feedback and constructive suggestions
which have helped to improve the quality and presentation of this article. We also express our gratitude to Deb
Frincke for initiating the early discussions on virtualization which led in part towards the completion of this
work. Finally, we are also thankful to Michael Huth and Chris Hankin for their support and encouragements
throughout the preparation of this article.

REFERENCES

ADAMS, K., AND AGESEN, O. 2006. A comparison of software and hardware techniques for x86 virtualization. In
Proceedings of the 12th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). ACM Press, 2.

ADVANCED MICRO DEVICES. 2008. AMD-VTM nested paging. http://developer.amd.com/assets/NPT-WP-1 1-final-
TM.pdf.

ADVANCED MICRO DEVICES. 2010. AMD virtualization (AMD-V)TM technology. http://sites.amd.com/us/
business/itsolutions/virtualization/Pages/amd-v.aspx.

ATHREYA, M. B. 2010. Subverting Linux On-the-Fly Using Hardware Virtualization Technology.
http://smartech.gatech.edu/handle/1853/34844.

BALDWIN, A., DALTON, C., SHIU, S., KOSTIENKO, K., AND RAJPOOT, Q. 2009. Providing secure services for a virtual
infrastructure. ACM SIGOPS Oper. Syst. Rev. 43, 1, 44.

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., ET AL. 2003. Xen and the art of virtualization.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles (SOSP’03). ACM Press,
164–177.

BARROSO, L. A. AND HÖLZLE, U. 2007. The case for energy-proportional computing. Comput. 40, 12, 33–37.
BERGER, S., PEREZ, R., CACERES, R., SAILER, R., GOLDMAN, K. A., AND VAN DOORN, L. 2006. vTPM: Virtualizing

the trusted platform module. In Proceedings of the 15th USENIX Security Symposium. 1–16.
BRATUS, S., JOHNSON, P. C., RAMASWAMY, A., SMITH, S. W., AND LOCASTO, M. E. 2009. The cake is a lie: Privilege

rings as a policy resource. In Proceedings of the 1st ACM Workshop on Virtual Machine Security. ACM
Press, 33–37.

BRATUS, S., LOCASTO, M., AND RAMASWAMY, A. 2008. Traps, events, emulation, and enforcement: Managing
the yin and yang of virtualization-based security. In Proceedings of the 1st ACM Workshop on Virtual
Machine Security. ACM Press, 49–58.

BUGNION, E., DEVINE, S., GOVIL, K., AND ROSENBLUM, M. 1997. Disco: Running commodity operating systems on
scalable multiprocessors. ACM Trans. Comput. Syst. 15, 4, 412–447.

CAPELIS, D. J. 2007. Virtualization: Enough holes to work vegas. In Proceedings of Defcon 15.
CARBONE, M., ZAMBONI, D., AND LEE, W. 2008. Taming virtualization. IEEE Secur. Privacy Mag. 6, 1, 65–67.
CATUOGNO, L., DMITRIENKO, A., ERIKSSON, K., AND KUHLMANN, D. G. 2010. Trusted virtual domains—Design,

implementation and lessons learned. In Trusted Systems, Springer, 156–179.
CHAMPAGNE, D. 2010. Scalable security architecture for trusted software, Princeton University, Ph.D disser-

tation Princeton, NJ.
CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM, P., WALDSPURGER, C. A., BONEH, D., ET AL. 2008. Over-

shadow. In Proceedings of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM Press, 2.

CHOWDHURY, N. M. M. K AND BOUTABA, R. 2009. Network virtualization: State of the art and research chal-
lenges. IEEE Comm. Mag. 47, 7, 20–26.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:35

CHRISTODORESCU, M., SAILER, R., SCHALES, D. L., SGANDURRA, D., AND ZAMBONI, D. 2009. Cloud security is not (just)
virtualization security. In Proceedings of the ACM Workshop on Cloud Computing Security (CCSW’09).
ACM Press, 97.

COLLIER, G., PLASSMAN, D., AND PEGAH, M. 2007. Virtualization’s next frontier: Security. In Proceedings of the
35th Annual ACM SIGUCCS Fall Conference. ACM, 34–36.

COMMONCRITERIA. 2008. Certification report for processor resource/system manager (PR/SM) for
the IBM system z10 EC GA1. Tech. rep. BSI-DSZ-CC-0460-2008. Informationstechnik, 1–38.
http://www.commoncriteriaportal.org/files/epfiles/0460a.pdf.

CRISCIONE, C. 2010. Virtually pwned - Pentesting virtualization. In Proceedings of Black-
hat USA. http://media.blackhat.com/bh-us-10/presentations/Criscione/BlackHat-USA-2010-Criscione-
Virtually-Pwned-slides.pdf.

DAI ZOVI, D. A. 2006. Hardware virtualization rootkits. http://www.orkspace.net/secdocs/Conferences/
BlackHat/USA/2006/Hardware Virtualization Based Rootkits.pdf.

DALTON, C. I., PLAQUIN, D., WEIDNER, W., KUHLMANN, D., BALACHEFF, B., AND BROWN, R. 2009. Trusted virtual
platforms. ACM SIGOPS Oper. Syst. Rev. 43, 1, 36. ACM.

DEWAN, P., DURHAM, D., KHOSRAVI, H., LONG, M., AND NAGABHUSHAN, G. 2008. A hypervisor-based system for
protecting software runtime memory and persistent storage. In Proceedings of the Spring Simulation
Multiconference. Society for Computer Simulation International, 828–835.

DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. 2008. Ether. In Proceedings of the 15th ACM Conference on
Computer and Communications Security (CCS’08). ACM Press, 51.

DOMINGUES, P., MARQUES, P., AND SILVA, L. 2005. Resource usage of windows computer laboratories. In Proceed-
ings of the International Conference on Parallel Processing Workshops (ICPPW’05). IEEE, 469–476.

DOWTY, M. AND SUGERMAN, J. 2009. GPU virtualization on vmware’s hosted i/o architecture. ACM SIGOPS
Oper. Syst. Rev. 43, 3, 73.

DUFLOT, L. 2008. CPU bugs, cpu backdoors and consequences on security. J. Comput. Virol. 5, 2, 91–104.
FERRIE, P. 2007a. Attacks on more virtual machine emulators. http://pferrie.tripod.com/papers/attacks2.pdf.
FERRIE, P. 2007b. Attacks on virtual machine emulators. http://www.symantec.com/avcenter/reference/

Virtual Machine Threats.pdf.
FERRIE, P., HAPI, H., AND JOY, J. O. Y. 2006. Virus analysis tumours and polips. Virus Bull., 4–8.
FORD, R., AND ALLEN, W. H. 2007. How not to be seen II: The defenders fight back. IEEE Secur. Privacy Mag.

5, 6, 65–68.
FRANKLIN, J, SESHADRI, A, QU, N, CHAKI, S., AND DATTA, A. 2008a. Attacking, repairing, and verifying SecVisor:

A retrospective on the security of a hypervisor. Cylab Tech. rep. CMU-CyLab-08-008.
FRANKLIN, J., LUK, M., MCCUNE, J. M., SESHADRI, A., PERRIG, A., AND VANDOORN, L. 2008b. Remote detection of

virtual machine monitors with fuzzy benchmarking. ACM SIGOPS Oper. Syst. Rev. 42, 3, 83.
FUCHI, K., TANAKA, H., MANAGO, Y., AND YUBA, T. 1969. A program simulator by partial interpretation. In

Proceedings of the 2nd Symposium on Operating Systems Principles (SOSP’69). ACM Press, 97.
GARFINKEL, T, AND ROSENBLUM, M. 2005. When virtual is harder than real: Security challenges in virtual ma-

chine based computing environments. In Proceedings of the 10th Conference on Hot Topics in Operating
Systems (HOTOS’05). Vol. 10, ACM Press, 6.

GARFINKEL, T., ADAMS, K., WARFIELD, A., AND FRANKLIN, J. 2007. Compatibility is not transparency: VMM
detection myths and realities. In Proceedings of the 11th USENIX Workshop on Hot Topics in Operating
Systems. USENIX Association, 1–6.

GARFINKEL, T. AND ROSENBLUM, M. 2003. A virtual machine introspection based architecture for intrusion
detection. In Proceedings of the Network and Distributed Systems Security Symposium. Vol. 1. 253–285.

GEBHARDT, C., DALTON, C., AND BROWN, R. 2008. Preventing hypervisor-based rootkits with trusted execution
technology. Netw. Secur. 11, 7–12.

GEBHARDT, C, AND TOMLINSON, A. 2008. Security consideration for virtualization. Tech. rep. RHUL–MA–2008–
16. In Proceedings of the 3rd Asia Pacific Trusted Infrastructure Technologies Conference. 19–29.

GOLDBERG, R. P. 1973. Architecture of virtual machines. In Proceedings of the Workshop on Virtual Computer
Systems. ACM Press, 74–112.

GOLDBERG, R. P. 1974. Survey of virtual machine research. IEEE Comput. 7, 3, 34–45.
GRIFFIN, J. L., JAEGER, T., PEREZ, R., SAILER, R., VAN DOORN, L., ET AL. 2005. Trusted virtual domains: To-

ward secure distributed services. In Proceedings of the 1st IEEE Workshop on Hot Topics in System
Dependability.

GUERON, S. AND SEIFERT, J. P. 2009. On the impossibility of detecting virtual machine monitors. Emerg.
Challen. Secur. Privacy Trust 297. Springer, 143–151.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:36 M. Pearce et al.

HALDAR, V., CHANDRA, D., AND FRANZ, M. 2004. Semantic remote attestation—A virtual machine directed
approach to trusted computing. In Proceedings of the 3rd Conference on Virtual Machine Research and
Technology Symposium. USENIX.

INTEL. 2003. Intel R© Trusted Execution Technology Architectural Overview. http://www.intel.com/technology/
security/downloads/arch-overview.pdf

INTEL. 2009. Intel R© trusted execution technology (Intel R© TXT) software development guide. architecture.
IRVINE, C. E. AND LEVITT, K. 2007. Trusted hardware: Can It be trustworthy? In Proceedings of the 44th

ACM/IEEE Design Automation Conference. 1–4.
IVANOV, I. AND GUEORGUIEV, V. 2008. Operating systems virtualisation and security-modern aspects and an

open trusted computing project. In Proceedings of the International Scientific Conference Computer
Science. 335–339.

JAEGER, T., SAILER, R, AND SREENIVASAN, Y. 2007. Managing the risk of covert information flows in virtual
machine systems. In Proceedings of the 12th ACM Symposium on Access Control Models and Technologies
(SACMAT’07). ACM Press, 81.

JANSEN, B., RAMASAMY, H., SCHUNTER, M., AND TANNER, A. 2008. Architecting dependable and secure systems
using virtualization. In Architecting Dependable Systems V, Springer, 124–149.

JIN, H., XIANG, G., ZHAO, F., ZOU, D., LI, MIN, AND SHI, L. 2009. VMFence. In Proceedings of the 3rd International
Conference on Ubiquitous Information Management and Communication (ICUIMC’09). ACM Press, 391.

JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-DUSSEAU, R. H. 2008. VMM-Bbased hidden process detection and
identification using lycosid. In Proceedings of the 4th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE’08). ACM Press, 91.

KARGER, P. A., AND SAFFORD, D. R. 2008. I/O for virtual machine monitors: Security and performance issues.
IEEE Secur. Privacy Mag. 6, 5, 16–23.

KING, S. T., CHEN, P. M., VERBOWSKI, C., WANG, H. J., AND LORCH, J. R. 2006. SubVirt: Implementing malware
with virtual machines. In Proceedings of the IEEE Symposium on Security and Privacy (S&P’06). IEEE,
314–327.

KIST, A. A. 2009. Staged request routing for reduced carbon footprints of large scale server systems. In
Proceedings of the Australasian Telecommunication Networks and Applications Conference (ATNAC).
IEEE, 1–5.

KORTCHINSKY, K. 2009. Cloudburst—A VMware guest to host escape story. http://www.blackhat.com/
presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf.

KOURAI, K. AND CHIBA, S. 2005. HyperSpector: Virtual distributed monitoring environments for secure intru-
sion detection. In Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution
Environments. ACM, 197–207.

LAADAN, O. AND NIEH, J. 2010. Operating system virtualization: Practice and experience. In Proceedings of
the 3rd Annual Haifa Experimental Systems Conference. ACM 1–12.

LANDWEHR, C. E., BULL, A. R., MCDERMOTT, J. P., AND CHOI, W. S. 1994. A taxonomy of computer program
security flaws, ACM Comput. Surv. 26, 3, 211–254.

LAUREANO, M., MAZIERO, C., AND JAMHOUR, E. 2004. Intrusion detection in virtual machine environments. In
Proceedings of the 30th Euromicro Conference. IEEE, 520–522.

LINDQVIST, U. AND JONSSON, E. 1997. How to systematically classify computer security intrusions. In Proceed-
ings of the IEEE Symposium on Security and Privacy. IEEE Computer Society.

LISTON, T. AND SKOUDIS, E. 2006. On the cutting edge: Thwarting virtual machine detection. In Proceedings of
the SANSFIRE Conference. 1–27.

LITTY, L. 2005. Hypervisor-Based intrusion detection. Master’s thesis, Department of Computer Science,
University of Toronto, Canada.

LITTY, L. AND LIE, D. 2006. Manitou: A layer-below approach to fighting malware. In Proceedings of the 1st
Workshop on Architectural and System Support for Improving Software Dependability. ACM, 6–11.

MADNICK, S. E. AND DONOVAN, J. J. 1973. Application and analysis of the virtual machine approach to infor-
mation system security and isolation. In Proceedings of the Workshop on Virtual Computer Systems.
Vol. 4102, ACM Press, 210–224.

MATTHEWS, J. N., HERNE, J. J., DESHANE, T. M., JABLONSKI, P. A., CHERIAN, L. R., AND MCCABE, M. T. 2005.
Data protection and rapid recovery from attack with a virtual private file server and virtual machine
appliances. In Proceedings of the IASTED International Conference on Communication, Network and
Information Security. 170–181.

MICROSOFT. 2010. Microsoft security development lifecycle (SDL) threat modeling tool. http://www.
microsoft.com/security/sdl/adopt/threatmodeling.aspx.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:37

MILLER, K. AND PEGAH, M. 2007. Virtualization: Virtually at the desktop. In Proceedings of the 35th Annual
ACM SIGUCCS Conference on User Services. 255–260.

MSDN. 2010. Windows virtual pc interfaces. http://msdn.microsoft.com/enus/library/dd796756(VS.85).aspx.
NANCE, K., HAY, B., AND BISHOP, M. 2008. Virtual machine introspection observation or interference? IEEE

Secur. Privacy Mag. 6, 5, 32–37.
NEWSHAM, G. R. AND TILLER, D. K. 1994. The energy consumption of desktop computers: Measurement and

savings potential. IEEE Trans. Ind. Appl. 30, 4, 1065–1072.
NOMOTO, T., OYAMA, Y., EIRAKU, H., SHINAGAWA, T., AND KATO, K. 2010. Using a hypervisor to migrate run-

ning operating systems to secure virtual machines. In Proceedings of the IEEE 34th Annual Computer
Software and Applications Conference. IEEE Computer Society, 37–46.

OMELLA, A. A. 2006. Methods for virtual machine detection. Grupo S21sec Gestión SA. http://www.s21sec.com/
descargas/vmware-eng.pdf.

OPPLIGER, R. AND RYTZ, R. 2005. Does trusted computing remedy computer security problems? IEEE Sec.
Privacy Mag. 3, 2, 16–19.

ORMANDY, T. 2007. An empirical study into the security exposure to hosts of hostile virtualized environments.
In Proceedings of the CanSecWest Applied Security Conference. 1–10.

OWASP. 2010. (Open Web Application Security Project) OWASP threat risk modeling. http://www.owasp.org/
index.php/Threat Risk Modeling.

PAYNE, B. D., CARBONE, M. D. P. D. A., AND LEE, W. 2007. Secure and flexible monitoring of virtual machines. In
Proceedings of the 23rd Annual Computer Security Applications Conference (ACSAC’07). IEEE, 385–397.

PEREZ, R., VAN DOORN, L., AND SAILER, R. 2008. Virtualization and hardware-based security. IEEE Sec. Privacy
Mag. 6, 5, 24–31.

PETERSON, Z. AND BURNS, R. 2005. Ext3cow: A time-shifting file system for regulatory compliance. ACM Trans.
Storage 1, 2, 190–212.

PFAFF, B. AND ROSENBLUM, M. 2003. Terra: A virtual machine-based platform for trusted computing. In Pro-
ceedings of the Symposium on Operating Systems Principles (SOSP’03). ACM, 193–206.

POPEK, G. J. AND GOLDBERG, R. P. 1974. Formal requirements for virtualizable third generation architectures.
Comm. ACM 17, 7, 412–421.

PRICE, M. 2008. The paradox of security in virtual environments. Comput. 41, 11, 22–28.
RAFFETSEDER, T., KRUEGEL, C., AND KIRDA, E. 2007. Detecting system emulators. In Information Security.

Lecture Notes in Computer Science, vol. 4779, Springer, 1–18.
RAMOS, J. 2009. Security challenges with virtualization. Ph.D. thesis, Libson University Faculty of Computing,

121.
RASHID, A., MENS, T., BUCKLEY, J., AND ZENGER, M. 2003. Towards a taxonomy of software evolution. In Pro-

ceedings of the International Workshop on Unanticipated Software Evolution. 1–18.
REUBEN, J. 2007. A survey on virtual machine security. http://www.tml.tkk.fi/Publications/C/25/papers/

Reuben final.pdf.
RISTENPART, T., TROMER, E., SHACHAM, H., AND SAVAGE, S. 2009. Hey, you, get off of my cloud: Exploring infor-

mation leakage in third-party compute clouds. Artif. Intell., 199–212.
ROSE, R. 2004. Survey of system virtualization techniques. http://www.robertwrose.com/vita/rose-

virtualization.pdf.
ROSENBLUM, M. AND GARFINKEL, T. 2005. Virtual machine monitors: Current technology and future trends.

Comput. 38, 5, 39–47.
ROSIN, R. F. 1969. Contemporary concepts of microprogramming and emulation. ACM Comput. Surv. 1, 4,

197–212.
RUTKOWSKA, J. AND TERESHKIN, A. 2008. Bluepilling the xen hypervisor. http://invisiblethingslab.com/bh08/

part3.pdf.
RUTKOWSKA, J. 2006. Subverting vista kernel for fun and profit. http://www.blackhat.com/presentations/bh-

usa-06/BH-US-06-Rutkowska.pdf.
SAILER, R, ZHANG, X., JAEGER, T., AND VAN DOORN, L. 2004. Design and Implementation of a tcg-based integrity

measurement architecture. In 13th USENIX Security Symposium. Vol. 8.
SAILER, R., JAEGER, T., VALDEZ, E., CACERES, R., PEREZ, R., BERGER, S., GRIFFIN, J. L., AND VAN DOORN, L. 2005.

Building a mac-based security architecture for the xen open-source hypervisor. In Proceedings of the
21st Annual Computer Security Applications Conference (ACSAC’05). 276–285.

SCOTT, S. L., VALLÉE, G., NAUGHTON, T., TIKOTEKAR, A., ENGELMANN, C., AND ONG, H. 2010. System-Level virtu-
alization research at Oak Ridge National Laboratory. Future Generation Comput. Syst. 26, 3, 304–307.

SECURITY, N. 2010. Virtualisation worries. Netw. Secur. 5, 20.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

17:38 M. Pearce et al.

SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. 2007. SecVisor: A tiny hypervisor to provide lifetime kernel
code integrity for commodity oses. In Proceedings of the 21st ACM SIGOPS Symposium on Operating
Systems Principles. ACM, 335–350.

SHARIF, M. I., LEE, W., CUI, W., AND LANZI, A. 2009. Secure in-vm monitoring using hardware virtualization.
In Proceedings of the 16th ACM Conference on Computer and Communications Security (CCS’09). ACM
Press, 477.

SIEBENLIST, F. 2009. Challenges and opportunities for virtualized security in the clouds. In Proceedings of
the 14th ACM Symposium on Access Control Models and Technologies (SACMAT’09). ACM Press, 1.
http://portal.acm.org/citation.cfm?doid=1542207.1542209.

SKAPINETZ, K. 2007. Virtualisation as a blackhat tool. Netw. Secur. 10, 4–7.
SMITH, J. E. AND NAIR, R. 2005. The architecture of virtual machines. IEEE Comput. 38, 5 , 32–38.
SOUNDARARAJAN, V. AND ANDERSON, J. M. 2010. The impact of management operations on the virtualized data-

center. In Proceedings of the 37th Annual Iternational Symposium on Computer architecture (ISCA’10).
ACM Press, 326.

SOURCEFORGE. 2010. Integrity measurement architecture (IMA) - SourceForge.net. http://sourceforge.net/
projects/linux-ima/.

STRONGIN, G. 2005. Trusted computing using amd “pacifica” and “presidio” secure virtual machine technology.
Inf. Secur. Tech. Rep. 10, 2, 120–132.

SUBASHINI, S. AND KAVITHA, V. 2011. A survey on security issues in service delivery models of cloud computing.
J. Netw. Comput. Appl. 34, 1, 1–11. http://linkinghub.elsevier.com/retrieve/pii/S1084804510001281.

SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-HONG. 2001. Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor. In Proceedings of the Usenix Annual Technical Conference. Vol. 7.
USENIX Association, 1–15.

TCG. 2010. Trusted computing group. http://www.trustedcomputinggroup.org/.
TOMLINSON, C. 2009. Trusted virtual disk images. In Proceedings of the 1st International Conference Future

of Trust in Computing. 197.
TRUSTED COMPUTING GROUP. 2007. TPM Main Part 1 Design Principles Version 1.2 (Level 2 Revision 103).

ReVision, 182.
UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS, F. C. M., ANDERSON, A. V., ET AL. 2005. Intel

virtualization technology. Comput. 38, 5, 48–56.
VAARALA, S. 2006. Security considerations of commodity x86 virtualization. Helsinki University of Technology-

Telecommunications.
VAN CLEEFF, A., PIETERS, W., AND WIERINGA, R. J. 2009. Security implications of virtualization: A literature

study. In Proceedings of the International Conference on Computational Science and Engineering. IEEE,
353–358.

VASAN, A., SIVASUBRAMANIAM, A., SHIMPI, V., SIVABALAN, T., AND SUBBIAH, R. 2010. Worth their watts? An empirical
study of datacenter servers. In Proceedings of the 16th International Symposium on High-Performance
Computer Architecture. IEEE, 1–10.

VASUDEVAN, A., MCCUNE, J., QU, N., AND VAN DOORN, L. 2010. Requirements for an integrity-protected hypervisor
on the x86 hardware virtualized architecture. In Proceedings of the 3rd International Conference on Trust
and Trustworthy Computing (TRUST’10). Springer, 141–165.

VMWARE. 2010. VIX API. http://www.vmware.com/support/developer/vix-api/.
WANG, S.-X., WANG, Y.-C., AND TIAN, W. Z. 2010. Research on trusted computing implementations in windows.

In Proceedings of the International Conference of Information Science and Management Engineering.
IEEE, 446–449.

WANG, Z. AND LEE, R. 2006. Covert and side channels due to processor architecture. In Proceedings of the
22nd Annual Computer Security Applications Conference (ACSAC’06). 473–482.

WANG, Z. AND LEE, R. 2007. New cache designs for thwarting software cache-based side channel attacks. ACM
SIGARCH Comput. Archit. News 35, 2, 494.

WHITAKER, A., COX, R. S., SHAW, M., AND GRIBBLE, S. D. 2005. Rethinking the design of virtual machine monitors.
Comput. 38, 5, 57–62.

WIMMER, M. 2008. Virtual security. In 1st Conference on Computer Security Incident Handling. Vol. 20.
WLODARZ, J. J. 2007. Virtualization: A double-edged sword. http://arxiv.org/abs/0705.2786.
WOJTCZUK, R. AND RUTKOWSKA, J. 2009. Attacking intel trusted execution technology. http://www.

invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT-paper.pdf.
WU, X. AND MA, W. 2010. Hypervisor based detection and prevention for packed malware. http://www.

ece.tamu.edu/∼tristanw/files/Wu Xiaojian Ma Weiqin Report.pdf.

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

Virtualization: Issues, Security Threats, and Solutions 17:39

XUAN, C., COPELAND, J., AND BEYAH, R. 2009. Toward revealing kernel malware behavior in virtual execution
environments. In Recent Advances in Intrusion Detection. Springer, 304–325.

YAMAHATA, I. 2008. Paravirt ops on IA64. Kernel.org. http://www.kernel.org/doc/Documentation/ia64/
paravirt ops.txt.

YU, L., WENG, C., LI, M., AND LUO, Y. 2010. Security challenges on the clone, snapshot, migration and rollback
of xen based computing environments. In Proceedings of the 5th Annual ChinaGrid Conference. IEEE,
223–227.

YUNIS, M. AND HUGHES, J. 2008. Real security in virtual systems: A proposed model for a comprehensive
approach to securing virtualized environments. Issues Inf. Syst. IX, 2, 385–395.

Received January 2011; revised July 2011; accepted September 2011

ACM Computing Surveys, Vol. 45, No. 2, Article 17, Publication date: February 2013.

